JP4441629B2 - Thin film type thermopile - Google Patents

Thin film type thermopile Download PDF

Info

Publication number
JP4441629B2
JP4441629B2 JP2004261539A JP2004261539A JP4441629B2 JP 4441629 B2 JP4441629 B2 JP 4441629B2 JP 2004261539 A JP2004261539 A JP 2004261539A JP 2004261539 A JP2004261539 A JP 2004261539A JP 4441629 B2 JP4441629 B2 JP 4441629B2
Authority
JP
Japan
Prior art keywords
thin film
temperature detection
temperature
detection unit
metal film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004261539A
Other languages
Japanese (ja)
Other versions
JP2006078288A (en
Inventor
仁 佐々木
直子 葛西
弘之 藤木
彰 東海林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2004261539A priority Critical patent/JP4441629B2/en
Publication of JP2006078288A publication Critical patent/JP2006078288A/en
Application granted granted Critical
Publication of JP4441629B2 publication Critical patent/JP4441629B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measurement Of Current Or Voltage (AREA)

Description

本発明は、温度計測に係る薄膜型サーモパイル及び薄膜型サーモパイルを用いた交流電圧標準用、高精度交流電圧測定用の交直比較素子に関する。   The present invention relates to a thin film type thermopile for temperature measurement and an AC / DC comparison element for AC voltage standard and high accuracy AC voltage measurement using the thin film type thermopile.

図1は、薄膜型サーモパイルを用いた従来の交直比較素子の例を示す。
温度基準部となる外枠の内部に絶縁性フィルムを介して温度検出部が設けられている。そして温度検出部と温度基準部との間には、間隔を空けてBiからなる第1薄膜及びSbからなる第2薄膜が設けられ、それぞれ温度基準部及び温度検出部の端部から距離aだけ入った温度基準部及び温度検出部上で熱電対を構成している。各熱電対は、複数個直列接続され薄膜型サーモパイルを構成する。また温度検出部に隣接して交流入力用のヒーターが設けられ、直流電圧を出力する薄膜型サーモパイルとともに交直比較素子を構成している。
FIG. 1 shows an example of a conventional AC / DC comparison element using a thin film type thermopile.
A temperature detector is provided inside the outer frame serving as the temperature reference part via an insulating film. A first thin film made of Bi and a second thin film made of Sb are provided between the temperature detection unit and the temperature reference unit, with a distance a from the ends of the temperature reference unit and the temperature detection unit, respectively. A thermocouple is configured on the temperature reference section and the temperature detection section. A plurality of thermocouples are connected in series to form a thin film type thermopile. Further, an AC input heater is provided adjacent to the temperature detection unit, and constitutes an AC / DC comparison element together with a thin film type thermopile that outputs a DC voltage.

入力端子1、2間に交流電圧が印加されるとヒーターに通電し、交流電圧の実効値に応じたヒーター発熱による温度上昇が得られる。温度上昇は、隣接して配置された薄膜型サーモパイルの温度検出部により検出され、出力端子3、4間に(交流入力電圧に応じた)直流電圧を出力する。
特開2000−65639号公報 M. Klonz, T. Weimann, F. Volklein, H. Dinter, and A. Lerm,"Ac-dc-mV-transfer with highly sensitive thin-film multijunction thermalconverters," IEEE Trans. Instrum. Meas., vol. IM-42, pp. 612-614, 1993.
When an AC voltage is applied between the input terminals 1 and 2, the heater is energized, and a temperature rise due to heater heat generation according to the effective value of the AC voltage is obtained. The temperature rise is detected by the temperature detector of the thin film type thermopile arranged adjacent to the output terminal 3 and 4 and outputs a DC voltage (according to the AC input voltage).
JP 2000-65639 A M. Klonz, T. Weimann, F. Volklein, H. Dinter, and A. Lerm, "Ac-dc-mV-transfer with highly sensitive thin-film multijunction thermalconverters," IEEE Trans. Instrum. Meas., Vol. IM -42, pp. 612-614, 1993.

従来型の上記薄膜型サーモパイルは、サーモパイルを構成する熱電対の個数が増加するとサーモパイルの有効長が長くなるため、出力抵抗値が大きくなる。
このため従来型の薄膜型サーモパイルでは、熱雑音の増大によって信号対雑音指数(S/N比)が低下してしまう欠点があった。
また従来型の薄膜型サーモパイルを用いた交直比較素子も同様の欠点を引き継いでおり、熱雑音の増大によって信号対雑音指数(S/N比)が低下してしまう欠点があった。
したがって本発明は、薄膜型サーモパイルにおいて従来の問題点に鑑み、出力抵抗値を小さくすることにより信号対雑音指数(S/N比)を改善することを目的とする。
また本発明は、改良された薄膜型サーモパイルを用いた交直比較素子を提供することを目的とする。
In the conventional thin film type thermopile, when the number of thermocouples constituting the thermopile is increased, the effective length of the thermopile is increased, so that the output resistance value is increased.
For this reason, the conventional thin film type thermopile has a drawback that the signal-to-noise index (S / N ratio) decreases due to an increase in thermal noise.
In addition, the AC / DC comparison element using the conventional thin film type thermopile has inherited the same drawback, and has a disadvantage that the signal-to-noise index (S / N ratio) is lowered due to an increase in thermal noise.
Therefore, in view of the conventional problems in the thin film type thermopile, an object of the present invention is to improve the signal-to-noise figure (S / N ratio) by reducing the output resistance value.
Another object of the present invention is to provide an AC / DC comparison element using an improved thin film type thermopile.

上記課題を解決するために本発明では、図2及び図4に示すように、サーモパイルの一部を銅などの熱伝導率及び電気伝導率のともに高い金属薄膜で置き換えることにより、薄膜型サーモパイルの信号対雑音指数(S/N比)を改善するものである。
その手段の構成は次のとおりである。
温度検出部と、温度検出部と離隔して設けられた温度基準部と、温度検出部と温度基準部との間に、温度検出部及び温度基準部とは間隔を空けて複数組交互に設けられ、それぞれ異なる金属又は半導体材料からなる第1薄膜及び第2薄膜と、温度検出部に接触するとともに温度基準部に面する端部において第1薄膜と第2薄膜とに個別に接続し、各接続点において熱電対を構成する少なくとも1個の第1の金属膜と、温度基準部に接触するとともに温度検出部に面する端部において第1薄膜と第2薄膜とに個別に接続し、各接続点において熱電対を構成する少なくとも1個の第2の金属膜とを含み、第1の金属膜及び第2の金属膜は、全体として直列接続された熱電対を構成するように配置されていることを特徴とする薄膜型サーモパイル。
In order to solve the above problems, in the present invention, as shown in FIGS. 2 and 4, a part of the thermopile is replaced with a metal thin film having high thermal conductivity and high electrical conductivity, such as copper, so that the thin film type thermopile It improves the signal-to-noise figure (S / N ratio).
The configuration of the means is as follows.
Between the temperature detection unit, the temperature reference unit provided separately from the temperature detection unit, and the temperature detection unit and the temperature reference unit, a plurality of sets of the temperature detection unit and the temperature reference unit are alternately provided with a space therebetween. A first thin film and a second thin film made of different metals or semiconductor materials, respectively, and the first thin film and the second thin film connected to the temperature detection unit and at the end facing the temperature reference unit, respectively, At least one first metal film constituting the thermocouple at the connection point and the first thin film and the second thin film are individually connected at the end facing the temperature reference unit and facing the temperature detection unit, And at least one second metal film constituting a thermocouple at the connection point, and the first metal film and the second metal film are arranged so as to constitute a thermocouple connected in series as a whole. A thin-film thermopile characterized by

上記温度基準部は、温度検出部を取り囲むように設けられた薄膜型サーモパイル。
また第1薄膜及び第2薄膜は、Bi及びSbからなる薄膜であり、第1の金属膜及び第2の金属膜はともに銅膜である薄膜型サーモパイル。
The temperature reference part is a thin film type thermopile provided so as to surround the temperature detection part.
The first thin film and the second thin film are thin films made of Bi and Sb, and both the first metal film and the second metal film are copper films.

さらに温度検出部と、温度検出部と離隔して温度検出部を取り囲むように設けられた温度基準部と、温度検出部と温度基準部との間に、温度検出部及び温度基準部とは間隔を空けて複数組交互に設けられ、それぞれ異なる金属又は半導体材料からなる第1薄膜及び第2薄膜と、温度検出部に接触するとともに温度基準部に面する端部において第1薄膜と第2薄膜とに個別に接続し、各接続点において熱電対を構成する少なくとも1個の第1の金属膜と、温度基準部に接触するとともに温度検出部に面する端部において第1薄膜と第2薄膜とに個別に接続し、各接続点において熱電対を構成する少なくとも1個の第2の金属膜とを含み、第1の金属膜及び第2の金属膜は、全体として直列接続された熱電対を構成するように配置されている薄膜型サーモパイルと、温度検出部に隣接して設けられたヒーターと、を含む交直比較素子。 Further, the temperature detection unit, the temperature reference unit provided so as to surround the temperature detection unit at a distance from the temperature detection unit, and the temperature detection unit and the temperature reference unit are spaced from each other. The first thin film and the second thin film, which are alternately provided with a plurality of gaps and are made of different metals or semiconductor materials, and the first thin film and the second thin film at the end that contacts the temperature detection unit and faces the temperature reference unit And at least one first metal film constituting a thermocouple at each connection point, and a first thin film and a second thin film at an end contacting the temperature reference portion and facing the temperature detection portion And at least one second metal film constituting a thermocouple at each connection point, and the first metal film and the second metal film are connected in series as a whole. The thin film is arranged to constitute AC-DC comparing element comprising a thermopile, a heater provided adjacent to the temperature sensing unit.

本発明は、上記の構成により信号対雑音指数(S/N比)の高い薄膜型サーモパイル及び薄膜型サーモパイルを用いた交直比較素子が得られるという優れた効果を有する。   The present invention has an excellent effect that a thin-film thermopile having a high signal-to-noise index (S / N ratio) and an AC / DC comparison element using the thin-film thermopile can be obtained by the above configuration.

本発明は、図2に示すように、サーモパイルの一部を銅などの熱伝導率及び電気伝導率のともに高い金属薄膜で置き換えることにより、サーモパイルの出力抵抗を低減できること、一方、サーモパイルを介した温度検出部と温度基準部間の熱伝導も増加することにより、サーモパイル両端の温度差が低下することから、両方のバランスが最適になり、最も高い信号対雑音指数(S/N比)が得られる寸法が存在する、という着想に基づいてなされたものである。   As shown in FIG. 2, the present invention can reduce the output resistance of the thermopile by replacing a part of the thermopile with a metal thin film having both high thermal conductivity and electrical conductivity, such as copper. By increasing the heat conduction between the temperature detector and the temperature reference part, the temperature difference between the thermopile ends decreases, so both balances are optimized and the highest signal-to-noise figure (S / N ratio) is obtained. This is based on the idea that there is a dimension that can be measured.

図2及び図3を引用してさらに詳細に説明する。
図2は、改良された薄膜型サーモパイルのレイアウト概略図である。
温度検出部と温度基準部とは距離Lだけ離隔して配置されており、その間には熱電対を構成するBiからなる薄膜層とSbからなる薄膜層とが交互に複数個形成されている。さらに図2に示すように、温度検出部又は温度基準部に接触するとともに、Biからなる薄膜層及びSbからなる薄膜層に接続し、熱電対を構成する銅箔等の複数の熱伝導率及び電気伝導度の高い金属膜が設けられている。熱伝導率及び電気伝導率のともに高い金属膜は、間隔dを置いて温度検出部側及び温度基準部側から中央部側に張り出して配置されている。
図2では間隔dが、0<d<Lの場合を例示しているが、本発明において間隔dは、0<d<L+2aの範囲を取り得る。
なおここでd=L+2aは、温度検出部側及び温度基準部側に金属膜を有せず、それぞれ温度基準部及び温度検出部の端部から距離aだけ入った温度基準部及び温度検出部上で熱電対を構成している、図1に示す従来例の場合に相当する。
This will be described in more detail with reference to FIGS.
FIG. 2 is a schematic layout diagram of an improved thin film type thermopile.
The temperature detection part and the temperature reference part are arranged apart from each other by a distance L, and a plurality of thin film layers made of Bi and Sb made of a thermocouple are alternately formed between the temperature detection part and the temperature reference part. Furthermore, as shown in FIG. 2, while contacting the temperature detection part or the temperature reference part, it is connected to a thin film layer made of Bi and a thin film layer made of Sb, and a plurality of thermal conductivities such as a copper foil constituting a thermocouple and A metal film having high electrical conductivity is provided. The metal film having both high heat conductivity and high electric conductivity is disposed so as to protrude from the temperature detection part side and the temperature reference part side to the center part side with an interval d.
FIG. 2 illustrates the case where the distance d is 0 <d <L. However, in the present invention, the distance d can take a range of 0 <d <L + 2a.
Here, d = L + 2a does not have a metal film on the temperature detection unit side and the temperature reference unit side, and is on the temperature reference unit and the temperature detection unit that are located a distance a from the end of the temperature reference unit and the temperature detection unit, respectively. This corresponds to the conventional example shown in FIG.

図3には、規格化した有効TC長(d/L+2a)を横軸として、信号対雑音比、出力電圧及び出力抵抗熱雑音に相当する数値について、従来例に相当する基準点(L+2a)における数値を100%としたときの、その値からの変化の割合である変化率が図示されている。
ここで出力電圧に相当する数値としては、サーモパイルの出力電圧が熱電対両端の温度差に比例することから、上記温度差の数値を採用した。また出力抵抗熱雑音に相当する数値としては、出力抵抗熱雑音がサーモパイルの出力抵抗値の平方根に比例することから、上記サーモパイルの出力抵抗値の平方根を採用した。
そして上記出力電圧に相当する数値と出力抵抗熱雑音に相当する数値の比を算出して、これを信号対雑音比とした。
In FIG. 3, numerical values corresponding to the signal-to-noise ratio, output voltage, and output resistance thermal noise at the reference point (L + 2a) corresponding to the conventional example with the normalized effective TC length (d / L + 2a) as the horizontal axis. The rate of change, which is the rate of change from that value when the value is 100%, is shown.
As the numerical value corresponding to the output voltage, the numerical value of the temperature difference is adopted because the output voltage of the thermopile is proportional to the temperature difference between both ends of the thermocouple. As the numerical value corresponding to the output resistance thermal noise, since the output resistance thermal noise is proportional to the square root of the thermopile output resistance value, the square root of the thermopile output resistance value was adopted.
Then, a ratio between a numerical value corresponding to the output voltage and a numerical value corresponding to the output resistance thermal noise was calculated and used as a signal-to-noise ratio.

図3より、d/L=0の近傍を除いた、有効TC長d/(L+2a)が1未満の全ての領域で、変化率が100%を越えており、従来例のものよりも信号対雑音比(S/N比)が改善されていることがわかる。特に有効TC長が0.1あたりでは、変化率200%が得られている。
以上まとめると、薄膜型サーモパイルにおいて、
温度検出部と温度基準部との間に、間隔を空けて複数組交互に設けられ、Biからなる薄膜層及びSbからなる薄膜層と、温度検出部に接触するとともに温度基準部に面する端部においてBiからなる薄膜層及びSbからなる薄膜層とに個別に接続し、各接続点において熱電対を構成する熱伝導率及び電気伝導度のともに高い金属からなる第1の金属膜と、温度基準部に接触するとともに温度検出部に面する端部においてBiからなる薄膜層及びSbからなる薄膜層とに個別に接続し、各接続点において熱電対を構成する熱伝導率及び電気伝導度のともに高い金属からなる第2の金属膜とを含み、第1の金属膜及び第2の金属膜は、全体として直列接続された熱電対を構成するように配置されている場合には、信号対雑音比が従来例のものよりも改善されているということができる。
From FIG. 3, the change rate exceeds 100% in all the regions where the effective TC length d / (L + 2a) is less than 1 except for the vicinity of d / L = 0. It can be seen that the noise ratio (S / N ratio) is improved. In particular, when the effective TC length is around 0.1, a change rate of 200% is obtained.
In summary, in thin film type thermopile,
A plurality of pairs are alternately provided between the temperature detection unit and the temperature reference unit at intervals, and the thin film layer made of Bi and the thin film layer made of Sb are in contact with the temperature detection unit and face the temperature reference unit A first metal film made of a metal having a high thermal conductivity and a high electrical conductivity, each of which is connected to a thin film layer made of Bi and a thin film layer made of Sb in each part, and constitutes a thermocouple at each connection point; The thermal conductivity and electrical conductivity of the thermocouples are individually connected to the thin film layer made of Bi and the thin film layer made of Sb at the end facing the temperature detection part and in contact with the reference part. A second metal film made of a high metal, and the first metal film and the second metal film are arranged to form a thermocouple connected in series as a whole. The noise ratio is the conventional one It can be said that has also been improved.

図4は、本発明の薄膜型サーモパイル及びこれを用いた交直比較素子の実施例を示す。
温度基準部となる縦9mm横15mmのアルミナ外枠の内部に絶縁性フィルムを介して窒化アルミ基板からなる温度検出部が設けられている。そして温度検出部と温度基準部との間には、絶縁性フィルム上に間隔を空けてBiからなる第1薄膜及びSbからなる第2薄膜が設けられ、それぞれは、間隔d(0<d<L+2a)を置いて形成された銅箔との間で熱電対を構成している。各熱電対は、銅箔を介して複数個直列接続され、薄膜型サーモパイルを構成している。
FIG. 4 shows an embodiment of a thin film type thermopile of the present invention and an AC / DC comparison element using the same.
A temperature detection unit made of an aluminum nitride substrate is provided inside an alumina outer frame having a length of 9 mm and a width of 15 mm, which is a temperature reference unit, with an insulating film interposed therebetween. A first thin film made of Bi and a second thin film made of Sb are provided on the insulating film with an interval between the temperature detection unit and the temperature reference unit, and each has an interval d (0 <d < A thermocouple is formed between the copper foil formed with L + 2a). Each thermocouple is connected in series via a copper foil to form a thin film type thermopile.

さらに温度基準部とは間隔を空け、温度検出部に隣接して、交流入力用のヒーターが設けられ、直流電圧を出力する薄膜型サーモパイルとともに交直比較素子を構成している。
従来例と同様に入力端子1、2間に交流電圧が印加されると、ヒーターに通電し、交流電圧の実効値に応じたヒーター発熱による温度上昇が得られる。温度上昇は、隣接して配置された薄膜型サーモパイルの温度検出部で検出され、出力端子3、4間に(交流入力電圧に応じた)直流電圧を出力する。
Further, an AC input heater is provided adjacent to the temperature detection unit at a distance from the temperature reference unit, and constitutes an AC / DC comparison element together with a thin film type thermopile that outputs a DC voltage.
When an AC voltage is applied between the input terminals 1 and 2 as in the conventional example, the heater is energized, and a temperature rise due to heater heat generation according to the effective value of the AC voltage is obtained. The temperature rise is detected by the temperature detection unit of the thin film type thermopile arranged adjacent to the output terminal 3 and 4 and outputs a DC voltage (according to the AC input voltage).

以上この実施例はあくまでも本発明の理解を容易にするためのものであり、この実施例に制限されるものではない。例えば温度検出部と温度基準部との配置は図2のように平行配置でもよい。また薄膜層としてBi及びSbの組み合わせを例示したが、熱起電力を発生させるものであれば、他の金属或いは半導体材料の組み合わせでもよい。さらに熱伝導率及び電気伝導率のともに高い金属として銅を例示したが、銀等の金属であってもよい。   This embodiment is merely for the purpose of facilitating the understanding of the present invention, and is not limited to this embodiment. For example, the temperature detection unit and the temperature reference unit may be arranged in parallel as shown in FIG. Moreover, although the combination of Bi and Sb was illustrated as a thin film layer, as long as a thermoelectromotive force is generated, the combination of another metal or semiconductor material may be sufficient. Furthermore, although copper was illustrated as a metal with both high heat conductivity and electrical conductivity, metals, such as silver, may be sufficient.

本発明による薄膜型サーモパイルは、信号対雑音比の大きい薄膜型サーモパイルとして温度の精密な測定が必要とされる機器のセンサーとして利用可能である。
さらにこれを交直比較素子に適用して、信号対雑音比の大きい交直比較素子が得られる。
The thin film type thermopile according to the present invention can be used as a sensor for a device that requires precise measurement of temperature as a thin film type thermopile having a large signal-to-noise ratio.
Furthermore, by applying this to an AC / DC comparison element, an AC / DC comparison element having a large signal-to-noise ratio can be obtained.

従来の薄膜型サーモパイルを用いた交直比較素子のレイアウト図である。It is a layout figure of the AC / DC comparison element using the conventional thin film type thermopile. 本発明による薄膜型サーモパイルのレイアウト概略図である。It is a layout schematic diagram of a thin film type thermopile according to the present invention. 有効TC長とS/N比等の変化率との関係を示す図である。It is a figure which shows the relationship between effective TC length and change rates, such as S / N ratio. 本発明による薄膜型サーモパイルを用いた交直比較素子のレイアウト図である。FIG. 3 is a layout diagram of an AC / DC comparison element using a thin film type thermopile according to the present invention.

Claims (4)

温度検出部と、温度検出部と離隔して設けられた温度基準部と、温度検出部と温度基準部との間に、温度検出部及び温度基準部とは間隔を空けて複数組交互に設けられ、それぞれ異なる金属又は半導体材料からなる第1薄膜及び第2薄膜と、温度検出部に接触するとともに温度基準部に面する端部において第1薄膜と第2薄膜とに個別に接続し、各接続点において熱電対を構成する少なくとも1個の第1の金属膜と、温度基準部に接触するとともに温度検出部に面する端部において第1薄膜と第2薄膜とに個別に接続し、各接続点において熱電対を構成する少なくとも1個の第2の金属膜とを含み、第1の金属膜及び第2の金属膜は、全体として直列接続された熱電対を構成するように配置されていることを特徴とする薄膜型サーモパイル。 Between the temperature detection unit, the temperature reference unit provided separately from the temperature detection unit, and the temperature detection unit and the temperature reference unit, a plurality of sets of the temperature detection unit and the temperature reference unit are alternately provided with a space therebetween. A first thin film and a second thin film made of different metals or semiconductor materials, respectively, and the first thin film and the second thin film connected to the temperature detection unit and at the end facing the temperature reference unit, respectively, At least one first metal film constituting the thermocouple at the connection point and the first thin film and the second thin film are individually connected at the end facing the temperature reference unit and facing the temperature detection unit, And at least one second metal film constituting a thermocouple at the connection point, and the first metal film and the second metal film are arranged so as to constitute a thermocouple connected in series as a whole. A thin-film thermopile characterized by 上記温度基準部は、上記温度検出部を取り囲むように設けられた請求項1記載の薄膜型サーモパイル。   The thin film type thermopile according to claim 1, wherein the temperature reference part is provided so as to surround the temperature detection part. 第1薄膜及び第2薄膜は、Bi及びSbからなる薄膜であり、第1の金属膜及び第2の金属膜はともに銅膜であることを特徴とする請求項1又は2記載の薄膜型サーモパイル。   3. The thin film type thermopile according to claim 1, wherein the first thin film and the second thin film are thin films made of Bi and Sb, and both the first metal film and the second metal film are copper films. . 温度検出部と、温度検出部と離隔して温度検出部を取り囲むように設けられた温度基準部と、温度検出部と温度基準部との間に、温度検出部及び温度基準部とは間隔を空けて複数組交互に設けられ、それぞれ異なる金属又は半導体材料からなる第1薄膜及び第2薄膜と、温度検出部に接触するとともに温度基準部に面する端部において第1薄膜と第2薄膜とに個別に接続し、各接続点において熱電対を構成する少なくとも1個の第1の金属膜と、温度基準部に接触するとともに温度検出部に面する端部において第1薄膜と第2薄膜とに個別に接続し、各接続点において熱電対を構成する少なくとも1個の第2の金属膜とを含み、第1の金属膜及び第2の金属膜は、全体として直列接続された熱電対を構成するように配置されている薄膜型サーモパイルと、温度検出部に隣接して設けられたヒーターと、を含む交直比較素子。 The temperature detection unit, the temperature reference unit provided so as to surround the temperature detection unit at a distance from the temperature detection unit, and the temperature detection unit and the temperature reference unit are spaced apart from each other. A plurality of sets of first thin films and second thin films made of different metals or semiconductor materials, and the first thin film and the second thin film at the end that contacts the temperature detection unit and faces the temperature reference unit. And at least one first metal film constituting a thermocouple at each connection point, and a first thin film and a second thin film at an end portion contacting the temperature reference portion and facing the temperature detection portion And connecting at least one second metal film constituting a thermocouple at each connection point, the first metal film and the second metal film being connected in series as a whole. A thin film type substrate arranged to constitute AC-DC comparing element comprising a pile, a heater provided adjacent to the temperature sensing unit.
JP2004261539A 2004-09-08 2004-09-08 Thin film type thermopile Expired - Lifetime JP4441629B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004261539A JP4441629B2 (en) 2004-09-08 2004-09-08 Thin film type thermopile

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004261539A JP4441629B2 (en) 2004-09-08 2004-09-08 Thin film type thermopile

Publications (2)

Publication Number Publication Date
JP2006078288A JP2006078288A (en) 2006-03-23
JP4441629B2 true JP4441629B2 (en) 2010-03-31

Family

ID=36157880

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004261539A Expired - Lifetime JP4441629B2 (en) 2004-09-08 2004-09-08 Thin film type thermopile

Country Status (1)

Country Link
JP (1) JP4441629B2 (en)

Also Published As

Publication number Publication date
JP2006078288A (en) 2006-03-23

Similar Documents

Publication Publication Date Title
JP4502256B2 (en) Flow sensor
EP1840536B1 (en) Flow sensor with flow-adaptable analog-digital-converter
Herin et al. Measurements on the thermoelectric properties of thin layers of two metals in electrical contact. Application for designing new heat-flow sensors
JP5564681B2 (en) Infrared sensor
US6863438B2 (en) Microstructured thermosensor
JP4441629B2 (en) Thin film type thermopile
JP5056086B2 (en) Thermal sensor
US9970802B2 (en) Thermal-type flow-rate sensor
JPS63318175A (en) Thermopile
TWI600899B (en) Thermal sensing element
JP3589083B2 (en) Thermal flow sensor
JP5224089B2 (en) Thermal sensor
KR101230021B1 (en) Thermopile package
JPH0345778B2 (en)
US3111844A (en) Heat rate measuring apparatus
KR100912669B1 (en) Device for measuring heat transfer rate
CN211013312U (en) Passive wireless surface acoustic wave high-temperature heat flow sensor
JP2018197696A (en) Temperature sensor
JP3775830B2 (en) Infrared detector
JPH023311B2 (en)
JP2008157892A (en) Electric current detector, current detection tool, and current detection method
JP2018141664A (en) Flow sensor
KR101885660B1 (en) Device for measuring heat transfer rate
JP2001237464A (en) Infrared sensor
KR101020177B1 (en) Temperature sensor using thick film resistor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061013

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091013

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091208

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091208

R150 Certificate of patent or registration of utility model

Ref document number: 4441629

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130122

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130122

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130122

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130122

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140122

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140122

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140122

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250