JP4440701B2 - Rotational driving force transmission mechanism and actuator - Google Patents

Rotational driving force transmission mechanism and actuator Download PDF

Info

Publication number
JP4440701B2
JP4440701B2 JP2004136788A JP2004136788A JP4440701B2 JP 4440701 B2 JP4440701 B2 JP 4440701B2 JP 2004136788 A JP2004136788 A JP 2004136788A JP 2004136788 A JP2004136788 A JP 2004136788A JP 4440701 B2 JP4440701 B2 JP 4440701B2
Authority
JP
Japan
Prior art keywords
transmission member
input
side transmission
output
rotation shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004136788A
Other languages
Japanese (ja)
Other versions
JP2005315389A (en
Inventor
一馬 柴田
正明 清水
修司 益田
信哉 江連
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NHK Spring Co Ltd
Asmo Co Ltd
Toyota Motor Corp
Original Assignee
NHK Spring Co Ltd
Asmo Co Ltd
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NHK Spring Co Ltd, Asmo Co Ltd, Toyota Motor Corp filed Critical NHK Spring Co Ltd
Priority to JP2004136788A priority Critical patent/JP4440701B2/en
Publication of JP2005315389A publication Critical patent/JP2005315389A/en
Application granted granted Critical
Publication of JP4440701B2 publication Critical patent/JP4440701B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Mechanical Operated Clutches (AREA)

Description

本発明は、回転駆動力伝達機構及びこれを用いたアクチュエータに関する。   The present invention relates to a rotational driving force transmission mechanism and an actuator using the same.

従来から、駆動源と出力機構との間に配設され駆動源と出力機構の接続および遮断を行う回転駆動力伝達機構を備えたアクチュエータが知られている(例えば、特許文献1、特許文献2参照)。特許文献1に記載の例では、回転駆動力伝達機構として電磁クラッチ機構が設けられている。そして、この電磁クラッチ機構を電気的にオン・オフすることにより、駆動源と出力機構の接続および遮断が行われる構成となっている。
一方、特許文献2に記載の例では、回転駆動力伝達機構としてワンウェイクラッチ機構が設けられている。そして、このワンウェイクラッチ機構によって駆動源における一方向の回転のみを出力機構に伝達することにより、駆動源と出力機構の接続および遮断が行われる構成となっている。
特開2001−37155(第4−10、図1、図2) 特開平5−288086(第3−4、図1、図6)
2. Description of the Related Art Conventionally, there has been known an actuator including a rotational driving force transmission mechanism that is disposed between a driving source and an output mechanism and connects and disconnects the driving source and the output mechanism (for example, Patent Document 1 and Patent Document 2). reference). In the example described in Patent Document 1, an electromagnetic clutch mechanism is provided as a rotational driving force transmission mechanism. The electromagnetic clutch mechanism is electrically turned on / off to connect and disconnect the drive source and the output mechanism.
On the other hand, in the example described in Patent Document 2, a one-way clutch mechanism is provided as a rotational driving force transmission mechanism. The one-way clutch mechanism transmits only rotation in one direction of the drive source to the output mechanism, thereby connecting and disconnecting the drive source and the output mechanism.
JP 2001-37155 A (No. 4-10, FIGS. 1 and 2) JP-A-5-288086 (No. 3-4, FIGS. 1 and 6)

しかしながら、特許文献1に記載の例のように、電磁クラッチ機構を備えたアクチュエータでは、駆動源と出力機構の接続および遮断を行うクラッチ部を駆動させるための電気的な駆動部(例えば、コイルを備えた電磁器など)が必要となる。このため、駆動部を制御するための制御回路を別途要することや、駆動部における駆動時の発熱が問題となる。
また、特許文献2に記載の例のように、ワンウェイクラッチ機構を備えたアクチュエータでは、駆動源の回転によりワンウェイクラッチ機構を介して出力機構が回転される。ところが、外力によって出力機構が回転した場合には、ワンウェイクラッチ機構においてクラッチ部材同士が摺接されるため、このクラッチ部材同士の摺接によって回転ロスが生じるなどの問題が生じる。
However, as in the example described in Patent Document 1, in an actuator having an electromagnetic clutch mechanism, an electric drive unit (for example, a coil is used to drive a clutch unit that connects and disconnects a drive source and an output mechanism). It is necessary to use an equipped electromagnetic device. For this reason, a separate control circuit for controlling the driving unit and heat generation during driving in the driving unit are problematic.
Further, as in the example described in Patent Document 2, in an actuator having a one-way clutch mechanism, the output mechanism is rotated via the one-way clutch mechanism by the rotation of the drive source. However, when the output mechanism is rotated by an external force, the clutch members are slidably contacted with each other in the one-way clutch mechanism, so that problems such as rotational loss occur due to the slidable contact between the clutch members.

本発明は、上記問題に鑑みてなされたものであって、その目的は、電磁クラッチ機構のように電気的な駆動部を必要とせず、簡易な構成により駆動源と出力機構の接続および遮断を行うことが可能な回転駆動力伝達機構およびこれを用いたアクチュエータを提供することにある。
また、本発明の他の目的は、ワンウェイクラッチ機構のように動力遮断時にクラッチ部材同士が摺接されることなく、駆動源と出力機構とを完全に分離させることが可能な回転駆動力伝達機構およびこれを用いたアクチュエータを提供することにある。
The present invention has been made in view of the above problems, and its object is not to require an electric drive unit as in an electromagnetic clutch mechanism, and to connect and disconnect a drive source and an output mechanism with a simple configuration. An object of the present invention is to provide a rotational driving force transmission mechanism that can be performed and an actuator using the same.
Another object of the present invention is to provide a rotational driving force transmission mechanism capable of completely separating the driving source and the output mechanism without causing the clutch members to slide in contact with each other when the power is cut off, as in the one-way clutch mechanism. And providing an actuator using the same.

本発明の回転駆動力伝達機構は、駆動源により回転させられる入力側回転軸と、入力側回転軸に軸方向へ移動可能に配設された入力側伝達部材と、入力側伝達部材と対峙して配置されると共に入力側回転軸に対して回転自在に配設された出力側伝達部材と、を備え、入力側伝達部材を出力側伝達部材側へ移動させて入力側伝達部材を出力側伝達部材に接続させた動力伝達状態と、入力側伝達部材を出力側伝達部材と反対側へ移動させて入力側伝達部材を出力側伝達部材から分離させた動力遮断状態と、に切り替え可能な回転駆動力伝達機構において、入力側回転軸の回転によって入力側伝達部材を出力側伝達部材側へ直動させる回転直動変換手段と、入力側伝達部材に摺接し入力側伝達部材を径方向に付勢する負荷付与部材と、を有し、入力側伝達部材の負荷付与部材と摺接される面、又は、負荷付与部材の入力側伝達部材と摺接される面のうち少なくとも一方は、粗面により構成されたものである。   The rotational driving force transmission mechanism of the present invention is opposed to an input-side rotation shaft that is rotated by a drive source, an input-side transmission member that is movably disposed in the axial direction on the input-side rotation shaft, and an input-side transmission member. And an output-side transmission member disposed so as to be rotatable with respect to the input-side rotation shaft. The input-side transmission member is moved to the output-side transmission member side to transmit the input-side transmission member. Rotation drive that can be switched between a power transmission state connected to a member and a power cutoff state in which the input side transmission member is separated from the output side transmission member by moving the input side transmission member to the opposite side of the output side transmission member In the force transmission mechanism, rotation / linear motion converting means for linearly moving the input side transmission member to the output side transmission member side by rotation of the input side rotation shaft, and slidably contacting the input side transmission member and urging the input side transmission member in the radial direction A load applying member, and an input Load applying member in sliding contact with the surface to a transfer member, or at least one of the surfaces to be input side transfer member and the sliding of the load applying member is one constituted by a rough surface.

また、本発明のアクチュエータは、モータと、モータの回転駆動力を伝達する動力伝達状態とモータの回転駆動力を遮断する動力遮断状態とに切り替え可能な回転駆動力伝達機構と、回転駆動力伝達機構のモータと反対側に接続される出力機構と、を備えたアクチュエータにおいて、回転駆動力伝達機構が、モータにより回転させられる入力側回転軸と、入力側回転軸に軸方向へ移動可能に配設された入力側伝達部材と、入力側伝達部材と対峙して配置されると共に入力側回転軸に対して回転自在に配設された出力側伝達部材と、入力側回転軸の回転によって入力側伝達部材を出力側伝達部材側へ直動させる回転直動変換手段と、入力側伝達部材に摺接し入力側伝達部材を径方向に付勢する負荷付与部材と、を有し、入力側伝達部材の負荷付与部材と摺接される面、又は、負荷付与部材の入力側伝達部材と摺接される面のうち少なくとも一方は、粗面により構成されたものである。   The actuator of the present invention includes a motor, a rotational driving force transmission mechanism that can be switched between a power transmission state that transmits the rotational driving force of the motor and a power cutoff state that blocks the rotational driving force of the motor, and a rotational driving force transmission. In an actuator having an output mechanism connected to the opposite side of the motor of the mechanism, the rotational driving force transmission mechanism is arranged so as to be movable in the axial direction on the input side rotating shaft rotated by the motor and the input side rotating shaft. An input-side transmission member provided, an output-side transmission member that is disposed so as to face the input-side transmission member and that is rotatable with respect to the input-side rotation shaft; An input-side transmission member, comprising: a rotation / linear motion conversion unit that linearly moves the transmission member toward the output-side transmission member; and a load applying member that slidably contacts the input-side transmission member and urges the input-side transmission member in the radial direction. With load Surface are members sliding contact, or at least one of the surfaces to be input side transfer member and the sliding of the load applying member is one constituted by a rough surface.

このように、本発明によれば、回転直動変換手段によって入力側伝達部材を出力側伝達部材側へ移動させて入力側伝達部材と出力側伝達部材の接続を行い、入力側回転軸の回転力を出力側伝達部材に伝達する構成であるので、電磁クラッチ機構のような電気的な駆動部(例えば、コイルを備えた電磁器など)を不要することが可能である。これにより、電磁クラッチ機構を用いたときのように、回転駆動力伝達機構を制御するための制御回路を不要とすることが可能になると共に、発熱等の問題も解消することが可能となる。また、回転直動変換手段を用いることにより、入力側回転軸の回転によって入力側伝達部材が出力側伝達部材側へ移動する構成であるので、入力側回転軸の停止時には、入力側伝達部材を出力側伝達部材と完全に分離させて動力を遮断することができる。これにより、ワンウェイクラッチ機構を用いたときのように、クラッチ部材同士が摺接されることによって回転ロスが生じるなどの不具合も解消することが可能となる。   Thus, according to the present invention, the input side transmission member is moved to the output side transmission member side by the rotation / linear motion conversion means to connect the input side transmission member and the output side transmission member, and the rotation of the input side rotation shaft is performed. Since it is the structure which transmits force to the output side transmission member, it is possible to eliminate an electric drive part (for example, an electromagnetic device provided with a coil) such as an electromagnetic clutch mechanism. As a result, it is possible to eliminate the need for a control circuit for controlling the rotational driving force transmission mechanism as in the case of using an electromagnetic clutch mechanism, and it is possible to eliminate problems such as heat generation. In addition, since the input side transmission member is moved to the output side transmission member by the rotation of the input side rotation shaft by using the rotation / linear motion conversion means, the input side transmission member is moved when the input side rotation shaft is stopped. The power can be shut off by completely separating from the output side transmission member. As a result, it is possible to eliminate problems such as rotation loss caused by the sliding contact between the clutch members as in the case of using the one-way clutch mechanism.

また、入力側伝達部材を径方向に付勢する負荷付与部材を備えているので、入力側伝達部材の回転動作に対して抵抗力を作用させることができる。従って、入力側伝達部材と出力側伝達部材とが分離された状態で入力側回転軸が回転し始めたときに、入力側伝達部材が入力側回転軸と連れ回ることを防止することができる。このようにして、入力側伝達部材の連れ回りを防止することによって入力側伝達部材と入力側回転軸との間に回転速度差を生じさせることにより、入力側回転軸による回転運動を入力側伝達部材の直動運動に確実に変換させることが可能となる。特に、入力側伝達部材の負荷付与部材と摺接される面、又は、負荷付与部材の入力側伝達部材と摺接される面のうち少なくとも一方は、粗面により構成されているので、入力側伝達部材の回転動作に対してより大きな抵抗力を作用させることができ、これにより、入力側伝達部材が入力側回転軸と連れ回ることを確実に防止することが可能となる。   In addition, since the load applying member that urges the input side transmission member in the radial direction is provided, a resistance force can be applied to the rotation operation of the input side transmission member. Therefore, it is possible to prevent the input-side transmission member from rotating with the input-side rotation shaft when the input-side rotation shaft starts to rotate with the input-side transmission member and the output-side transmission member separated. In this way, a rotational speed difference is generated between the input-side transmission member and the input-side rotation shaft by preventing the input-side transmission member from being rotated, thereby transmitting the rotational motion by the input-side rotation shaft to the input-side transmission. It is possible to reliably convert the linear motion of the member. In particular, at least one of the surface that is in sliding contact with the load applying member of the input side transmission member or the surface that is in sliding contact with the input side transmitting member of the load applying member is constituted by a rough surface. A larger resistance force can be applied to the rotation operation of the transmission member, and it is thereby possible to reliably prevent the input-side transmission member from rotating with the input-side rotation shaft.

このとき、請求項、請求項に記載のように、前記回転直動変換手段は、より具体的には、前記入力側伝達部材に、前記入力側伝達部材の回転中心軸に対して斜め方向に延びる長孔又は長溝として形成された(すなわち、突起案内部の両軸のうち長軸が入力側伝達部材の回転中心軸に対して斜め方向に延びるように構成されている)突起案内部と、前記入力側回転軸に配設されるとともに、該入力側回転軸の径方向に突出し前記突起案内部に移動自在に係合された突起部と、からなる構成である。 At this time, as described in claim 1 and claim 6 , more specifically, the rotation / linear motion converting means is inclined with respect to the rotation center axis of the input side transmission member. Projection guide part formed as a long hole or a long groove extending in the direction (that is, the long axis of both axes of the projection guide part extends obliquely with respect to the rotation center axis of the input side transmission member) And a protrusion that is disposed on the input-side rotation shaft and protrudes in the radial direction of the input-side rotation shaft and is movably engaged with the protrusion guide portion .

また、請求項、請求項に記載のように、前記回転直動変換手段は、前記入力側回転軸に、前記入力側回転軸の回転中心軸に対して斜め方向に延びる長孔又は長溝として形成された(すなわち、突起案内部の両軸のうち長軸が入力側回転軸の回転中心軸に対して斜め方向に延びるように構成されている)突起案内部と、前記入力側伝達部材に配設されるとともに、該入力側伝達部材の径方向に突出し前記突起案内部に移動自在に係合された突起部と、からなる構成であってもよい。 In addition , as described in claim 2 and claim 7 , the rotation / linear motion conversion means includes a long hole or a long groove extending in an oblique direction with respect to the rotation center axis of the input side rotation shaft on the input side rotation shaft. (I.e., the long axis of the two axes of the protrusion guide portion is configured to extend obliquely with respect to the rotation center axis of the input-side rotation shaft), and the input-side transmission member And a protrusion that protrudes in the radial direction of the input-side transmission member and that is movably engaged with the protrusion guide portion .

そして入力側伝達部材の負荷付与部材と摺接される面、又は、負荷付与部材の入力側伝達部材と摺接される面のうち少なくとも一方が、突起案内部(長孔又は長溝により構成)の長軸方向と平行な方向に沿って複数の筋が形成された粗面により構成されていると、当該筋の形成方向と、突起案内部に突起部が係合されることにより入力側伝達部材が回転しながら軸方向に移動する方向とを一致させることができる。従って、この構成によれば、入力側伝達部材の軸方向への移動に対する抵抗力の増加を抑えつつ、入力側伝達部材の回転動作に対する抵抗力を増加させることができる。これにより、入力側伝達部材と出力側伝達部材とが分離された状態で入力側回転軸が回転し始めたときに、入力側伝達部材が入力側回転軸と連れ回ることを防止しつつ、入力側伝達部材を出力側伝達部材へ円滑に移動させることが可能となる。 Then , at least one of the surface of the input side transmission member that is in sliding contact with the load application member or the surface of the load application member that is in sliding contact with the input side transmission member is a protrusion guide portion (configured by a long hole or a long groove). If it is composed of a rough surface with a plurality of streaks formed along a direction parallel to the major axis direction, the direction of the streaks is formed, and the protrusion is engaged with the protrusion guide portion to thereby transmit the input side. The direction in which the member moves in the axial direction while rotating can be matched. Therefore, according to this configuration, it is possible to increase the resistance force against the rotation operation of the input side transmission member while suppressing an increase in resistance force against the movement of the input side transmission member in the axial direction. As a result, when the input side rotation member begins to rotate with the input side transmission member and the output side transmission member separated, the input side transmission member is prevented from being rotated with the input side rotation shaft, The side transmission member can be smoothly moved to the output side transmission member.

このとき、請求項、請求項に記載のように、より具体的には、入力側伝達部材には、軸方向に沿って孔部が形成され、入力側回転軸は、前記孔部に遊挿される。 More specifically, as described in claim 3 and claim 8 , more specifically, the input side transmission member is formed with a hole portion along the axial direction, and the input side rotation shaft is formed in the hole portion. It is loosely inserted.

なお、請求項、請求項に記載のように、入力側回転軸の出力側伝達部材側の端部には、凹部が形成され、入力側伝達部材は、前記凹部に遊嵌されていても良い。 In addition, as described in claim 4 and claim 9 , a recess is formed at an end of the input side rotating shaft on the output side transmission member side, and the input side transmission member is loosely fitted in the recess. Also good.

また、請求項、請求項10に記載のように、入力側伝達部材の出力側伝達部材側の接続面および出力側伝達部材の入力側伝達部材側の接続面に、互いに歯合可能な歯形部が形成されていると、入力側伝達部材と出力側伝達部材の接続をより強固にすることができ好適である。 Further, as described in claim 5 and claim 10 , the tooth profile that can mesh with each other on the connection surface of the input side transmission member on the output side transmission member side and the connection surface of the output side transmission member on the input side transmission member side If the part is formed, the connection between the input-side transmission member and the output-side transmission member can be further strengthened, which is preferable.

本発明によれば、回転直動変換手段によって入力側伝達部材を出力側伝達部材側へ移動させて入力側伝達部材と出力側伝達部材の接続を行い、入力側回転軸の回転力を出力側伝達部材に伝達する構成であるので、電磁クラッチ機構のような電気的な駆動部(例えば、コイルを備えた電磁器など)を不要とすることが可能である。これにより、電磁クラッチ機構を用いたときのように、回転駆動力伝達機構を制御するための制御回路を不要とすることが可能になると共に、発熱等の問題も解消することが可能となる。また、回転直動変換手段を用いることにより、入力側回転軸の回転によって入力側伝達部材が出力側伝達部材側へ移動する構成であるので、入力側回転軸の停止時には、入力側伝達部材を出力側伝達部材と完全に分離させて動力を遮断することができる。これにより、ワンウェイクラッチ機構を用いたときのように、クラッチ部材同士が摺接されることによって回転ロスが生じるなどの不具合も解消することが可能となる。   According to the present invention, the input-side transmission member is moved to the output-side transmission member by the rotation / linear motion converting means to connect the input-side transmission member and the output-side transmission member, and the rotational force of the input-side rotation shaft is transmitted to the output side. Since it is the structure which transmits to a transmission member, it is possible to make an electric drive part (for example, the electromagnetic device provided with the coil etc.) like an electromagnetic clutch mechanism unnecessary. As a result, it is possible to eliminate the need for a control circuit for controlling the rotational driving force transmission mechanism as in the case of using an electromagnetic clutch mechanism, and it is possible to eliminate problems such as heat generation. In addition, since the input side transmission member is moved to the output side transmission member by the rotation of the input side rotation shaft by using the rotation / linear motion conversion means, the input side transmission member is moved when the input side rotation shaft is stopped. The power can be shut off by completely separating from the output side transmission member. As a result, it is possible to eliminate problems such as rotation loss caused by the sliding contact between the clutch members as in the case of using the one-way clutch mechanism.

また、入力側伝達部材を径方向に付勢する負荷付与部材を備えているので、入力側伝達部材の回転動作に対して抵抗力を作用させることができる。従って、入力側伝達部材と出力側伝達部材とが分離された状態で入力側回転軸が回転し始めたときに、入力側伝達部材が入力側回転軸と連れ回ることを防止することができる。このようにして、入力側伝達部材の連れ回りを防止することによって入力側伝達部材と入力側回転軸との間に回転速度差を生じさせることにより、入力側回転軸による回転運動を入力側伝達部材の直動運動に確実に変換させることが可能となる。特に、入力側伝達部材の負荷付与部材と摺接される面、又は、負荷付与部材の入力側伝達部材と摺接される面のうち少なくとも一方は、粗面により構成されているので、入力側伝達部材の回転動作に対してより大きな抵抗力を作用させることができ、これにより、入力側伝達部材が入力側回転軸と連れ回ることを確実に防止することが可能となる。   In addition, since the load applying member that urges the input side transmission member in the radial direction is provided, a resistance force can be applied to the rotation operation of the input side transmission member. Therefore, it is possible to prevent the input-side transmission member from rotating with the input-side rotation shaft when the input-side rotation shaft starts to rotate with the input-side transmission member and the output-side transmission member separated. In this way, a rotational speed difference is generated between the input-side transmission member and the input-side rotation shaft by preventing the input-side transmission member from being rotated, thereby transmitting the rotational motion by the input-side rotation shaft to the input-side transmission. It is possible to reliably convert the linear motion of the member. In particular, at least one of the surface that is in sliding contact with the load applying member of the input side transmission member or the surface that is in sliding contact with the input side transmitting member of the load applying member is constituted by a rough surface. A larger resistance force can be applied to the rotation operation of the transmission member, and it is thereby possible to reliably prevent the input-side transmission member from rotating with the input-side rotation shaft.

以下、本発明の一実施形態について、図を参照して説明する。なお、以下に説明する部材、配置等は、本発明を限定するものではなく、本発明の趣旨に沿って各種改変することができることは勿論である。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings. It should be noted that members, arrangements, and the like described below do not limit the present invention, and it goes without saying that various modifications can be made in accordance with the spirit of the present invention.

(第一実施形態)
図1乃至図8は本発明の第一実施形態を示す図で、図1はアクチュエータの動力遮断状態を示す断面図、図2はアクチュエータの動力伝達状態を示す断面図、図3は回転駆動力伝達機構の分解図、図4は図3のA−A方向から見た一部断面を含む矢視図、図5は入力側伝達部材と摩擦部材の構成を示す図、図6は図5のH−H方向から見た矢視図、図7は回転駆動力伝達機構の動力遮断状態を示す説明図、図8は回転駆動力伝達機構の動力伝達状態を示す説明図である。
(First embodiment)
FIG. 1 to FIG. 8 are views showing a first embodiment of the present invention, FIG. 1 is a cross-sectional view showing a power cut-off state of the actuator, FIG. 2 is a cross-sectional view showing a power transmission state of the actuator, and FIG. FIG. 4 is an exploded view of the transmission mechanism, FIG. 4 is an arrow view including a partial cross section seen from the AA direction in FIG. 3, FIG. 5 is a diagram showing the configuration of the input side transmission member and the friction member, and FIG. FIG. 7 is an explanatory view showing a power cutoff state of the rotational driving force transmission mechanism, and FIG. 8 is an explanatory view showing a power transmission state of the rotational driving force transmission mechanism.

はじめに、図1乃至図6を参照しながら、本発明の第一実施形態に係る回転駆動力伝達機構20およびこれを用いたアクチュエータ1の構成について説明する。本発明の第一実施形態に係るアクチュエータ1は、図1,図2に示すように、モータ10と、回転駆動力伝達機構20と、出力機構30と、筐体40を有して構成されている。モータ10には、筐体40内で回転可能に配設された回転子11が備えられており、この回転子11の回転軸11aには、ウォームギア12が形成されている。   First, the configuration of the rotational driving force transmission mechanism 20 according to the first embodiment of the present invention and the actuator 1 using the same will be described with reference to FIGS. 1 to 6. As shown in FIGS. 1 and 2, the actuator 1 according to the first embodiment of the present invention includes a motor 10, a rotational driving force transmission mechanism 20, an output mechanism 30, and a housing 40. Yes. The motor 10 is provided with a rotor 11 that is rotatably arranged in a housing 40, and a worm gear 12 is formed on a rotating shaft 11 a of the rotor 11.

回転駆動力伝達機構20は、入力側回転軸21と、入力側伝達部材22と、出力側伝達部材23と、突起部としてのピン24と、ウォームホイール25と、負荷付与部材26を有して構成されている。入力側回転軸21は、筐体40内において回転自在に配設されており、入力側回転軸21の基部21aには、ウォームホイール25が配設されている。ウォームホイール25には、ウォームギア12が歯合されており、これによって、ウォームギア12の回転に伴って入力側回転軸21が回転するようになっている。   The rotational driving force transmission mechanism 20 includes an input side rotation shaft 21, an input side transmission member 22, an output side transmission member 23, a pin 24 as a protrusion, a worm wheel 25, and a load application member 26. It is configured. The input side rotation shaft 21 is rotatably disposed in the housing 40, and a worm wheel 25 is disposed on the base portion 21 a of the input side rotation shaft 21. The worm gear 12 is engaged with the worm wheel 25, whereby the input-side rotating shaft 21 rotates with the rotation of the worm gear 12.

ウォームホイール25が配設された位置よりも出力側伝達部材23側の基部21aには、径方向に貫通する孔部21bが形成されており、この孔部21bには、後述するピン案内部22gに移動自在に係合されるピン24が圧入されている。このとき、ピン24は、図4に示すように、ベース部材22bに形成されたピン案内部22gを介して孔部21bに圧入される。ピン24の両端は、孔部21bの両開口部から径方向外側へ向けて突出し、ピン案内部22gに形成された第一係止部22hおよび第二係止部22iと係止することができるようになっている。   A hole 21b penetrating in the radial direction is formed in the base 21a on the output side transmission member 23 side from the position where the worm wheel 25 is disposed, and a pin guide portion 22g described later is formed in the hole 21b. A pin 24 movably engaged with the pin 24 is press-fitted. At this time, as shown in FIG. 4, the pin 24 is press-fitted into the hole portion 21b through a pin guide portion 22g formed in the base member 22b. Both ends of the pin 24 protrude radially outward from both openings of the hole 21b and can be locked with the first locking portion 22h and the second locking portion 22i formed on the pin guide portion 22g. It is like that.

入力側伝達部材22は、ギア部材22aとベース部材22bにより構成されている。ギア部材22aには、所定形状からなる凹部22cが形成されており、この凹部22cには、ベース部材22bが圧入されている。ギア部材22aの出力側伝達部材23側の端部22dには、凹状の歯形部22eが形成されており、この歯形部22eは、後述する出力側伝達部材23に形成された凸状の歯形部23cと歯合可能となっている。ギア部材22aには、軸方向に貫通する孔部22kが形成されており、この孔部22kには、ベース部材22bの突出部22lが挿入されている。   The input side transmission member 22 includes a gear member 22a and a base member 22b. A recess 22c having a predetermined shape is formed in the gear member 22a, and a base member 22b is press-fitted into the recess 22c. A concave tooth shape portion 22e is formed at an end portion 22d of the gear member 22a on the output side transmission member 23 side, and this tooth shape portion 22e is a convex tooth shape portion formed on the output side transmission member 23 described later. It is possible to mesh with 23c. A hole 22k penetrating in the axial direction is formed in the gear member 22a, and a protrusion 22l of the base member 22b is inserted into the hole 22k.

ベース部材22bには、軸方向に沿って貫通する孔部22fが形成されており、この孔部22fには、入力側回転軸21の基部21aが遊挿されている。また、ベース部材22bには、径方向に沿って貫通するピン案内部22g(本発明に係る突起案内部に相当)が形成されている。このピン案内部22gは、ベース部材22bの回転中心軸に対して斜め方向に延びる長孔により構成されている(すなわち、ピン案内部22gの両軸のうち長軸がベース部材22bの回転中心軸に対して斜め方向に延びるように構成されている)。このとき、ピン24は、入力側回転軸21の径方向に突出しピン案内部22gに移動自在に係合されている。この構成により、ピン24がピン案内部22gに沿って移動すると、入力側回転軸21の回転運動が入力側伝達部材22の軸方向への直動運動に変換される。   A hole 22f penetrating along the axial direction is formed in the base member 22b, and the base 21a of the input side rotating shaft 21 is loosely inserted into the hole 22f. The base member 22b is formed with a pin guide portion 22g (corresponding to a projection guide portion according to the present invention) that penetrates along the radial direction. The pin guide portion 22g is configured by a long hole extending in an oblique direction with respect to the rotation center axis of the base member 22b (that is, the long axis of both the shafts of the pin guide portion 22g is the rotation center axis of the base member 22b). Is configured to extend in an oblique direction with respect to. At this time, the pin 24 protrudes in the radial direction of the input side rotation shaft 21 and is movably engaged with the pin guide portion 22g. With this configuration, when the pin 24 moves along the pin guide portion 22g, the rotational motion of the input side rotation shaft 21 is converted into the linear motion of the input side transmission member 22 in the axial direction.

出力側伝達部材23は、軸方向に貫通する孔部23aを有して構成されており、この孔部23aには、入力側回転軸21の延出部21cが回転自在に挿入されている。出力側伝達部材23には、周方向に沿ってギアが設けられたギア部23bが形成されており、このギア部23bの入力側伝達部材22側には、凸状の歯形部23cが形成されている。   The output side transmission member 23 is configured to have a hole portion 23a penetrating in the axial direction, and an extending portion 21c of the input side rotation shaft 21 is rotatably inserted into the hole portion 23a. The output side transmission member 23 is formed with a gear portion 23b provided with a gear along the circumferential direction, and a convex tooth profile portion 23c is formed on the input side transmission member 22 side of the gear portion 23b. ing.

歯形部23cの入力側伝達部材22側には、孔部23aよりも大径からなる凹部23dが形成されており、本例では、この凹部23dの底面に入力側回転軸21における段差部21dが係止されることにより、出力側伝達部材23の入力側伝達部材22側への移動が規制される構成となっている。なお、入力側伝達部材22およびウォームホイール25は、スラスト軸受27aによって出力側伝達部材23側へ付勢されており、出力側伝達部材23は、スラスト軸受27bによって入力側伝達部材22側へ付勢されている。   A concave portion 23d having a diameter larger than that of the hole portion 23a is formed on the input side transmission member 22 side of the tooth shape portion 23c. In this example, a step portion 21d on the input side rotating shaft 21 is formed on the bottom surface of the concave portion 23d. By being locked, the movement of the output side transmission member 23 toward the input side transmission member 22 is restricted. The input side transmission member 22 and the worm wheel 25 are biased toward the output side transmission member 23 by the thrust bearing 27a, and the output side transmission member 23 is biased toward the input side transmission member 22 by the thrust bearing 27b. Has been.

負荷付与部材26は、筐体40の内側に固設され、入力側伝達部材22を径方向内側に付勢する弾性片26aを有して構成されている。この弾性片26aは、図5に示すように、入力側伝達部材22の外周面22jに摺接することにより、入力側伝達部材22の回転動作に対して抵抗力を作用させるものである。このとき、ギア部材22aの外周面22jは、ピン案内部22gの長軸方向と平行な方向に沿って複数の筋22pが全周に渡って形成された粗面により構成されている。本例では、この構成により、入力側伝達部材22の回転動作に対する抵抗力が増大されるので、入力側伝達部材22と出力側伝達部材23とが分離された状態で入力側回転軸21が回転し始めたときに、入力側伝達部材22が入力側回転軸21と連れ回ることを確実に防止できる。   The load applying member 26 is fixed to the inside of the housing 40 and includes an elastic piece 26a that urges the input-side transmission member 22 radially inward. As shown in FIG. 5, the elastic piece 26 a is slidably contacted with the outer peripheral surface 22 j of the input side transmission member 22 to apply a resistance force to the rotation operation of the input side transmission member 22. At this time, the outer peripheral surface 22j of the gear member 22a is constituted by a rough surface in which a plurality of streaks 22p are formed over the entire circumference along a direction parallel to the major axis direction of the pin guide portion 22g. In this example, since this structure increases the resistance force against the rotation operation of the input side transmission member 22, the input side rotation shaft 21 rotates in a state where the input side transmission member 22 and the output side transmission member 23 are separated. When it starts, it can prevent reliably that the input side transmission member 22 rotates with the input side rotating shaft 21. FIG.

そして、上述のようにして、入力側伝達部材22の連れ回りを防止することによって入力側伝達部材22と入力側回転軸21との間に回転速度差を生じさせることにより、入力側回転軸21の回転に伴ってピン24をピン案内部22gに沿って確実に移動させることができる。そして、本例では、上述のように、ピン24をピン案内部22gに沿って移動させることにより、入力側回転軸21の回転運動が入力側伝達部材22の軸方向への直動運動に確実に変換される。   As described above, the rotational speed difference between the input-side transmission member 22 and the input-side rotation shaft 21 is generated by preventing the input-side transmission member 22 from being rotated, whereby the input-side rotation shaft 21. With this rotation, the pin 24 can be reliably moved along the pin guide portion 22g. In this example, as described above, the pin 24 is moved along the pin guide portion 22g, so that the rotational movement of the input-side rotary shaft 21 is reliably performed in the linear movement of the input-side transmission member 22 in the axial direction. Is converted to

また、ギア部材22aの外周面22jに形成された筋22pは、上述のように、ピン案内部22gの長軸方向と平行な方向に沿って形成されているので、この筋22pの形成方向と、入力側伝達部材22が回転しながら軸方向に移動する方向とを一致させることができる。従って、外周面22jに筋22pを設けても、入力側伝達部材22の軸方向への移動に対する抵抗力の増加を抑えることができる。   Further, the streak 22p formed on the outer peripheral surface 22j of the gear member 22a is formed along the direction parallel to the major axis direction of the pin guide portion 22g as described above. The direction in which the input-side transmission member 22 moves in the axial direction while rotating can be matched. Therefore, even if the streaks 22p are provided on the outer peripheral surface 22j, it is possible to suppress an increase in resistance force against the movement of the input side transmission member 22 in the axial direction.

そして、本例の回転駆動力伝達機構20では、図1に示すように、ピン24がピン案内部22gにおける出力側伝達部材23側の第一係止部22hに係止されているときに、入力側伝達部材22が出力側伝達部材23から分離した状態となり、回転駆動力伝達機構20が動力遮断状態となる。一方、図2に示すように、入力側回転軸21が回転し、ピン24がピン案内部22gにおける出力側伝達部材23と反対側の第二係止部22iに係止されているときには、入力側伝達部材22の歯形部22eが出力側伝達部材23の歯形部23cと歯合された状態となり、回転駆動力伝達機構20が動力伝達状態となる。   And in the rotational drive force transmission mechanism 20 of this example, as shown in FIG. 1, when the pin 24 is locked to the first locking portion 22h on the output side transmission member 23 side in the pin guide portion 22g, The input side transmission member 22 is separated from the output side transmission member 23, and the rotational driving force transmission mechanism 20 is in a power cut-off state. On the other hand, as shown in FIG. 2, when the input side rotating shaft 21 rotates and the pin 24 is locked to the second locking portion 22i on the side opposite to the output side transmission member 23 in the pin guide portion 22g, The tooth profile 22e of the side transmission member 22 is engaged with the tooth profile 23c of the output transmission member 23, and the rotational driving force transmission mechanism 20 is in the power transmission state.

出力機構30は、歯車31と、シャフト32と、ハンドル33を有して構成されている。シャフト32は、筐体40を貫通し、筐体40に対して回転自在となっている。歯車31は、筐体40内でシャフト32に固設されており、出力側伝達部材23のギア部23bに歯合されている。シャフト32の一端には、不図示の外部被駆動機構が接続されるネジ部32aが形成されており、シャフト32の他端には、ハンドル33が設けられている。ハンドル33は、外部から手動で回すことができるようになっており、ハンドル33を回すとシャフト32と共に歯車31が回転する。   The output mechanism 30 includes a gear 31, a shaft 32, and a handle 33. The shaft 32 passes through the housing 40 and is rotatable with respect to the housing 40. The gear 31 is fixed to the shaft 32 in the housing 40 and meshed with the gear portion 23 b of the output side transmission member 23. One end of the shaft 32 is formed with a threaded portion 32 a to which an external driven mechanism (not shown) is connected, and the other end of the shaft 32 is provided with a handle 33. The handle 33 can be manually rotated from the outside. When the handle 33 is rotated, the gear 31 is rotated together with the shaft 32.

次に、本発明の第一実施形態に係る回転駆動力伝達機構およびこれを用いたアクチュエータの動作について説明する。なお、図7、図8は、図1、図2に示す回転駆動力伝達機構20の動作を示す説明図であり、ピン24およびピン案内部22gの位置関係ついて理解を容易にするためにギア部材22aを一点鎖線により示している。まず、図1、図7に示すように、入力側伝達部材22と出力側伝達部材23とが分離された状態から、図2、図8に示すように、入力側伝達部材22と出力側伝達部材23とが接続され、モータ10の回転力が回転駆動力伝達機構20を介して出力機構30に伝達されるまでの動作について説明する。   Next, the operation of the rotational driving force transmission mechanism and the actuator using the same according to the first embodiment of the present invention will be described. FIGS. 7 and 8 are explanatory views showing the operation of the rotational driving force transmission mechanism 20 shown in FIGS. 1 and 2, and gears are provided to facilitate understanding of the positional relationship between the pin 24 and the pin guide portion 22g. The member 22a is indicated by a one-dot chain line. First, as shown in FIGS. 1 and 7, the input side transmission member 22 and the output side transmission member 23 are separated from the input side transmission member 22 and the output side transmission member 23 as shown in FIGS. Operation until the member 23 is connected and the rotational force of the motor 10 is transmitted to the output mechanism 30 via the rotational driving force transmission mechanism 20 will be described.

図1、図7に示すように、ピン24がピン案内部22gの第一係止部22hに係止された状態では、入力側伝達部材22が出力側伝達部材23と反対側へ移動しており、入力側伝達部材22と出力側伝達部材23とが分離した状態にある。なお、入力側伝達部材22は、負荷付与部材26によって径方向内側へ付勢されており、入力側伝達部材22が入力側回転軸21と連れ回ることが防止されている。   As shown in FIGS. 1 and 7, when the pin 24 is locked to the first locking portion 22h of the pin guide portion 22g, the input side transmission member 22 moves to the opposite side to the output side transmission member 23. Thus, the input side transmission member 22 and the output side transmission member 23 are in a separated state. The input-side transmission member 22 is urged radially inward by the load applying member 26, and the input-side transmission member 22 is prevented from rotating with the input-side rotating shaft 21.

この状態から、モータ10の所定方向への回転によりウォームホイール25がR1方向へ回転すると、負荷付与部材26によって入力側伝達部材22の連れ回りが防止されたまま、入力側回転軸21が回転する。これにより、ピン24がピン案内部22g内を第一係止部22hから第二係止部22iへ向けて移動し、このピン案内部22g内におけるピン24の移動によって、入力側伝達部材22が出力側伝達部材23側へ押し上げられて移動する。   From this state, when the worm wheel 25 is rotated in the R1 direction by the rotation of the motor 10 in a predetermined direction, the input-side rotating shaft 21 is rotated while the load-applying member 26 prevents the input-side transmitting member 22 from being rotated. . Accordingly, the pin 24 moves in the pin guide portion 22g from the first locking portion 22h toward the second locking portion 22i, and the movement of the pin 24 in the pin guide portion 22g causes the input-side transmission member 22 to move. It is pushed up and moved to the output side transmission member 23 side.

このとき、ギア部材22aの外周面22jに形成された筋22pは、上述のように、ピン案内部22gの長軸方向と平行な方向に沿って形成されている。これにより、この筋22pの形成方向と、入力側伝達部材22が回転しながら軸方向に移動する方向とを一致させることができる。この構成によれば、入力側伝達部材22の軸方向への移動に対する抵抗力の増加を抑えつつ、入力側伝達部材22の回転動作に対する抵抗力を増加させることが可能である。従って、入力側伝達部材22と出力側伝達部材23とが分離された状態で入力側回転軸21が回転し始めたときに、入力側伝達部材22が入力側回転軸21と連れ回ることを防止しつつ、入力側伝達部材22を出力側伝達部材23側へ円滑に移動させることが可能である。   At this time, the streak 22p formed on the outer peripheral surface 22j of the gear member 22a is formed along a direction parallel to the major axis direction of the pin guide portion 22g as described above. Thereby, the formation direction of this stripe | line 22p and the direction which moves to the axial direction can be matched with the input side transmission member 22 rotating. According to this configuration, it is possible to increase the resistance force against the rotation operation of the input side transmission member 22 while suppressing an increase in resistance force against the movement of the input side transmission member 22 in the axial direction. Therefore, when the input side transmission member 22 and the output side transmission member 23 are separated from each other, the input side transmission member 22 is prevented from rotating around the input side rotation shaft 21 when the input side rotation shaft 21 starts to rotate. However, it is possible to smoothly move the input side transmission member 22 to the output side transmission member 23 side.

そして、図2、図8に示すように、ピン24が第二係止部22iに係止されると、入力側伝達部材22の出力側伝達部材23側への移動が停止されると共に、入力側伝達部材22が出力側伝達部材23と接続した状態となる。このとき、入力側伝達部材22の歯形部22eと出力側伝達部材23の歯形部23cとが歯合され、入力側伝達部材22と出力側伝達部材23とが強固に接続される。   As shown in FIGS. 2 and 8, when the pin 24 is locked to the second locking portion 22i, the movement of the input side transmission member 22 toward the output side transmission member 23 is stopped and the input is stopped. The side transmission member 22 is connected to the output side transmission member 23. At this time, the tooth profile part 22e of the input side transmission member 22 and the tooth profile part 23c of the output side transmission member 23 are meshed, and the input side transmission member 22 and the output side transmission member 23 are firmly connected.

上述のようにして、入力側伝達部材22が出力側伝達部材23に接続され、且つ、ピン24が第二係止部22iに係止された状態で、入力側回転軸21がR1方向へさらに回転し続けると、ピン24が第二係止部22iに係止されていることによって、入力側回転軸21と共に入力側伝達部材22が回転する。このようにして、入力側伝達部材22が回転すると、この回転力が出力側伝達部材23に伝達されて、この出力側伝達部材23のギア部23bに歯合された歯車31が回転する。これにより、シャフト32が回転し、このシャフト32に接続される不図示の外部被駆動機構が作動する。   As described above, in a state where the input side transmission member 22 is connected to the output side transmission member 23 and the pin 24 is locked to the second locking portion 22i, the input side rotating shaft 21 is further moved in the R1 direction. If the rotation continues, the input side transmission member 22 rotates together with the input side rotation shaft 21 because the pin 24 is locked to the second locking portion 22i. Thus, when the input side transmission member 22 rotates, this rotational force is transmitted to the output side transmission member 23, and the gear 31 engaged with the gear portion 23 b of the output side transmission member 23 rotates. As a result, the shaft 32 rotates, and an external driven mechanism (not shown) connected to the shaft 32 operates.

次に、図2、図8に示すように、入力側伝達部材22と出力側伝達部材23とが接続された状態から、図1、図7に示すように、入力側伝達部材22と出力側伝達部材23とが分離され、外部被駆動機構もしくはハンドル操作によって出力機構30に作用する回転力が回転駆動力伝達機構20において遮断されるまでの動作について説明する。   Next, as shown in FIGS. 2 and 8, from the state where the input side transmission member 22 and the output side transmission member 23 are connected, as shown in FIGS. 1 and 7, the input side transmission member 22 and the output side The operation until the transmission member 23 is separated and the rotational force acting on the output mechanism 30 by the external driven mechanism or the handle operation is interrupted in the rotational driving force transmission mechanism 20 will be described.

図2、図8に示すように、ピン24がピン案内部22gの第二係止部22iに係止された状態では、入力側伝達部材22が出力側伝達部材23側へ移動しており、上記の通り、入力側伝達部材22と出力側伝達部材23とが接続した状態にある。この状態から、外部よりハンドル33を所定方向に回転させるか、もしくは不図示の外部被駆動機構を動作させることによって出力側伝達部材23がR1方向へ回転すると、出力側伝達部材23の回転に伴って入力側伝達部材22もR1方向へ回転する。このとき、入力側伝達部材22がR1方向へ回転しても、ピン24に対してピン案内部22gが移動するだけであって、出力側伝達部材23の回転力は入力側回転軸21に伝達されることはない。   As shown in FIGS. 2 and 8, in a state where the pin 24 is locked to the second locking portion 22i of the pin guide portion 22g, the input side transmission member 22 has moved to the output side transmission member 23 side, As described above, the input side transmission member 22 and the output side transmission member 23 are in a connected state. From this state, when the output side transmission member 23 rotates in the R1 direction by rotating the handle 33 from the outside in a predetermined direction or operating an external driven mechanism (not shown), the output side transmission member 23 is rotated. Thus, the input side transmission member 22 also rotates in the R1 direction. At this time, even if the input side transmission member 22 rotates in the R1 direction, only the pin guide portion 22g moves relative to the pin 24, and the rotational force of the output side transmission member 23 is transmitted to the input side rotation shaft 21. Will never be done.

そして、上述のようにして、ピン24に対してピン案内部22gが移動すると、このピン案内部22gの傾斜面がピン24に対して移動することによって、入力側伝達部材22が出力側伝達部材23と反対側へ引き戻されて移動する。このとき、ギア部材22aの外周面22jに形成された筋22pは、上述のように、ピン案内部22gの長軸方向と平行な方向に沿って形成されているので、この筋22pの形成方向と、入力側伝達部材22が回転しながら軸方向に移動する方向とを一致させることができる。   As described above, when the pin guide portion 22g moves with respect to the pin 24, the inclined surface of the pin guide portion 22g moves with respect to the pin 24, whereby the input side transmission member 22 becomes the output side transmission member. 23 is moved back to the opposite side. At this time, the streak 22p formed on the outer peripheral surface 22j of the gear member 22a is formed along the direction parallel to the major axis direction of the pin guide portion 22g as described above. And the direction in which the input-side transmission member 22 moves in the axial direction while rotating can be matched.

従って、外周面22jに筋22pを設けても、入力側伝達部材22の軸方向への移動に対する抵抗力の増加を抑えることができる。このため、入力側伝達部材22と出力側伝達部材23とが接続された状態から入力側伝達部材22を軸方向へ円滑に移動させることが可能である。そして、図1、図7に示すように、第一係止部22hがピン24に係止されると、入力側伝達部材22が出力側伝達部材23と完全に分離した状態となる。   Therefore, even if the streaks 22p are provided on the outer peripheral surface 22j, it is possible to suppress an increase in resistance force against the movement of the input side transmission member 22 in the axial direction. For this reason, it is possible to smoothly move the input side transmission member 22 in the axial direction from the state where the input side transmission member 22 and the output side transmission member 23 are connected. As shown in FIGS. 1 and 7, when the first locking portion 22 h is locked to the pin 24, the input side transmission member 22 is completely separated from the output side transmission member 23.

このように、本例の回転駆動力伝達機構20によれば、外部よりハンドル33を所定方向に回転させるか、もしくは不図示の外部被駆動機構を動作させることによって出力側伝達部材23がR1方向へ回転した場合には、入力側伝達部材22が出力側伝達部材23と分離されるので、出力側伝達部材23にモータ10の負荷等が作用することがない。従って、出力機構30に接続される不図示の外部被駆動機構を手動等により動作させることが可能である。   As described above, according to the rotational driving force transmission mechanism 20 of this example, the output side transmission member 23 is moved in the R1 direction by rotating the handle 33 from the outside in a predetermined direction or operating an external driven mechanism (not shown). Since the input side transmission member 22 is separated from the output side transmission member 23, the load of the motor 10 does not act on the output side transmission member 23. Therefore, it is possible to manually operate an external driven mechanism (not shown) connected to the output mechanism 30.

(第二実施形態)
図9,図10は本発明の第二実施形態に係る回転駆動力伝達機構を示す図で、図9は回転駆動力伝達機構の分解図、図10は図9のB−B方向から見た一部断面を含む矢視図である。本発明の第二実施形態に係る回転駆動力伝達機構220において、入力側伝達部材222以外の構成および全体動作については、上記第一実施形態に係る構成と同一であるので、その説明を省略する。なお、第二実施形態に係る回転駆動力伝達機構220において、上記第一実施形態に係る部材と同一構成からなる部材については、同一符号を用いて示す。
(Second embodiment)
9 and 10 are views showing a rotational driving force transmission mechanism according to the second embodiment of the present invention, FIG. 9 is an exploded view of the rotational driving force transmission mechanism, and FIG. 10 is viewed from the direction BB in FIG. It is an arrow view including a partial cross section. In the rotational driving force transmission mechanism 220 according to the second embodiment of the present invention, the configuration other than the input-side transmission member 222 and the overall operation are the same as the configuration according to the first embodiment, and thus the description thereof is omitted. . In addition, in the rotational driving force transmission mechanism 220 according to the second embodiment, members having the same configuration as the members according to the first embodiment are denoted by the same reference numerals.

本発明の第二実施形態に係る回転駆動力伝達機構220において、入力側伝達部材222は、ギア部材222aとベース部材222bにより構成されている。ギア部材222aには、所定形状からなる凹部222cが形成されており、この凹部222cには、入力側回転軸21の孔部21bに圧入されるピン24が収容される。ギア部材222aには、軸方向に貫通する孔部222kが形成されており、この孔部222kには、ベース部材222bの突出部222lが挿入される。   In the rotational driving force transmission mechanism 220 according to the second embodiment of the present invention, the input-side transmission member 222 includes a gear member 222a and a base member 222b. A recess 222c having a predetermined shape is formed in the gear member 222a, and a pin 24 that is press-fitted into the hole 21b of the input-side rotating shaft 21 is accommodated in the recess 222c. A hole 222k penetrating in the axial direction is formed in the gear member 222a, and the protruding portion 222l of the base member 222b is inserted into the hole 222k.

ベース部材222bには、出力側伝達部材23側へ開口する凹部222mが形成されており、この凹部222mには、ギア部材222aが圧入される。凹部222mの中央には、軸方向に沿って出力側伝達部材23側へ突出する突出部222lが形成されており、この突出部222lには、軸方向に貫通する孔部222fが形成されている。この孔部222fには、入力側回転軸21の基部21aが遊挿されている。   The base member 222b is formed with a recess 222m that opens to the output-side transmission member 23 side, and the gear member 222a is press-fitted into the recess 222m. A protrusion 222l is formed in the center of the recess 222m so as to protrude toward the output side transmission member 23 along the axial direction. A hole 222f penetrating in the axial direction is formed in the protrusion 222l. . The base portion 21a of the input side rotation shaft 21 is loosely inserted into the hole portion 222f.

また、ベース部材222bには、径方向に沿って貫通するピン案内部222gが形成されている。このピン案内部222gは、上記第一実施形態と同様に、ベース部材222bの回転中心軸に対して斜め方向に延びる長孔により構成されている(すなわち、ピン案内部222gの両軸のうち長軸がベース部材222bの回転中心軸に対して斜め方向に延びるように構成されている)。このとき、ピン24は、入力側回転軸21の径方向に突出しピン案内部222gに移動自在に係合されている。   The base member 222b is formed with a pin guide portion 222g penetrating along the radial direction. As in the first embodiment, the pin guide portion 222g is configured by a long hole extending in an oblique direction with respect to the rotation center axis of the base member 222b (that is, the long length of both shafts of the pin guide portion 222g is long). The shaft is configured to extend obliquely with respect to the rotation center axis of the base member 222b). At this time, the pin 24 protrudes in the radial direction of the input side rotating shaft 21 and is movably engaged with the pin guide portion 222g.

この構成により、ピン24がピン案内部222gに沿って移動すると、入力側回転軸21の回転運動が入力側伝達部材222の軸方向への直動運動に変換される。なお、第二実施形態に係る回転駆動力伝達機構220では、図9に示すように、ピン24は、ピン案内部222gを介して孔部21bに圧入され、その後、ギア部材222aがベース部材222bの凹部222mに圧入される。   With this configuration, when the pin 24 moves along the pin guide portion 222g, the rotational motion of the input-side rotary shaft 21 is converted into the linear motion of the input-side transmission member 222 in the axial direction. In the rotational driving force transmission mechanism 220 according to the second embodiment, as shown in FIG. 9, the pin 24 is press-fitted into the hole portion 21b through the pin guide portion 222g, and then the gear member 222a is inserted into the base member 222b. Is pressed into the recess 222m.

負荷付与部材26の弾性片26aは、入力側伝達部材222の外周面222jに摺接することにより、入力側伝達部材222の回転動作に対して抵抗力を作用させる。このとき、ベース部材222bの外周面222jは、ピン案内部222gの長軸方向と平行な方向に沿って複数の筋222pが全周に渡って形成された粗面により構成されている。本例では、この構成により、入力側伝達部材222の回転動作に対する抵抗力が増大されるので、入力側伝達部材222と出力側伝達部材23とが分離された状態で入力側回転軸21が回転し始めたときに、入力側伝達部材22が入力側回転軸21と連れ回ることを確実に防止できる。   The elastic piece 26 a of the load applying member 26 is in sliding contact with the outer peripheral surface 222 j of the input side transmission member 222, thereby applying a resistance force to the rotation operation of the input side transmission member 222. At this time, the outer peripheral surface 222j of the base member 222b is constituted by a rough surface in which a plurality of streaks 222p are formed over the entire circumference along a direction parallel to the major axis direction of the pin guide portion 222g. In this example, this configuration increases the resistance force against the rotational operation of the input-side transmission member 222, so that the input-side rotation shaft 21 rotates with the input-side transmission member 222 and the output-side transmission member 23 separated. When it starts, it can prevent reliably that the input side transmission member 22 rotates with the input side rotating shaft 21. FIG.

そして、上述のようにして、入力側伝達部材222の連れ回りを防止することによって入力側伝達部材222と入力側回転軸21との間に回転速度差を生じさせることにより、入力側回転軸21の回転に伴ってピン24をピン案内部222gに沿って確実に移動させることができる。そして、本例では、上述のように、ピン24をピン案内部222gに沿って移動させることにより、入力側回転軸21の回転運動が入力側伝達部材222の軸方向への直動運動に確実に変換される。   As described above, the rotational speed difference between the input-side transmission member 222 and the input-side rotation shaft 21 is prevented by preventing the input-side transmission member 222 from being rotated, whereby the input-side rotation shaft 21. With this rotation, the pin 24 can be reliably moved along the pin guide portion 222g. In this example, as described above, the pin 24 is moved along the pin guide portion 222g, so that the rotational movement of the input-side rotary shaft 21 can be reliably performed in the linear movement of the input-side transmission member 222 in the axial direction. Is converted to

また、ギア部材222aの外周面222jに形成された筋222pは、上述のように、ピン案内部222gの長軸方向と平行な方向に沿って形成されているので、この筋222pの形成方向と、入力側伝達部材222が回転しながら軸方向に移動する方向とを一致させることができる。従って、外周面222jに筋222pを設けても、入力側伝達部材222の軸方向への移動に対する抵抗力の増加を抑えることができる。   Further, as described above, the stripe 222p formed on the outer peripheral surface 222j of the gear member 222a is formed along the direction parallel to the major axis direction of the pin guide portion 222g. The direction in which the input side transmission member 222 moves in the axial direction while rotating can be matched. Therefore, even if the outer surface 222j is provided with the streak 222p, it is possible to suppress an increase in resistance force against the movement of the input side transmission member 222 in the axial direction.

そして、本例の回転駆動力伝達機構220では、ピン24がピン案内部222gにおける出力側伝達部材23側の第一係止部222hに係止されているときに、入力側伝達部材222が出力側伝達部材23から分離した状態となり、回転駆動力伝達機構220が動力遮断状態となる。一方、入力側回転軸21が回転し、ピン24がピン案内部222gにおける出力側伝達部材23と反対側の第二係止部222iに係止されているときには、入力側伝達部材222の歯形部22eが出力側伝達部材23の歯形部23cと歯合された状態となり、回転駆動力伝達機構220が動力伝達状態となる。   In the rotational driving force transmission mechanism 220 of this example, when the pin 24 is locked to the first locking portion 222h on the output side transmission member 23 side in the pin guide portion 222g, the input side transmission member 222 outputs. It will be in the state isolate | separated from the side transmission member 23, and the rotational drive force transmission mechanism 220 will be in a power cutoff state. On the other hand, when the input-side rotating shaft 21 rotates and the pin 24 is locked to the second locking portion 222i on the opposite side of the output-side transmission member 23 in the pin guide portion 222g, the tooth profile portion of the input-side transmission member 222 22e is engaged with the tooth profile 23c of the output side transmission member 23, and the rotational driving force transmission mechanism 220 is in a power transmission state.

(第三実施形態)
図11,図12は本発明の第三実施形態を示す図で、図11は回転駆動力伝達機構の分解図、図12は図10のC−C方向から見た一部断面を含む矢視図である。本発明の第三実施形態に係る回転駆動力伝達機構320において、入力側伝達部材322以外の構成および全体動作については、上記実施形態に係る構成と同一であるので、その説明を省略する。なお、第三実施形態に係る回転駆動力伝達機構320において、上記実施形態に係る部材と同一構成からなる部材については、同一符号を用いて示す。
(Third embodiment)
11 and 12 are views showing a third embodiment of the present invention. FIG. 11 is an exploded view of the rotational driving force transmission mechanism, and FIG. 12 is an arrow view including a partial cross section seen from the CC direction of FIG. FIG. In the rotational driving force transmission mechanism 320 according to the third embodiment of the present invention, the configuration and overall operation other than the input-side transmission member 322 are the same as the configuration according to the above-described embodiment, and thus description thereof is omitted. In addition, in the rotational driving force transmission mechanism 320 according to the third embodiment, members having the same configuration as the members according to the above embodiment are denoted by the same reference numerals.

本発明の第三実施形態に係る回転駆動力伝達機構320において、入力側伝達部材322は、ギア部材222aとベース部材322bにより構成されている。ギア部材222aの凹部222cには、ベース部材322bの孔部321bに圧入されるピン24が収容される。ギア部材222aの孔部222kには、ベース部材322bの突出部222lが挿入され、ベース部材322bの凹部222mには、ギア部材222aが圧入される。   In the rotational driving force transmission mechanism 320 according to the third embodiment of the present invention, the input-side transmission member 322 includes a gear member 222a and a base member 322b. The pin 24 to be press-fitted into the hole 321b of the base member 322b is accommodated in the recess 222c of the gear member 222a. The protrusion 222l of the base member 322b is inserted into the hole 222k of the gear member 222a, and the gear member 222a is press-fitted into the recess 222m of the base member 322b.

入力側回転軸321には、径方向に沿って貫通するピン案内部322gが形成されている。このピン案内部322gは、入力側回転軸321の回転中心軸に対して斜め方向に延びる長孔により構成されている(すなわち、ピン案内部322gの両軸のうち長軸が入力側回転軸321の回転中心軸に対して斜め方向に延びるように構成されている)。このとき、ピン24は、入力側伝達部材322の径方向に突出しピン案内部322gに移動自在に係合されている。   The input-side rotation shaft 321 is formed with a pin guide portion 322g that penetrates along the radial direction. The pin guide portion 322g is configured by a long hole extending in an oblique direction with respect to the rotation center axis of the input side rotation shaft 321 (that is, the long axis of both the shafts of the pin guide portion 322g is the input side rotation shaft 321). Are configured to extend in an oblique direction with respect to the rotation center axis. At this time, the pin 24 protrudes in the radial direction of the input side transmission member 322 and is movably engaged with the pin guide portion 322g.

この構成により、ピン24がピン案内部322gに沿って移動すると、入力側回転軸21の回転運動が入力側伝達部材22の軸方向への直動運動に変換される。なお、第三実施形態に係る回転駆動力伝達機構320では、図11に示すように、ピン24は、ピン案内部322gを介して孔部321bに圧入され、その後、ギア部材222aがベース部材322bの凹部222mに圧入される。   With this configuration, when the pin 24 moves along the pin guide portion 322g, the rotational motion of the input-side rotary shaft 21 is converted into the linear motion of the input-side transmission member 22 in the axial direction. In the rotational driving force transmission mechanism 320 according to the third embodiment, as shown in FIG. 11, the pin 24 is press-fitted into the hole portion 321b through the pin guide portion 322g, and then the gear member 222a is moved to the base member 322b. Is pressed into the recess 222m.

ベース部材322bの外周面322jは、ピン案内部322gの長軸方向と平行な方向に沿って複数の筋322pが全周に渡って形成された粗面により構成されている。本例では、この構成により、入力側伝達部材322の回転動作に対する抵抗力が増大されるので、入力側伝達部材322と出力側伝達部材23とが分離された状態で入力側回転軸321が回転し始めたときに、入力側伝達部材322が入力側回転軸321と連れ回ることを確実に防止できる。   The outer peripheral surface 322j of the base member 322b is configured by a rough surface in which a plurality of streaks 322p are formed over the entire circumference along a direction parallel to the major axis direction of the pin guide portion 322g. In this example, this configuration increases the resistance force against the rotational operation of the input side transmission member 322, so that the input side rotation shaft 321 rotates with the input side transmission member 322 and the output side transmission member 23 separated. When it starts, it can prevent reliably that the input side transmission member 322 rotates with the input side rotating shaft 321. FIG.

また、ギア部材322aの外周面322jに形成された筋322pは、上述のように、ピン案内部322gの長軸方向と平行な方向に沿って形成されているので、この筋322pの形成方向と、入力側伝達部材322が回転しながら軸方向に移動する方向とを一致させることができる。従って、外周面322jに筋322pを設けても、入力側伝達部材322の軸方向への移動に対する抵抗力の増加を抑えることができる。   In addition, the streak 322p formed on the outer peripheral surface 322j of the gear member 322a is formed along the direction parallel to the major axis direction of the pin guide portion 322g as described above. The direction in which the input-side transmission member 322 moves in the axial direction while rotating can be matched. Accordingly, even if the streaks 322p are provided on the outer peripheral surface 322j, an increase in the resistance force against the movement of the input side transmission member 322 in the axial direction can be suppressed.

そして、本例の回転駆動力伝達機構320では、ピン24がピン案内部322gにおける出力側伝達部材23側の第一係止部322hに係止されているときに、入力側伝達部材322の歯形部22eが出力側伝達部材23の歯形部23cと歯合された状態となり、回転駆動力伝達機構320が動力伝達状態となる。一方、ピン24がピン案内部322gにおける出力側伝達部材23と反対側の第二係止部322iに係止されているときには、入力側伝達部材22が出力側伝達部材23から分離した状態となり、回転駆動力伝達機構320が動力遮断状態となる。   In the rotational driving force transmission mechanism 320 of this example, when the pin 24 is locked to the first locking portion 322h on the output side transmission member 23 side of the pin guide portion 322g, the tooth profile of the input side transmission member 322 is obtained. The portion 22e is engaged with the tooth profile portion 23c of the output side transmission member 23, and the rotational driving force transmission mechanism 320 is in a power transmission state. On the other hand, when the pin 24 is locked to the second locking portion 322i on the side opposite to the output side transmission member 23 in the pin guide portion 322g, the input side transmission member 22 is separated from the output side transmission member 23, The rotational driving force transmission mechanism 320 is in a power cutoff state.

(第四実施形態)
図13は本発明の第四実施形態に係る回転駆動力伝達機構の構成を示す説明図(動力遮断状態)である。本発明の第四実施形態に係る回転駆動力伝達機構420において、入力側伝達部材422および負荷付与部材426以外の構成および全体動作については、上記実施形態に係る構成と同一であるので、その説明を省略する。なお、第四実施形態に係る回転駆動力伝達機構420において、上記実施形態に係る部材と同一構成からなる部材については、同一符号を用いて示す。
(Fourth embodiment)
FIG. 13 is an explanatory diagram (power cutoff state) showing the configuration of the rotational driving force transmission mechanism according to the fourth embodiment of the present invention. In the rotational driving force transmission mechanism 420 according to the fourth embodiment of the present invention, the configuration and overall operation other than the input-side transmission member 422 and the load application member 426 are the same as the configuration according to the above-described embodiment. Is omitted. In addition, in the rotational driving force transmission mechanism 420 according to the fourth embodiment, members having the same configuration as the members according to the above embodiment are denoted by the same reference numerals.

本発明の第四実施形態に係る回転駆動力伝達機構420において、ギア部材422aにおける出力側伝達部材23と反対側の端部422nには、凹部422oが形成されている。負荷付与部材426は、筐体40(図1参照)の内側に固設され、入力側伝達部材422を径方向外側に付勢する弾性片426aを有して構成されている。   In the rotational driving force transmission mechanism 420 according to the fourth embodiment of the present invention, a recess 422o is formed at the end 422n of the gear member 422a opposite to the output-side transmission member 23. The load applying member 426 is fixed to the inside of the housing 40 (see FIG. 1) and includes an elastic piece 426a that urges the input-side transmission member 422 radially outward.

負荷付与部材426の弾性片426aは、ギア部材422aにおける凹部422oの内周面422jに摺接することにより、入力側伝達部材422の回転動作に対して抵抗力を作用させるものである。このとき、ギア部材422aの内周面422jは、ピン案内部22gの長軸方向と平行な方向に沿って複数の筋(不図示)が全周に渡って形成された粗面により構成されている。本例では、この構成により、入力側伝達部材422の回転動作に対する抵抗力が増大されるので、入力側伝達部材422と出力側伝達部材23とが分離された状態で入力側回転軸21が回転し始めたときに、入力側伝達部材422が入力側回転軸21と連れ回ることを確実に防止できる。   The elastic piece 426a of the load applying member 426 makes a resistance force to the rotational operation of the input side transmission member 422 by slidingly contacting the inner peripheral surface 422j of the recess 422o in the gear member 422a. At this time, the inner peripheral surface 422j of the gear member 422a is constituted by a rough surface in which a plurality of streaks (not shown) are formed over the entire circumference along a direction parallel to the major axis direction of the pin guide portion 22g. Yes. In this example, this configuration increases the resistance force against the rotational operation of the input-side transmission member 422. Therefore, the input-side rotation shaft 21 rotates while the input-side transmission member 422 and the output-side transmission member 23 are separated. When it starts, it can prevent reliably that the input side transmission member 422 rotates with the input side rotating shaft 21. FIG.

そして、上述のようにして、入力側伝達部材422の連れ回りを防止することによって入力側伝達部材422と入力側回転軸21との間に回転速度差を生じさせることにより、入力側回転軸21の回転に伴ってピン24をピン案内部22gに沿って確実に移動させることができる。そして、本例では、上述のように、ピン24をピン案内部22gに沿って移動させることにより、入力側回転軸21の回転運動が入力側伝達部材422の軸方向への直動運動に確実に変換される。   Then, as described above, the rotation speed difference between the input side transmission member 422 and the input side rotation shaft 21 is generated by preventing the input side transmission member 422 from being rotated, whereby the input side rotation shaft 21. With this rotation, the pin 24 can be reliably moved along the pin guide portion 22g. In this example, as described above, the pin 24 is moved along the pin guide portion 22g, so that the rotational movement of the input-side rotary shaft 21 is reliably performed in the linear movement of the input-side transmission member 422 in the axial direction. Is converted to

また、ギア部材422aの内周面422jに形成された筋(不図示)は、上述のように、ピン案内部22gの長軸方向と平行な方向に沿って形成されているので、この筋(不図示)の形成方向と、入力側伝達部材422が回転しながら軸方向に移動する方向とを一致させることができる。従って、内周面422jに筋(不図示)を設けても、入力側伝達部材422の軸方向への移動に対する抵抗力の増加を抑えることができる。   Further, since the streak (not shown) formed on the inner peripheral surface 422j of the gear member 422a is formed along the direction parallel to the major axis direction of the pin guide portion 22g as described above, this streak ( The direction in which the input side transmission member 422 moves in the axial direction can be made to coincide with each other. Therefore, even if a streak (not shown) is provided on the inner peripheral surface 422j, an increase in resistance force against the movement of the input-side transmission member 422 in the axial direction can be suppressed.

(第五実施形態)
図14,図15は本発明の第五実施形態に係る回転駆動力伝達機構の構成を示す図で、図14は動力遮断状態を示す図、図15は動力伝達状態を示す図である。第五実施形態に係る回転駆動力伝達機構520において、上記実施形態に係る部材と同一構成からなる部材については、同一符号を用いて示す。
(Fifth embodiment)
14 and 15 are diagrams showing a configuration of a rotational driving force transmission mechanism according to a fifth embodiment of the present invention, FIG. 14 is a diagram showing a power cut-off state, and FIG. 15 is a diagram showing a power transmission state. In the rotational driving force transmission mechanism 520 according to the fifth embodiment, members having the same configuration as the members according to the above embodiment are denoted by the same reference numerals.

本発明の第五実施形態に係る回転駆動力伝達機構520において、入力側回転軸521の出力側伝達部材523側の端部521eには、凹部521fが形成され、この凹部521fには、入力側伝達部材522が遊嵌されている。入力側回転軸521には、凹部521fの径方向内側へ突出するピン524が形成されており、このピン524は、入力側伝達部材522に形成されたピン案内部522gに移動自在に係合されている。   In the rotational driving force transmission mechanism 520 according to the fifth embodiment of the present invention, a concave portion 521f is formed in the end portion 521e of the input side rotation shaft 521 on the output side transmission member 523 side, and the concave portion 521f has an input side. A transmission member 522 is loosely fitted. The input side rotation shaft 521 is formed with a pin 524 that protrudes inward in the radial direction of the recess 521f. The pin 524 is movably engaged with a pin guide portion 522g formed on the input side transmission member 522. ing.

ピン案内部522gは、入力側伝達部材522の径方向外側に開口部を有すると共に入力側伝達部材522の回転中心軸に対して斜め方向に延びる長溝により構成されている(すなわち、ピン案内部522gの両軸のうち長軸が入力側伝達部材522の回転中心軸に対して斜め方向に延びるように構成されている)。この構成により、ピン524がピン案内部522gに沿って移動すると、入力側回転軸521の回転運動が入力側伝達部材522の軸方向への直動運動に変換される。   The pin guide portion 522g has an opening on the radially outer side of the input side transmission member 522 and is configured by a long groove extending in an oblique direction with respect to the rotation center axis of the input side transmission member 522 (that is, the pin guide portion 522g). The long axis is configured to extend obliquely with respect to the rotation center axis of the input side transmission member 522). With this configuration, when the pin 524 moves along the pin guide portion 522g, the rotational motion of the input-side rotation shaft 521 is converted into the linear motion of the input-side transmission member 522 in the axial direction.

入力側伝達部材522の出力側伝達部材523側の端部522dには、凹状の歯形部522eが形成されており、この歯形部522eは、出力側伝達部材523に形成された凸状の歯形部523cと歯合可能となっている。出力側伝達部材523は、軸方向に延出する出力側回転軸523eを有し、この出力側回転軸523eにより入力側回転軸521に対して回転自在となっている。出力側伝達部材523には、周方向に沿ってギアが設けられたギア部523bが形成されており、このギア部523bの入力側伝達部材522側には、凸状の歯形部523cが形成されている。   A concave tooth profile 522e is formed at the end 522d of the input transmission member 522 on the output transmission member 523 side, and this tooth profile 522e is a convex tooth profile formed on the output transmission member 523. It is possible to mesh with 523c. The output-side transmission member 523 has an output-side rotation shaft 523e extending in the axial direction, and is rotatable with respect to the input-side rotation shaft 521 by the output-side rotation shaft 523e. The output side transmission member 523 is formed with a gear portion 523b provided with a gear along the circumferential direction, and a convex tooth profile portion 523c is formed on the input side transmission member 522 side of the gear portion 523b. ing.

負荷付与部材26の弾性片26aは、入力側伝達部材522の外周面522jに摺接することにより、入力側伝達部材522の回転動作に対して抵抗力を作用させるものである。このとき、入力側伝達部材522の外周面522jは、ピン案内部522gの長軸方向と平行な方向に沿って複数の筋(不図示)が全周に渡って形成された粗面により構成されている。本例では、この構成により、入力側伝達部材522の回転動作に対する抵抗力が増大されるので、入力側伝達部材522と出力側伝達部材523とが分離された状態で入力側回転軸521が回転し始めたときに、入力側伝達部材522が入力側回転軸521と連れ回ることを確実に防止できる。   The elastic piece 26 a of the load applying member 26 is to make a resistance force against the rotational operation of the input side transmission member 522 by slidingly contacting the outer peripheral surface 522 j of the input side transmission member 522. At this time, the outer peripheral surface 522j of the input side transmission member 522 is constituted by a rough surface in which a plurality of streaks (not shown) are formed over the entire circumference along a direction parallel to the major axis direction of the pin guide portion 522g. ing. In this example, since this structure increases the resistance force against the rotational operation of the input side transmission member 522, the input side rotation shaft 521 rotates in a state where the input side transmission member 522 and the output side transmission member 523 are separated. When it starts, it can prevent reliably that the input side transmission member 522 rotates with the input side rotating shaft 521.

また、入力側伝達部材522の外周面522jに形成された筋(不図示)は、上述のように、ピン案内部522gの長軸方向と平行な方向に沿って形成されているので、この筋(不図示)の形成方向と、入力側伝達部材522が回転しながら軸方向に移動する方向とを一致させることができる。従って、外周面522jに筋(不図示)を設けても、入力側伝達部材522の軸方向への移動に対する抵抗力の増加を抑えることができる。   Further, as described above, the streaks (not shown) formed on the outer peripheral surface 522j of the input side transmission member 522 are formed along the direction parallel to the major axis direction of the pin guide portion 522g. The formation direction (not shown) can coincide with the direction in which the input-side transmission member 522 moves in the axial direction while rotating. Therefore, even if a streak (not shown) is provided on the outer peripheral surface 522j, an increase in resistance force against the movement of the input-side transmission member 522 in the axial direction can be suppressed.

そして、本例の回転駆動力伝達機構520では、図14に示すように、ピン524がピン案内部522gにおける出力側伝達部材523側の第一係止部522hに係止されているときに、入力側伝達部材522が出力側伝達部材523から分離した状態となり、回転駆動力伝達機構520が動力遮断状態となる。一方、図15に示すように、入力側回転軸521が回転し、ピン524がピン案内部522gにおける出力側伝達部材523と反対側の第二係止部522iに係止されているときには、入力側伝達部材522の歯形部522eが出力側伝達部材523の歯形部523cと歯合された状態となり、回転駆動力伝達機構520が動力伝達状態となる。   In the rotational driving force transmission mechanism 520 of this example, as shown in FIG. 14, when the pin 524 is locked to the first locking portion 522h on the output side transmission member 523 side in the pin guide portion 522g, The input side transmission member 522 is separated from the output side transmission member 523, and the rotational driving force transmission mechanism 520 is in a power cut-off state. On the other hand, as shown in FIG. 15, when the input side rotating shaft 521 rotates and the pin 524 is locked to the second locking portion 522i opposite to the output side transmission member 523 in the pin guide portion 522g, The tooth profile 522e of the side transmission member 522 is engaged with the tooth profile 523c of the output transmission member 523, and the rotational driving force transmission mechanism 520 is in the power transmission state.

(第六実施形態)
図16,図17は本発明の第六実施形態に係る回転駆動力伝達機構の構成を示す図で、図16は動力遮断状態を示す図、図17は動力伝達状態を示す図である。第六実施形態に係る回転駆動力伝達機構620において、上記実施形態に係る部材と同一構成からなる部材については、同一符号を用いて示す。
(Sixth embodiment)
16 and 17 are diagrams showing a configuration of the rotational driving force transmission mechanism according to the sixth embodiment of the present invention, FIG. 16 is a diagram showing a power cut-off state, and FIG. 17 is a diagram showing a power transmission state. In the rotational driving force transmission mechanism 620 according to the sixth embodiment, members having the same configuration as the members according to the above embodiment are denoted by the same reference numerals.

本発明の第六実施形態に係る回転駆動力伝達機構620において、入力側伝達部材622には、径方向外側へ突出するピン624が形成され、入力側回転軸621における凹部521fの内周部には、ピン案内部622gが形成されている。   In the rotational driving force transmission mechanism 620 according to the sixth embodiment of the present invention, the input-side transmission member 622 is formed with a pin 624 protruding outward in the radial direction, and is formed on the inner peripheral portion of the recess 521f on the input-side rotation shaft 621. The pin guide portion 622g is formed.

ピン案内部622gは、入力側伝達部材622の径方向内側に開口部を有すると共に入力側回転軸621の回転中心軸に対して斜め方向に延びる長溝により構成されている(すなわち、ピン案内部622gの両軸のうち長軸が入力側伝達部材622の回転中心軸に対して斜め方向に延びるように構成されている)。ピン624は、入力側伝達部材622の径方向に突出しピン案内部622gに移動自在に係合されている。この構成により、ピン624がピン案内部622gに沿って移動すると、入力側回転軸621の回転運動が入力側伝達部材622の軸方向への直動運動に変換される。   The pin guide portion 622g is configured by a long groove having an opening on the radially inner side of the input side transmission member 622 and extending obliquely with respect to the rotation center axis of the input side rotation shaft 621 (that is, the pin guide portion 622g). The long axis is configured to extend obliquely with respect to the rotation center axis of the input side transmission member 622). The pin 624 protrudes in the radial direction of the input side transmission member 622 and is movably engaged with the pin guide portion 622g. With this configuration, when the pin 624 moves along the pin guide portion 622g, the rotational motion of the input-side rotational shaft 621 is converted into the linear motion of the input-side transmission member 622 in the axial direction.

負荷付与部材26の弾性片26aは、入力側伝達部材622の外周面622jに摺接することにより、入力側伝達部材622の回転動作に対して抵抗力を作用させる。このとき、入力側伝達部材622の外周面622jは、ピン案内部622gの長軸方向と平行な方向に沿って複数の筋(不図示)が全周に渡って形成された粗面により構成されている。本例では、この構成により、入力側伝達部材622の回転動作に対する抵抗力が増大されるので、入力側伝達部材622と出力側伝達部材523とが分離された状態で入力側回転軸621が回転し始めたときに、入力側伝達部材622が入力側回転軸621と連れ回ることを確実に防止できる。   The elastic piece 26 a of the load applying member 26 is in sliding contact with the outer peripheral surface 622 j of the input side transmission member 622, thereby applying a resistance force to the rotation operation of the input side transmission member 622. At this time, the outer peripheral surface 622j of the input side transmission member 622 is constituted by a rough surface in which a plurality of streaks (not shown) are formed over the entire circumference along a direction parallel to the major axis direction of the pin guide portion 622g. ing. In this example, this configuration increases the resistance force against the rotational operation of the input side transmission member 622, so that the input side rotation shaft 621 rotates with the input side transmission member 622 and the output side transmission member 523 separated. When it starts, it can prevent reliably that the input side transmission member 622 rotates with the input side rotating shaft 621.

また、入力側伝達部材622の外周面622jに形成された筋(不図示)は、上述のように、ピン案内部622gの長軸方向と平行な方向に沿って形成されているので、この筋(不図示)の形成方向と、入力側伝達部材622が回転しながら軸方向に移動する方向とを一致させることができる。従って、外周面622jに筋(不図示)を設けても、入力側伝達部材622の軸方向への移動に対する抵抗力の増加を抑えることができる。   Further, as described above, the streaks (not shown) formed on the outer peripheral surface 622j of the input side transmission member 622 are formed along the direction parallel to the long axis direction of the pin guide portion 622g. The direction in which (not shown) is formed can coincide with the direction in which the input-side transmission member 622 moves in the axial direction while rotating. Therefore, even if a streak (not shown) is provided on the outer peripheral surface 622j, an increase in resistance force against the movement of the input-side transmission member 622 in the axial direction can be suppressed.

そして、本例の回転駆動力伝達機構620では、図16に示すように、ピン624がピン案内部622gにおける出力側伝達部材523と反対側の第二係止部622iに係止されているときに、入力側伝達部材622が出力側伝達部材523から分離した状態となり、回転駆動力伝達機構620が動力遮断状態となる。一方、図17に示すように、入力側回転軸621が回転し、ピン624がピン案内部622gにおける出力側伝達部材523側の第一係止部622hに係止されているときには、入力側伝達部材622の歯形部522eが出力側伝達部材523の歯形部523cと歯合された状態となり、回転駆動力伝達機構620が動力伝達状態となる。   And in the rotational drive force transmission mechanism 620 of this example, as shown in FIG. 16, when the pin 624 is latched by the second latching | locking part 622i on the opposite side to the output side transmission member 523 in the pin guide part 622g. In addition, the input side transmission member 622 is separated from the output side transmission member 523, and the rotational driving force transmission mechanism 620 is in a power cut-off state. On the other hand, as shown in FIG. 17, when the input side rotation shaft 621 rotates and the pin 624 is locked to the first locking portion 622h on the output side transmission member 523 side in the pin guide portion 622g, the input side transmission is performed. The tooth profile 522e of the member 622 is engaged with the tooth profile 523c of the output transmission member 523, and the rotational driving force transmission mechanism 620 is in the power transmission state.

上記したように、本実施形態によれば、以下の効果を奏する。
(イ)本実施形態によれば、回転運動を軸方向への直動運動に変換するという機械的な構成からなる回転直動変換手段(ピン24およびピン案内部22gにより構成)により、入力側回転軸21の回転運動を入力側伝達部材22の直動運動に変換させ、これによって、入力側伝達部材22を回転軸方向へ移動させて入力側伝達部材22と出力側伝達部材23の接続を行い、入力側回転軸21の回転力を出力側伝達部材23に伝達する構成であるので、電磁クラッチ機構のような電気的な駆動部(例えば、コイルを備えた電磁器など)を不要することが可能である。これにより、電磁クラッチ機構を用いたときのように、電磁クラッチ機構を制御するための制御回路を不要とすることが可能になると共に、発熱等の問題も解消することが可能となる。
As described above, according to the present embodiment, the following effects are obtained.
(B) According to the present embodiment, the rotation-linear motion conversion means (configured by the pin 24 and the pin guide portion 22g) having a mechanical configuration for converting the rotational motion into the linear motion in the axial direction allows the input side The rotational motion of the rotary shaft 21 is converted into the linear motion of the input-side transmission member 22, whereby the input-side transmission member 22 is moved in the direction of the rotational axis to connect the input-side transmission member 22 and the output-side transmission member 23. Since it is the structure which transmits and the rotational force of the input side rotating shaft 21 is transmitted to the output side transmission member 23, electrical drive parts (for example, the electromagnetic device provided with the coil etc.) like an electromagnetic clutch mechanism are unnecessary. Is possible. This makes it possible to eliminate the need for a control circuit for controlling the electromagnetic clutch mechanism, as in the case of using the electromagnetic clutch mechanism, and to solve problems such as heat generation.

(ロ)また、本実施形態によれば、回転直動変換手段(ピン24およびピン案内部22gにより構成)によって入力側伝達部材22が軸方向に移動する構成であるので、入力側回転軸21の停止時には、入力側伝達部材22を出力側伝達部材23と完全に分離させて動力を遮断することができる。これにより、ワンウェイクラッチ機構を用いたときのように、クラッチ部材同士が摺接されることによって回転ロスが生じるなどの不具合も解消することが可能となる。   (B) According to the present embodiment, the input side transmission member 22 is moved in the axial direction by the rotation / linear motion conversion means (configured by the pin 24 and the pin guide portion 22g). When the motor is stopped, the input side transmission member 22 can be completely separated from the output side transmission member 23 to cut off the power. As a result, it is possible to eliminate problems such as rotation loss caused by the sliding contact between the clutch members as in the case of using the one-way clutch mechanism.

(ハ)また、本実施形態によれば、入力側伝達部材22を径方向に付勢する負荷付与部材26を備えているので、入力側伝達部材22の回転動作に対して抵抗力を作用させることができる。従って、入力側伝達部材22と出力側伝達部材23とが分離された状態で入力側回転軸21が回転し始めたときに、入力側伝達部材22が入力側回転軸21と連れ回ることを防止することができる。このようにして、入力側伝達部材22の連れ回りを防止することによって入力側伝達部材22と入力側回転軸21との間に回転速度差を生じさせることにより、入力側回転軸21の回転に伴ってピン24をピン案内部22gに沿って確実に移動させることができる。そして、このようにして、ピン24をピン案内部22gに沿って移動させることにより、入力側回転軸21の回転運動を入力側伝達部材22の軸方向への直動運動に変換することが可能となる。   (C) According to this embodiment, since the load applying member 26 that urges the input side transmission member 22 in the radial direction is provided, a resistance force is applied to the rotation operation of the input side transmission member 22. be able to. Therefore, when the input side transmission member 22 and the output side transmission member 23 are separated from each other, the input side transmission member 22 is prevented from rotating around the input side rotation shaft 21 when the input side rotation shaft 21 starts to rotate. can do. In this way, the rotation of the input side rotating shaft 21 is prevented by generating a rotational speed difference between the input side transmitting member 22 and the input side rotating shaft 21 by preventing the input side transmitting member 22 from being rotated. Accordingly, the pin 24 can be reliably moved along the pin guide portion 22g. In this way, by moving the pin 24 along the pin guide portion 22g, it is possible to convert the rotational motion of the input-side rotating shaft 21 into the linear motion of the input-side transmitting member 22 in the axial direction. It becomes.

(ニ)また、本実施形態によれば、ギア部材22aの外周面22jは、ピン案内部22gの長軸方向と平行な方向に沿って複数の筋22pが全周に渡って形成された粗面により構成されているので、入力側伝達部材22の回転動作に対する抵抗力を増大させることができる。これにより、入力側伝達部材22と出力側伝達部材23とが分離された状態で入力側回転軸21が回転し始めたときに、入力側伝達部材22が入力側回転軸21と連れ回ることを確実に防止できる。また、ギア部材22aの外周面22jに形成された筋22pは、上述のように、ピン案内部22gの長軸方向と平行な方向に沿って形成されているので、この筋22pの形成方向と、入力側伝達部材22が回転しながら軸方向に移動する方向とを一致させることができる。従って、外周面22jに筋22pを設けても、入力側伝達部材22の軸方向への移動に対する抵抗力の増加を抑えることができる。   (D) According to the present embodiment, the outer peripheral surface 22j of the gear member 22a is a rough surface in which a plurality of lines 22p are formed over the entire circumference along a direction parallel to the major axis direction of the pin guide portion 22g. Since it is comprised by the surface, the resistance force with respect to rotation operation of the input side transmission member 22 can be increased. Thereby, when the input side rotating shaft 21 starts to rotate in a state where the input side transmitting member 22 and the output side transmitting member 23 are separated, the input side transmitting member 22 is rotated with the input side rotating shaft 21. It can be surely prevented. Further, the streak 22p formed on the outer peripheral surface 22j of the gear member 22a is formed along the direction parallel to the major axis direction of the pin guide portion 22g as described above. The direction in which the input-side transmission member 22 moves in the axial direction while rotating can be matched. Therefore, even if the streaks 22p are provided on the outer peripheral surface 22j, it is possible to suppress an increase in resistance force against the movement of the input side transmission member 22 in the axial direction.

(ホ)また、本実施形態によれば、入力側伝達部材22の出力側伝達部材23側の接続面および出力側伝達部材23の入力側伝達部材22側の接続面には、互いに歯合可能な歯形部22e,23cがそれぞれ形成されているので、入力側伝達部材22と出力側伝達部材23の接続をより強固にすることができる。   (E) According to the present embodiment, the connection surface of the input side transmission member 22 on the output side transmission member 23 side and the connection surface of the output side transmission member 23 on the input side transmission member 22 side can be engaged with each other. Since the tooth profile portions 22e and 23c are formed, the connection between the input side transmission member 22 and the output side transmission member 23 can be further strengthened.

(ヘ)さらに、本実施形態のように、負荷付与部材26が弾性片26aを有する弾性体により構成されると共に、筐体40の内側と入力側伝達部材22の外周部との間に配置されていると、負荷付与部材26における小さな弾性力でも入力側伝達部材22に十分な負荷を付与することが可能となる。   (F) Further, as in the present embodiment, the load applying member 26 is constituted by an elastic body having an elastic piece 26 a and is disposed between the inside of the housing 40 and the outer peripheral portion of the input side transmission member 22. In this case, it is possible to apply a sufficient load to the input side transmission member 22 even with a small elastic force in the load applying member 26.

(ト)なお、上記第四実施形態のように、負荷付与部材426が入力側回転軸21の外周部よりも径方向外側で入力側伝達部材422の外周部よりも径方向内側に配置されていると、装置の小型化を達成することが可能となる。   (G) As in the fourth embodiment, the load applying member 426 is disposed radially outside the outer peripheral portion of the input-side rotating shaft 21 and radially inner than the outer peripheral portion of the input-side transmission member 422. If it is, it becomes possible to achieve size reduction of an apparatus.

本発明の実施の形態は、以下のように改変することができる。
(a)上記実施形態では、回転駆動力伝達機構20がアクチュエータ1に設けられ、回転駆動力伝達機構20の入力側回転軸21がモータ10により回転させられる(すなわち、駆動源がモータ10である)ように説明したが、本発明に係る回転駆動力伝達機構20はこれに限定されるものではない。その他にも、回転駆動力伝達機構20は、手動により入力側回転軸21が回転させられる構成に用いられていても良い。
The embodiment of the present invention can be modified as follows.
(A) In the above embodiment, the rotational driving force transmission mechanism 20 is provided in the actuator 1, and the input side rotary shaft 21 of the rotational driving force transmission mechanism 20 is rotated by the motor 10 (that is, the driving source is the motor 10). However, the rotational driving force transmission mechanism 20 according to the present invention is not limited to this. In addition, the rotational driving force transmission mechanism 20 may be used in a configuration in which the input side rotation shaft 21 is manually rotated.

(b)上記実施形態では、ピン案内部22gが長孔からなるように説明したが、本発明はこれに限定されるものではない。その他にも、ピン案内部22gは長溝により構成されていても良い。また、ピン案内部22gは直線状の長孔からなるように図示したが、本発明はこれに限定されるものではない。その他にも、ピン案内部22gは螺旋状に形成されていても良い。また、入力側回転軸321に形成されたピン案内部322gも、長溝でも良く、また、螺旋状の溝でも良い。   (B) In the above embodiment, the pin guide portion 22g has been described as having a long hole, but the present invention is not limited to this. In addition, the pin guide portion 22g may be constituted by a long groove. Further, although the pin guide portion 22g is illustrated as being formed of a linear long hole, the present invention is not limited to this. In addition, the pin guide portion 22g may be formed in a spiral shape. Further, the pin guide portion 322g formed on the input side rotating shaft 321 may also be a long groove or a spiral groove.

(c)上記実施形態では、複数の筋22pは、入力側伝達部材22の負荷付与部材26と摺接される外周面22jに形成されるように説明したが、本発明はこれに限定されるものではない。その他にも、負荷付与部材26の入力側伝達部材22と摺接される面に筋が形成されても良い。また、入力側伝達部材22の負荷付与部材26と摺接される面と、負荷付与部材26の入力側伝達部材22と摺接される面の両方に筋が形成されていても良い。また、上記実施形態では、筋22pが、ピン案内部22gの長軸方向と平行な方向に沿って形成されるように説明したが、これは最も好ましい形態であって、筋の形成角度を種々改変することができることは勿論である。ただし、筋を周方向(すなわち、入力側伝達部材22の回転軸と直交する方向)に沿って形成した場合には、入力側伝達部材22の軸方向への移動に対する抵抗力が大きくなるため好ましくない。   (C) In the above-described embodiment, the plurality of lines 22p are described as being formed on the outer peripheral surface 22j that is in sliding contact with the load applying member 26 of the input-side transmission member 22, but the present invention is limited to this. It is not a thing. In addition, streaks may be formed on the surface of the load applying member 26 that is in sliding contact with the input-side transmission member 22. Further, streaks may be formed on both the surface of the input side transmission member 22 that is in sliding contact with the load application member 26 and the surface of the load application member 26 that is in sliding contact with the input side transmission member 22. In the above embodiment, the streak 22p has been described as being formed along a direction parallel to the major axis direction of the pin guide portion 22g. However, this is the most preferable mode, and the streak formation angle varies. Of course, it can be modified. However, when the streak is formed along the circumferential direction (that is, the direction orthogonal to the rotation axis of the input-side transmission member 22), the resistance force against the movement of the input-side transmission member 22 in the axial direction is preferably increased. Absent.

上記各実施形態から把握できる請求項以外の技術的思想を以下に記載する。
(1)前記負荷付与部材は、前記入力側回転軸の外周部よりも径方向外側で前記入力側伝達部材の外周部よりも径方向内側に配置されたことを特徴とする請求項5に記載の回転駆動力伝達機構。
The technical ideas other than the claims that can be grasped from the above embodiments will be described below.
(1) The load application member is disposed radially outside the outer peripheral portion of the input-side rotation shaft and radially inner than the outer peripheral portion of the input-side transmission member. Rotational driving force transmission mechanism.

(2)前記負荷付与部材は、前記入力側回転軸の外周部よりも径方向外側で前記入力側伝達部材の外周部よりも径方向内側に配置されたことを特徴とする請求項12に記載のアクチュエータ。   (2) The load applying member is disposed radially outside the outer peripheral portion of the input-side rotating shaft and radially inner than the outer peripheral portion of the input-side transmission member. Actuator.

このように、前記負荷付与部材が前記入力側回転軸の外周部よりも径方向外側で前記入力側伝達部材の外周部よりも径方向内側に配置されていると、装置の径方向における小型化を達成することができ好適である。   As described above, when the load applying member is disposed radially outside the outer peripheral portion of the input-side rotation shaft and radially inner than the outer peripheral portion of the input-side transmission member, the apparatus is reduced in size in the radial direction. Can be achieved.

(3)前記回転駆動力伝達機構を収容する筐体をさらに備え、前記負荷付与部材は、弾性体により構成されると共に前記筐体の内側と前記入力側伝達部材の外周部との間に配置されたことを特徴とする請求項8乃至請求項14のいずれか一項に記載のアクチュエータ。   (3) The apparatus further includes a housing that accommodates the rotational driving force transmission mechanism, and the load applying member is formed of an elastic body and is disposed between the inside of the housing and the outer peripheral portion of the input side transmission member. The actuator according to any one of claims 8 to 14, wherein the actuator is formed.

このように、前記回転駆動力伝達機構を収容する筐体をさらに備え、前記負荷付与部材は、弾性体により構成されると共に前記筐体の内側と前記入力側伝達部材の外周部との間に配置されていると、負荷付与部材における小さな弾性力でも入力側伝達部材に十分な負荷を付与することができ好適である。   As described above, the apparatus further includes a housing that accommodates the rotational driving force transmission mechanism, and the load applying member is formed of an elastic body and is disposed between the inside of the housing and the outer peripheral portion of the input-side transmission member. Arrangement is preferable because a sufficient load can be applied to the input side transmission member even with a small elastic force in the load application member.

第一実施形態に係るアクチュエータの構成を示す断面図(動力遮断状態)である。It is sectional drawing (power interruption | blocking state) which shows the structure of the actuator which concerns on 1st embodiment. 第一実施形態に係るアクチュエータの構成を示す断面図(動力伝達状態)である。It is sectional drawing (power transmission state) which shows the structure of the actuator which concerns on 1st embodiment. 第一実施形態に係る回転駆動力伝達機構の分解図である。It is an exploded view of the rotational drive force transmission mechanism which concerns on 1st embodiment. 図3のA−A方向から見た一部断面を含む矢視図である。It is an arrow view including the partial cross section seen from the AA direction of FIG. 第一実施形態に係る入力側伝達部材と摩擦部材の構成を示す図である。It is a figure which shows the structure of the input side transmission member and friction member which concern on 1st embodiment. 図5のH−H方向から見た矢視図である。It is the arrow line view seen from the HH direction of FIG. 第一実施形態に係る回転駆動力伝達機構の動作を示す第一説明図(動力遮断状態)である。It is a 1st explanatory view (power interception state) showing operation of a rotation driving force transmission mechanism concerning a first embodiment. 第一実施形態に係る回転駆動力伝達機構の動作を示す第二説明図(動力伝達状態)である。It is a 2nd explanatory view (power transmission state) showing operation of a rotation driving force transmission mechanism concerning a first embodiment. 第二実施形態に係る回転駆動力伝達機構の分解図である。It is an exploded view of the rotational drive force transmission mechanism which concerns on 2nd embodiment. 図9のB−B方向から見た一部断面を含む矢視図である。It is an arrow line view including the partial cross section seen from the BB direction of FIG. 第三実施形態に係る回転駆動力伝達機構の分解図である。It is an exploded view of the rotational drive force transmission mechanism which concerns on 3rd embodiment. 図11のC−C方向から見た一部断面を含む矢視図である。It is an arrow line view including the partial cross section seen from CC direction of FIG. 第四実施形態に係る回転駆動力伝達機構の構成を示す説明図(動力遮断状態)である。It is explanatory drawing (power interruption | blocking state) which shows the structure of the rotational drive force transmission mechanism which concerns on 4th embodiment. 第五実施形態に係る回転駆動力伝達機構の構成を示す第一説明図(動力遮断状態)である。It is a 1st explanatory view (power interception state) showing the composition of the rotation driving force transmission mechanism concerning a 5th embodiment. 第五実施形態に係る回転駆動力伝達機構の構成を示す第二説明図(動力伝達状態)である。It is a 2nd explanatory view (power transmission state) showing the composition of the rotation driving force transmission mechanism concerning a 5th embodiment. 第六実施形態に係る回転駆動力伝達機構の構成を示す第一説明図(動力遮断状態)である。It is a 1st explanatory view (power interception state) showing the composition of the rotation driving force transmission mechanism concerning a 6th embodiment. 第六実施形態に係る回転駆動力伝達機構の構成を示す第二説明図(動力伝達状態)である。It is a 2nd explanatory view (power transmission state) showing the composition of the rotation driving force transmission mechanism concerning a 6th embodiment.

符号の説明Explanation of symbols

1 アクチュエータ、10 モータ、11 回転子、11a 回転軸、12 ウォームギア、20,220,320,420,520,620 回転駆動力伝達機構、21,321,521,621 入力側回転軸、21a 基部、21b,321b 孔部、21c 延出部、21d 段差部、22,222,322,422,522,622 入力側伝達部材、22a,222a,422a ギア部材、22b,222b,322b ベース部材、22c,222c 凹部、22d,522d 端部、22e,522e 歯形部、22f,222f 孔部、22g,222g,322g,522g,622g ピン案内部、22h,222h,322h,522h,622h 第一係止部、22i,222i,322i,522i,622i 第二係止部、22j,222j,322j,522j 外周面、22k,222k 孔部、22l,222l 突出部、22p,222p,322p 筋、23,523 出力側伝達部材、23a 孔部、23b,523b ギア部、23c,523c 歯形部、23d 凹部、24,524,624 ピン、25 ウォームホイール、26,426 負荷付与部材、26a,426a 弾性片、27a スラスト軸受、27b スラスト軸受、30 出力機構、31 歯車、32 シャフト、32a ネジ部、33 ハンドル、40 筐体、222m 凹部、422j 内周面、422o 凹部、422n 端部、521e 端部、521f 凹部、523e 出力側回転軸 DESCRIPTION OF SYMBOLS 1 Actuator, 10 Motor, 11 Rotor, 11a Rotating shaft, 12 Worm gear, 20, 220, 320, 420, 520, 620 Rotation driving force transmission mechanism, 21, 321, 521, 621 Input side rotating shaft, 21a Base, 21b , 321b hole part, 21c extension part, 21d step part, 22, 222, 322, 422, 522, 622 input side transmission member, 22a, 222a, 422a gear member, 22b, 222b, 322b base member, 22c, 222c recess 22d, 522d End, 22e, 522e Tooth profile, 22f, 222f Hole, 22g, 222g, 322g, 522g, 622g Pin guide, 22h, 222h, 322h, 522h, 622h First locking portion, 22i, 222i , 322i, 522i, 622i Second locking portion 22j, 222j, 322j, 522j Outer peripheral surface, 22k, 222k hole, 22l, 222l Protruding part, 22p, 222p, 322p Muscle, 23,523 Output side transmission member, 23a Hole, 23b, 523b Gear part, 23c, 523c Tooth profile portion, 23d recess, 24,524,624 pin, 25 worm wheel, 26,426 load applying member, 26a, 426a elastic piece, 27a thrust bearing, 27b thrust bearing, 30 output mechanism, 31 gear, 32 shaft, 32a screw Part, 33 handle, 40 housing, 222m recessed part, 422j inner peripheral surface, 422o recessed part, 422n end part, 521e end part, 521f recessed part, 523e output side rotating shaft

Claims (10)

駆動源により回転させられる入力側回転軸と、該入力側回転軸に軸方向へ移動可能に配設された入力側伝達部材と、該入力側伝達部材と対峙して配置されると共に前記入力側回転軸に対して回転自在に配設された出力側伝達部材と、を備え、
前記入力側伝達部材を前記出力側伝達部材側へ移動させて前記入力側伝達部材を前記出力側伝達部材に接続させた動力伝達状態と、前記入力側伝達部材を前記出力側伝達部材と反対側へ移動させて前記入力側伝達部材を前記出力側伝達部材から分離させた動力遮断状態と、に切り替え可能な回転駆動力伝達機構において、
前記入力側回転軸の回転によって前記入力側伝達部材を前記出力側伝達部材側へ直動させる回転直動変換手段と、
前記入力側伝達部材に摺接し該入力側伝達部材を径方向に付勢する負荷付与部材と、を有し、
前記回転直動変換手段は、
前記入力側伝達部材に、前記入力側伝達部材の回転中心軸に対して斜め方向に延びる長孔又は長溝として形成された突起案内部と、
前記入力側回転軸に配設されるとともに、該入力側回転軸の径方向に突出し前記突起案内部に移動自在に係合された突起部と、からなり、
前記入力側伝達部材の負荷付与部材と摺接される面、又は、前記負荷付与部材の入力側伝達部材と摺接される面のうち少なくとも一方は、前記突起案内部の長軸方向と平行な方向に沿って複数の筋が形成された粗面により構成されたことを特徴とする回転駆動力伝達機構。
An input-side rotation shaft that is rotated by a drive source, an input-side transmission member that is axially movable on the input-side rotation shaft, and the input-side transmission member that is disposed opposite to the input-side transmission member An output-side transmission member arranged to be rotatable with respect to the rotation shaft,
A power transmission state in which the input-side transmission member is moved to the output-side transmission member and the input-side transmission member is connected to the output-side transmission member; and the input-side transmission member is opposite to the output-side transmission member In the rotational driving force transmission mechanism that can be switched to a power cutoff state in which the input side transmission member is separated from the output side transmission member by moving to
Rotation / linear motion conversion means for linearly moving the input side transmission member to the output side transmission member side by rotation of the input side rotation shaft;
A load applying member that is in sliding contact with the input side transmission member and biases the input side transmission member in a radial direction;
The rotation / linear motion conversion means includes:
A projection guide portion formed as a long hole or a long groove extending in an oblique direction with respect to the rotation center axis of the input side transmission member on the input side transmission member;
A projecting portion that is disposed on the input-side rotation shaft and protrudes in a radial direction of the input-side rotation shaft and is movably engaged with the projection guide portion;
At least one of the surface in sliding contact with the load application member of the input transmission member or the surface in sliding contact with the input transmission member of the load application member is parallel to the major axis direction of the protrusion guide portion. A rotational driving force transmission mechanism comprising a rough surface formed with a plurality of streaks along a direction .
駆動源により回転させられる入力側回転軸と、該入力側回転軸に軸方向へ移動可能に配設された入力側伝達部材と、該入力側伝達部材と対峙して配置されると共に前記入力側回転軸に対して回転自在に配設された出力側伝達部材と、を備え、
前記入力側伝達部材を前記出力側伝達部材側へ移動させて前記入力側伝達部材を前記出力側伝達部材に接続させた動力伝達状態と、前記入力側伝達部材を前記出力側伝達部材と反対側へ移動させて前記入力側伝達部材を前記出力側伝達部材から分離させた動力遮断状態と、に切り替え可能な回転駆動力伝達機構において、
前記入力側回転軸の回転によって前記入力側伝達部材を前記出力側伝達部材側へ直動させる回転直動変換手段と、
前記入力側伝達部材に摺接し該入力側伝達部材を径方向に付勢する負荷付与部材と、を有し、
前記回転直動変換手段は、
前記入力側回転軸に、前記入力側回転軸の回転中心軸に対して斜め方向に延びる長孔又は長溝として形成された突起案内部と、
前記入力側伝達部材に配設されるとともに、該入力側伝達部材の径方向に突出し前記突起案内部に移動自在に係合された突起部と、からなり、
前記入力側伝達部材の負荷付与部材と摺接される面、又は、前記負荷付与部材の入力側伝達部材と摺接される面のうち少なくとも一方は、前記突起案内部の長軸方向と平行な方向に沿って複数の筋が形成された粗面により構成されたことを特徴とする回転駆動力伝達機構。
An input-side rotation shaft that is rotated by a drive source, an input-side transmission member that is axially movable on the input-side rotation shaft, and the input-side transmission member that is disposed opposite to the input-side transmission member An output-side transmission member arranged to be rotatable with respect to the rotation shaft,
A power transmission state in which the input-side transmission member is moved to the output-side transmission member and the input-side transmission member is connected to the output-side transmission member; and the input-side transmission member is opposite to the output-side transmission member In the rotational driving force transmission mechanism that can be switched to a power cutoff state in which the input side transmission member is separated from the output side transmission member by moving to
Rotation / linear motion conversion means for linearly moving the input side transmission member to the output side transmission member side by rotation of the input side rotation shaft;
A load applying member that is in sliding contact with the input side transmission member and biases the input side transmission member in a radial direction;
The rotation / linear motion conversion means includes:
A projection guide portion formed as a long hole or a long groove extending in an oblique direction with respect to the rotation center axis of the input side rotation shaft on the input side rotation shaft;
A projection portion disposed on the input side transmission member and projecting in a radial direction of the input side transmission member and movably engaged with the projection guide portion;
At least one of the surface in sliding contact with the load application member of the input transmission member or the surface in sliding contact with the input transmission member of the load application member is parallel to the major axis direction of the protrusion guide portion. A rotational driving force transmission mechanism comprising a rough surface formed with a plurality of streaks along a direction .
前記入力側伝達部材には、軸方向に沿って孔部が形成され、
前記入力側回転軸は、前記孔部に遊挿されていることを特徴とする請求項1又は請求項2に記載の回転駆動力伝達機構。
A hole is formed in the input side transmission member along the axial direction,
The input rotary shaft, the rotational drive force transmission mechanism according to claim 1 or claim 2, characterized in that it is loosely inserted into the hole.
前記入力側回転軸の出力側伝達部材側の端部には、凹部が形成され、
前記入力側伝達部材は、前記凹部に遊嵌されていることを特徴とする請求項1又は請求項2に記載の回転駆動力伝達機構。
A concave portion is formed at an end portion on the output side transmission member side of the input side rotation shaft,
The input-side transmission member, the rotational driving force transmission mechanism according to claim 1 or claim 2, characterized in that it is loosely fitted in the recess.
前記入力側伝達部材の出力側伝達部材側の接続面および前記出力側伝達部材の入力側伝達部材側の接続面には、互いに歯合可能な歯形部が形成されたことを特徴とする請求項1乃至請求項4のいずれか一項に記載の回転駆動力伝達機構。 The tooth-shaped portion that can mesh with each other is formed on a connection surface on the output-side transmission member side of the input-side transmission member and a connection surface on the input-side transmission member side of the output-side transmission member. The rotational driving force transmission mechanism according to any one of claims 1 to 4 . モータと、
該モータの回転駆動力を伝達する動力伝達状態と前記モータの回転駆動力を遮断する動力遮断状態とに切り替え可能な回転駆動力伝達機構と、
該回転駆動力伝達機構のモータと反対側に接続される出力機構と、を備えたアクチュエータにおいて、
前記回転駆動力伝達機構は、前記モータにより回転させられる入力側回転軸と、
該入力側回転軸に軸方向へ移動可能に配設された入力側伝達部材と、
該入力側伝達部材と対峙して配置されると共に前記入力側回転軸に対して回転自在に配設された出力側伝達部材と、
前記入力側回転軸の回転によって前記入力側伝達部材を前記出力側伝達部材側へ直動させる回転直動変換手段と、
前記入力側伝達部材に摺接し該入力側伝達部材を径方向に付勢する負荷付与部材と、を有し、
前記回転直動変換手段は、前記入力側伝達部材に、前記入力側伝達部材の回転中心軸に対して斜め方向に延びる長孔又は長溝として形成された突起案内部と、
前記入力側回転軸に配設されるとともに、該入力側回転軸の径方向に突出し前記突起案内部に移動自在に係合された突起部と、からなり、
前記入力側伝達部材の負荷付与部材と摺接される面、又は、前記負荷付与部材の入力側伝達部材と摺接される面のうち少なくとも一方は、前記突起案内部の長軸方向と平行な方向に沿って複数の筋が形成された粗面により構成されたことを特徴とするアクチュエータ。
A motor,
A rotational driving force transmission mechanism capable of switching between a power transmission state for transmitting the rotational driving force of the motor and a power cutoff state for interrupting the rotational driving force of the motor;
An output mechanism connected to the opposite side of the motor of the rotational driving force transmission mechanism,
The rotational driving force transmission mechanism includes an input side rotation shaft that is rotated by the motor;
An input-side transmission member disposed on the input-side rotation shaft so as to be movable in the axial direction;
An output-side transmission member that is disposed to face the input-side transmission member and that is rotatably arranged with respect to the input-side rotation shaft;
Rotation / linear motion conversion means for linearly moving the input side transmission member to the output side transmission member side by rotation of the input side rotation shaft;
A load applying member that is in sliding contact with the input side transmission member and biases the input side transmission member in a radial direction;
The rotation / linear motion conversion means includes a projection guide portion formed as a long hole or a long groove extending in an oblique direction with respect to the rotation center axis of the input side transmission member on the input side transmission member;
A projecting portion that is disposed on the input-side rotation shaft and protrudes in a radial direction of the input-side rotation shaft and is movably engaged with the projection guide portion;
At least one of the surface in sliding contact with the load application member of the input transmission member or the surface in sliding contact with the input transmission member of the load application member is parallel to the major axis direction of the protrusion guide portion. An actuator comprising a rough surface formed with a plurality of streaks along a direction .
モータと、
該モータの回転駆動力を伝達する動力伝達状態と前記モータの回転駆動力を遮断する動力遮断状態とに切り替え可能な回転駆動力伝達機構と、
該回転駆動力伝達機構のモータと反対側に接続される出力機構と、を備えたアクチュエータにおいて、
前記回転駆動力伝達機構は、前記モータにより回転させられる入力側回転軸と、
該入力側回転軸に軸方向へ移動可能に配設された入力側伝達部材と、
該入力側伝達部材と対峙して配置されると共に前記入力側回転軸に対して回転自在に配設された出力側伝達部材と、
前記入力側回転軸の回転によって前記入力側伝達部材を前記出力側伝達部材側へ直動させる回転直動変換手段と、
前記入力側伝達部材に摺接し該入力側伝達部材を径方向に付勢する負荷付与部材と、を有し、
前記回転直動変換手段は、
前記入力側回転軸に、前記入力側回転軸の回転中心軸に対して斜め方向に延びる長孔又は長溝として形成された突起案内部と、
前記入力側伝達部材に配設されるとともに、該入力側伝達部材の径方向に突出し前記突起案内部に移動自在に係合された突起部と、からなり、
前記入力側伝達部材の負荷付与部材と摺接される面、又は、前記負荷付与部材の入力側伝達部材と摺接される面のうち少なくとも一方は、前記突起案内部の長軸方向と平行な方向に沿って複数の筋が形成された粗面により構成されたことを特徴とするアクチュエータ。
A motor,
A rotational driving force transmission mechanism capable of switching between a power transmission state for transmitting the rotational driving force of the motor and a power cutoff state for interrupting the rotational driving force of the motor;
An output mechanism connected to the opposite side of the motor of the rotational driving force transmission mechanism,
The rotational driving force transmission mechanism includes an input side rotation shaft that is rotated by the motor;
An input-side transmission member disposed on the input-side rotation shaft so as to be movable in the axial direction;
An output-side transmission member that is disposed to face the input-side transmission member and that is rotatably arranged with respect to the input-side rotation shaft;
Rotation / linear motion conversion means for linearly moving the input side transmission member to the output side transmission member side by rotation of the input side rotation shaft;
A load applying member that is in sliding contact with the input side transmission member and biases the input side transmission member in a radial direction;
The rotation / linear motion conversion means includes:
A projection guide portion formed as a long hole or a long groove extending in an oblique direction with respect to the rotation center axis of the input side rotation shaft on the input side rotation shaft;
A projection portion disposed on the input side transmission member and projecting in a radial direction of the input side transmission member and movably engaged with the projection guide portion;
At least one of the surface in sliding contact with the load application member of the input transmission member or the surface in sliding contact with the input transmission member of the load application member is parallel to the major axis direction of the protrusion guide portion. An actuator comprising a rough surface formed with a plurality of streaks along a direction .
前記入力側伝達部材には、軸方向に沿って孔部が形成され、
前記入力側回転軸は、前記孔部に遊挿されていることを特徴とする請求項6又は請求項7に記載のアクチュエータ。
A hole is formed in the input side transmission member along the axial direction,
The actuator according to claim 6 or 7 , wherein the input-side rotation shaft is loosely inserted into the hole.
前記入力側回転軸の出力側伝達部材側の端部には、凹部が形成され、
前記入力側伝達部材は、前記凹部に遊嵌されていることを特徴とする請求項6又は請求項7に記載のアクチュエータ。
A concave portion is formed at an end portion on the output side transmission member side of the input side rotation shaft,
The actuator according to claim 6 or 7 , wherein the input-side transmission member is loosely fitted in the recess.
前記入力側伝達部材の出力側伝達部材側の接続面および前記出力側伝達部材の入力側伝達部材側の接続面には、互いに歯合可能な歯形部が形成されたことを特徴とする請求項6乃至請求項9のいずれか一項に記載のアクチュエータ。 Claim the connecting surface of the input side transfer member of the output side transfer member side of the connecting surface and the output side transfer member of the input-side transmission member, characterized in that the toothed possible tooth portion is formed to each other The actuator according to any one of claims 6 to 9 .
JP2004136788A 2004-04-30 2004-04-30 Rotational driving force transmission mechanism and actuator Expired - Fee Related JP4440701B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004136788A JP4440701B2 (en) 2004-04-30 2004-04-30 Rotational driving force transmission mechanism and actuator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004136788A JP4440701B2 (en) 2004-04-30 2004-04-30 Rotational driving force transmission mechanism and actuator

Publications (2)

Publication Number Publication Date
JP2005315389A JP2005315389A (en) 2005-11-10
JP4440701B2 true JP4440701B2 (en) 2010-03-24

Family

ID=35443022

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004136788A Expired - Fee Related JP4440701B2 (en) 2004-04-30 2004-04-30 Rotational driving force transmission mechanism and actuator

Country Status (1)

Country Link
JP (1) JP4440701B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102635648B (en) * 2012-05-07 2013-12-18 哈尔滨工程大学 Biaxial one-way power transmission clutch adopting principle similar to diode principle
AT14286U1 (en) * 2012-09-20 2015-07-15 Liberda Viktor worm drive
AT513462A1 (en) * 2012-09-20 2014-04-15 Liberda Viktor worm drive

Also Published As

Publication number Publication date
JP2005315389A (en) 2005-11-10

Similar Documents

Publication Publication Date Title
JP4899082B2 (en) Automatic reduction ratio switching device
WO2013088901A1 (en) Clutch actuator
JP2008267596A (en) Eccentric gear mechanism and method of transferring turning force thereby
JP4697784B2 (en) Electric linear actuator
US20130168192A1 (en) Electric linear motion actuator and electric disk brake system
JP4440701B2 (en) Rotational driving force transmission mechanism and actuator
KR100636080B1 (en) A starter for an engine
JP2005265110A (en) Rotary drive force transmission mechanism and actuator
JP2014178023A (en) Ball screw mechanism and actuator
JP2010096313A (en) Electric motor
JP2008174190A (en) Electric actuator for parking lock device
JP7050950B2 (en) Gear shift actuator
JP5706591B2 (en) Power transmission device, clutch device, and drive device
JP5532702B2 (en) Electric toilet seat device
JP4857215B2 (en) Driving force forward / reverse switching device
JP2006038091A (en) Actuator
JP2005325939A (en) Rotational driving force transmitting mechanism and actuator
JP2020025391A (en) motor
CN218668977U (en) Passive braking device
JP7215374B2 (en) motor
KR101284253B1 (en) Double clutch actuator
JP2010223404A (en) Clutch mechanism, and motor with reduction gear
JP4289962B2 (en) 2-way clutch unit
JP5866852B2 (en) Actuator
JP2009133439A (en) Shift drum driving device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060712

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100105

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100107

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130115

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140115

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees