JP4440823B2 - Exhaust gas purification device for internal combustion engine - Google Patents

Exhaust gas purification device for internal combustion engine Download PDF

Info

Publication number
JP4440823B2
JP4440823B2 JP2005137973A JP2005137973A JP4440823B2 JP 4440823 B2 JP4440823 B2 JP 4440823B2 JP 2005137973 A JP2005137973 A JP 2005137973A JP 2005137973 A JP2005137973 A JP 2005137973A JP 4440823 B2 JP4440823 B2 JP 4440823B2
Authority
JP
Japan
Prior art keywords
particulate
dpf
amount
filter means
internal combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005137973A
Other languages
Japanese (ja)
Other versions
JP2006316647A (en
Inventor
光 小田島
譲 小池
祥隆 高須賀
篤 泉浦
浩 長島
清 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2005137973A priority Critical patent/JP4440823B2/en
Priority to US11/413,091 priority patent/US20060254265A1/en
Publication of JP2006316647A publication Critical patent/JP2006316647A/en
Application granted granted Critical
Publication of JP4440823B2 publication Critical patent/JP4440823B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N9/00Electrical control of exhaust gas treating apparatus
    • F01N9/002Electrical control of exhaust gas treating apparatus of filter regeneration, e.g. detection of clogging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N11/00Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity
    • F01N11/002Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity the diagnostic devices measuring or estimating temperature or pressure in, or downstream of the exhaust apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0821Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents combined with particulate filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0828Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents characterised by the absorbed or adsorbed substances
    • F01N3/0842Nitrogen oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/027Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus
    • F02D41/029Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus the exhaust gas treating apparatus being a particulate filter
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2550/00Monitoring or diagnosing the deterioration of exhaust systems
    • F01N2550/04Filtering activity of particulate filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/06Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being a temperature sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/08Exhaust gas treatment apparatus parameters
    • F02D2200/0812Particle filter loading
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Description

本発明は、内燃機関の排気浄化装置に関し、特に内燃機関の排気中のパティキュレート(粒子状物質)を捕集するフィルタ(DPF:Diesel Particulate Filter)を有するものに関する。   The present invention relates to an exhaust emission control device for an internal combustion engine, and more particularly to a device having a filter (DPF: Diesel Particulate Filter) for collecting particulates (particulate matter) in exhaust gas from an internal combustion engine.

ディーゼル内燃機関の排気系に排気中のパティキュレートを捕集するDPFを設け、パティキュレートの排出量を低減する技術は従来より広く用いられている。このDPFを構成するフィルタエレメントにひび割れや孔あきといった故障が発生すると、DPFのフィルタ機能が低下し、パティキュレートの排出量が増加する。したがって、このような故障は迅速に検知する必要がある。   2. Description of the Related Art Conventionally, a technique for reducing a particulate discharge amount by providing a DPF for collecting particulates in exhaust gas in an exhaust system of a diesel internal combustion engine has been widely used. When a failure such as a crack or a hole occurs in the filter element constituting the DPF, the filter function of the DPF is lowered, and the particulate discharge amount is increased. Therefore, such a failure needs to be detected quickly.

特許文献1には、DPFの下流側に圧力センサを設け、機関運転中における検出圧力の最大値と最小値との差、すなわち脈動振幅を求め、脈動振幅が規定範囲から外れたとき、故障が発生したと判定する手法が示されている。
特開2004−308454号公報
In Patent Document 1, a pressure sensor is provided on the downstream side of the DPF, and the difference between the maximum value and the minimum value of the detected pressure during engine operation, that is, the pulsation amplitude is obtained. A technique for determining occurrence has been shown.
JP 2004-308454 A

特許文献1に示された技術では、故障によるパティキュレートの漏れ量を検出することはできない。このため、「DPFのパティキュレート捕集能力の低下により、パティキュレート漏れ量が所定量を超える前に、故障を検知する」という要求を満たすことは困難である。また特許文献1に示された技術では、排気圧力の脈動振幅を監視し、解析するために、複雑な演算を必要とする。   With the technique disclosed in Patent Document 1, the amount of particulate leakage due to a failure cannot be detected. For this reason, it is difficult to satisfy the requirement of “detecting a failure before the amount of particulate leakage exceeds a predetermined amount due to a decrease in the particulate collection ability of the DPF”. Further, the technique disclosed in Patent Document 1 requires complicated calculation in order to monitor and analyze the pulsation amplitude of the exhaust pressure.

本発明は上述した点を考慮してなされたものであり、比較的簡易な構成により、DPFの故障の状態を正確に検知し得る排気浄化装置を提供することを目的とする。   The present invention has been made in consideration of the above-described points, and an object of the present invention is to provide an exhaust purification device capable of accurately detecting a DPF failure state with a relatively simple configuration.

上記目的を達成するため請求項1に記載の発明は、内燃機関(1)の排気中のパティキュレートを捕集するフィルタ手段(12)を備えた内燃機関の排気浄化装置において、前記機関の運転状態に応じて、前記フィルタ手段(12)に捕集されるべきパティキュレート量を示す第1のパティキュレート量(GDPF1)を算出する第1捕集量算出手段と、前記フィルタ手段(12)に捕集されたパティキュレートを焼却するフィルタ再生が行われるときにおける前記フィルタ手段(12)の温度(TDPF)に応じて、前記フィルタ手段(12)に捕集されたパティキュレート量を示す第2のパティキュレート量(GDPF2)を算出する第2捕集量算出手段と、前記第1及び第2のパティキュレート量(GDPF1,GDPF2)を比較し、その比較結果に応じて、前記フィルタ手段(12)の故障判定を行う故障判定手段とを備えることを特徴とする。   In order to achieve the above object, an invention according to claim 1 is directed to an exhaust gas purification apparatus for an internal combustion engine comprising filter means (12) for collecting particulates in the exhaust gas of the internal combustion engine (1). According to the state, a first collection amount calculating means for calculating a first particulate amount (GDPF1) indicating a particulate amount to be collected by the filter means (12), and a filter means (12) A second amount indicating the amount of particulates collected by the filter means (12) in accordance with the temperature (TDPF) of the filter means (12) when the filter regeneration for incinerating the collected particulates is performed. The second collection amount calculation means for calculating the particulate amount (GDPF2) is compared with the first and second particulate amounts (GDPF1, GDPF2). According to the comparison result, characterized in that it comprises a failure determining means for performing a failure determination of the filter means (12).

請求項2に記載の発明は、請求項1に記載の内燃機関の排気浄化装置において、前記故障判定手段は、前記第1及び第2のパティキュレート量の比(GDPF2/GDPF1)に応じて、前記フィルタ手段(12)のパティキュレート捕集率(PMCE)を算出し、該パティキュレート捕集率(PMCE)が所定閾値(CETH)以下であるとき、前記フィルタ手段(12)が故障していると判定することを特徴とする。   According to a second aspect of the present invention, in the exhaust gas purification apparatus for an internal combustion engine according to the first aspect, the failure determination means is responsive to a ratio of the first and second particulate amounts (GDPF2 / GDPF1). When the particulate collection rate (PMCE) of the filter means (12) is calculated and the particulate collection rate (PMCE) is equal to or less than a predetermined threshold value (CETH), the filter means (12) is out of order. It is characterized by determining.

請求項1に記載の発明によれば、機関の運転状態に応じて、フィルタ手段に捕集されるべきパティキュレート量を示す第1のパティキュレート量が算出され、捕集されたパティキュレートを焼却するフィルタ再生が行われるときおけるフィルタ手段の温度に応じて、フィルタ手段に捕集されたパティキュレート量を示す第2のパティキュレート量が算出され、第1及び第2のパティキュレート量の比較結果に応じて、フィルタ手段の故障判定が行われる。フィルタ再生が行われるときのフィルタ手段の温度変化量は、捕集されたパティキュレート量にほぼ比例するので、フィルタ手段の温度に応じて、フィルタ手段に実際に捕集されたパティキュレート量を示す第2のパティキュレート量を算出することができる。一方、機関運転状態に応じて算出される第1のパティキュレート量は、機関から排出されるパティキュレート量を示しており、両者の差が大きいときは、フィルタ手段にひび割れまたは孔あきがあると考えられる。したがって、第1及び第2のパティキュレート量を比較することにより、フィルタ手段の故障を正確に判定することができる。   According to the first aspect of the present invention, the first particulate amount indicating the particulate amount to be collected by the filter means is calculated according to the operating state of the engine, and the collected particulate is incinerated. The second particulate quantity indicating the particulate quantity collected by the filter means is calculated according to the temperature of the filter means when the filter regeneration is performed, and the comparison result of the first and second particulate quantities is calculated. Accordingly, the failure determination of the filter means is performed. Since the amount of change in the temperature of the filter means when the filter regeneration is performed is substantially proportional to the amount of the collected particulates, it indicates the amount of particulates actually collected by the filter means according to the temperature of the filter means. The second particulate amount can be calculated. On the other hand, the first particulate amount calculated according to the engine operating state indicates the particulate amount discharged from the engine. When the difference between the two is large, the filter means has cracks or perforations. Conceivable. Accordingly, the failure of the filter means can be accurately determined by comparing the first and second particulate amounts.

請求項2に記載の発明によれば、第1及び第2のパティキュレート量の比に応じて、フィルタ手段のパティキュレート捕集率が算出され、該パティキュレート捕集率が所定閾値以下であるとき、フィルタ手段が故障していると判定される。上述したように、第1のパティキュレート量は機関から排出されるパティキュレート量を示し、第2のパティキュレート量はフィルタ手段に実際に捕集されたパティキュレート量を示すので、第1のパティキュレート量に対する第2パティキュレート量の比が、フィルタ手段のパティキュレート捕集率に相当する。したがって、パティキュレート捕集率が所定閾値以下であるときは、フィルタ手段によるパティキュレートの捕集が正常に行われていないことを示すので、故障と判定することができる。パティキュレート捕集率を算出することにより、フィルタ手段の故障の程度(重大なものか軽微なものか)を判定することが可能となる。   According to the second aspect of the present invention, the particulate collection rate of the filter means is calculated according to the ratio between the first and second particulate amounts, and the particulate collection rate is equal to or less than a predetermined threshold value. When it is determined that the filter means is out of order. As described above, the first particulate amount indicates the particulate amount discharged from the engine, and the second particulate amount indicates the particulate amount actually collected by the filter means. The ratio of the second particulate amount to the curate amount corresponds to the particulate collection rate of the filter means. Therefore, when the particulate collection rate is equal to or less than the predetermined threshold, it indicates that the particulate filter is not normally collected by the filter means, and therefore it can be determined that there is a failure. By calculating the particulate collection rate, it is possible to determine the degree of failure (critical or minor) of the filter means.

以下本発明の実施の形態を図面を参照して説明する。
図1は本発明の一実施形態にかかる排気浄化装置を備えた内燃機関及びその制御装置の構成を示す図である。内燃機関(以下単に「エンジン」という)1は、シリンダ内に燃料を直接噴射するディーゼルエンジンであり、各気筒に燃料噴射弁16が設けられている。燃料噴射弁16は、電子制御ユニット(以下「ECU」という)20に電気的に接続されており、燃料噴射弁16の開弁時間及び開弁時期は、ECU20により制御される。
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 is a diagram showing a configuration of an internal combustion engine including an exhaust purification device according to an embodiment of the present invention and a control device thereof. An internal combustion engine (hereinafter simply referred to as “engine”) 1 is a diesel engine that directly injects fuel into a cylinder, and a fuel injection valve 16 is provided in each cylinder. The fuel injection valve 16 is electrically connected to an electronic control unit (hereinafter referred to as “ECU”) 20, and the valve opening time and valve opening timing of the fuel injection valve 16 are controlled by the ECU 20.

エンジン1は、吸気管2、排気管4、及び過給機8を備えている。過給機8は、排気の運動エネルギにより駆動されるタービン10と、タービン10により回転駆動され、吸気の圧縮を行うコンプレッサ9とを備えている。
タービン10は、複数の可変ベーン(図示せず)を備えており、可変ベーンの開度を変化させることにより、タービン回転数(回転速度)を変更できるように構成されている。タービン10のベーン開度は、ECU20により電磁的に制御される。
The engine 1 includes an intake pipe 2, an exhaust pipe 4, and a supercharger 8. The supercharger 8 includes a turbine 10 that is driven by exhaust kinetic energy, and a compressor 9 that is rotationally driven by the turbine 10 and compresses intake air.
The turbine 10 includes a plurality of variable vanes (not shown), and is configured to change the turbine rotational speed (rotational speed) by changing the opening degree of the variable vanes. The vane opening degree of the turbine 10 is electromagnetically controlled by the ECU 20.

吸気管2内の、コンプレッサ9の下流には加圧された空気を冷却するためのインタークーラ5及び吸入空気量を制御するインテークシャッタ(スロットル弁)3が設けられている。インテークシャッタ3は、図示しないアクチュエータを介してECU20により、開閉制御される。   An intercooler 5 for cooling the pressurized air and an intake shutter (throttle valve) 3 for controlling the intake air amount are provided in the intake pipe 2 downstream of the compressor 9. The intake shutter 3 is controlled to be opened and closed by the ECU 20 via an actuator (not shown).

排気管4のタービン10の上流側と、吸気管2のインテークシャッタ5の下流側との間には、排気を吸気管2に還流する排気還流通路6が設けられている。排気還流通路6には、排気還流量を制御するための排気還流制御弁(以下「EGR弁」という)7が設けられている。EGR弁7は、ソレノイドを有する電磁弁であり、その弁開度はECU20により制御される。   Between the upstream side of the turbine 10 in the exhaust pipe 4 and the downstream side of the intake shutter 5 in the intake pipe 2, an exhaust gas recirculation passage 6 for returning the exhaust gas to the intake pipe 2 is provided. The exhaust gas recirculation passage 6 is provided with an exhaust gas recirculation control valve (hereinafter referred to as “EGR valve”) 7 for controlling the exhaust gas recirculation amount. The EGR valve 7 is an electromagnetic valve having a solenoid, and the valve opening degree is controlled by the ECU 20.

排気管4の、タービン10の下流側には、排気を浄化する触媒コンバータ11と、DPF12とが上流側からこの順序で設けられている。
触媒コンバータ11は、NOxを吸収するNOx吸収剤及び酸化、還元を促進するための触媒を内蔵する。NOx吸収剤は、エンジン1の燃焼室内の混合気の空燃比が理論空燃比よりリーン側に設定され、排気中の酸素濃度が比較的高い(NOxが多い)排気リーン状態においては、NOxを吸収する一方、逆に混合気の空燃比が理論空燃比近傍または理論空燃比よりリッチ側に設定され、排気中の酸素濃度が比較的低い排気リッチ状態においては、吸収したNOxを放出する特性を有する。
On the downstream side of the turbine 10 in the exhaust pipe 4, a catalytic converter 11 for purifying exhaust and a DPF 12 are provided in this order from the upstream side.
The catalytic converter 11 contains a NOx absorbent that absorbs NOx and a catalyst for promoting oxidation and reduction. The NOx absorbent absorbs NOx in an exhaust lean state in which the air-fuel ratio of the air-fuel mixture in the combustion chamber of the engine 1 is set to be leaner than the stoichiometric air-fuel ratio and the oxygen concentration in the exhaust is relatively high (NOx is high). On the other hand, when the air-fuel ratio of the air-fuel mixture is set near the stoichiometric air-fuel ratio or richer than the stoichiometric air-fuel ratio, the exhaust gas has a characteristic of releasing the absorbed NOx in an exhaust rich state where the oxygen concentration in the exhaust gas is relatively low. .

触媒コンバータ11は、排気リッチ状態において、NOx吸収剤から放出されるNOxがHC、COにより還元されて、窒素ガスとして排出され、またHC、COは酸化されて水蒸気及び二酸化炭素として排出されるように構成されている。   In the catalytic converter 11, in the exhaust rich state, NOx released from the NOx absorbent is reduced by HC and CO and discharged as nitrogen gas, and HC and CO are oxidized and discharged as water vapor and carbon dioxide. It is configured.

DPF12は、排気がフィルタ壁の微細な孔を通過する際、排気中の炭素(C)を主成分とするパティキュレートであるスート(soot)を、フィルタ壁の表面及びフィルタ壁中の孔に堆積させることによって捕集する。フィルタ壁の構成材料としては、例えば、炭化珪素(SiC)等のセラミックスや金属多孔体が使用される。   When the exhaust gas passes through the fine holes in the filter wall, the DPF 12 deposits soot, which is a particulate material mainly composed of carbon (C) in the exhaust gas, on the surface of the filter wall and the holes in the filter wall. Collect by letting. As a constituent material of the filter wall, for example, ceramics such as silicon carbide (SiC) or a porous metal body is used.

DPF12のスート捕集能力の限界、すなわち堆積限界までスートを捕集すると、排気圧力の上昇を引き起こすので、適時スートを燃焼させる再生処理を行う必要がある。この再生処理では、排気の温度をスートの燃焼温度まで上昇させるために、ポスト噴射制御が実行される。ポスト噴射制御においては、燃料噴射弁16により、圧縮行程における通常噴射だけでなく、その後の爆発行程や排気行程における後噴射(ポスト噴射)が行われる。ポスト噴射により噴射された燃料は、その噴射時期により、エンジン1の燃焼室内で燃焼する場合と、触媒コンバータ11で燃焼する場合とがある。   If soot is collected up to the limit of the soot collecting ability of the DPF 12, that is, the accumulation limit, the exhaust pressure rises, so it is necessary to perform a regeneration process for burning the soot in a timely manner. In this regeneration process, post-injection control is executed in order to raise the exhaust temperature to the soot combustion temperature. In the post injection control, the fuel injection valve 16 performs not only normal injection in the compression stroke, but also post injection (post injection) in the subsequent explosion stroke and exhaust stroke. The fuel injected by the post injection may be burned in the combustion chamber of the engine 1 or may be burned in the catalytic converter 11 depending on the injection timing.

DPF12にはその温度(以下「DPF温度」という)を検出するDPF温度センサ23が設けられている。この温度センサ23の検出信号は、ECU20に供給される。
さらにエンジン1のクランク軸の回転角度を検出するクランク角度位置センサ22、エンジン1の吸入空気流量GAを検出する吸入空気流量センサ21、エンジン1の冷却水温を検出する冷却水温センサ(図示せず)などが設けられており、これらのセンサの検出信号が、ECU20に供給される。エンジン1の回転数NEは、クランク角度位置センサの出力から算出される。
The DPF 12 is provided with a DPF temperature sensor 23 for detecting the temperature (hereinafter referred to as “DPF temperature”). The detection signal of the temperature sensor 23 is supplied to the ECU 20.
Further, a crank angle position sensor 22 that detects the rotation angle of the crankshaft of the engine 1, an intake air flow rate sensor 21 that detects the intake air flow rate GA of the engine 1, and a cooling water temperature sensor (not shown) that detects the cooling water temperature of the engine 1. The detection signals of these sensors are supplied to the ECU 20. The engine speed NE of the engine 1 is calculated from the output of the crank angle position sensor.

ECU20は、各種センサからの入力信号波形を整形し、電圧レベルを所定レベルに修正し、アナログ信号値をデジタル信号値に変換する等の機能を有する入力回路、中央演算処理ユニット(以下「CPU」という)、CPUで実行される各種演算プログラム及び演算結果等を記憶する記憶回路、燃料噴射弁16、EGR弁7などに制御信号を供給する出力回路から構成される。   The ECU 20 shapes input signal waveforms from various sensors, corrects the voltage level to a predetermined level, converts an analog signal value into a digital signal value, a central processing unit (hereinafter referred to as “CPU”). A storage circuit that stores various calculation programs executed by the CPU, calculation results, and the like, and an output circuit that supplies control signals to the fuel injection valve 16, the EGR valve 7, and the like.

図2は、DPF12の故障、具体的にはフィルタ壁のひび割れまたは孔あきによるフィルタ機能の低下を判定する処理の手順を示すフローチャートである。この故障判定処理は、ECU20のCPUで実行される。
ステップS101では、エンジン1の運転状態に応じてDPF12に捕集されるべきパティキュレートの量(以下「第1のDPF堆積量」という)GDPF1を算出する。この第1のDPF堆積量GDPF1の算出は、エンジン1の運転状態(例えばエンジン回転数NE及び吸入空気流量GA)に応じて、予め記憶されたアルゴリズム及びマップに基づいて一定時間毎に堆積量を算出することにより行われる。この第1のDPF堆積量GDPF1は、正確にはエンジン1から排出されるパティキュレートがすべてDPF12に捕集された場合の堆積量を示す。したがって、DPF12のフィルタ壁にひび割れなどがあるときには、実際の堆積量は、第1のパティキュレート量GDPF1より小さな値となる。
FIG. 2 is a flowchart showing a processing procedure for determining a failure of the DPF 12, specifically, a deterioration of the filter function due to cracking or perforation of the filter wall. This failure determination process is executed by the CPU of the ECU 20.
In step S101, the amount of particulates (hereinafter referred to as “first DPF accumulation amount”) GDPF1 to be collected in the DPF 12 according to the operating state of the engine 1 is calculated. The first DPF accumulation amount GDPF1 is calculated according to the operation state of the engine 1 (for example, the engine speed NE and the intake air flow rate GA) based on an algorithm and a map stored in advance, and the accumulation amount is calculated at regular intervals. This is done by calculating. This first DPF accumulation amount GDPF1 accurately indicates the accumulation amount when all the particulates discharged from the engine 1 are collected in the DPF 12. Therefore, when there is a crack or the like on the filter wall of the DPF 12, the actual deposition amount is smaller than the first particulate amount GDPF1.

ステップS101で算出される第1のDPF堆積量GDPF1が所定の再生制御閾値GPTHを超えていなければ、ステップS102の答が否定(NO)となり、故障判定は実行されない。第1のDPF堆積量GDPF1が所定の再生制御閾値GPTHを超えると、堆積したスートを燃焼させる再生制御が実行され、ステップS103以下の処理が実行される。再生制御は上述したようにポスト噴射により、排気温度を上昇させることにより行われる。   If the first DPF accumulation amount GDPF1 calculated in step S101 does not exceed the predetermined regeneration control threshold GPTH, the answer to step S102 is negative (NO), and the failure determination is not executed. When the first DPF accumulation amount GDPF1 exceeds a predetermined regeneration control threshold value GPTH, regeneration control for burning the deposited soot is performed, and the processing after step S103 is performed. The regeneration control is performed by raising the exhaust gas temperature by post injection as described above.

ステップS103では、DPF温度センサ23によりDPF温度TDPFを計測する。このDPF温度TDPFは、再生制御中における検出温度の最大値である。ステップS104では、DPF温度TDPFに応じて図3に示すGDPF2テーブルを検索し、DPF12に捕集されたパティキュレート量(以下「第2のDPF堆積量」という)GDPF2を算出する。GDPF2テーブルは、DPF温度TDPFが高くなるほど、第2のDPF堆積量GDPF2が増加するように設定されている。GDPF2テーブルは、再生制御中に燃焼するパティキュレート量が多いほど、DPF温度TDPFが高くなることに着目して、予め堆積パティキュレート量を変化させてDPF温度を計測し、ECU20内の記憶回路に記憶したものである。   In step S103, the DPF temperature sensor 23 measures the DPF temperature TDPF. This DPF temperature TDPF is the maximum value of the detected temperature during regeneration control. In step S104, the GDPF2 table shown in FIG. 3 is searched according to the DPF temperature TDPF, and the particulate amount (hereinafter referred to as “second DPF accumulation amount”) GDPF2 collected in the DPF 12 is calculated. The GDPF2 table is set so that the second DPF accumulation amount GDPF2 increases as the DPF temperature TDPF increases. Focusing on the fact that the DPF temperature TDPF increases as the amount of particulates burned during regeneration control increases, the GDPF2 table measures the DPF temperature in advance by changing the amount of accumulated particulates, and stores it in a storage circuit in the ECU 20. I remembered it.

ステップS105では、下記式(1)に第1のDPF堆積量GDPF1及び第2のDPF堆積量GDPF2を適用し、DPF12によるパティキュレートの捕集率PMCEを算出する。
PMCE=GDPF2/GDPF1 (1)
ステップS106では、捕集率PMCEが判定閾値CETH(例えば0.8)以下であるか否かを判別する。その結果、捕集率PMCEが判定閾値CETH以下であるときは、DPF12は故障している、すなわちひび割れ又は孔あきによりフィルタ機能が低下していると判定し(ステップS107)、捕集率PMCEが判定閾値CETHより大きいときは、DPF12は正常と判定する(ステップS108)。
In step S105, the first DPF accumulation amount GDPF1 and the second DPF accumulation amount GDPF2 are applied to the following equation (1), and the particulate collection rate PMCE by the DPF 12 is calculated.
PMCE = GDPF2 / GDPF1 (1)
In step S106, it is determined whether or not the collection rate PMCE is equal to or less than a determination threshold value CETH (for example, 0.8). As a result, when the collection rate PMCE is equal to or less than the determination threshold CETH, it is determined that the DPF 12 has failed, that is, the filter function has been degraded due to cracking or perforation (step S107), and the collection rate PMCE is When it is larger than the determination threshold value CETH, it is determined that the DPF 12 is normal (step S108).

以上のように本実施形態では、エンジン1の運転状態に応じて、DPF12に捕集されるべきパティキュレート量を示す第1のDPF堆積量GDPF1が算出され、DPF12の再生制御が行われるときに、計測されるDPF温度TDPFに応じて、DPF12に実際に捕集されたパティキュレート量を示す第2のDPF堆積量GDPF2が算出され、第1及び第2のDPF堆積量GDPF1、GDPF2の比較結果に応じて、DFP12の故障判定が行われる。エンジン運転状態に応じて算出される第1のDPF堆積量GDPF1は、エンジン1から排出されるパティキュレート量を示しており、第2のDPF堆積量GDPF2との差が大きいときは、DPF12にひび割れまたは孔あきが発生していると考えられる。したがって、第1及び第2のDPF堆積量GDPF1,GDPF2を比較することにより、DPF12の故障を正確に判定することができる。   As described above, in the present embodiment, when the first DPF accumulation amount GDPF1 indicating the particulate amount to be collected in the DPF 12 is calculated and the regeneration control of the DPF 12 is performed according to the operating state of the engine 1. In accordance with the measured DPF temperature TDPF, the second DPF accumulation amount GDPF2 indicating the particulate amount actually collected in the DPF 12 is calculated, and the comparison result between the first and second DPF accumulation amounts GDPF1, GDPF2 Accordingly, the failure determination of the DFP 12 is performed. The first DPF accumulation amount GDPF1 calculated according to the engine operating state indicates the amount of particulates discharged from the engine 1, and when the difference from the second DPF accumulation amount GDPF2 is large, the DPF 12 is cracked. Or it is thought that perforation has occurred. Therefore, the failure of the DPF 12 can be accurately determined by comparing the first and second DPF accumulation amounts GDPF1, GDPF2.

より具体的には、第1のDPF堆積量GDPF1に対する第2のDPF堆積量GDPF2の比率として、捕集率PMCEを算出し、捕集率PMCEが判定閾値CETH以下であるとき、DPF12が故障していると判定される。捕集率PMCEを算出することにより、DPF12の故障の程度(重大なものか軽微なものか)を判定することが可能となる。   More specifically, the collection rate PMCE is calculated as a ratio of the second DPF accumulation amount GDPF2 to the first DPF accumulation amount GDPF1, and when the collection rate PMCE is equal to or less than the determination threshold CETH, the DPF 12 fails. It is determined that By calculating the collection rate PMCE, it is possible to determine the degree of failure (critical or minor) of the DPF 12.

本実施形態では、DPF12がフィルタ手段に相当する。また吸入空気流量センサ21、クランク角度位置センサ22、及びECU20が第1捕集量算出手段を構成し、温度センサ23及びECU20が第2捕集量算出手段を構成し、ECU20が故障判定手段を構成する。具体的には、図2のステップS101が第1捕集量算出手段に相当し、ステップS103及びS104が第2捕集量算出手段に相当し、ステップS105〜S108が故障判定手段に相当する。   In the present embodiment, the DPF 12 corresponds to a filter unit. The intake air flow rate sensor 21, the crank angle position sensor 22, and the ECU 20 constitute a first collection amount calculation means, the temperature sensor 23 and the ECU 20 constitute a second collection amount calculation means, and the ECU 20 serves as a failure determination means. Constitute. Specifically, step S101 in FIG. 2 corresponds to the first collection amount calculation means, steps S103 and S104 correspond to the second collection amount calculation means, and steps S105 to S108 correspond to the failure determination means.

(変形例)
上述した実施形態では、ポスト噴射などによるDPF12の再生制御中に故障診断を行うようにしたが、DPF12において自然再生が行われるときに故障診断を実行するようにしてもよい。例えばエンジン1の高負荷運転時には、排気温度が上昇し、DPF12に堆積したパティキュレートが燃焼する自然再生が行われるので、そのようなエンジン運転状態においては、再生制御を実行しなくても、故障診断を実行することができる。
(Modification)
In the embodiment described above, failure diagnosis is performed during regeneration control of the DPF 12 by post injection or the like, but failure diagnosis may be performed when natural regeneration is performed in the DPF 12. For example, when the engine 1 is in a high load operation, the exhaust temperature rises and natural regeneration in which the particulates accumulated in the DPF 12 are burned is performed. Diagnosis can be performed.

図4はこの変形例の故障判定の手順を示すフローチャートである。図4に示すフローチャートは、図2のステップS102をステップS102aに変えたものである。ステップS102aでは、自然再生が行われているか否かを判別し、自然再生が行われているとき、ステップS103以下を実行する。自然再生が行われているか否かの判別は、例えばエンジン回転数及びエンジン負荷がともに所定閾値を越えているか否かにより行われる。   FIG. 4 is a flowchart showing a procedure for failure determination according to this modification. The flowchart shown in FIG. 4 is obtained by replacing step S102 in FIG. 2 with step S102a. In step S102a, it is determined whether or not natural reproduction is being performed. When natural reproduction is being performed, step S103 and subsequent steps are executed. Whether or not natural regeneration is being performed is determined, for example, based on whether or not both the engine speed and the engine load exceed a predetermined threshold.

また上述した実施形態では、捕集率PMCEが算出され、捕集率PMCEと判定閾値CETHとを比較することにより故障診断が行われるが、第1のDPF堆積量GDPF1と、第2のDPF堆積量GDPF2との差が、対応する判定閾値より大きいとき、DPF12が故障していると判定するようにしてもよい。   In the above-described embodiment, the collection rate PMCE is calculated, and the failure diagnosis is performed by comparing the collection rate PMCE and the determination threshold value CETH. However, the first DPF accumulation amount GDPF1 and the second DPF accumulation When the difference from the amount GDPF2 is larger than the corresponding determination threshold value, it may be determined that the DPF 12 is out of order.

また上述した実施形態では、再生制御中にDPF12の温度を温度センサ23により直接検出したが、DPF12の下流側に温度センサを設け、DPF12から排出される排気の温度TDEXをDPF12の温度として検出するようにしてもよい。さらにDPF12の上流側の温度TDINも検出し、下流側温度TDEXから上流側温度TDINを減算することにより温度上昇量ΔTDPFを算出し、温度上昇量ΔTDPFに応じて、第2のDPF堆積量GDPF2を算出するようにしてもよい。   In the above-described embodiment, the temperature of the DPF 12 is directly detected by the temperature sensor 23 during the regeneration control. However, a temperature sensor is provided on the downstream side of the DPF 12, and the temperature TDEX of the exhaust discharged from the DPF 12 is detected as the temperature of the DPF 12. You may do it. Further, the upstream temperature TDIN of the DPF 12 is also detected, and the temperature increase amount ΔTDPF is calculated by subtracting the upstream temperature TDIN from the downstream temperature TDEX, and the second DPF accumulation amount GDPF2 is calculated according to the temperature increase amount ΔTDPF. You may make it calculate.

さらに再生制御中に、下流側温度TDEXを一定時間毎に計測して積算することにより、温度積算値ITDEXを算出し、温度積算値ITDEXに応じて、第2のDPF堆積量GDPF2を検出するようにしてもよい。   Further, during the regeneration control, the downstream temperature TDEX is measured and integrated at regular intervals to calculate the temperature integrated value ITDEX, and the second DPF accumulation amount GDPF2 is detected according to the temperature integrated value ITDEX. It may be.

また再生制御中に、下流側温度TDEXを一定時間毎に計測して、その差分をとることにより、温度上昇速度を示す昇温速度パラメータDTDEXを算出し、昇温速度パラメータDTDEXに応じて、第2のDPF堆積量GDPF2を検出するようにしてもよい。   Further, during the regeneration control, the downstream temperature TDEX is measured at regular intervals, and the difference is taken to calculate the temperature increase rate parameter DTDEX indicating the temperature increase rate, and according to the temperature increase rate parameter DTDEX, The DPF accumulation amount GDPF2 of 2 may be detected.

また本発明は、クランク軸を鉛直方向とした船外機などのような船舶推進機用エンジンなどの排気浄化装置にも適用が可能である。   The present invention can also be applied to an exhaust purification device such as a marine vessel propulsion engine such as an outboard motor having a vertical crankshaft.

本発明の一実施形態にかかる排気浄化装置を備えた内燃機関及びその制御装置の構成を示す図である。It is a figure showing composition of an internal combustion engine provided with an exhaust-air-purification device concerning one embodiment of the present invention, and its control device. 故障判定の手順を示すフローチャートである。It is a flowchart which shows the procedure of failure determination. 図2の処理で使用されるテーブルを示す図である。It is a figure which shows the table used by the process of FIG. 図2に示す処理の変形例を示す図である。It is a figure which shows the modification of the process shown in FIG.

符号の説明Explanation of symbols

1 内燃機関
4 排気管
12 DPF(フィルタ手段)
20 電子制御ユニット(第1捕集量算出手段、第2捕集量算出手段、故障判定手段)
21 吸入空気流量センサ(第1捕集量検出手段)
22 エンジン回転数センサ(第1捕集量検出手段)
1 Internal combustion engine 4 Exhaust pipe 12 DPF (filter means)
20 Electronic control unit (first collection amount calculation means, second collection amount calculation means, failure determination means)
21 Intake air flow rate sensor (first collected amount detection means)
22 Engine speed sensor (first collected amount detection means)

Claims (2)

内燃機関の排気中のパティキュレートを捕集するフィルタ手段を備えた内燃機関の排気浄化装置において、
前記機関の運転状態に応じて、前記フィルタ手段に捕集されるべきパティキュレート量を示す第1のパティキュレート量を算出する第1捕集量算出手段と、
前記フィルタ手段に捕集されたパティキュレートを焼却するフィルタ再生が行われるときにおける前記フィルタ手段の温度に応じて、前記フィルタ手段に捕集されたパティキュレート量を示す第2のパティキュレート量を算出する第2捕集量算出手段と、
前記第1及び第2のパティキュレート量を比較し、その比較結果に応じて、前記フィルタ手段の故障判定を行う故障判定手段とを備えることを特徴とする内燃機関の排気浄化装置。
In an exhaust gas purification apparatus for an internal combustion engine comprising filter means for collecting particulates in the exhaust gas of the internal combustion engine,
A first collection amount calculating means for calculating a first particulate amount indicating a particulate amount to be collected by the filter means in accordance with an operating state of the engine;
The second particulate quantity indicating the particulate quantity collected by the filter means is calculated according to the temperature of the filter means when the filter regeneration for incinerating the particulate matter collected by the filter means is performed. Second collection amount calculating means for
An exhaust emission control device for an internal combustion engine, comprising: failure determination means for comparing the first and second particulate amounts and determining failure of the filter means according to the comparison result.
前記故障判定手段は、前記第1及び第2のパティキュレート量の比に応じて、前記フィルタ手段のパティキュレート捕集率を算出し、該パティキュレート捕集率が所定閾値以下であるとき、前記フィルタ手段が故障していると判定することを特徴とする請求項1に記載の内燃機関の排気浄化装置。   The failure determination means calculates a particulate collection rate of the filter means according to a ratio of the first and second particulate amounts, and when the particulate collection rate is equal to or less than a predetermined threshold, 2. The exhaust emission control device for an internal combustion engine according to claim 1, wherein it is determined that the filter means has failed.
JP2005137973A 2005-05-11 2005-05-11 Exhaust gas purification device for internal combustion engine Expired - Fee Related JP4440823B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005137973A JP4440823B2 (en) 2005-05-11 2005-05-11 Exhaust gas purification device for internal combustion engine
US11/413,091 US20060254265A1 (en) 2005-05-11 2006-04-28 Exhaust gas purifying apparatus for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005137973A JP4440823B2 (en) 2005-05-11 2005-05-11 Exhaust gas purification device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2006316647A JP2006316647A (en) 2006-11-24
JP4440823B2 true JP4440823B2 (en) 2010-03-24

Family

ID=37417755

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005137973A Expired - Fee Related JP4440823B2 (en) 2005-05-11 2005-05-11 Exhaust gas purification device for internal combustion engine

Country Status (2)

Country Link
US (1) US20060254265A1 (en)
JP (1) JP4440823B2 (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4737098B2 (en) * 2007-01-24 2011-07-27 株式会社デンソー Diagnostic device for internal combustion engine
JP5168071B2 (en) * 2008-10-08 2013-03-21 トヨタ自動車株式会社 Filter failure detection device
US8584445B2 (en) * 2009-02-04 2013-11-19 GM Global Technology Operations LLC Method and system for controlling an electrically heated particulate filter
EP2402569A4 (en) * 2009-02-24 2016-01-06 Toyota Motor Co Ltd Abnormality diagnosis system and abnormality diagnosis method of filter regeneration system
US8950177B2 (en) * 2009-06-17 2015-02-10 GM Global Technology Operations LLC Detecting particulate matter load density within a particulate filter
US8341945B2 (en) * 2009-07-01 2013-01-01 GM Global Technology Operations LLC Electrically heated particulate filter
US8479496B2 (en) * 2009-07-02 2013-07-09 GM Global Technology Operations LLC Selective catalytic reduction system using electrically heated catalyst
US20110000193A1 (en) * 2009-07-02 2011-01-06 Woodward Governor Company System and method for detecting diesel particulate filter conditions based on thermal response thereof
US8443590B2 (en) * 2009-07-02 2013-05-21 GM Global Technology Operations LLC Reduced volume electrically heated particulate filter
US8475574B2 (en) 2009-08-05 2013-07-02 GM Global Technology Operations LLC Electric heater and control system and method for electrically heated particulate filters
US8511069B2 (en) * 2009-08-12 2013-08-20 GM Global Technology Operations LLC Systems and methods for layered regeneration of a particulate matter filter
JP4967006B2 (en) * 2009-09-24 2012-07-04 本田技研工業株式会社 Filter abnormality judgment device
WO2011118035A1 (en) * 2010-03-26 2011-09-29 トヨタ自動車株式会社 Problem detection apparatus and problem detection method for particulate filter
JP5522681B2 (en) * 2010-05-21 2014-06-18 一般財団法人電力中央研究所 Measuring method of cooking exhaust
DE112010005995B4 (en) * 2010-11-12 2015-05-07 Toyota Jidosha Kabushiki Kaisha Failure detection device for particulate filter
JP6770486B2 (en) * 2017-06-09 2020-10-14 株式会社豊田自動織機 Engine exhaust treatment device
JP6879161B2 (en) * 2017-10-06 2021-06-02 トヨタ自動車株式会社 Exhaust purification device for internal combustion engine
DE102020202551A1 (en) * 2020-02-28 2021-09-02 Vitesco Technologies GmbH Method and device for diagnosing a coated particle filter arranged in an exhaust gas duct of a motor vehicle

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE60106924T2 (en) * 2000-07-24 2005-11-10 Toyota Jidosha K.K., Toyota EMISSION CONTROL DEVICE
JP4042476B2 (en) * 2002-06-14 2008-02-06 株式会社デンソー Exhaust gas purification device for internal combustion engine
JP4093158B2 (en) * 2003-09-17 2008-06-04 日産自動車株式会社 Filter regeneration control device for diesel engine
ITTO20030999A1 (en) * 2003-12-12 2005-06-13 Fiat Ricerche METHOD OF ACTIVATION OF THE REGENERATION OF A PARTICULATE FILTER ACCORDING TO AN ESTIMATE OF THE QUANTITY OF THE PARTICULATE ACCUMULATED IN THE FILTER OF THE PARTICULATE.
EP1544432B1 (en) * 2003-12-15 2008-07-09 Nissan Motor Co., Ltd. Regeneration control of diesel particulate filter
CN100491704C (en) * 2004-08-10 2009-05-27 日产自动车株式会社 Estimation device and method of particulate matter deposit amount in diesel particulate filter

Also Published As

Publication number Publication date
JP2006316647A (en) 2006-11-24
US20060254265A1 (en) 2006-11-16

Similar Documents

Publication Publication Date Title
JP4440823B2 (en) Exhaust gas purification device for internal combustion engine
JP4606965B2 (en) Exhaust gas purification device for internal combustion engine
US7404291B2 (en) Exhaust gas purifying apparatus for internal combustion engine
JP4430704B2 (en) Exhaust gas purification device for internal combustion engine
JP4103720B2 (en) ENGINE EXHAUST PURIFYING APPARATUS AND PARTICLE DEPOSITION STATE JUDGMENT METHOD
US20030230079A1 (en) Exhaust gas cleaning system having particulate filter
WO2009101667A1 (en) Exhaust gas collecting performance judging method and device therefor
JP4453394B2 (en) Catalyst degradation diagnosis device
JP4606939B2 (en) Exhaust gas purification device for internal combustion engine
US7758833B2 (en) Exhaust gas purifying apparatus for internal combustion engine
JP2009191694A (en) Exhaust emission control device of internal combustion engine
JP2006291834A (en) Thermal degradation state detection device for exhaust emission control catalyst
JP4140397B2 (en) Activity determination device for engine oxidation catalyst
US7827783B2 (en) Exhaust gas purifying apparatus for internal combustion engine
JP3800933B2 (en) Exhaust particulate processing device for internal combustion engine
JP2005090276A (en) Catalyst control device of internal combustion engine
JP5009189B2 (en) Exhaust gas purification device for internal combustion engine
JP4648274B2 (en) Control device for internal combustion engine
US11536209B2 (en) Control device, engine, and control method of engine
JP2006316682A (en) Exhaust emission control device of internal combustion engine
JP2006257880A (en) Exhaust emission control device of internal combustion engine
JP2007032490A (en) Exhaust emission control device for internal combustion engine
JP2005226547A (en) Exhaust emission control device of internal combustion engine
JP4440824B2 (en) Catalytic converter deterioration detector
JP4539466B2 (en) Exhaust gas purification system for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071129

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091217

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091222

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100107

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130115

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees