JP4441721B2 - Forging mold for semi-molten metal and molding method using the mold - Google Patents

Forging mold for semi-molten metal and molding method using the mold Download PDF

Info

Publication number
JP4441721B2
JP4441721B2 JP2003152935A JP2003152935A JP4441721B2 JP 4441721 B2 JP4441721 B2 JP 4441721B2 JP 2003152935 A JP2003152935 A JP 2003152935A JP 2003152935 A JP2003152935 A JP 2003152935A JP 4441721 B2 JP4441721 B2 JP 4441721B2
Authority
JP
Japan
Prior art keywords
semi
molten metal
mold
forging
die
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003152935A
Other languages
Japanese (ja)
Other versions
JP2004106055A (en
Inventor
博晃 三吉
寛人 佐々木
道寛 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Machinery Corp Ltd
Original Assignee
Ube Machinery Corp Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Machinery Corp Ltd filed Critical Ube Machinery Corp Ltd
Priority to JP2003152935A priority Critical patent/JP4441721B2/en
Publication of JP2004106055A publication Critical patent/JP2004106055A/en
Application granted granted Critical
Publication of JP4441721B2 publication Critical patent/JP4441721B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Forging (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は半溶融金属を金型キャビティ内に挿入して型鍛造を行うに際し、凝固層の捕獲と半溶融金属の転倒を防止するようにした半溶融金属用鍛造金型およびその金型を用いた成形方法に関する。
【0002】
【従来の技術】
近年、各種機械部品や自動車部品において軽量化や一体化の要求は強くなってきている。更に、従来は鋼の鍛造品であったものを軽金属の鋳造品にシフトしつつある。これら要求に対して、半溶融金属成形法の採用が種々検討されている。
この半溶融金属成形は液相部分と固相部分とが共存する半溶融状態のまま金型キャビティ内に射出充填するものであり、半溶融金属の粘度が高いため層流に近い状態で充填される。従って、ガスの巻き込みに起因するガス欠陥等の発生もなく、且つ、金属組織も非樹枝状の微細な結晶粒が均一に分布しており機械的強度も優れているので、前述した要求にマッチする成形法である(例えば、特許文献1参照)。
【0003】
【特許文献1】
特開平8−325652号
【0004】
【発明が解決しようとする課題】
ところが、前述の半溶融金属をキャビティ内に射出充填して成形する従来の金型を半溶融金属の鍛造成形に使用すると以下の問題が発生する。即ち、上下一対で構成される鍛造下型のキャビティ部に載置された半溶融金属は、半溶融金属が持つ潜熱量が少ないために、下型キャビティ部と接触した半溶融金属の表層部分は急激に冷却され、いわゆる凝固層が形成されやすく、このような凝固層が製品中に混入することになる。この凝固層が製品中に混入すると、周囲の健全な半溶融金属部分と完全に溶融できず、湯境と同様の欠陥を生じることになるといった問題があった。この問題を解決するために、半溶融金属の下部と下型キャビティ部との接触面積を少なくしようとして、上下に細長い状態で半溶融金属を下型キャビティ部内に起立させることが考えられるが、この場合上下鍛造金型で鍛造成形する前に時折半溶融金属が傾転してしまい、安定性に欠けるため、所望の製品ができないといった問題がある。
【0005】
本発明は、上記の問題点に鑑みてなされたものであって、その目的は半溶融金属をキャビティ部に載置した際に生じる凝固層を捕獲して製品中への混入を防止しつつ、安定して半溶融金属を成形するようにした半溶融金属用鍛造金型およびその金型を用いた成形方法を提供するものである。
【0006】
【課題を解決するための手段】
上記の課題を解決するために、本発明における第1の発明は、融点直上または融点直下の温度で固相と液相が共存する溶融状態とした半溶融金属を金型キャビティ内に供給して型鍛造成形を行うための半溶融金属用鍛造金型であって、該鍛造金型を、接離可能な一対の金型で構成するとともに、該鍛造金型の一方の金型キャビティの一部に、上記半溶融金属を載置するための、該半溶融金属の径よりも大きい径を有する皿状凹部を設け、該鍛造金型の他方を型締め方向に移動させて型鍛造成形を行うに際し、凝固層を含む非製品の過剰の突起部を形成して、該半溶融金属の径よりも大きい径を有する皿状凹部で半溶融金属の凝固層を捕獲する油圧シリンダを、半溶融金属の径よりも大きい径を有する皿状凹部に臨むように設けたことを特徴とする半溶融金属用鍛造金型である。
【0007】
なお、上記半溶融金属用鍛造金型おいては、上記半溶融金属の傾転を防止するための突起部を、上記半溶融金属の径よりも大きい径を有する皿状凹部に位置する円形状のシリンダの周辺部に複数個配設してもよい。さらに、第2の発明は、上記半溶融金属用鍛造金型を用いて、融点直上または融点直下の温度で固相と液相が共存する溶融状態とした半溶融金属を、一方の該鍛造金型の、該半溶融金属の径よりも大きい径を有する皿状凹部に載置した後、他方の該鍛造金型を型締め方向に移動させて型鍛造成形を行うとともに、該半溶融金属の径よりも大きい径を有する皿状凹部に臨むように設けた油圧シリンダで、凝固層を含む非製品の過剰の突起部を形成して、該半溶融金属の径よりも大きい径を有する皿状凹部で半溶融金属の凝固層を捕獲するようにした。
【0008】
【発明の実施の形態】
以下、本願発明に係わる半溶融金属用鍛造金型およびその金型を用いた成形方法について詳細に説明する。図1は本発明の該半溶融金属スラリを載置するための凹部を有する半溶融金属用鍛造金型の断面図、図2は半溶融金属用鍛造金型の型締状態の断面図、図3は鍛造上型の拡大断面図、図4は鍛造下型の拡大断面図、図5は凹部に傾転防止用突起部を設けた場合の正面断面図、図6は図5のA−Aから見た場合の平面図を示す。
【0009】
本発明の半溶融金属用鍛造金型10は、半溶融金属Mの専用の成形用金型であり、主として上部金型12、下部金型14ならびに油圧シリンダ付ピストン41で構成され、両金型12、14間に金型キャビティ20を形成している。この金型キャビティ20は、凸状部22を有する上部金型12と凹状部24を有する下部金型14との間に形成されている。
【0010】
まず、上部金型12について説明する。図1に示すように上部金型12は凸状部22を有しており、図3に示すように直線部26と、直線部26から凸状部22の先端部に向かって伸びる截頭円錐状のテーパー部28と先端が平面部29を有した構成になっている。
【0011】
また、上部金型12の内部には、空間部54が刻設されている。この空間部54内部には、製品を上部金型12の表面から離型するための押出しピン50を取り付ける基部52が上下自在に収納されている。この基部52は、2枚の基部52a、52bで重畳構成されている。
【0012】
基部52bの上部端面側にナット56が固着してあり、このナット56に端部にネジの刻設された押出しピン50が螺合されている。押出しピン50は上部金型12の内部に竪方向に刻設された摺動孔58内を上下移動自在とされ、製品の成形後、押出しピン50の先端部が平面部29から金型キャビティ20側に突設するように構成され、上部金型12に取られた製品を上部金型12から離型するようになっている。
【0013】
次に、他方の下部金型14について説明する。図1に示すように下部金型14は凹状部24を有しており、図4に示すように上部金型12の凸状部22に対して挿抜自在となるように凹状部24を形成している。凹状部24は、直線部26と上部金型12の凸状部22の間で小さい隙間を構成する直線部30と、両金型12、14を型合わせした際に、截頭円錐状の上型テーパー部28との間で製品を鍛造成形するために下型テーパー部32と、底部34とで形成されている。
【0014】
この両テーパー部28、32は、上部に向かってお互いに異なった拡径されたテーパーを有するとともに、両者の角度に差異があるようになっており、上部テーパー部28の好ましい角度は1度となっている。一方の下部テーパー部32の好ましい角度は、上部テーパー部28の角度より若干大き目の1.5度となっている。このようにすることにより、成形後に下金型14に製品が取られてしまうことがない。
【0015】
さらに下部金型14の底部34にはこの底部34よりさらに下方に向かって深く刻設された皿状の凹部36が設けられている。この凹部36の側面は、上方に向かって拡径されたテーパー部37を形成している。このテーパー角度は、3〜10度程度にすることが望ましく、3度以下になると、半溶融金属Mと凹部36の底部35との間で冷却により生成した凝固層が製品中に混入し難くなるものの、成形後、上部金型12が上昇するときに製品も上部金型12と一緒になって上昇せずに下部金型14に取られ易くなる。
【0016】
逆に、10度以上になると、成形後、上部金型12が上昇するときに下部金型14に取られることなく製品も上部金型12と一緒になって上昇し易くなるものの、半溶融金属Mと底部35との間で冷却により生成した凝固層が製品中に混入し易くなる。
【0017】
金型キャビティ20の背面部に位置する下部金型14の外周部には、凹部状に刻設された部位に副下型42がはめ込められて下部金型14の一部を構成している。副下型42の内部に空間部44が形成されている。一方、主シリンダ46を成す空間部44の上部中心位置には、空間部44と連接された円形状のシリンダ38が開口されている。
【0018】
この円形状のシリンダ38は、下部金型14の底部34に刻設された凹部36の中央部に位置する底部35に開口するように縦軸線方向に沿って刻設されている。空間部44とシリンダ38に跨る空間部位には、図1に示すようにシリンダ38内を上下する小径の竪型ピストン40と、空間部44内を上下移動する大径の横型ピストン48とが連結された油圧シリンダ付ピストン41が設けられている。また、半溶融金属Mを下部金型14の凹部36に載置する際に、竪型ピストン40の先端部は金型キャビティ20に臨んで凹部36の底部35と面一となるように構成されている。
【0019】
また、上下部の両金型12、14間で型鍛造成形された製品は、製品取り出しのために上部金型12を下部金型14から離型を開始する際に、製品が上部金型12に確実に取られて製品と一緒に上昇するように、竪型ピストン40の先端部が凹部36の底部35と同一平面より金型キャビティ20内に突き出すようになっている。この突き出し動作による竪型ピストン40の支援を受けて製品は確実に下部金型14から離型されるのである。
【0020】
空間部44内に配設された横型ピストン48を上下に移動し、油圧シリンダ付ピストン41を制御するための油圧配管60(a、b)が配設されている。
【0021】
以上のように構成された半溶融金属用鍛造金型の動作を説明する。
【0022】
図1に示すように、上下部の両金型12、14間は離間した状態にあり、この状態で油圧配管60a側を開放しておくとともに、油圧配管60b側から油圧を送給して油圧シリンダ付ピストン41の一部を構成する竪型ピストン40の先端部を凹部36の底部34と同一面を有するように移動させておく。
【0023】
次いで、ロボット(図示略)の先端部に截頭円錐形状を有する半溶融金属Mを把持して、該半溶融金属Mの大径部分が下部に位置するようにして、下部金型14の凹部36の底部34に載置する。
【0024】
引続き型締め装置(図示略)を作動させて上部金型14をゆっくり下降させて型締めを行い、半溶融金属Mを圧縮成形して所望の製品に賦形する。この状態を図2に示す。この時に半溶融金属Mの供給量に応じて竪型ピストン40の位置が決まる。圧縮成形時に上部金型12に付加した型締力で成形される過剰分の半溶融金属Mは、竪型ピストン40を下に押し下げることにより、図2に示すような過剰の突起部62が形成される。この突起部21は非製品部分となり成形材料の歩留率を決めることになる。
【0025】
鍛造成形の際、製品(成形品)の投影面積と型締力でキャビティ内圧(メタル圧力)が決まるので、投影面積の小さい製品の場合はには、メタル圧力が5000kgf/cm2以上になることがある。
【0026】
このようにメタル圧力が異常に高くなると、金型割面よりのバリ吹きの可能性が高くなる。さらに、金型のへたり(寿命)も早くなる。したがって、金型キャビティ20の圧力は適切な値(1000〜3000kgf/cm2)に保つ必要がある。以上述べた理由により、半溶融金属用鍛造金型10にはメタル圧力の調整機能が必要となる。
【0027】
半溶融金属Mの大きさのバラツキ(供給量のバラツキ)を吸収するために油圧シリンダ付ピストン41の一部を構成する竪型ピストン40に作用する油圧をリリーフ弁等により適正値に保つことにより、金型キャビティ20内のメタル圧力を制御することができる。
【0028】
このように、凹部36の部位で成形し固化した半溶融金属Mは、成形時に金型キャビティ20内に押し込まれることがなく、逆に凝固層を含む非製品の過剰の突起部62となる。このため、凝固層が入り込むことがない。また、両金型12、14の型開放時に上部金型12に取られた製品は、図示を省略したロボットで過剰の突起部62を先に把持した後、押出しピン50を下降させて上部金型12の凸状部の先端に位置する平面部29から突設するようにして製品を上部金型12から離型するのである。
【0029】
図5と図6を用いて本発明の他の実施例について述べる。図5は凹部に傾転防止用突起部を設けた場合の正面断面図、図6は図5のA−Aから見た場合の平面図を示す。
【0030】
金型キャビティ20の背面部になる下部金型14の外周部には、凹部状に刻設された部位に副下型42がはめ込められて下部金型14の一部を構成している。副下型42の内部に空間部44が形成されている。一方、主シリンダ46を成す空間部44の上部中心位置には、空間部44と連接された円形状のシリンダ38が開口されている。
【0031】
この円形状のシリンダ38は下部金型14の底部34に刻設された凹部36の中央部に開口するように縦軸線方向に沿って刻設されている。半溶融金属Mを下部金型14の凹部36に載置する際に、竪型ピストン40の先端部は金型キャビティ20に臨んで低部35と面一となるように構成されている。
【0032】
図6に示すように、円形状のシリンダ38の周辺部の底部34には、等間隔に配設された4つの傾転防止用突起部64が固着されている。この傾転防止用突起部64は側面が三角形状を成し、その先端部は下部金型14の底部34と同一の水平位置より低くなるように構成されている。なお、傾転防止用突起部64の形状は、三角形状に固執するもではなく、例えば截頭円錐形状であってもよい。
【0033】
なお、傾転防止用突起部64をシリンダ38の周辺部の底部34に配設することにより、半溶融金属Mを入れた保持容器(カップとも言う)の外側をロボットが把持して下部金型14の底部34上に載置した場合、半溶融金属Mの下面部側が傾転防止用突起部64の中に入り込ん(図5)で、アンカー効果によって半溶融金属Mが傾転せずに安定して起立するため、上下両金型12、14間の金型キヤビティ20で確実に成形される。
【0034】
【発明の効果】
以上説明したように本発明によれば、下部金型に凝固層捕獲用の、半溶融金属の径よりも大きい径を有する皿状凹部を設けたことにより、該半溶融金属の径よりも大きい径を有する皿状凹部に臨むように設けた油圧シリンダで、凝固層を含む非製品の過剰の突起部を形成して、該半溶融金属の径よりも大きい径を有する皿状凹部で凝固層が確実に捕獲できるため、製品中に凝固層が混入しなくなり、製品の品質が格段に向上する。また、前記半溶融金属の径よりも大きい径を有する皿状凹部に傾転防止用の突起部を複数個配設すると、半溶融金属が成形前に傾転することがなくなり、凝固層が確実に捕獲できるため、製品中に凝固層が混入しなくなり、製品の品質の向上と成形性が格段に向上する。
【図面の簡単な説明】
【図1】本発明の該半溶融金属を載置するための凹部を有する半溶融金属用鍛造金型の断面である。
【図2】半溶融金属用鍛造金型の型締状態の断面図である。
【図3】鍛造上型の拡大断面図である。
【図4】鍛造下型の拡大断面図である。
【図5】本発明の他の実施例を示し、凹部に傾転防止用突起部を設けた場合の正面断面図である。
【図6】図5のA−Aから見た場合の平面図を示す。
【符号の説明】
10 半溶融金属用鍛造金型
12 上部金型
14 下部金型
20 金型キャビティ
22 凸状部
24 凹状部
26 直線部
28 テーパー部
29 平面部
30 直線部
32 テーパー部
34 底部
35 底部
36 凹部
37 テーパー部
38 円形状のシリンダ
40 竪型ピストン
41 油圧シリンダ付ピストン
42 副下型
44 空間部
46 主シリンダ
48 横型ピストン
50 押出しピン
52(a、b) 基部
54 空間部
56 ナット
58 摺動孔
60(a、b) 油圧配管
62 過剰の突起部
64 傾転防止用突起部
[0001]
BACKGROUND OF THE INVENTION
The present invention uses a semi-molten metal forging die and its die that prevent the capture of a solidified layer and the falling of the semi-molten metal when performing mold forging by inserting the semi-molten metal into the mold cavity. Related to the forming method.
[0002]
[Prior art]
In recent years, demands for weight reduction and integration in various machine parts and automobile parts have increased. Furthermore, what is conventionally a forged steel product is shifting to a cast product of light metal. In response to these demands, various attempts have been made to adopt a semi-molten metal forming method.
This semi-molten metal molding is injection-filled into the mold cavity in a semi-molten state where the liquid phase part and the solid phase part coexist. Since the viscosity of the semi-molten metal is high, it is filled in a state close to laminar flow. The Therefore, there is no occurrence of gas defects due to gas entrainment, and the metal structure is uniformly distributed with non-dendritic fine crystal grains and excellent in mechanical strength. (For example, refer to Patent Document 1).
[0003]
[Patent Document 1]
JP-A-8-325652 [0004]
[Problems to be solved by the invention]
However, the following problems occur when a conventional mold for injecting and filling the above-mentioned semi-molten metal into a cavity is used for forging of the semi-molten metal. That is, since the semi-molten metal placed in the cavity portion of the forged lower mold composed of a pair of upper and lower parts has a small amount of latent heat that the semi-molten metal has, the surface layer portion of the semi-molten metal in contact with the lower mold cavity portion is It is cooled rapidly and a so-called solidified layer is easily formed, and such a solidified layer is mixed in the product. When this solidified layer is mixed in the product, there is a problem that the surrounding healthy semi-molten metal portion cannot be completely melted, resulting in defects similar to the hot water boundary. In order to solve this problem, it is conceivable that the semi-molten metal is erected in the lower mold cavity in an elongated state in order to reduce the contact area between the lower part of the semi-molten metal and the lower mold cavity. In this case, the semi-molten metal sometimes tilts before forging with the upper and lower forging dies, and there is a problem that a desired product cannot be obtained because of lack of stability.
[0005]
The present invention has been made in view of the above-mentioned problems, and its purpose is to capture a solidified layer generated when a semi-molten metal is placed in a cavity portion and prevent mixing into a product, The present invention provides a forged die for semi-molten metal, which can stably form a semi-molten metal, and a molding method using the die.
[0006]
[Means for Solving the Problems]
In order to solve the above problems, the first invention in the present invention is to supply a semi-molten metal in a mold cavity in a molten state in which a solid phase and a liquid phase coexist at a temperature immediately above or below the melting point. A forging die for semi-molten metal for performing die forging, wherein the forging die is composed of a pair of detachable dies and a part of one die cavity of the forging die A plate-like recess having a diameter larger than the diameter of the semi-molten metal is placed on the semi-molten metal, and the other of the forging die is moved in the clamping direction to perform die forging. upon, forming excess protrusion of non-product containing solidified layer, a hydraulic Cylinders capturing solidified layer in a semi-molten metal in the dished recess having a diameter larger than the diameter of the semi molten metal, the semi characterized by providing to face the dished recess having a diameter larger than the diameter of the molten metal It is a forging die for the semi-molten metal.
[0007]
In the semi-molten metal forging die, the protrusion for preventing the semi-molten metal from tilting is a circular shape located in a dish-shaped recess having a diameter larger than the diameter of the semi-molten metal. A plurality of cylinders may be provided around the cylinder. Further, according to a second aspect of the present invention, a semi-molten metal in a molten state in which a solid phase and a liquid phase coexist at a temperature immediately above or below the melting point using the forged mold for a semi-molten metal, type, after placing in a dish-shaped recess having a diameter larger than the diameter of the semi molten metal, together with moving the other該鍛Zokin type mold clamping direction performing die forging, of the semi-molten metal A hydraulic cylinder provided so as to face a dish-shaped recess having a diameter larger than the diameter, and forming an excessive protrusion of a non-product including a solidified layer and having a diameter larger than the diameter of the semi-molten metal The solidified layer of semi-molten metal was captured by the recess .
[0008]
DETAILED DESCRIPTION OF THE INVENTION
The semi-molten metal forging die and the molding method using the die according to the present invention will be described in detail below. FIG. 1 is a cross-sectional view of a semi-molten metal forging die having a recess for placing the semi-molten metal slurry of the present invention. FIG. 2 is a cross-sectional view of a semi-molten metal forging die in a clamped state. 3 is an enlarged cross-sectional view of the upper forging die, FIG. 4 is an enlarged cross-sectional view of the lower forging die, FIG. 5 is a front cross-sectional view when a tilt-preventing protrusion is provided in the recess, and FIG. The top view at the time of seeing from is shown.
[0009]
The forged mold 10 for semi-molten metal of the present invention is a dedicated mold for semi-molten metal M, and is mainly composed of an upper mold 12, a lower mold 14, and a piston 41 with a hydraulic cylinder. A mold cavity 20 is formed between 12 and 14. The mold cavity 20 is formed between the upper mold 12 having the convex portion 22 and the lower mold 14 having the concave portion 24.
[0010]
First, the upper mold 12 will be described. As shown in FIG. 1, the upper mold 12 has a convex portion 22, and as shown in FIG. 3, a straight portion 26 and a truncated cone extending from the straight portion 26 toward the tip of the convex portion 22. The tapered portion 28 and the tip end have a flat portion 29.
[0011]
In addition, a space portion 54 is engraved in the upper mold 12. Inside the space portion 54, a base portion 52 to which an extrusion pin 50 for releasing a product from the surface of the upper mold 12 is attached is accommodated vertically. The base 52 is formed by overlapping two bases 52a and 52b.
[0012]
A nut 56 is fixed to the upper end face side of the base 52b, and an extrusion pin 50 having a screw engraved on the end is screwed to the nut 56. The extrusion pin 50 is movable up and down in a sliding hole 58 engraved in the heel direction inside the upper die 12, and after the product is formed, the tip end portion of the extrusion pin 50 extends from the flat portion 29 to the die cavity 20. It is configured to project on the side, and the product taken by the upper mold 12 is released from the upper mold 12.
[0013]
Next, the other lower mold 14 will be described. As shown in FIG. 1, the lower mold 14 has a concave portion 24. As shown in FIG. 4, the concave portion 24 is formed so that it can be inserted into and removed from the convex portion 22 of the upper mold 12. ing. The concave portion 24 is formed on the top of the frustoconical shape when the linear portions 30 forming a small gap between the linear portion 26 and the convex portion 22 of the upper mold 12 and the molds 12 and 14 are combined. In order to forge a product between the die taper portion 28 and the die taper portion 28, a lower die taper portion 32 and a bottom portion 34 are formed.
[0014]
Both the taper portions 28 and 32 have tapered diameters that are different from each other toward the upper portion, and are different in angle between the two, and the preferred angle of the upper tapered portion 28 is 1 degree. It has become. The preferred angle of one lower tapered portion 32 is 1.5 degrees, which is slightly larger than the angle of the upper tapered portion 28. By doing in this way, a product will not be taken by the lower metal mold | die 14 after shaping | molding.
[0015]
Further, the bottom 34 of the lower mold 14 is provided with a dish-like recess 36 that is deeply cut downward from the bottom 34. A side surface of the recess 36 forms a tapered portion 37 whose diameter is increased upward. This taper angle is preferably about 3 to 10 degrees, and if it is 3 degrees or less, the solidified layer generated by cooling between the semi-molten metal M and the bottom 35 of the recess 36 is difficult to be mixed into the product. However, after the molding, when the upper mold 12 is raised, the product is easily taken together with the upper mold 12 without being raised by the lower mold 14.
[0016]
On the other hand, when the temperature is 10 degrees or more, the product is easily lifted together with the upper mold 12 without being taken by the lower mold 14 when the upper mold 12 is lifted after molding. The solidified layer generated by cooling between M and the bottom 35 is easily mixed into the product.
[0017]
A sub-lower die 42 is fitted into a recess-shaped portion on the outer peripheral portion of the lower die 14 located on the back surface of the die cavity 20 to constitute a part of the lower die 14. A space 44 is formed inside the sub-lower mold 42. On the other hand, a circular cylinder 38 connected to the space 44 is opened at the upper center position of the space 44 that forms the main cylinder 46.
[0018]
The circular cylinder 38 is engraved along the direction of the vertical axis so as to open at the bottom 35 located at the center of the recess 36 engraved on the bottom 34 of the lower mold 14. As shown in FIG. 1, a small-diameter vertical piston 40 that moves up and down in the cylinder 38 and a large-diameter horizontal piston 48 that moves up and down in the space 44 are connected to a space portion that spans the space 44 and the cylinder 38. A hydraulic cylinder-equipped piston 41 is provided. Further, when placing the semi-molten metal M in the recess 36 of the lower mold 14, the tip of the saddle type piston 40 faces the mold cavity 20 and is flush with the bottom 35 of the recess 36. ing.
[0019]
In addition, the product formed by die forging between the upper and lower molds 12, 14 is moved to the upper mold 12 when the upper mold 12 is released from the lower mold 14 for product removal. The tip of the saddle type piston 40 protrudes into the mold cavity 20 from the same plane as the bottom 35 of the recess 36 so as to be surely taken up and rise together with the product. The product is reliably released from the lower mold 14 with the support of the saddle type piston 40 by the protruding operation.
[0020]
Hydraulic pipes 60 (a, b) for moving the horizontal piston 48 disposed in the space 44 up and down and controlling the piston 41 with the hydraulic cylinder are disposed.
[0021]
The operation of the semi-molten metal forging die configured as described above will be described.
[0022]
As shown in FIG. 1, the upper and lower molds 12 and 14 are separated from each other. In this state, the hydraulic pipe 60a side is opened, and hydraulic pressure is supplied from the hydraulic pipe 60b side. The tip of the vertical piston 40 that constitutes a part of the cylinder-equipped piston 41 is moved so as to be flush with the bottom 34 of the recess 36.
[0023]
Next, a semi-molten metal M having a frustoconical shape is gripped at the tip of a robot (not shown) so that the large-diameter portion of the semi-molten metal M is positioned at the lower portion, and the concave portion of the lower mold 14 is placed. It is placed on the bottom 34 of 36.
[0024]
Subsequently, the mold clamping device (not shown) is operated to slowly lower the upper mold 14 to perform mold clamping, and the semi-molten metal M is compression-molded and shaped into a desired product. This state is shown in FIG. At this time, the position of the vertical piston 40 is determined according to the supply amount of the semi-molten metal M. Semi-molten metal M of excess to be molded by the mold clamping force is added to the upper mold 12 during compression molding, by pushing down the vertical piston 40 down direction, an excess of the protrusion 62 as shown in FIG. 2 It is formed. This protrusion 21 becomes a non-product part and determines the yield of the molding material.
[0025]
At the time of forging, the cavity pressure (metal pressure) is determined by the projected area of the product (molded product) and the clamping force. Therefore, in the case of a product with a small projected area, the metal pressure may be 5000 kgf / cm 2 or more. is there.
[0026]
When the metal pressure becomes abnormally high in this way, the possibility of blowing burrs from the mold split surface increases. In addition, the sag (life) of the mold is accelerated. Therefore, it is necessary to keep the pressure of the mold cavity 20 at an appropriate value (1000 to 3000 kgf / cm 2). For the reasons described above, the semi-molten metal forging die 10 needs to have a metal pressure adjusting function.
[0027]
By maintaining the hydraulic pressure acting on the vertical piston 40 that constitutes a part of the piston 41 with the hydraulic cylinder in order to absorb the variation in the size of the semi-molten metal M (the variation in the supply amount) by a relief valve or the like. The metal pressure in the mold cavity 20 can be controlled.
[0028]
As described above, the semi-molten metal M formed and solidified at the portion of the recess 36 is not pushed into the mold cavity 20 at the time of molding, but instead becomes an excessive protrusion 62 of a non-product including a solidified layer. For this reason, a solidified layer does not enter. Further, the product taken by the upper mold 12 when the molds 12 and 14 are opened is to grip the excess protrusion 62 first by a robot (not shown), and then lower the push pin 50 to lower the upper mold. The product is released from the upper mold 12 so as to protrude from the flat portion 29 located at the tip of the convex portion of the mold 12.
[0029]
Another embodiment of the present invention will be described with reference to FIGS. FIG. 5 is a front cross-sectional view when the tilt prevention protrusion is provided in the recess, and FIG. 6 is a plan view when viewed from AA in FIG.
[0030]
A sub-lower die 42 is fitted into a concavely engraved portion on the outer peripheral portion of the lower die 14 that becomes the back surface of the die cavity 20 to constitute a part of the lower die 14. A space 44 is formed inside the sub-lower mold 42. On the other hand, a circular cylinder 38 connected to the space 44 is opened at the upper center position of the space 44 that forms the main cylinder 46.
[0031]
This circular cylinder 38 is engraved along the direction of the vertical axis so as to open at the center of a recess 36 engraved in the bottom 34 of the lower mold 14. When the semi-molten metal M is placed in the recess 36 of the lower mold 14, the tip of the saddle type piston 40 faces the mold cavity 20 and is flush with the low part 35.
[0032]
As shown in FIG. 6, four tilt prevention protrusions 64 arranged at equal intervals are fixed to the bottom 34 of the periphery of the circular cylinder 38. The tilt preventing projection 64 has a triangular side surface, and its tip is configured to be lower than the same horizontal position as the bottom 34 of the lower mold 14. In addition, the shape of the protrusion part 64 for tilt prevention does not stick to a triangular shape, but may be, for example, a truncated cone shape.
[0033]
In addition, by disposing the tilt preventing projection 64 on the bottom 34 of the peripheral portion of the cylinder 38, the robot holds the outside of the holding container (also referred to as a cup) containing the semi-molten metal M so that the lower mold 14, the bottom surface side of the semi-molten metal M enters the tilt-preventing projection 64 (FIG. 5), and the semi-molten metal M is not tilted by the anchor effect and is stable. Therefore, the mold is reliably molded by the mold cavity 20 between the upper and lower molds 12 and 14.
[0034]
【The invention's effect】
According to the present invention described above, for the solidified layer trapped in the lower mold, by providing the dished recess having a diameter larger than the diameter of the semi-molten metal, greater than the diameter of the semi-molten metal A hydraulic cylinder provided so as to face a dish-shaped recess having a diameter, forming an excessive protrusion of a non-product including a solidified layer, and a solidified layer with a dish-shaped recess having a diameter larger than the diameter of the semi-molten metal Can be reliably captured, so that the solidified layer is not mixed in the product, and the quality of the product is remarkably improved. In addition, if a plurality of tilt-preventing protrusions are provided in the dish-shaped recess having a diameter larger than that of the semi-molten metal, the semi-molten metal will not tilt before forming, and the solidified layer can be reliably secured. Since the solidified layer is not mixed in the product, the quality of the product and the moldability are remarkably improved.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a semi-molten metal forging die having a recess for placing the semi-molten metal of the present invention.
FIG. 2 is a cross-sectional view of a semi-molten metal forging die in a clamped state.
FIG. 3 is an enlarged sectional view of a forged upper die.
FIG. 4 is an enlarged cross-sectional view of a lower forging die.
FIG. 5 is a front sectional view showing another embodiment of the present invention, in which a tilt preventing projection is provided in the recess.
6 is a plan view when viewed from AA in FIG. 5;
[Explanation of symbols]
10 Forged mold for semi-molten metal 12 Upper mold 14 Lower mold 20 Mold cavity 22 Convex part 24 Concave part 26 Linear part 28 Tapered part 29 Flat part 30 Linear part 32 Tapered part 34 Bottom part 35 Bottom part 36 Concave part 37 Taper Part 38 Circular cylinder 40 Vertical piston 41 Piston 42 with hydraulic cylinder Sub-lower mold 44 Space 46 Main cylinder 48 Horizontal piston 50 Extrusion pin 52 (a, b) Base 54 Space 56 Nut 58 Slide hole 60 (a B) Hydraulic piping 62 Excess protrusion 64 Inclination prevention protrusion

Claims (2)

融点直上または融点直下の温度で固相と液相が共存する溶融状態とした半溶融金属を金型キャビティ内に供給して型鍛造成形を行うための半溶融金属用鍛造金型であって、該鍛造金型を、接離可能な一対の金型で構成するとともに、該鍛造金型の一方の金型キャビティの一部に、上記半溶融金属を載置するための、該半溶融金属の径よりも大きい径を有する皿状凹部を設け、該鍛造金型の他方を型締め方向に移動させて型鍛造成形を行うに際し、凝固層を含む非製品の過剰の突起部を形成して、該半溶融金属の径よりも大きい径を有する皿状凹部で半溶融金属の凝固層を捕獲する油圧シリンダを、半溶融金属の径よりも大きい径を有する皿状凹部に臨むように設けたことを特徴とする半溶融金属用鍛造金型。A semi-molten metal forging die for supplying a semi-molten metal in a molten state in which a solid phase and a liquid phase coexist at a temperature immediately above or below the melting point into a mold cavity to perform die forging, The forging die is composed of a pair of detachable molds, and the semi-molten metal for placing the semi-molten metal in a part of one die cavity of the forging die . When providing a dish-shaped recess having a diameter larger than the diameter and performing mold forging by moving the other of the forging dies in the clamping direction, an excessive protrusion of a non-product including a solidified layer is formed, the hydraulic Cylinders capturing solidified layer in a semi-molten metal in the dished recess having a diameter larger than the diameter of the semi molten metal, provided to face the dished recess having a diameter larger than the diameter of the semi-molten metal A forging die for semi-molten metal, characterized by that. 請求項1に記載の半溶融金属用鋳造金型を用いて、前記半溶融金属を、一方の該鍛造金型の、該半溶融金属の径よりも大きい径を有する皿状凹部に載置した後、他方の該鍛造金型を型締め方向に移動させて型鍛造成形を行うとともに、該半溶融金属の径よりも大きい径を有する皿状凹部で、半溶融金属の凝固層を捕獲するようにしたことを特徴とする半溶融金属用鍛造金型を用いた成形方法。Using the casting mold for semi-molten metal according to claim 1, the semi-molten metal is placed in a dish-like recess having a diameter larger than that of the semi-molten metal of one of the forged dies. after moves the other該鍛Zokin type mold clamping direction performs die forging, in dish-shaped recess having a diameter larger than the diameter of the semi-molten metal, so as to capture the solidified layer in a semi-molten metal A molding method using a forging die for semi-molten metal, characterized in that
JP2003152935A 2002-07-23 2003-05-29 Forging mold for semi-molten metal and molding method using the mold Expired - Fee Related JP4441721B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003152935A JP4441721B2 (en) 2002-07-23 2003-05-29 Forging mold for semi-molten metal and molding method using the mold

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002213578 2002-07-23
JP2003152935A JP4441721B2 (en) 2002-07-23 2003-05-29 Forging mold for semi-molten metal and molding method using the mold

Publications (2)

Publication Number Publication Date
JP2004106055A JP2004106055A (en) 2004-04-08
JP4441721B2 true JP4441721B2 (en) 2010-03-31

Family

ID=32300455

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003152935A Expired - Fee Related JP4441721B2 (en) 2002-07-23 2003-05-29 Forging mold for semi-molten metal and molding method using the mold

Country Status (1)

Country Link
JP (1) JP4441721B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105149869A (en) * 2015-07-30 2015-12-16 西安交通大学 Cross wedge rolling type strain-induced semi-solid die forging process for high-pressure common rail pipe for internal combustion engine

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101912944B (en) * 2010-08-03 2012-07-25 燕山大学 Method for machining aluminum alloy hub
CN107199304A (en) * 2017-04-13 2017-09-26 中北大学 SiCp/2A50 creeper tread Part Produced by Rheological Die Forging forming technologies
CN107199303A (en) * 2017-04-13 2017-09-26 中北大学 The integrated contour forging technique of semisolid filling-plastic deformation
CN107214278A (en) * 2017-04-13 2017-09-29 中北大学 Prepare composite-rheological molding creeper tread technique
CN111842834A (en) * 2020-07-09 2020-10-30 金榀精密工业(苏州)有限公司 High quality semi-solid forming structure
CN114247840B (en) * 2021-11-08 2024-06-21 德清恒富机械有限公司 Bearing steel smelting and forging ring rolling integrated device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105149869A (en) * 2015-07-30 2015-12-16 西安交通大学 Cross wedge rolling type strain-induced semi-solid die forging process for high-pressure common rail pipe for internal combustion engine

Also Published As

Publication number Publication date
JP2004106055A (en) 2004-04-08

Similar Documents

Publication Publication Date Title
US4589466A (en) Metal casting
US11173544B2 (en) Casting apparatus and method for producing castings using it
WO2011089711A1 (en) Tilt type gravity molding device
JP4441721B2 (en) Forging mold for semi-molten metal and molding method using the mold
US4972897A (en) Spiral sprue loop
JP4789241B2 (en) Tire mold casting method
JPS597540B2 (en) molten metal injection equipment
US4907640A (en) Foundry gating system
JP2001152230A (en) Head for slag removing member and its manufacturing method
JP3361089B2 (en) Ladle lining method and corresponding mold
US4749022A (en) Foundry gating system
CN216420992U (en) A wax pattern group welds structure for pushing away a section of thick bamboo supporting seat
GB2045130A (en) Casting apparatus
JPS61286050A (en) Molten metal casting device
JPH08132210A (en) Metallic mold for forming cylinder block
JP2003245763A (en) Casting mold having acurad cylinder also serving as core
JPH024760Y2 (en)
KR100568765B1 (en) Non-turbulent mold casting method
KR200337464Y1 (en) Non-Turbulent Mold Casting M/C
JP4184752B2 (en) Casting method and casting apparatus
JPH08206811A (en) Method for removing oxide and device for removing oxide
JPH08112297A (en) Mold and mold forming lid for article for repairing crown of tooth
JPH0716721A (en) Production of cast product with a small amount of oxide mixed
JP2577989B2 (en) Die casting machine injection equipment
JP2002079354A (en) Mold for casting metal, method for casting metal and cast block

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20051003

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051005

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051005

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20051003

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20051003

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20051005

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20051005

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051005

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080612

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080617

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090310

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090714

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091014

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20091030

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091124

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20091218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20091218

R150 Certificate of patent or registration of utility model

Ref document number: 4441721

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130122

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140122

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees