JP4438198B2 - Post-processing method of stereolithography - Google Patents
Post-processing method of stereolithography Download PDFInfo
- Publication number
- JP4438198B2 JP4438198B2 JP2000259171A JP2000259171A JP4438198B2 JP 4438198 B2 JP4438198 B2 JP 4438198B2 JP 2000259171 A JP2000259171 A JP 2000259171A JP 2000259171 A JP2000259171 A JP 2000259171A JP 4438198 B2 JP4438198 B2 JP 4438198B2
- Authority
- JP
- Japan
- Prior art keywords
- temperature
- post
- oven
- curing step
- optically shaped
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Description
【0001】
【発明の属する技術分野】
本発明は、光造形物の後処理方法に関する。
【0002】
【従来の技術】
近年、光硬化性樹脂に選択的に光照射して硬化樹脂層を形成する工程を繰り返すことにより、硬化樹脂層が一体的に積層されてなる立体形状物(光造形物)を形成する光造形法が提案されている〔特開昭60−247515号公報、米国特許明細書第4,575,330号(特開昭62−35966号公報)、特開昭62−101408号公報、特開平5−24119号公報参照〕。この光造形法は、目的とする立体形状物の形状が複雑なものであっても、容易にしかも短時間で得ることができるため注目されている。
【0003】
このような光造形法の一例を説明する。先ず、液状の光硬化性樹脂の薄層を形成し、この薄層に例えば紫外線レーザーによって選択的に光を照射することによって硬化樹脂層を形成する。次いで、この硬化樹脂層の上に、一層分の光硬化性樹脂を供給してその薄層を形成し、当該薄層に選択的に光を照射することにより、先行して形成された硬化樹脂層上にこれと連続するよう新しい硬化樹脂層を一体的に積層形成する。そして、光が照射されるパターンを変化させながらあるいは変化させずに上記の工程を所定回数繰り返すことにより、複数の硬化樹脂層が一体的に積層されてなる光造形物が形成される。
【0004】
従来、光造形法により得られる光造形物は、デザインモデル、医療用モデルさらには樹脂成形用型のマスターモデル等に用いられている。そして、最近においては、射出成形法、プレス成形法、真空成形法、圧空成形法、発泡成形法、パルプモールド成形法などの各種成形法に用いる成形型を、光造形法によって製造する試みがなされている。
これらの光造形物には、高い寸法精度は勿論のこと、使用条件に耐え得る十分な機械的強度および耐熱性が要求される。
【0005】
しかしながら、光造形法により得られる光造形物は、硬化状態が十分ではなく、そのままでは、所期の機械的強度および耐熱性を有するものとならない。
このため、赤外線ヒーターランプなどで光造形物を加熱することにより、当該光造形物の硬化反応を進行させて、その機械的特性などを向上させる後硬化処理が行われている。
【0006】
【発明が解決しようとする課題】
加熱処理により光造形物を後硬化させる方法として、従来、光造形物を構成する硬化樹脂のガラス転移温度(Tg)よりも高い温度に設定されたオーブン内に当該光造形物を配置して加熱処理する方法が利用されている。
しかしながら、このような加熱処理では、後硬化処理された光造形物に反り変形等が生じやすく、高い寸法精度を維持することが困難であるという問題がある。
【0007】
本発明は以上のような事情に基いてなされたものである。
本発明の目的は、高い寸法精度を維持しつつ、優れた機械的強度を光造形物に付与することができる光造形物の後処理方法を提供することにある。
【0008】
【課題を解決するための手段】
本発明の光造形物の後処理方法は、光硬化性樹脂に選択的に光照射して硬化樹脂層を形成する工程を繰り返すことにより得られる、複数の硬化樹脂層が一体的に積層されてなる光造形物の後処理方法であって、ガラス転移温度(Tg)が100℃を超える硬化樹脂から構成される光造形物を50〜100℃の温度で1〜24時間にわたり加熱処理する低温後硬化工程と、当該低温後硬化工程において加熱処理された前記光造形物を、(Tg)〜(Tg+100℃)の温度で1〜24時間にわたり加熱処理する高温後硬化工程とを含むことを特徴とする。
【0009】
上記の光造形物の後処理方法においては、前記高温後硬化工程において加熱処理された光造形物を2℃/min以下の冷却速度で冷却することが好ましい。
【0010】
【作用】
本発明の光造形物の後処理方法によれば、ガラス転移温度(Tg)が100℃を超える硬化樹脂から構成される光造形物に対して50〜100℃の低い温度で加熱処理を行った後に、当該光造形物を構成する硬化樹脂のガラス転移温度(Tg)以上の高い温度による加熱処理を行うので、当該光造形物に反り変形等が生じることが抑制され、後処理された光造形物は、高い寸法精度を維持しつつ、優れた機械的強度を有するものとなる。
【0011】
ここに、本発明の後処理方法により処理される光造形物に反り変形等を生じさせない理由としては明確ではないが、以下のように推定される。
すなわち、十分な硬化状態でない光造形物が、これを構成する硬化樹脂のガラス転移温度を超えるような高い温度雰囲気中に曝されると、硬化反応の進行とともに、残留歪み(内部応力)の除去等に伴う熱変形が生じる。
これに対して、本発明の後処理方法では、低温後硬化工程において、光造形物に熱変形を生じさせない温度条件(50〜100℃)で硬化反応を進行させる。これにより、当該光造形物は、ガラス転移温度を超えるような高い温度条件下に曝されても熱変形が生じない程度の硬化状態に達する。そして、高温後硬化工程においては、残留歪み(内部応力)の除去等に伴う熱変形を生じさせることなく、十分な機械的強度が発現されるまで、当該光造形物の硬化反応を更に進行させることができる。
【0012】
【発明の実施の形態】
以下、本発明について詳細に説明する。
本発明の後処理が行われる光造形物を得るために使用される光硬化性樹脂としては、ガラス転移温度(Tg)が100℃を超えるものであれば特に制限されるものではなく、例えばエポキシ樹脂などのカチオン重合性光硬化性樹脂、ウレタン樹脂、アクリル樹脂、ビニルエーテル樹脂などのラジカル重合性光硬化性樹脂、およびこれらの混合物、さらにこれらの樹脂に無機および/または有機の粒子状あるいは繊維状の充填剤を混合した樹脂組成物が挙げられる。
【0013】
このような光硬化性樹脂としては、例えばJSR株式会社製の「デソライトSCR」シリーズとして市販されている「SCR−802」、「SCR−801」、「SCR−935」、「SCR−950」などを好適に用いることができる。
【0014】
本発明の方法により後処理される光造形物(以下、「一次硬化体」という。)としては、従来公知の光造形法により製造された光造形物を用いることができる。具体的には、液状の光硬化性樹脂に対して、可視光、紫外光、赤外光等の光を選択的に照射して硬化樹脂層を形成する工程を繰り返すことにより得られる、複数の硬化樹脂層が一体的に積層されてなるものである。
【0015】
一次硬化体の硬化状態としては、最終的に得られる光造形物(以下、「二次硬化体」ともいう。)の有する引張強度に対して30〜80%の引張強度となるまで硬化が進行した状態である。
また、一次硬化体は、その形状安定性を損なわない程度において、その内部に、未硬化の光硬化性樹脂が残存していてもよい。
【0016】
<光造形物(一次硬化体)の後処理方法>
本発明の後処理方法は、一次硬化体に対して加熱処理をすることにより、硬化反応を進行(後硬化)させて二次硬化体を得るものであるが、当該加熱処理が、低温後硬化工程と高温後硬化工程とを含むものであることに特徴を有する。以下、低温後硬化工程および高温後硬化工程について説明する。
【0017】
(1)低温後硬化工程:
低温後硬化工程は、50〜100℃の温度で1〜24時間にわたって加熱処理することにより、一次硬化体を後硬化させる工程である。
【0018】
低温後硬化工程における加熱温度は、通常50〜100℃とされ、好ましくは60〜90℃とされる。
また、低温後硬化工程における処理時間は、通常1〜24時間とされ、好ましくは1〜8時間とされる。
【0019】
50〜100℃の温度で1〜24時間にわたり一次硬化体(光造形物)を加熱処理することにより、当該光造形物の硬化状態を、後述する高温後硬化工程の温度条件で処理しても熱変形が生じない程度の硬化状態に到達させることができる。しかも、50〜100℃の温度での加熱処理によれば、硬化状態が十分でない光造形物であっても熱変形が生じることはない。
従って、高温後硬化工程に先立って低温後硬化工程を実施することにより、最終的に得られる光造形物(二次硬化体)に反り変形を生じさせることはない。
【0020】
低温後硬化工程における具体的処理方法(熱履歴)としては、下記(1)〜(4)に示す方法を例示することができる。
【0021】
(1)所定の温度(T1 :50℃≦T1 ≦100℃)に昇温されているオーブン内に光造形物(一次硬化体)を入れて、1〜24時間にわたり放置した後、当該光造形物をオーブンから取り出す方法(後述する実施例1〜7)。
【0022】
(2)室温のオーブン内に光造形物(一次硬化体)を入れた後、当該オーブン内を温度(T1 )まで昇温させて、この温度(T1 )で一定時間保持した後、当該オーブン内を、高温後硬化工程における処理温度まで昇温させる方法(後述する実施例8)。
【0023】
(3)室温のオーブン内に光造形物(一次硬化体)を入れた後、当該オーブン内を温度(T1 )まで昇温させて、この温度(T1 )で一定時間保持した後、当該オーブン内を室温まで降温させ、当該光造形物をオーブンから取り出す方法。
【0024】
(4)室温のオーブン内に光造形物(一次硬化体)を入れた後、当該オーブン内の温度を継続して昇温させて、オーブン内の温度が50〜100℃の加熱温度域(以下、「低温加熱温度域」ともいう。)となる状態を所定時間(1〜24時間)維持した後、当該光造形物をオーブンから取り出す方法。
【0025】
ここに、上記(2)の方法における『処理時間』には、温度(T1 )で保持された時間と、オーブン内の温度が50℃から(T1 )に至るまでの昇温時間と、オーブン内の温度が(T1 )から100℃に至るまでの昇温時間とが含まれる。また、上記(3)の方法における『処理時間』には、温度(T1 )で保持された時間と、オーブン内の温度が50℃から(T1 )に至るまでの昇温時間と、オーブン内の温度が(T1 )から50℃に至るまでの降温時間とが含まれる。
【0026】
以上においては、低温加熱温度域における所定の温度(T1 )に一定時間保持する必要はなく、オーブン内の温度が当該低温加熱温度域内に所定時間(1〜24時間)維持されれば、例えば上記(4)に示すように、低温加熱温度域内において継続して昇温させてもよいし、温度を変動させてもよい。また、一定時間保持する温度が2点以上あってもよい。
すなわち、本発明の低温後硬化工程における処理時間とは、低温加熱温度域(50〜100℃)内に維持された状態で光造形物(一次硬化体)の加熱処理が行われる時間をいう。
【0027】
(2)高温後硬化工程:
高温後硬化工程は、低温後硬化工程において加熱処理された前記光造形物を、(Tg)〜(Tg+100℃)の温度で1〜24時間にわたり加熱処理することにより、十分な機械的強度が発現されるまで、当該光造形物を後硬化させる工程である。
【0028】
ここに、(Tg)は、光造形物を構成する硬化樹脂のガラス転移温度である。このガラス転移温度(Tg)は、DMA法(動的粘弾性試験)により測定されたものであり、具体的には、損失弾性率と動的貯蔵との比、すなわち損失正接のピーク値を示す温度である。このガラス転移温度(Tg)の測定値は、後硬化処理の前後で変化しないものである。
【0029】
高温後硬化工程における加熱温度は、通常(Tg)〜(Tg+100℃)とされ、好ましくは(Tg)〜(Tg+50℃)とされる。
また、高温後硬化工程における処理時間は、通常1〜24時間とされ、好ましくは1〜8時間とされる。
【0030】
低温後硬化工程において加熱処理された前記光造形物を、(Tg)〜(Tg+100℃)の温度で1〜24時間にわたり加熱処理することにより、当該光造形物に十分な機械的強度が発現されるまで硬化反応が進行(後硬化)するとともに、当該光造形物中の残留歪み(内部応力)の除去が行われ、最終的に得られる光造形物(二次硬化体)に所期の機械的強度が得られる。
【0031】
高温後硬化工程における具体的処理方法(熱履歴)としては、下記(1)〜(3)に示す方法を例示することができる。
【0032】
(1)低温後硬化工程において加熱処理された前記光造形物を、所定の温度(T2 :Tg≦T2 ≦Tg+100℃)に昇温されているオーブン内に入れて、1〜24時間にわたり放置した後、当該光造形物をオーブンから取り出す方法(後述する実施例1〜7)。
【0033】
(2)低温後硬化工程で使用したオーブン内に光造形物を入れたまま、当該オーブン内の温度を(T1 )から(T2 )まで昇温させて、この温度(T2 )で一定時間保持した後、当該オーブン内を室温まで降温させ、当該光造形物をオーブンから取り出す方法(後述する実施例8〜9)。
【0034】
(3)低温後硬化工程で使用したオーブン内に光造形物を入れたまま、当該オーブン内の温度を(T1 )から(T2 )まで昇温させて、この温度(T2 )で一定時間保持した後、当該光造形物をオーブンから取り出す方法(後述する参考例1)。
【0035】
ここに、上記(2)の方法における『処理時間』には、温度(T2 )で保持された時間と、オーブン内の温度が(Tg)から(T2 )に至るまでの昇温時間と、オーブン内の温度が(T2 )から(Tg)に至るまでの降温時間とが含まれる。
また、上記(3)の方法における『処理時間』には、温度(T2 )で保持された時間と、オーブン内の温度が(Tg)から(T2 )に至るまでの昇温時間とが含まれる。
【0036】
以上においては、低温後硬化工程と同様に、(Tg)〜(Tg+100℃)の加熱温度域(以下、「高温加熱温度域」ともいう。)における所定の温度(T2 )に一定時間保持する必要はなく、オーブン内の温度が当該高温加熱温度域内に所定時間(1〜24時間)維持されればよい。
すなわち、本発明の高温後硬化工程における処理時間とは、高温加熱温度域((Tg)〜(Tg+100℃))内に維持された状態で光造形物の加熱処理が行われる時間をいう。
【0037】
高温後硬化工程において加熱処理された光造形物は、2℃/min以下の冷却速度で冷却されることが好ましい。冷却速度が2℃/minを超える場合には、肉厚が大きい光造形物に対して後処理を行った場合に、最終的に得られる光造形物に熱変形が生じることがある。
【0038】
以上のような後硬化処理により得られた光造形物は、高い寸法精度を維持しつつ、優れた機械的強度を有するものとなる。従って、例えばデザインモデル、医療用モデルさらには樹脂成形用型等のマスターモデルや、射出成形法、プレス成形法、真空成形法、圧空成形法、発泡成形法、パルプモールド成形法などの各種成形法に用いる樹脂製成形型として特に好適である。
【0039】
【実施例】
以下、本発明を実施例で説明するが、本発明はこれら実施例に限定されるものではない。
<試験片の作製>
光硬化性樹脂として、ガラス転移温度(Tg)が133℃であるエポキシ系光硬化性樹脂「SCR802」(JSR(株)製)を用い、照射用光源としてアルゴンイオンレーザー(波長351nm、365nm)を備えた光造形装置「JSC−2000」(ソニー(株)製)により、下記に示す条件に従って、長さ150mm、幅20mm、厚さ4mmの板状の試験片(一次硬化体)を作製した。
ここに、光硬化性樹脂のガラス転移温度(Tg)は、既述の方法に従って、動的粘弾性測定装置「レオバイブロン DDV−01FP」(オリエンテック(株)製)を用い、加熱温度を 3℃/min、周波数を1Hzとした測定条件において得られた値である。
【0040】
(1)液面におけるレーザー光の照射強度:120mJ/cm2 ,
(2)走査速度:100cm/秒,
(3)形成する硬化樹脂層の厚み:0.1mm
【0041】
得られた試験片(一次硬化体)について、後述する方法により引張強度および曲げ強度の測定を行ったところ、引張強度は50MPa、曲げ強度は65MPaであった。
【0042】
<実施例1>
得られた試験片(一次硬化体)を80℃に維持されたオーブン内に入れ、この状態で2時間保持することにより加熱処理(低温後硬化工程)を行った後、直ちに、160℃に維持された他のオーブン内に入れ替え、この状態で2時間保持することにより加熱処理(高温後硬化工程)を行い、これにより二次硬化体を得た。
【0043】
<実施例2〜実施例7>
下記表1に従って、低温後硬化工程における加熱温度および加熱時間、並びに高温後硬化工程における加熱温度および加熱時間の少なくとも1つの条件が実施例1と異なる処理条件で、試験片(一次硬化体)の後硬化処理を行うことにより二次硬化体を得た。
【0044】
<比較例1>
低温後硬化工程を行わずに、試験片(一次硬化体)を160℃に維持されたオーブン内に入れ、この状態で2時間保持することにより加熱処理(高温後硬化工程)を行った。
【0045】
<比較例2>
試験片(一次硬化体)を80℃に維持されたオーブン内に入れ、この状態で2時間保持することにより加熱処理(低温後硬化工程)を行い、高温後硬化工程を行わずに硬化体を得た。
【0046】
<比較例3>
試験片(一次硬化体)を120℃に維持されたオーブン内に入れ、この状態で2時間保持することにより加熱処理を行い、直ちに、160℃に維持された他のオーブン内に入れ替え、この状態で2時間保持することにより加熱処理(高温後硬化処理)を行った。
【0047】
<比較例4>
試験片(一次硬化体)を80℃に維持されたオーブン内に入れ、この状態で2時間保持することにより加熱処理(低温後硬化工程)を行い、直ちに、250℃に維持された他のオーブン内に入れ替え、この状態で2時間保持することにより加熱処理を行った。
【0048】
<比較例5>
試験片(一次硬化体)を120℃に維持されたオーブン内に入れ、この状態で8時間保持することにより加熱処理を行った。
【0049】
<実施例8>
試験片(一次硬化体)をオーブン内に配置し、図1に示すように、室温(20℃)から1℃/minの一定の昇温速度で80℃(T1 )まで加熱し、この状態で2時間保持した後、さらに、この状態から1℃/minの一定の昇温速度で160℃(T2 )まで加熱し、この状態で1時間保持した。その後、1℃/minの一定の冷却速度で冷却することにより、二次硬化体を得た。
この実施例における処理時間はそれぞれ、低温後硬化工程が170分、高温後硬化工程が94分である。
【0050】
<評価>
以上のようにして得られた試験片の各々について、反り量、引張強度および曲げ強度(機械的強度)を測定した。この結果を表1に併せて示す。
(1)反り量の測定は、試験片を平坦な面に配置し、配置面と試験片の底面との最大離間距離を測定することにより行った。
(2)引張強度の測定は、「モデル5567試験システム」(インストロン社製)を用い、JIS−K7113に準じて行った。
(3)曲げ強度の測定は、「モデル5567試験システム」(インストロン社製)を用い、JIS−K7203に準じて行った。
【0051】
【表1】
【0052】
表1から明らかなように、実施例1〜実施例8(本発明の後処理方法)により後硬化処理された試験片(二次硬化体)は、反り変形が抑制され、優れた機械的強度を有するものであった。これに対して、比較例1〜比較例5により後硬化処理された試験片は、いずれも、優れた機械的強度および高い寸法精度を共に有するものではなかった。
【0053】
<光造形物の作製>
(1)三次元立体像の設計工程
図2に示すような、三次元立体像をCADシステムを用いて設計し、この三次元立体像を水平方向に等分に切断したときに得られる各スライス形状データを作製した。この三次元立体像についての具体的な寸法a〜fは、下記のとおりである。
a=60mm、b=120mm、c=50mm、d=20mm、e=80mm、f=30mm
【0054】
(2)光造形工程
光硬化性樹脂として、エポキシ系光硬化性樹脂「SCR802」(JSR(株)製)を用い、照射用光源としてアルゴンイオンレーザー(波長351nm、365nm)を備えた光造形装置「JSC−2000」(ソニー(株)製)により光造形物(一次硬化体)を作製した。
【0055】
<実施例9>
上記のようにして得られた光造形物(一次硬化体)をオーブン内に配置し、図1に示すように、室温(20℃)から1℃/minの一定の昇温速度で80℃(T1 )まで加熱し、この状態で2時間保持した後、さらに、この状態から1℃/minの一定の昇温速度で160℃(T2 )まで加熱し、この状態で1時間保持し、その後、1℃/minの一定の冷却速度で徐冷することにより、二次硬化体を得た。
【0056】
<参考例1>
160℃の加熱温度(T2 )で1時間保持した後、直ちにオーブン内から光造形物を取り出して5℃/minの冷却速度で冷却したこと以外は実施例9と同様にして、二次硬化体を得た。
【0057】
以上のようにして得られた2つの光造形物(二次硬化体)の各々について、図2(ハ)に示すP−P間の離間距離(b’)を測定し、設計値(b)に対する寸法誤差(b’−b)を算出した。
実施例9により得られた光造形物の寸法誤差は0.3mm以下であり、高い寸法精度が維持されることが確認された。これに対して、参考例1により得られた光造形物の寸法誤差は0.5mmであり、実施例9により得られた光造形物よりは若干、寸法誤差は大きいものであったが、実用上は何ら問題のないものであった。
【0058】
【発明の効果】
本発明の光造形物の後処理方法によれば、光造形法により得られた光造形物の高い寸法精度を維持しつつ、優れた機械的強度を付与することができる。
【図面の簡単な説明】
【図1】実施例8および実施例9の後硬化処理におけるオーブン内の熱履歴を示す説明図である。
【図2】実施例9および参考例1において設計した三次元立体像を示す説明図であり、(イ)は三次元立体像の斜視図、(ロ)は三次元立体像の正面図、(ハ)は三次元立体像の平面図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a post-processing method for an optically shaped object.
[0002]
[Prior art]
In recent years, optical modeling that forms a three-dimensional object (stereoscopic object) in which a cured resin layer is integrally laminated by repeating a process of selectively irradiating light to a photocurable resin to form a cured resin layer. Have been proposed [Japanese Patent Laid-Open No. 60-247515, US Pat. No. 4,575,330 (Japanese Patent Laid-Open No. 62-35966), Japanese Patent Laid-Open No. 62-101408, and Japanese Patent Laid-Open No. Hei 5 No.-24119]. This stereolithography is attracting attention because it can be obtained easily and in a short time even if the shape of the target three-dimensional object is complicated.
[0003]
An example of such an optical modeling method will be described. First, a thin layer of a liquid photocurable resin is formed, and the cured resin layer is formed by selectively irradiating the thin layer with, for example, an ultraviolet laser. Next, a one-layer photocurable resin is supplied on the cured resin layer to form the thin layer, and the thin layer is selectively irradiated with light to form a cured resin formed in advance. A new cured resin layer is integrally laminated on the layer so as to be continuous therewith. Then, by repeating the above process a predetermined number of times while changing or not changing the pattern irradiated with light, an optically shaped object in which a plurality of cured resin layers are integrally laminated is formed.
[0004]
Conventionally, an optical modeling object obtained by an optical modeling method is used for a design model, a medical model, a master model of a resin molding die, and the like. In recent years, attempts have been made to produce molding dies used in various molding methods such as injection molding, press molding, vacuum molding, pressure molding, foam molding, pulp molding, and the like by stereolithography. ing.
These optically shaped objects are required to have sufficient mechanical strength and heat resistance that can withstand the use conditions as well as high dimensional accuracy.
[0005]
However, the optically shaped article obtained by the optical shaping method is not sufficiently cured, and as it is, it does not have the desired mechanical strength and heat resistance.
For this reason, the post-curing process is performed in which the optical modeling object is heated by an infrared heater lamp or the like to advance the curing reaction of the optical modeling object to improve its mechanical characteristics.
[0006]
[Problems to be solved by the invention]
As a method of post-curing an optically shaped object by heat treatment, the optically shaped object is conventionally placed in an oven set at a temperature higher than the glass transition temperature (Tg) of the cured resin constituting the optically shaped object and heated. A method of processing is used.
However, in such a heat treatment, there is a problem that warping deformation or the like is likely to occur in the post-cured optical shaped article and it is difficult to maintain high dimensional accuracy.
[0007]
The present invention has been made based on the above situation.
An object of the present invention is to provide a post-processing method for an optically shaped object that can impart excellent mechanical strength to the optically shaped object while maintaining high dimensional accuracy.
[0008]
[Means for Solving the Problems]
In the post-processing method of the optically shaped article of the present invention, a plurality of cured resin layers obtained by repeating the step of selectively irradiating light to a photocurable resin to form a cured resin layer are integrally laminated. The post-processing method of the optical modeling object which becomes, Comprising: After the low temperature which heat-processes the optical modeling object comprised from the cured resin whose glass transition temperature (Tg) exceeds 100 degreeC at the temperature of 50-100 degreeC for 1 to 24 hours Including a curing step and a high-temperature post-curing step in which the optically shaped article heat-treated in the low-temperature post-curing step is heat-treated at a temperature of (Tg) to (Tg + 100 ° C.) for 1 to 24 hours. To do.
[0009]
In the post-processing method of an optical modeling object, it is preferable to cool the optical modeling object heat-treated in the high temperature post-curing step at a cooling rate of 2 ° C./min or less.
[0010]
[Action]
According to the post-processing method for an optically shaped article of the present invention, heat treatment was performed at a low temperature of 50 to 100 ° C. on an optically shaped article composed of a cured resin having a glass transition temperature (Tg) exceeding 100 ° C. Later, since heat treatment is performed at a temperature higher than the glass transition temperature (Tg) of the cured resin constituting the stereolithography object, warping deformation and the like are suppressed from occurring in the stereolithography object, and post-processing stereolithography is performed. The object has excellent mechanical strength while maintaining high dimensional accuracy.
[0011]
Although it is not clear as a reason which does not produce curvature deformation etc. to the optical modeling thing processed by the post-processing method of this invention here, it estimates as follows.
In other words, when an optically shaped object that is not in a sufficiently cured state is exposed to a high temperature atmosphere exceeding the glass transition temperature of the curable resin that constitutes it, the residual strain (internal stress) is removed as the curing reaction proceeds. The thermal deformation accompanying this occurs.
On the other hand, in the post-processing method of the present invention, the curing reaction is allowed to proceed under a temperature condition (50 to 100 ° C.) that does not cause thermal deformation of the optically shaped article in the low-temperature post-curing process. Thereby, the said stereolithography thing reaches the hardening state of the grade which does not produce a thermal deformation even if it exposes to high temperature conditions exceeding a glass transition temperature. In the high temperature post-curing step, the curing reaction of the stereolithography product is further advanced until sufficient mechanical strength is exhibited without causing thermal deformation associated with removal of residual strain (internal stress) or the like. be able to.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail.
The photocurable resin used for obtaining an optically shaped article subjected to the post-treatment of the present invention is not particularly limited as long as the glass transition temperature (Tg) exceeds 100 ° C. For example, epoxy Cationically polymerizable photocurable resins such as resins, radically polymerizable photocurable resins such as urethane resins, acrylic resins and vinyl ether resins, and mixtures thereof, and inorganic and / or organic particles or fibers in these resins The resin composition which mixed these fillers is mentioned.
[0013]
Examples of such a photocurable resin include “SCR-802”, “SCR-801”, “SCR-935”, “SCR-950”, and the like that are commercially available as “Desolite SCR” series manufactured by JSR Corporation. Can be suitably used.
[0014]
As an optical modeling thing (henceforth a "primary hardening body") post-processed by the method of this invention, the optical modeling thing manufactured by the conventionally well-known optical modeling method can be used. Specifically, the liquid photocurable resin is obtained by repeating a process of selectively irradiating light such as visible light, ultraviolet light, infrared light, etc. to form a cured resin layer. A cured resin layer is integrally laminated.
[0015]
As the cured state of the primary cured body, curing proceeds until the tensile strength of 30 to 80% with respect to the tensile strength of the finally obtained optically shaped article (hereinafter also referred to as “secondary cured body”) is obtained. It is in the state.
In addition, the uncured photocurable resin may remain in the primary cured body as long as the shape stability is not impaired.
[0016]
<Post-processing method of stereolithography (primary cured body)>
In the post-treatment method of the present invention, the primary cured product is heated to cause a curing reaction to proceed (post-cured) to obtain a secondary cured product. It is characterized by including a process and a high temperature post-curing process. Hereinafter, the low temperature post-curing step and the high temperature post-curing step will be described.
[0017]
(1) Low temperature post-curing process:
The low-temperature post-curing step is a step of post-curing the primary cured body by heat treatment at a temperature of 50 to 100 ° C. for 1 to 24 hours.
[0018]
The heating temperature in the low-temperature post-curing step is usually 50 to 100 ° C, preferably 60 to 90 ° C.
Further, the treatment time in the low temperature post-curing step is usually 1 to 24 hours, preferably 1 to 8 hours.
[0019]
Even if it processes the hardening state of the said optical modeling thing by the temperature conditions of the high temperature post-hardening process mentioned later by heat-processing a primary hardening body (optical modeling thing) for 1 to 24 hours at the temperature of 50-100 degreeC. It can be made to reach a cured state where thermal deformation does not occur. And according to the heat processing at the temperature of 50-100 degreeC, even if it is an optical modeling thing with a hardened state, thermal deformation does not arise.
Therefore, by carrying out the low temperature post-curing step prior to the high temperature post-curing step, the optically shaped article (secondary cured body) finally obtained does not warp and deform.
[0020]
Examples of the specific treatment method (heat history) in the low-temperature post-curing step include the methods shown in the following (1) to (4).
[0021]
(1) An optically shaped article (primary cured body) is placed in an oven heated to a predetermined temperature (T 1 : 50 ° C. ≦ T 1 ≦ 100 ° C.) and left for 1 to 24 hours. A method of taking out the optically shaped object from the oven (Examples 1 to 7 to be described later).
[0022]
(2) after putting the stereolithography product (primary cured product) in an oven at room temperature, the oven and allowed to warm up to a temperature (T 1), after holding a predetermined time at this temperature (T 1), the A method of raising the temperature in the oven to the processing temperature in the high temperature post-curing step (Example 8 described later).
[0023]
(3) after placing the stereolithography product (primary cured product) in an oven at room temperature, the oven and allowed to warm up to a temperature (T 1), after holding a predetermined time at this temperature (T 1), the A method in which the temperature inside the oven is lowered to room temperature, and the stereolithography product is taken out of the oven.
[0024]
(4) After putting an optical modeling thing (primary hardening body) in the oven of room temperature, the temperature in the said oven is raised continuously, and the temperature in an oven is 50-100 degreeC heating temperature range (below) , Also referred to as “low-temperature heating temperature range”), after maintaining the state to be a predetermined time (1 to 24 hours), the optically shaped article is taken out from the oven.
[0025]
Here, the “treatment time” in the above method (2) includes the time held at the temperature (T 1 ), the temperature rising time until the temperature in the oven reaches 50 ° C. to (T 1 ), The temperature rise time until the temperature in the oven reaches (T 1 ) to 100 ° C. is included. The “treatment time” in the above method (3) includes the time held at the temperature (T 1 ), the temperature rising time until the temperature in the oven reaches 50 ° C. to (T 1 ), the oven The temperature lowering time until the inside temperature reaches (T 1 ) to 50 ° C. is included.
[0026]
In the above, it is not necessary to hold at a predetermined temperature (T 1 ) in the low temperature heating temperature range for a certain time, and if the temperature in the oven is maintained in the low temperature heating temperature range for a predetermined time (1 to 24 hours), for example As shown in (4) above, the temperature may be raised continuously in the low temperature heating temperature range, or the temperature may be varied. Further, there may be two or more temperatures that are held for a certain period of time.
That is, the processing time in the low-temperature post-curing process of the present invention refers to the time during which the optically shaped article (primary cured body) is heat-treated while being maintained in the low-temperature heating temperature range (50 to 100 ° C.).
[0027]
(2) High temperature post-curing process:
In the high-temperature post-curing step, sufficient mechanical strength is exhibited by heat-treating the optically shaped article heat-treated in the low-temperature post-curing step at a temperature of (Tg) to (Tg + 100 ° C.) for 1 to 24 hours. This is a step of post-curing the stereolithography until it is done.
[0028]
Here, (Tg) is the glass transition temperature of the cured resin constituting the stereolithography object. The glass transition temperature (Tg) is measured by the DMA method (dynamic viscoelasticity test), and specifically shows the ratio of loss elastic modulus to dynamic storage, that is, the peak value of loss tangent. Temperature. The measured value of the glass transition temperature (Tg) does not change before and after the post-curing treatment.
[0029]
The heating temperature in the high temperature post-curing step is usually (Tg) to (Tg + 100 ° C.), preferably (Tg) to (Tg + 50 ° C.).
The treatment time in the high temperature post-curing step is usually 1 to 24 hours, preferably 1 to 8 hours.
[0030]
By heat-treating the optically shaped article heat-treated in the low temperature post-curing step at a temperature of (Tg) to (Tg + 100 ° C.) for 1 to 24 hours, sufficient mechanical strength is expressed in the optically shaped article. Until the curing reaction proceeds (post-curing), residual distortion (internal stress) in the stereolithography product is removed, and the final machined product (secondary cured product) has the desired machine. Strength is obtained.
[0031]
Examples of the specific treatment method (thermal history) in the high temperature post-curing step include the methods shown in the following (1) to (3).
[0032]
(1) The optically shaped article heat-treated in the low temperature post-curing step is placed in an oven heated to a predetermined temperature (T 2 : Tg ≦ T 2 ≦ Tg + 100 ° C.) for 1 to 24 hours. A method of removing the stereolithography product from the oven after being left (Examples 1 to 7 to be described later).
[0033]
(2) The temperature in the oven is raised from (T 1 ) to (T 2 ) while the stereolithography object is placed in the oven used in the low temperature post-curing process, and is constant at this temperature (T 2 ). After holding for a period of time, the inside of the oven is cooled to room temperature, and the stereolithography product is taken out of the oven (Examples 8 to 9 to be described later).
[0034]
(3) The temperature in the oven is increased from (T 1 ) to (T 2 ) while the stereolithography product is placed in the oven used in the low temperature post-curing process, and this temperature (T 2 ) is constant. A method of taking out the optically shaped article from the oven after holding for a period of time (Reference Example 1 described later).
[0035]
Here, the “treatment time” in the method (2) includes the time held at the temperature (T 2 ) and the temperature rise time until the temperature in the oven reaches (Tg) to (T 2 ). And the temperature lowering time until the temperature in the oven reaches (T 2 ) to (Tg).
In addition, the “treatment time” in the method (3) includes the time held at the temperature (T 2 ) and the temperature raising time until the temperature in the oven reaches (Tg) to (T 2 ). included.
[0036]
In the above, similarly to the low temperature post-curing step, the temperature is maintained at a predetermined temperature (T 2 ) in a heating temperature range (hereinafter also referred to as “high temperature heating temperature range”) of (Tg) to (Tg + 100 ° C.) for a certain period of time. It is not necessary, and the temperature in the oven may be maintained for a predetermined time (1 to 24 hours) within the high temperature heating temperature range.
That is, the processing time in the high-temperature post-curing step of the present invention refers to the time during which the optically shaped object is heat-treated while being maintained in the high-temperature heating temperature range ((Tg) to (Tg + 100 ° C.)).
[0037]
It is preferable that the optical modeling thing heat-processed in the high temperature post-hardening process is cooled with the cooling rate of 2 degrees C / min or less. When the cooling rate exceeds 2 ° C./min, thermal deformation may occur in the finally obtained optical modeling object when post-processing is performed on the optical modeling object having a large thickness.
[0038]
The optically shaped article obtained by the post-curing treatment as described above has excellent mechanical strength while maintaining high dimensional accuracy. Therefore, for example, a master model such as a design model, a medical model, and a resin mold, and various molding methods such as an injection molding method, a press molding method, a vacuum molding method, a pressure molding method, a foam molding method, and a pulp molding method. It is particularly suitable as a resin mold used in the above.
[0039]
【Example】
EXAMPLES Hereinafter, although an Example demonstrates this invention, this invention is not limited to these Examples.
<Preparation of test piece>
As the photocurable resin, an epoxy photocurable resin “SCR802” (manufactured by JSR Corporation) having a glass transition temperature (Tg) of 133 ° C. is used, and an argon ion laser (wavelength 351 nm, 365 nm) is used as a light source for irradiation. A plate-shaped test piece (primary cured body) having a length of 150 mm, a width of 20 mm, and a thickness of 4 mm was produced according to the following conditions by using the provided optical modeling apparatus “JSC-2000” (manufactured by Sony Corporation).
Here, the glass transition temperature (Tg) of the photo-curing resin is determined according to the method described above using a dynamic viscoelasticity measuring device “Leovibron DDV-01FP” (manufactured by Orientec Co., Ltd.), and the heating temperature is 3 ° C. / Min, a value obtained under measurement conditions with a frequency of 1 Hz.
[0040]
(1) Laser beam irradiation intensity on the liquid surface: 120 mJ / cm 2 ,
(2) Scanning speed: 100 cm / second,
(3) Thickness of the cured resin layer to be formed: 0.1 mm
[0041]
About the obtained test piece (primary hardened | cured material), when the tensile strength and bending strength were measured by the method mentioned later, tensile strength was 50 MPa and bending strength was 65 MPa.
[0042]
<Example 1>
The obtained test piece (primary cured body) is placed in an oven maintained at 80 ° C. and kept in this state for 2 hours to perform heat treatment (low temperature post-curing step) and immediately maintained at 160 ° C. It replaced in the other oven which was done, and heat processing (high temperature post-hardening process) was performed by hold | maintaining in this state for 2 hours, and thereby the secondary hardening body was obtained.
[0043]
<Example 2 to Example 7>
In accordance with Table 1 below, at least one condition of the heating temperature and heating time in the low temperature post-curing step and the heating temperature and heating time in the high temperature post-curing step is different from that in Example 1, and the test piece (primary cured body) A secondary cured product was obtained by performing post-curing treatment.
[0044]
<Comparative Example 1>
Without performing the low-temperature post-curing step, the test piece (primary cured body) was placed in an oven maintained at 160 ° C. and kept in this state for 2 hours to perform heat treatment (high-temperature post-curing step).
[0045]
<Comparative example 2>
Place the test piece (primary cured body) in an oven maintained at 80 ° C. and hold in this state for 2 hours to perform heat treatment (low-temperature post-curing step), and perform the cured body without performing the high-temperature post-curing step. Obtained.
[0046]
<Comparative Example 3>
Place the test piece (primary cured body) in an oven maintained at 120 ° C., and heat treatment by holding in this state for 2 hours, and immediately replace in another oven maintained at 160 ° C. Then, heat treatment (high temperature post-curing treatment) was performed by holding for 2 hours.
[0047]
<Comparative example 4>
Place the test piece (primary hardened body) in an oven maintained at 80 ° C. and hold it in this state for 2 hours to perform a heat treatment (low temperature post-curing step), and immediately, another oven maintained at 250 ° C. The heat treatment was performed by replacing the inside and holding in this state for 2 hours.
[0048]
<Comparative Example 5>
The test piece (primary cured body) was placed in an oven maintained at 120 ° C. and kept in this state for 8 hours for heat treatment.
[0049]
<Example 8>
A test piece (primary cured body) is placed in an oven and heated from room temperature (20 ° C.) to 80 ° C. (T 1 ) at a constant temperature increase rate of 1 ° C./min as shown in FIG. Then, this state was further heated to 160 ° C. (T 2 ) at a constant temperature increase rate of 1 ° C./min and held in this state for 1 hour. Then, the secondary hardening body was obtained by cooling at a fixed cooling rate of 1 degree-C / min.
The processing time in this example is 170 minutes for the low temperature post-curing step and 94 minutes for the high temperature post-curing step.
[0050]
<Evaluation>
The amount of warpage, tensile strength and bending strength (mechanical strength) of each of the test pieces obtained as described above were measured. The results are also shown in Table 1.
(1) The amount of warpage was measured by placing the test piece on a flat surface and measuring the maximum separation distance between the placement surface and the bottom surface of the test piece.
(2) The tensile strength was measured according to JIS-K7113 using “Model 5567 Test System” (Instron).
(3) The bending strength was measured according to JIS-K7203 using “Model 5567 Test System” (Instron).
[0051]
[Table 1]
[0052]
As is apparent from Table 1, the test pieces (secondary cured bodies) post-cured by Examples 1 to 8 (the post-treatment method of the present invention) are suppressed in warpage and have excellent mechanical strength. It was what had. On the other hand, none of the test pieces subjected to post-curing treatment in Comparative Examples 1 to 5 had both excellent mechanical strength and high dimensional accuracy.
[0053]
<Production of stereolithography>
(1) Three-dimensional stereoscopic image design process Each slice obtained when a three-dimensional stereoscopic image is designed using a CAD system as shown in FIG. 2 and the three-dimensional stereoscopic image is cut equally in the horizontal direction. Shape data was prepared. Specific dimensions a to f for the three-dimensional stereoscopic image are as follows.
a = 60 mm, b = 120 mm, c = 50 mm, d = 20 mm, e = 80 mm, f = 30 mm
[0054]
(2) Stereolithography process Stereolithography apparatus using an epoxy photocurable resin “SCR802” (manufactured by JSR Corporation) as a photocurable resin and an argon ion laser (wavelength 351 nm, 365 nm) as an irradiation light source An optically shaped product (primary cured product) was produced by “JSC-2000” (manufactured by Sony Corporation).
[0055]
<Example 9>
The stereolithography product (primary cured body) obtained as described above is placed in an oven, and as shown in FIG. 1, 80 ° C (at a constant temperature increase rate from room temperature (20 ° C) to 1 ° C / min. After heating to T 1 ) and holding in this state for 2 hours, further heating from this state to 160 ° C. (T 2 ) at a constant heating rate of 1 ° C./min and holding in this state for 1 hour, Then, the secondary hardening body was obtained by gradually cooling at a fixed cooling rate of 1 degree-C / min.
[0056]
<Reference Example 1>
Secondary curing was carried out in the same manner as in Example 9 except that the optically shaped object was immediately taken out from the oven and cooled at a cooling rate of 5 ° C./min after being held at a heating temperature (T 2 ) of 160 ° C. for 1 hour. Got the body.
[0057]
For each of the two stereolithography objects (secondary cured bodies) obtained as described above, the separation distance (b ′) between PP shown in FIG. 2C is measured, and the design value (b) The dimensional error (b′−b) with respect to was calculated.
The dimensional error of the stereolithography product obtained in Example 9 was 0.3 mm or less, and it was confirmed that high dimensional accuracy was maintained. On the other hand, the dimensional error of the stereolithography obtained by Reference Example 1 is 0.5 mm, which is slightly larger than that of the stereolithography obtained by Example 9, but is practical. The top was fine.
[0058]
【The invention's effect】
According to the post-processing method of an optical modeling object of the present invention, excellent mechanical strength can be imparted while maintaining high dimensional accuracy of the optical modeling object obtained by the optical modeling method.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram showing heat history in an oven in post-curing processing of Example 8 and Example 9. FIG.
FIGS. 2A and 2B are explanatory views showing a three-dimensional stereoscopic image designed in Example 9 and Reference Example 1, wherein FIG. 2A is a perspective view of the three-dimensional stereoscopic image, FIG. 2B is a front view of the three-dimensional stereoscopic image; C) is a plan view of a three-dimensional stereoscopic image.
Claims (2)
ガラス転移温度(Tg)が100℃を超える硬化樹脂から構成される光造形物を50〜100℃の温度で1〜24時間にわたり加熱処理する低温後硬化工程と、
当該低温後硬化工程において加熱処理された前記光造形物を、(Tg)〜(Tg+100℃)の温度で1〜24時間にわたり加熱処理する高温後硬化工程とを含むことを特徴とする光造形物の後処理方法。A post-processing method for an optically shaped article obtained by repeating a step of selectively irradiating light to a photocurable resin to form a cured resin layer, wherein a plurality of cured resin layers are integrally laminated,
A low temperature post-curing step of heat-treating an optically shaped article composed of a cured resin having a glass transition temperature (Tg) exceeding 100 ° C. at a temperature of 50 to 100 ° C. for 1 to 24 hours;
A high temperature post-curing step of heat-treating the optically shaped object heat-treated in the low-temperature post-curing step at a temperature of (Tg) to (Tg + 100 ° C.) for 1 to 24 hours. Post-processing method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000259171A JP4438198B2 (en) | 2000-08-29 | 2000-08-29 | Post-processing method of stereolithography |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000259171A JP4438198B2 (en) | 2000-08-29 | 2000-08-29 | Post-processing method of stereolithography |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002067172A JP2002067172A (en) | 2002-03-05 |
JP4438198B2 true JP4438198B2 (en) | 2010-03-24 |
Family
ID=18747377
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000259171A Expired - Fee Related JP4438198B2 (en) | 2000-08-29 | 2000-08-29 | Post-processing method of stereolithography |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4438198B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
USD1038195S1 (en) | 2021-10-27 | 2024-08-06 | Sprintray, Inc. | Post-curing chamber |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002086574A (en) * | 2000-09-19 | 2002-03-26 | Jsr Corp | Method for producing three-dimensional article, and molding mold |
JP2004351907A (en) * | 2003-03-28 | 2004-12-16 | Fuji Photo Film Co Ltd | Method for producing three-dimensionally shaped object |
EP3200979B1 (en) | 2014-09-30 | 2023-11-08 | Hewlett-Packard Development Company, L.P. | Cooling times for three-dimensional objects |
JP6543498B2 (en) * | 2015-04-02 | 2019-07-10 | 株式会社キーエンス | Manufacturing method of photofabricated article in ink jet photofabrication method |
JP7051336B2 (en) * | 2016-09-20 | 2022-04-11 | ナガセケムテックス株式会社 | Patterning material for 3D stereolithography and casting method using it |
JP6972811B2 (en) | 2017-09-12 | 2021-11-24 | セイコーエプソン株式会社 | Manufacturing method of 3D model |
-
2000
- 2000-08-29 JP JP2000259171A patent/JP4438198B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
USD1038195S1 (en) | 2021-10-27 | 2024-08-06 | Sprintray, Inc. | Post-curing chamber |
Also Published As
Publication number | Publication date |
---|---|
JP2002067172A (en) | 2002-03-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN113573660A (en) | Parallel thermoforming multiple appliances | |
WO2008143106A1 (en) | Method and apparatus for manufacture of three-dimensionally shaped article | |
TWI607974B (en) | Glass shaped body manufacturing method and forming die | |
JP4438198B2 (en) | Post-processing method of stereolithography | |
MY150782A (en) | Method for making silicone hydrogel contact lenses | |
Tsai et al. | Ultrasonic vibration-assisted optical glass hot embossing process | |
JP2018083300A (en) | Postcure method, and photo-mold method | |
JP2012101417A (en) | Method for manufacturing composite optical element, manufacturing device and stress relief method | |
JPH0757531B2 (en) | Three-dimensional shape forming method | |
JP2018047556A (en) | Laminate molding structure, laminate molding method and laminate molding device | |
JP6840149B2 (en) | How to Make Large Polymerized Dental Blocks | |
CN106976209A (en) | One kind makes resin injection mold and injection moulding process using Stereolithography | |
JP2006256240A (en) | Manufacturing method of tire vulcanizing mold using lamination shaping method | |
Colton et al. | Experimental study of post‐build cure of stereolithography polymers for injection molds | |
JP2004122490A (en) | Method for manufacturing three-dimensionally shaped article | |
US20020167114A1 (en) | Methods and arrangements for texturing, patterning and bending polymer sheet materials | |
JP5349777B2 (en) | Optical element manufacturing method | |
CN108866302A (en) | A kind of heat setting process of butterfly spring | |
JPH11348135A (en) | Photo-shaping apparatus | |
CN114634298B (en) | Curved glass cover plate and preparation method thereof | |
CN109231800B (en) | Method for adjusting flatness of product, hot-bent product processing technology and hot-bent product | |
JP5554170B2 (en) | Thermal nanoimprint method | |
JP2024042445A (en) | Three-dimensional modeling method | |
JP2001047453A (en) | Manufacture of fresnel lens | |
JP2005154164A (en) | Method of press-bending glass plate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070418 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090821 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090901 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20091215 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20091228 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130115 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4438198 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130115 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130115 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140115 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |