JP4439339B2 - Semiconductor device and manufacturing method thereof - Google Patents

Semiconductor device and manufacturing method thereof Download PDF

Info

Publication number
JP4439339B2
JP4439339B2 JP2004181923A JP2004181923A JP4439339B2 JP 4439339 B2 JP4439339 B2 JP 4439339B2 JP 2004181923 A JP2004181923 A JP 2004181923A JP 2004181923 A JP2004181923 A JP 2004181923A JP 4439339 B2 JP4439339 B2 JP 4439339B2
Authority
JP
Japan
Prior art keywords
substrate
semiconductor element
semiconductor
semiconductor device
chip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004181923A
Other languages
Japanese (ja)
Other versions
JP2006005260A (en
Inventor
浩一 山内
睦夫 辻
油井  隆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2004181923A priority Critical patent/JP4439339B2/en
Publication of JP2006005260A publication Critical patent/JP2006005260A/en
Application granted granted Critical
Publication of JP4439339B2 publication Critical patent/JP4439339B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16135Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/16145Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73257Bump and wire connectors

Abstract

<P>PROBLEM TO BE SOLVED: To provide an inexpensive semiconductor device which has large number of terminals more than a semiconductor storage element has, and can be further reduced in size and thickness by stabilizing a sealing process in the lamination of semiconductor elements differing in sizes. <P>SOLUTION: The semiconductor element laminated type semiconductor device comprises a 1st substrate 2 having electrodes on its top surface and external electrode terminals on its reverse surface, a 1st semiconductor element 1 which is electrically connected on the 1st substrate 2, a 2nd substrate 6 which is bonded to the top surface of the 1st semiconductor element 1, a 2nd semiconductor element 5 which is electrically connected on the 2nd substrate 6 and smaller than the 1st semiconductor element 1, a metal wire 7 which electrically connects the 1st substrate 2 and 2nd substrate 6, and sealing resin (insulating resin) 8 covering the top surface of the 1st substrate. The 1st and the 2nd semiconductor elements 1 and 5 are connected to the 1st and the 2nd substrate 2 and 6 by a flip chip method, and the 2nd semiconductor element 5 is electrically connected to the 1st substrate 2 through the 2nd substrate 6 and a metal wire 7. <P>COPYRIGHT: (C)2006,JPO&amp;NCIPI

Description

本発明は半導体素子の集積回路部を保護し、かつ外部装置と半導体素子の電気的接続を安定に確保し、さらに高密度な実装を可能とした半導体装置およびその製造方法に関するものであり、特にフリップチップ技術を用いたチップ積層パッケージに関するものである。   The present invention relates to a semiconductor device that protects an integrated circuit portion of a semiconductor element, stably secures an electrical connection between an external device and the semiconductor element, and enables high-density mounting, and a method of manufacturing the semiconductor device. The present invention relates to a chip stacked package using flip chip technology.

近年、半導体装置を高密度に実装する方法として単一のパッケージに複数の半導体装置を積層したパッケージが開発されている。その中でも、比較的小ピンの半導体記憶素子どうしの積層化を実現するワイヤーボンドを用いた積層パッケージや、フリップチップ接続とワイヤーボンド接続を併用した積層パッケージの小型・薄型・多ピン化の検討が多くなされている。   In recent years, a package in which a plurality of semiconductor devices are stacked on a single package has been developed as a method for mounting semiconductor devices at high density. Among them, studies are being made to reduce the size, thickness, and number of pins of stacked packages that use wire bonds to achieve stacking of relatively small pin semiconductor memory elements, and stacked packages that use flip chip connection and wire bond connections. Many have been made.

以下の説明において半導体装置は便宜的に図面上の上側に位置する面を上側面と称し、下側に位置する面を下側面と称するが、半導体装置自体に上下の区別は存在しない。
図14はワイヤーボンド工法のみを用いた積層パッケージの一例である。図14において、半導体素子20,21は基板22上に非導電性接着剤26によって上向きに積層しており、半導体素子20,21を基板22に金属ワイヤー23によって電気的に接続し、基板22の上部全体を封止樹脂29で被覆している。
In the following description, for the sake of convenience, the surface located on the upper side in the drawing is referred to as the upper side surface, and the surface located on the lower side is referred to as the lower side surface.
FIG. 14 shows an example of a stacked package using only the wire bond method. In FIG. 14, semiconductor elements 20 and 21 are laminated upward on a substrate 22 by a non-conductive adhesive 26, and the semiconductor elements 20 and 21 are electrically connected to the substrate 22 by metal wires 23. The entire upper part is covered with a sealing resin 29.

図15はフリップチップ実装とワイヤーボンド接続を併用した積層パッケージの一例である。図15において、半導体素子20はバンプ24により基板22にフリップチップ実装し、封止樹脂25を封入している。半導体素子20は上側面に非導電性接着剤26で半導体素子21を接着し、半導体素子21と基板22の2ndパッド27を金属ワイヤ23によって電気的に接続し、基板22の上部全体を封止樹脂29により被覆している。
特開2002−368190号公報
FIG. 15 shows an example of a stacked package using both flip chip mounting and wire bond connection. In FIG. 15, the semiconductor element 20 is flip-chip mounted on a substrate 22 with bumps 24 and encapsulated with a sealing resin 25. In the semiconductor element 20, the semiconductor element 21 is bonded to the upper surface with a nonconductive adhesive 26, the semiconductor element 21 and the 2nd pad 27 of the substrate 22 are electrically connected by the metal wire 23, and the entire upper portion of the substrate 22 is sealed. Covered with resin 29.
JP 2002-368190 A

図14、図15に記載されている従来の積層パッケージは、共に上側の半導体素子21を金属ワイヤー23によって基板22に電気的接続しているので、重ね合わせる半導体素子20,21のサイズ差が大きい場合には上側の半導体素子21から基板22への金属ワイヤー23の長さが非常に長くなり、封止樹脂29の注入時の金属ワイヤ23にかかる圧力で金属ワイヤー23どうしのショートや金属ワイヤー23の外れが発生する課題がある。   In the conventional stacked package described in FIGS. 14 and 15, the upper semiconductor element 21 is electrically connected to the substrate 22 by the metal wire 23, so that the size difference between the stacked semiconductor elements 20 and 21 is large. In this case, the length of the metal wire 23 from the upper semiconductor element 21 to the substrate 22 becomes very long, and the metal wire 23 is short-circuited or pressed by the pressure applied to the metal wire 23 when the sealing resin 29 is injected. There is a problem that a deviation occurs.

また、上側の半導体素子21と2ndパッド27とを接続する金属ワイヤ23が下側の半導体素子20へ接触することを避ける為に、2ndパッド27を下側の半導体素子20より遠い位置に設定して金属ワイヤー23のループ高さを確保する必要があり、この事が半導体装置の小型化を妨げる一因にもなっている。さらに、厚み方向に関しては、金属ワイヤー23のループ高さの分だけ半導体装置全体が厚くなり、半導体装置の薄型化を妨げている。   Further, in order to prevent the metal wire 23 connecting the upper semiconductor element 21 and the 2nd pad 27 from contacting the lower semiconductor element 20, the 2nd pad 27 is set at a position farther than the lower semiconductor element 20. Therefore, it is necessary to secure the loop height of the metal wire 23, which is one factor that hinders downsizing of the semiconductor device. Furthermore, with respect to the thickness direction, the entire semiconductor device becomes thicker by the loop height of the metal wire 23, which prevents the semiconductor device from being thinned.

また、図14に示すワイヤーボンド工法のみを用いた従来の積層パッケージでは、金属ワイヤー23の数が多いので、端子数の多い半導体素子20,21を積層化する場合に、金属ワイヤー23のショート不良低減のために2ndパッド27の隣接端子ピッチを広げる必要があるが、半導体装置が大型化してしまうという課題があり、比較的小ピンの半導体素子どうしの積層化に限られている。   Further, in the conventional laminated package using only the wire bonding method shown in FIG. 14, since the number of the metal wires 23 is large, when the semiconductor elements 20 and 21 having a large number of terminals are laminated, the short-circuit failure of the metal wires 23. Although it is necessary to widen the pitch of adjacent terminals of the 2nd pad 27 for the reduction, there is a problem that the semiconductor device is increased in size, which is limited to the stacking of relatively small pin semiconductor elements.

上記のようなサイズ差の大きい半導体素子どうしの積層化に伴う金属ワイヤー23のロングワイヤ化に付随して発生する課題を解決する方法として、特許文献1に開示するものがある。これは図16に示すようなものであり、上下の半導体素子20,21の間に上側の半導体素子21から基板22への電気的接続を中継する配線基板28を設けることで、金属ワイヤー23の長さを短縮化してワイヤ流れ(封止樹脂29の注入時にかかる圧力に起因する金属ワイヤー23の変形)によるワイヤショートやワイヤ外れの課題を解決し、かつ装置全体の薄型化を達成する方法を提案している。     Patent Document 1 discloses a method for solving the problems that occur accompanying the formation of long wires of the metal wires 23 due to the stacking of semiconductor elements having a large size difference as described above. This is as shown in FIG. 16, and by providing a wiring board 28 that relays electrical connection from the upper semiconductor element 21 to the board 22 between the upper and lower semiconductor elements 20, 21, A method of shortening the length to solve the problems of wire short-circuit and wire detachment due to the wire flow (deformation of the metal wire 23 caused by the pressure applied when the sealing resin 29 is injected) and reducing the thickness of the entire apparatus. is suggesting.

しかしながら、上記方法においては半導体素子20は金属ワイヤー23によって基板22に接続されているので、半導体記憶素子より端子数の多い半導体素子20,21を積層化する場合に不可避的にワイヤー数の関係でサイズが大きくなり、ワイヤショートやワイヤ外れが生じる課題が残っている。   However, in the above method, since the semiconductor element 20 is connected to the substrate 22 by the metal wire 23, when the semiconductor elements 20 and 21 having a larger number of terminals than the semiconductor memory element are stacked, it is unavoidable due to the number of wires. The problem remains that the size increases and wire short-circuiting or disconnection occurs.

また、半導体素子を積層して組み立てる場合に、どちらか一方の半導体素子が電気特性検査で不良で有ればもう一方の半導体素子は良品であっても廃棄せざるを得ない。つまり、それぞれのチップの電気検査歩留まりの積算で最終歩留まりが決定する。このため半導体素子を積層させた場合の組立費が増加してしまうという課題がある。   Further, when assembling and stacking semiconductor elements, if one of the semiconductor elements is defective in the electrical characteristic inspection, the other semiconductor element is inevitably discarded. In other words, the final yield is determined by integrating the electrical inspection yield of each chip. For this reason, there exists a subject that the assembly cost at the time of laminating | stacking a semiconductor element will increase.

また、多くの積層パッケージにおいては、上側の半導体素子と下側の半導体素子との間で電気信号の共有がなされるが一般的には高密度配線が可能な基板や、積層基板を用いて基板内の配線を用いており、高価な基板材料が必要となるといった課題がある。   In many stacked packages, an electric signal is shared between the upper semiconductor element and the lower semiconductor element. Generally, a substrate capable of high-density wiring or a substrate using a stacked substrate is used. However, there is a problem that an expensive substrate material is required.

本発明はこのような課題を解決するもので、半導体記憶素子と比較して端子数が多く、サイズ差のある半導体素子どうしの積層化に対して、封止プロセスを安定化し、さらなる小型・薄型が可能で安価な半導体装置およびその製造方法を提供することを目的とする。   The present invention solves such a problem. The number of terminals is larger than that of a semiconductor memory element, and the sealing process is stabilized against the stacking of semiconductor elements having different sizes. It is an object of the present invention to provide an inexpensive and inexpensive semiconductor device and a method for manufacturing the same.

上記した課題を解決するために、本発明の半導体装置は、上側面に電極と下側面に外部電極端子を有する第一の基板と、前記第一の基板上に電気的接続された第一の半導体素子と、前記第一の半導体素子の上側面に接着された第二の基板と、前記第二の基板上に電気的に接続された第二の半導体素子と、前記第一の基板と前記第二の基板とを電気的に接続する金属ワイヤーと、前記第一の基板上側面を被覆する絶縁性樹脂で構成された半導体素子積層型の半導体装置において、前記第一、及び第二の半導体素子がそれぞれ前記第一、及び前記第二の基板にフリップチップ接続され、前記第二の半導体素子が前記第二の基板および前記金属ワイヤーを介して前記第一の基板に電気的に接続され、前記第二の基板が上側面に形成する上側面配線と下側面に形成する下側面配線とを電気的に接続してなるものであって、前記下側面配線は前記第二の基板のスルーホールによって前記上側面配線に接続され、第一の半導体素子の上側面と第二の基板の下側面配線とを導電性接着剤によって接着し、前記第二の基板の上側面配線を第一の基板のGNDに金属ワイヤーを介して電気的に接続したことを特徴とする半導体装置である。 To solve the problems described above, the semiconductor device of the present onset Ming, a first substrate having an external electrode terminal to the upper side to the electrode and the lower surface, a first electrically connected to said first substrate A semiconductor substrate, a second substrate bonded to the upper surface of the first semiconductor element, a second semiconductor element electrically connected to the second substrate, and the first substrate In the semiconductor element stacked type semiconductor device composed of a metal wire electrically connecting the second substrate and an insulating resin covering the upper surface of the first substrate, the first and second Semiconductor elements are flip-chip connected to the first and second substrates, respectively, and the second semiconductor elements are electrically connected to the first substrate via the second substrate and the metal wires. An upper surface wiring formed on the upper surface by the second substrate; The lower side surface wiring formed on the side surface is electrically connected, and the lower side surface wiring is connected to the upper side surface wiring by a through hole of the second substrate, and is connected to the upper surface of the first semiconductor element. The side surface and the lower surface wiring of the second substrate are bonded by a conductive adhesive, and the upper surface wiring of the second substrate is electrically connected to the GND of the first substrate through a metal wire. This is a semiconductor device.

この構成により、半導体記憶素子と比較して端子数が多く、サイズ差のある半導体素子どうしの積層化において、封止プロセスを安定化して半導体装置のさらなる小型・薄型化を達成することが可能となる。   With this configuration, it is possible to achieve a further reduction in size and thickness of the semiconductor device by stabilizing the sealing process when stacking semiconductor elements having a larger number of terminals and different sizes compared to semiconductor memory elements. Become.

つまり、下側の第一の半導体素子をフリップチップ実装し、上側の第二の半導体素子を第二の基板にフリップチップ実装してその端子を基板周辺に引き出し、第二の基板を第一の基板に金属ワイヤーで電気的に接続することで、第一の半導体素子の金属ワイヤーをなくして封止の際にワイヤー流れ、ワイヤー外れの対象となる金属ワイヤー数を低減し、パッドピッチのスケール変換(パッドの隣接端子ピッチの縮小)および、第一の基板への金属ワイヤー長の短縮化(ワイヤーループ高さの低減)を達成できる。   That is, the lower first semiconductor element is flip-chip mounted, the upper second semiconductor element is flip-chip mounted on the second substrate, and the terminal is drawn out to the periphery of the substrate, and the second substrate is connected to the first substrate. By electrically connecting to the substrate with metal wires, the metal wires of the first semiconductor element are eliminated, the wires flow during sealing, the number of metal wires that are subject to wire removal is reduced, and the pad pitch scale conversion (Reduction of the adjacent terminal pitch of the pad) and shortening of the metal wire length to the first substrate (reduction of the wire loop height) can be achieved.

その結果、課題となっている封止時のワイヤー流れ、ワイヤー外れ、ワイヤーショートを低減でき、さらには第二の半導体素子からの金属ワイヤ長が長くなる事で生じる半導体装置の大型化を防止することが可能となり、その結果半導体装置自体の小型・薄型化を達成することができる。   As a result, it is possible to reduce wire flow, wire disconnection, and wire short-circuit during sealing, which is a problem, and further prevent an increase in the size of the semiconductor device caused by an increase in the length of the metal wire from the second semiconductor element. As a result, the semiconductor device itself can be reduced in size and thickness.

具体的には第一の半導体素子と第二の半導体素子のサイズ差が4.0mm以上有る場合においても金属ワイヤー長を1.5mm以下のほぼ一定値に抑えることができ、安定したワイヤー配設と封止プロセスを確立できる。   Specifically, even when the size difference between the first semiconductor element and the second semiconductor element is 4.0 mm or more, the metal wire length can be suppressed to a substantially constant value of 1.5 mm or less, and the stable wire arrangement And the sealing process can be established.

例えば第二の半導体素子のパッドピッチが60μmの場合、金属ワイヤー長が4mm以上あるとワイヤー流れによるショート等の不具合の発生頻度が高くなる。第一の基板上に第一の半導体素子を中心に放射上に形成される2ndボンディングパッドのパッドピッチがフリップチップ実装によって形成されるフィレットの長さに応じて大きくなることを考慮すると、本発明の効果は半導体素子のサイズ差が4mm以上で顕著になる。   For example, when the pad pitch of the second semiconductor element is 60 μm, if the metal wire length is 4 mm or more, the occurrence frequency of defects such as a short due to the wire flow increases. Considering that the pad pitch of the 2nd bonding pads formed on the first substrate on the radiation centering on the first semiconductor element is increased according to the length of the fillet formed by flip chip mounting. This effect becomes significant when the size difference of the semiconductor elements is 4 mm or more.

また、パッドピッチのスケール変換が第二の基板によってなされるので、第一の基板上のボンディングパッドをパッドピッチを大きくして放射状に配置する必要がなく、第二の半導体素子の端子数が250〜350ピンであったとしても半導体装置自体の小型化が可能となる。   Moreover, since the scale conversion of the pad pitch is performed by the second substrate, it is not necessary to arrange the bonding pads on the first substrate radially by increasing the pad pitch, and the number of terminals of the second semiconductor element is 250. Even if there are ˜350 pins, the semiconductor device itself can be downsized.

このように第一、第二の半導体素子を共にフリップチップボンディングし、第二の基板でスケール変換を行うことでワイヤー長の短縮化ができ、半導体装置の多ピン化と小型化の両立が可能となる。さらに、第二の半導体素子をフリップチップボンディングしていることで半導体装置全体の薄型化も可能となる。   In this way, the wire length can be shortened by flip-chip bonding the first and second semiconductor elements together and performing the scale conversion on the second substrate, so that both the number of pins of the semiconductor device can be reduced and the size can be reduced. It becomes. Furthermore, the entire semiconductor device can be thinned by flip-chip bonding the second semiconductor element.

また、第二の基板上の配線パターンにより、第二の半導体素子の第一の半導体素子との共有電気信号端子を第一の半導体素子の共有電気信号端子の近傍に再配置することができるので、第一の基板内の配線パターンによって複雑な配線が必要でなくなる。   In addition, the wiring pattern on the second substrate allows the shared electrical signal terminal of the second semiconductor element with the first semiconductor element to be rearranged in the vicinity of the shared electrical signal terminal of the first semiconductor element. The wiring pattern in the first substrate eliminates the need for complicated wiring.

例えば、従来第一の半導体素子が約300端子、第二の半導体素子が約300端子あり共有信号端子が80端子程度である積層パッケージを、図14または図15の構成により実現する際には、共有電気信号端子の配置により4層〜6層の高密度積層基板が必要であったが、本発明の構成により第一の配線基板が2〜3層、第二の配線基板が1〜2層で実現が可能になり、安価な基板の組合せによって積層パッケージが可能となる。
また、第一の半導体素子の上側面が導電性接着剤、第二の基板の下側面配線および上側面配線、金属ワイヤーを介して第一の基板のGNDに電気的に接続され、さらにスルーホールを介して第一の半導体素子の下側面が第一の基板のGNDに電気的に接続されるので、第一の半導体素子の上側面及び下側面の電位を安定化することが可能となる。
For example, when realizing a stacked package having about 300 terminals of the first semiconductor element, about 300 terminals of the second semiconductor element and about 80 terminals of the shared signal terminal with the configuration of FIG. 14 or FIG. Depending on the arrangement of the shared electric signal terminals, a high-density laminated substrate having 4 to 6 layers is necessary. However, the configuration of the present invention has 2 to 3 layers for the first wiring substrate and 1 to 2 layers for the second wiring substrate. The stacked package can be realized by an inexpensive combination of substrates.
Further, the upper surface of the first semiconductor element is electrically connected to the GND of the first substrate through the conductive adhesive, the lower surface wiring and the upper surface wiring of the second substrate, and the metal wire. Since the lower surface of the first semiconductor element is electrically connected to the GND of the first substrate through the first and second semiconductor elements, the potentials of the upper and lower surfaces of the first semiconductor element can be stabilized.

また、第二の基板が第一の半導体素子よりも大きいことを特徴とするものであって、第二の基板を第一の半導体素子の封止樹脂のフィレットに相応して第一の半導体素子よりも大きく形成することで、第一の半導体素子の封止樹脂のフィレットに拘らずワイヤー長を短縮化することが可能となる。 Further, there is the second substrate being larger than the first semiconductor element, and correspondingly the second substrate to the fillet of the sealing resin of the first semiconductor device the first semiconductor element By forming it larger than that, the wire length can be shortened regardless of the fillet of the sealing resin of the first semiconductor element.

また、第二の基板が金属配線の転写された接着シートで構成されていることを特徴とするものである。
また、複数の半導体素子を第一の基板上にフリップチップ接続したことを特徴とするものである。
Further , the second substrate is composed of an adhesive sheet to which metal wiring is transferred.
In addition , a plurality of semiconductor elements are flip-chip connected to the first substrate.

この構成により、更なる高密度実装が可能となる。
また、複数の半導体素子を第二の基板上にフリップチップ接続して第一の半導体素子上にマルチチップモジュール(MCM)を形成したことを特徴とするものである。
This configuration enables further high-density mounting.
Further , a plurality of semiconductor elements are flip-chip connected on the second substrate to form a multichip module (MCM) on the first semiconductor element.

この構成により、更なる高密度実装と、MCM内のチップどうしの結線により第一の基板への電気的接続数を短縮することが可能となる。
また、第二の半導体素子の上側面が絶縁性樹脂の外側に露出していることを特徴とするものである。
With this configuration, the number of electrical connections to the first substrate can be shortened by further high-density mounting and by connecting the chips in the MCM.
Further , the upper surface of the second semiconductor element is exposed to the outside of the insulating resin.

この構成により、半導体装置全体の薄型化を可能とし、放熱特性を良好にすることが可能となる。
本発明の半導体装置の製造方法は、上側面に電極と下側面に外部電極端子を有する第一の基板上に第一の半導体素子をフリップチップ実装し、第二の基板上に前記第一の半導体素子より小さい第二の半導体素子をフリップチップ実装し、前記第一の半導体素子の上側面に第二の基板を接着し、前記第一の基板の上側面の電極と前記第二の基板とを金属ワイヤーで電気的に接続し、前記第一の基板上側面を絶縁性樹脂で被覆し、前記第二の基板が上側面に形成する上側面配線と下側面に形成する下側面配線とを電気的に接続してなるものであって、前記下側面配線は前記第二の基板のスルーホールによって前記上側面配線に接続され、第一の半導体素子の上側面と第二の基板の下側面配線とを導電性接着剤によって接着し、前記第二の基板の上側面配線を第一の基板のGNDに金属ワイヤーを介して電気的に接続したことを特徴とするものである。
44
With this configuration, it is possible to reduce the thickness of the entire semiconductor device and improve heat dissipation characteristics.
Method of manufacturing a semi-conductor device of the present invention, the first semiconductor element is flip-chip mounted on the first substrate having an external electrode terminal to the upper side to the electrode and the lower surface, the the second substrate first A second semiconductor element smaller than the first semiconductor element is flip-chip mounted, a second substrate is bonded to the upper surface of the first semiconductor element, and an electrode on the upper surface of the first substrate and the second substrate Are electrically connected with a metal wire, the upper surface of the first substrate is covered with an insulating resin, and the upper surface wiring formed on the upper surface and the lower surface wiring formed on the lower surface of the second substrate; The lower surface wiring is connected to the upper surface wiring by a through hole of the second substrate, and the upper surface of the first semiconductor element is connected to the lower surface of the second substrate. Adhere the side wiring to the second substrate with a conductive adhesive. The surface wiring through a metal wire to GND of the first substrate is characterized in that the electrically connected.
44

以上のように本発明によれば、上側の半導体素子と下側の半導体素子が共にフリップチップボンディングによりそれぞれ基板に実装され、それぞれのパッケージを熱硬化性接着剤等で接着して積み重ねたのち、上側の基板と下側の基板とをワイヤーボンドによって電気的に接続するという特徴を有している。   As described above, according to the present invention, the upper semiconductor element and the lower semiconductor element are both mounted on the substrate by flip chip bonding, and each package is adhered and stacked with a thermosetting adhesive or the like, The upper substrate and the lower substrate are electrically connected by wire bonding.

これによって、多ピンどうしのチップのスタック化が可能となり、上下の半導体素子のサイズ差が大きい場合には実現できなかった小型・薄型化を達成できる半導体装置を実現するものである。さらに、パッケージ化した後に積層するため、電気特性検査に合格したチップのみの構成で積層化が可能となり、歩留まりも向上させることが可能となる。さらに、安価な基板の組合せによって積層パッケージが実現できる為、高密度積層パッケージの低コスト化が可能となる。   As a result, a multi-pin chip can be stacked, and a semiconductor device that can be reduced in size and thickness that cannot be realized when the size difference between the upper and lower semiconductor elements is large is realized. Furthermore, since it is stacked after being packaged, it is possible to stack with only a chip that has passed the electrical characteristic inspection, and it is possible to improve the yield. Furthermore, since a stacked package can be realized by combining an inexpensive substrate, the cost of the high-density stacked package can be reduced.

以下、本発明の半導体装置およびその製造方法の実施形態について、図面を参照しながら説明する。
図1は本発明の第一の実施の形態によるチップ積層パッケージの構成を示している。図1において、第一の半導体素子のチップ1が第一の基板2にバンプ3を介してフリップチップボンディングされ、その間隙に封止樹脂4が充填されている。さらに第二の半導体素子のチップ5も第二の基板6にバンプ3を介してフリップチップボンディングされ、第2の基板6の下側面に設けられた接着シート14を介してチップ1の上側面と接合されている。第一の基板2と第二の基板6は金属ワイヤー7によって電気的に導通しており、基板2上部全体が封止樹脂(絶縁性樹脂)8で覆われている構造となっている。
Embodiments of a semiconductor device and a manufacturing method thereof according to the present invention will be described below with reference to the drawings.
FIG. 1 shows the configuration of a chip stack package according to a first embodiment of the present invention. In FIG. 1, a chip 1 of a first semiconductor element is flip-chip bonded to a first substrate 2 via bumps 3, and a sealing resin 4 is filled in the gap. Further, the chip 5 of the second semiconductor element is also flip-chip bonded to the second substrate 6 via the bumps 3, and the upper surface of the chip 1 is bonded via the adhesive sheet 14 provided on the lower surface of the second substrate 6. It is joined. The first substrate 2 and the second substrate 6 are electrically connected by a metal wire 7, and the entire upper portion of the substrate 2 is covered with a sealing resin (insulating resin) 8.

図2〜図5は本発明の一実施形態にかかる半導体装置の製造方法のフローを示している。図2、図3に示すようにマトリックス状に製品エリアが配置された第二の基板6にバンプ3が形成されたチップ5をフリップチップボンディング実装する。チップ1も同様にマトリックス化された第一の基板2上にフリップチップボンディング実装する。   2 to 5 show a flow of a method for manufacturing a semiconductor device according to an embodiment of the present invention. As shown in FIGS. 2 and 3, the chip 5 on which the bumps 3 are formed is mounted on the second substrate 6 in which the product areas are arranged in a matrix. Similarly, the chip 1 is flip-chip bonded and mounted on the first substrate 2 formed into a matrix.

このとき第一の基板2は想定される外部端子13の端子数、用途により有機ビルトアップ基板若しくはセラミック基板、テープ基板等を用いることが可能であるが、第二の基板6はワイヤーボンドのピッチ変換、およびワイヤー長を短くすることが目的であるので、図9のようなパターンをもつ比較的安価で薄型の有機単層板やテープ基板を用いる。   At this time, an organic built-up substrate, a ceramic substrate, a tape substrate, or the like can be used as the first substrate 2 depending on the number of terminals of the external terminals 13 and the intended use, but the second substrate 6 has a wire bond pitch. Since the purpose is to shorten the conversion and the wire length, a relatively inexpensive and thin organic single layer plate or tape substrate having a pattern as shown in FIG. 9 is used.

第二の基板6はチップ5を接続する電極9がチップ5の端子位置をミラー反転させたパッド配置をなしており、電極10が第一の基板2と金属ワイヤー7で電気的に接続するためのボンディングパッドとなり、電極9と電極10を配線11で接続している。第二の基板6は金属配線を転写した接着シートで構成することも可能である。   The second substrate 6 has a pad arrangement in which the electrode 9 for connecting the chip 5 is mirror-reversed at the terminal position of the chip 5, and the electrode 10 is electrically connected to the first substrate 2 by the metal wire 7. The electrode 9 and the electrode 10 are connected by the wiring 11. The second substrate 6 can also be composed of an adhesive sheet to which metal wiring is transferred.

フリップチップボンディングとしては半田バンプを用いたC4接続構造や、チップにスタットバンプを形成した後導電性ペーストを介して基板と接続するSBB接続や、バンプをチップに形成した後に異方性導電性シート(ACF)、若しくは非導電性フィルム(NCF)を用いて基板に加圧接着する工法等を用いることが出来る。   For flip chip bonding, a C4 connection structure using solder bumps, SBB connection in which a stat bump is formed on a chip and then connected to a substrate via a conductive paste, or an anisotropic conductive sheet after bumps are formed on a chip (ACF) or a non-conductive film (NCF) can be used for pressure bonding to the substrate.

次に、図4に示すように、チップ5が実装された第二の基板6を熱硬化性シート15aとダイシングシート15bとを一体化した接着シート14を用いてウェハリング16に貼り付ける。その後、図5に示すように、ブレード17によるダイシングにより個片化した後、図6のようにチップ1の上側面へダイスボンディングして加熱キュアすることで接着を完了させる。   Next, as shown in FIG. 4, the second substrate 6 on which the chip 5 is mounted is attached to the wafer ring 16 using an adhesive sheet 14 in which a thermosetting sheet 15a and a dicing sheet 15b are integrated. Thereafter, as shown in FIG. 5, after being separated into pieces by dicing with the blade 17, die bonding is performed on the upper side surface of the chip 1 by heat curing as shown in FIG.

上述の構成では、ウェハリング16に貼り付ける際に熱硬化性シート15aを用いて接着しているが、ダイシングシート15bのみを用いて第2の基板6を固定してダイシングを行い、非導電性ペーストをチップ1の上側面に付設して基板6をチップ1へ接着することも可能である。積層化に際してチップ1,5はパッケージ化されて電気特性検査が可能であるので、電気特性検査に合格したチップどうしの構成で積層化させることで、歩留まりも向上させることが可能となる。   In the above-described configuration, the thermosetting sheet 15a is used for bonding to the wafer ring 16, but the second substrate 6 is fixed using only the dicing sheet 15b, and dicing is performed. It is also possible to attach the substrate 6 to the chip 1 by attaching a paste to the upper surface of the chip 1. Since the chips 1 and 5 are packaged and can be inspected for electrical characteristics at the time of stacking, it is possible to improve the yield by stacking chips with a configuration that passes the electrical characteristics inspection.

次に、図7に示すように、第二の基板6を第一の基板2に金属ワイヤー7で接続する。金属ワイヤー7はボールボンディング法で一般的に用いられるAu線の他にAL、Cu線を用いてもよい。最後に、図8に示すように、トランスファーモールドにより第一の基板2の上側面の全体を一括封止し、パッケージダイシングを実施して最終外形を形成する。   Next, as shown in FIG. 7, the second substrate 6 is connected to the first substrate 2 with a metal wire 7. The metal wire 7 may use AL or Cu wire in addition to the Au wire generally used in the ball bonding method. Finally, as shown in FIG. 8, the entire upper surface of the first substrate 2 is collectively sealed by transfer molding, and package dicing is performed to form a final outer shape.

図10は本発明の第2の実施形態による構成を示している。この構成では、チップ5の上側面が封止樹脂8の外側に露出しており、薄型化と放熱性を向上させることが可能となる。この実施形態の製造方法は先の製造フローに準ずるが、封止樹脂8を構成した後、パッケージ上側面を研磨してチップ5の上側面を露出させる工程が追加される。1工程増えるが半導体装置の厚みを最大限度に薄くすることが可能となる。   FIG. 10 shows a configuration according to the second embodiment of the present invention. In this configuration, the upper surface of the chip 5 is exposed to the outside of the sealing resin 8, and it is possible to reduce the thickness and improve the heat dissipation. The manufacturing method of this embodiment conforms to the previous manufacturing flow, but after the sealing resin 8 is configured, a step of polishing the upper surface of the package to expose the upper surface of the chip 5 is added. Although the number of steps increases, the thickness of the semiconductor device can be reduced to the maximum.

図11は本発明の第3の実施形態による構成を示している。この構成では、第二の基板6のサイズが下側のチップ1のチップサイズよりも大きく形成された構造を有しており、第二の基板6を第一の基板2の封止樹脂のフィレットLに相応してチップ1よりも大きく形成することで、チップ1のフィレットLに拘らずワイヤー長を短縮化することが可能となり、従来のようなフリップチップボンディングのフィレットLの長さ分だけ金属ワイヤー7が長くなることを防止することができる。この結果として金属ワイヤー7の長さを0.5〜1mm程度に抑えることができ、より一層封止工程のプロセス安定化が図れる。   FIG. 11 shows a configuration according to the third embodiment of the present invention. In this configuration, the second substrate 6 has a structure in which the size of the second substrate 6 is formed larger than the chip size of the lower chip 1, and the second substrate 6 is filled with the sealing resin fillet of the first substrate 2. By making it larger than the chip 1 corresponding to L, it becomes possible to shorten the wire length regardless of the fillet L of the chip 1, and the length of the fillet L of the conventional flip chip bonding is made of metal. It can prevent that the wire 7 becomes long. As a result, the length of the metal wire 7 can be suppressed to about 0.5 to 1 mm, and the process of the sealing process can be further stabilized.

図12は本発明の第4の実施形態を示している。この構成では、第二の基板6は上側面および下側面の両面にそれぞれ上側面配線19a、下側面配線19bが形成されており、チップ1の上側面と第二の基板6の下側面配線19bは導電性接着剤によって電気的に接続されている。導電性接着剤はシート状、テープ状、ペースト状等様々な形態のものが市販されており、第一の半導体素子及び第二の基板の形状や材質により任意の材料を選択すればよい。下側面配線19bは基板6のスルーホール18によって上側面配線19aに接続され、その上側面配線19aはさらに金属ワイヤー7で第一の基板2の2ndパッド12に接続され、2ndパッド12はGNDへ接続されている。   FIG. 12 shows a fourth embodiment of the present invention. In this configuration, the second substrate 6 has an upper side surface wiring 19a and a lower side surface wiring 19b formed on both the upper side surface and the lower side surface, respectively, and the upper side surface of the chip 1 and the lower side surface wiring 19b of the second substrate 6 are formed. Are electrically connected by a conductive adhesive. Various types of conductive adhesives such as a sheet, a tape, and a paste are commercially available, and any material may be selected depending on the shape and material of the first semiconductor element and the second substrate. The lower side surface wiring 19b is connected to the upper side surface wiring 19a by the through hole 18 of the substrate 6, and the upper side surface wiring 19a is further connected to the 2nd pad 12 of the first substrate 2 by the metal wire 7, and the 2nd pad 12 is connected to the GND. It is connected.

上記構造により、チップ1の裏面電位をGND化でき、電気特性に優れた半導体装置を実現することが出来る。
図13には本発明の第5の実施の形態を示している。この構成では、第二の基板6上に複数のチップ5をフリップチップボンディング搭載してマルチチップモジュールを形成している。第二の基板6上のチップ5は相互に第二の基板6を介して電気的接続をなすことが可能となる。その結果、第一の基板2へ金属ワイヤー7で接続する端子数を最小限に抑えることができ、金属ワイヤー7のワイヤーショートやワイヤ外れ等の不具合の発生頻度を低下させることが可能となると同時に、半導体装置のさらなる高密度化が可能となる。
With the above structure, the back surface potential of the chip 1 can be changed to GND, and a semiconductor device having excellent electrical characteristics can be realized.
FIG. 13 shows a fifth embodiment of the present invention. In this configuration, a plurality of chips 5 are mounted on the second substrate 6 by flip chip bonding to form a multichip module. The chips 5 on the second substrate 6 can be electrically connected to each other via the second substrate 6. As a result, the number of terminals connected to the first substrate 2 with the metal wires 7 can be minimized, and the frequency of occurrence of problems such as wire shorts and disconnection of the metal wires 7 can be reduced. Further, it is possible to further increase the density of the semiconductor device.

本発明によれば半導体装置を小型化、薄型化でき、情報通信機器、事務用電子機器、家庭用電子機器、測定装置、組立ロボット等の産業用電子機器、医療用電子機器、電子玩具等の小型化を容易にできる。   According to the present invention, a semiconductor device can be reduced in size and thickness, such as an information communication device, an office electronic device, a home electronic device, a measuring device, an industrial electronic device such as an assembly robot, a medical electronic device, an electronic toy, etc. Miniaturization can be facilitated.

本発明の一実施形態にかかる半導体装置の実施形態の断面図Sectional drawing of embodiment of the semiconductor device concerning one Embodiment of this invention 同実施形態にかかる半導体装置の製造方法における第二の基板にチップを配置した状態を示すもので、(a)は平面図、(b)はA’−B’矢視断面図2A and 2B show a state in which chips are arranged on a second substrate in the method for manufacturing a semiconductor device according to the embodiment, where FIG. 3A is a plan view and FIG. 2B is a cross-sectional view taken along line A'-B '. 同実施形態にかかる半導体装置の製造方法における第一の基板にチップを配置した状態を示すもので、(a)は平面図、(b)はA−B矢視断面図The state which has arrange | positioned the chip | tip on the 1st board | substrate in the manufacturing method of the semiconductor device concerning the embodiment is shown, (a) is a top view, (b) is AB sectional view taken on the line. 同実施形態にかかる半導体装置の製造方法におけるチップを実装した第二の基板をウェハリングに装着した平面図The top view which mounted | wore the wafer ring with the 2nd board | substrate which mounted the chip | tip in the manufacturing method of the semiconductor device concerning the embodiment 同実施形態にかかる半導体装置の製造方法におけるチップを実装した第二の基板のダイシングを示す模式図The schematic diagram which shows the dicing of the 2nd board | substrate which mounted the chip | tip in the manufacturing method of the semiconductor device concerning the embodiment 同実施形態にかかる半導体装置の製造方法におけるダイスボンディングをした状態を示すもので、(a)は平面図、(b)はA”−B”矢視断面図The state which carried out the die bonding in the manufacturing method of the semiconductor device concerning the embodiment is shown, (a) is a top view, (b) is A "-B" arrow sectional drawing. 同実施形態にかかる半導体装置の製造方法における第二の基板と第一の基板とを金属ワイヤで接続した状態を示す断面図Sectional drawing which shows the state which connected the 2nd board | substrate and 1st board | substrate with the metal wire in the manufacturing method of the semiconductor device concerning the embodiment 同実施形態にかかる半導体装置の製造方法における最終外形を示す断面図Sectional drawing which shows the final external shape in the manufacturing method of the semiconductor device concerning the embodiment 同実施形態にかかる第二の基板を示す平面図The top view which shows the 2nd board | substrate concerning the embodiment 本発明の第2の実施形態にかかる半導体装置の断面図Sectional drawing of the semiconductor device concerning the 2nd Embodiment of this invention 本発明の第3の実施形態にかかる半導体装置の断面図Sectional drawing of the semiconductor device concerning the 3rd Embodiment of this invention. 本発明の第4の実施形態にかかる半導体装置の断面図Sectional drawing of the semiconductor device concerning the 4th Embodiment of this invention 本発明の第5の実施形態にかかる半導体装置の断面図Sectional drawing of the semiconductor device concerning the 5th Embodiment of this invention 従来のチップ積層型半導体装置を示す断面図Sectional view showing a conventional chip stacked semiconductor device 従来のチップ積層型半導体装置を示す断面図Sectional view showing a conventional chip stacked semiconductor device 従来のチップ積層型半導体装置を示す断面図Sectional view showing a conventional chip stacked semiconductor device

符号の説明Explanation of symbols

1 チップ
2 第一の基板
3 バンプ
4 封止樹脂(絶縁性樹脂)
5 チップ
6 第二の基板
7 金属ワイヤー
8 封止樹脂(絶縁性樹脂)
9 電極
10 電極
11 配線
12 2ndパッド
13 外部端子
14 接着シート
15a 熱硬化性シート
15b ダイシングシート
16 ウェハリング
17 ブレード
18 スルーホール
19a 上側面配線
19b 下側面配線
1 Chip 2 First substrate 3 Bump 4 Sealing resin (insulating resin)
5 Chip 6 Second substrate 7 Metal wire 8 Sealing resin (insulating resin)
9 Electrode 10 Electrode 11 Wiring 12 2nd pad 13 External terminal 14 Adhesive sheet 15a Thermosetting sheet 15b Dicing sheet 16 Wafer ring 17 Blade 18 Through hole 19a Upper side wiring 19b Lower side wiring

Claims (7)

上側面に電極と下側面に外部電極端子を有する第一の基板と、前記第一の基板上に電気的接続された第一の半導体素子と、前記第一の半導体素子の上側面に接着された第二の基板と、前記第二の基板上に電気的に接続された第二の半導体素子と、前記第一の基板と前記第二の基板とを電気的に接続する金属ワイヤーと、前記第一の基板上側面を被覆する絶縁性樹脂で構成された半導体素子積層型の半導体装置において、前記第一、及び第二の半導体素子がそれぞれ前記第一、及び前記第二の基板にフリップチップ接続され、前記第二の半導体素子が前記第二の基板および前記金属ワイヤーを介して前記第一の基板に電気的に接続され、前記第二の基板が上側面に形成する上側面配線と下側面に形成する下側面配線とを電気的に接続してなるものであって、前記下側面配線は前記第二の基板のスルーホールによって前記上側面配線に接続され、第一の半導体素子の上側面と第二の基板の下側面配線とを導電性接着剤によって接着し、前記第二の基板の上側面配線を第一の基板のGNDに金属ワイヤーを介して電気的に接続したことを特徴とする半導体装置。 A first substrate having an electrode on an upper surface and an external electrode terminal on a lower surface; a first semiconductor element electrically connected to the first substrate; and an upper surface of the first semiconductor element. A second substrate, a second semiconductor element electrically connected on the second substrate, a metal wire electrically connecting the first substrate and the second substrate, and In a semiconductor element stacked type semiconductor device composed of an insulating resin covering the upper surface of the first substrate, the first and second semiconductor elements are flip-chip on the first and second substrates, respectively. Connected to the first substrate through the second substrate and the metal wire, and an upper surface wiring and a lower surface formed on the upper surface of the second substrate. It is formed by electrically connecting the lower surface wiring formed on the side surface. The lower surface wiring is connected to the upper surface wiring by a through hole of the second substrate, and the upper surface of the first semiconductor element and the lower surface wiring of the second substrate are connected by a conductive adhesive. A semiconductor device , wherein the upper surface wiring of the second substrate is electrically connected to the GND of the first substrate via a metal wire . 前記第二の基板が前記第一の半導体素子よりも大きいことを特徴とする請求項1に記載の半導体装置。 The semiconductor device of claim 1, wherein the second substrate being greater than said first semiconductor element. 前記第二の基板が金属配線の転写された接着シートで構成されていることを特徴とする請求項1又は2に記載の半導体装置。 3. The semiconductor device according to claim 1, wherein the second substrate is formed of an adhesive sheet to which metal wiring is transferred . 複数の前記半導体素子を前記第一の基板上にフリップチップ接続したことを特徴とする請求項1〜3の何れか1項に記載の半導体装置。 The semiconductor device according to claim 1, wherein a plurality of the semiconductor elements are flip-chip connected to the first substrate . 複数の前記半導体素子を前記の基板上にフリップチップ接続したことを特徴とする請求項1〜4の何れか1項に記載の半導体装置。 The semiconductor device according to any one of claims 1 to 4, characterized in that flip-chip connecting a plurality of said semiconductor element to said second substrate. 前記第二の半導体素子の上側面が絶縁性樹脂の外側に露出していることを特徴とする請求項1〜の何れか1項に記載の半導体装置。 The semiconductor device according to any one of claim 1 to 5, characterized in that the upper surface of the second semiconductor element is exposed to the outside of the insulating resin. 上側面に電極と下側面に外部電極端子を有する第一の基板上に第一の半導体素子をフリップチップ実装し、第二の基板上に第二の半導体素子をフリップチップ実装し、前記第一の半導体素子の上側面に第二の基板を接着し、前記第一の基板の上側面の電極と前記第二の基板とを金属ワイヤーで電気的に接続し、前記第一の基板上側面を絶縁性樹脂で被覆し、前記第二の基板が上側面に形成する上側面配線と下側面に形成する下側面配線とを電気的に接続してなるものであって、前記下側面配線は前記第二の基板のスルーホールによって前記上側面配線に接続され、第一の半導体素子の上側面と第二の基板の下側面配線とを導電性接着剤によって接着し、前記第二の基板の上側面配線を第一の基板のGNDに金属ワイヤーを介して電気的に接続したことを特徴とする半導体装置の製造方法。 A first semiconductor element is flip-chip mounted on a first substrate having an electrode on the upper surface and an external electrode terminal on the lower surface, and a second semiconductor element is flip-chip mounted on the second substrate, A second substrate is bonded to the upper surface of the semiconductor element, the electrode on the upper surface of the first substrate and the second substrate are electrically connected by a metal wire, and the upper surface of the first substrate is Covering with an insulating resin, the second substrate is formed by electrically connecting an upper side surface wiring formed on the upper side surface and a lower side surface wiring formed on the lower side surface. Connected to the upper surface wiring by a through hole of the second substrate, and the upper surface of the first semiconductor element and the lower surface wiring of the second substrate are bonded by a conductive adhesive, Side wiring is electrically connected to GND on the first board via metal wire The method of manufacturing a semiconductor device, characterized in that the.
JP2004181923A 2004-06-21 2004-06-21 Semiconductor device and manufacturing method thereof Expired - Fee Related JP4439339B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004181923A JP4439339B2 (en) 2004-06-21 2004-06-21 Semiconductor device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004181923A JP4439339B2 (en) 2004-06-21 2004-06-21 Semiconductor device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2006005260A JP2006005260A (en) 2006-01-05
JP4439339B2 true JP4439339B2 (en) 2010-03-24

Family

ID=35773354

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004181923A Expired - Fee Related JP4439339B2 (en) 2004-06-21 2004-06-21 Semiconductor device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4439339B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008010512A (en) * 2006-06-27 2008-01-17 Nec Electronics Corp Laminated semiconductor device
JP2008016527A (en) * 2006-07-04 2008-01-24 Casio Comput Co Ltd Semiconductor device and its manufacturing method

Also Published As

Publication number Publication date
JP2006005260A (en) 2006-01-05

Similar Documents

Publication Publication Date Title
US8786102B2 (en) Semiconductor device and method of manufacturing the same
KR100565930B1 (en) Light thin stacked package semiconductor device and process for fabrication thereof
JP5529371B2 (en) Semiconductor device and manufacturing method thereof
US7679178B2 (en) Semiconductor package on which a semiconductor device can be stacked and fabrication method thereof
US20040222508A1 (en) Semiconductor device, electronic device, electronic apparatus, method of manufacturing semiconductor device, and method of manufacturing electronic device
JP5207896B2 (en) Semiconductor device and manufacturing method thereof
JP2005183923A (en) Semiconductor device and its manufacturing method
JP2006049569A (en) Stacked semiconductor-device package and manufacturing method therefor
JP2003115560A (en) Semiconductor device, laminated semiconductor device, manufacturing method of semiconductor device, and manufacturing method of laminated semiconductor device
WO2007026392A1 (en) Semiconductor device and method for manufacturing same
JP4896010B2 (en) Multilayer semiconductor device and manufacturing method thereof
CN107808880B (en) Method for manufacturing semiconductor device
KR20060101385A (en) A semiconductor device and a manufacturing method of the same
JP2004153130A (en) Semiconductor device and its manufacturing method
JP2005175263A (en) Semiconductor device, manufacturing method therefor, and electronic equipment
JP2001223326A (en) Semiconductor device
KR20100056247A (en) Semiconductor package having adhesive layer
JPWO2003012863A1 (en) Semiconductor device and manufacturing method thereof
US20080142947A1 (en) Chip package and method of manufacturing the same
US20050110166A1 (en) Semiconductor device, electronic device, electronic apparatus, method of manufacturing semiconductor device, and method of manufacturing electronic device
US11362057B2 (en) Chip package structure and manufacturing method thereof
US9252126B2 (en) Multi Chip Package-type semiconductor device
JP5547703B2 (en) Manufacturing method of semiconductor device
JP4602223B2 (en) Semiconductor device and semiconductor package using the same
JP4439339B2 (en) Semiconductor device and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070307

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080430

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090915

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091208

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100105

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130115

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130115

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees