JP4437627B2 - Solidification pile construction method - Google Patents

Solidification pile construction method Download PDF

Info

Publication number
JP4437627B2
JP4437627B2 JP2001155457A JP2001155457A JP4437627B2 JP 4437627 B2 JP4437627 B2 JP 4437627B2 JP 2001155457 A JP2001155457 A JP 2001155457A JP 2001155457 A JP2001155457 A JP 2001155457A JP 4437627 B2 JP4437627 B2 JP 4437627B2
Authority
JP
Japan
Prior art keywords
solidified
pile
discharged
solidification
ground
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001155457A
Other languages
Japanese (ja)
Other versions
JP2002348852A (en
Inventor
修二 磯谷
靖雄 田中
英次 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fudo Tetra Corp
Original Assignee
Fudo Tetra Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fudo Tetra Corp filed Critical Fudo Tetra Corp
Priority to JP2001155457A priority Critical patent/JP4437627B2/en
Publication of JP2002348852A publication Critical patent/JP2002348852A/en
Application granted granted Critical
Publication of JP4437627B2 publication Critical patent/JP4437627B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Bulkheads Adapted To Foundation Construction (AREA)
  • Placing Or Removing Of Piles Or Sheet Piles, Or Accessories Thereof (AREA)
  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、地盤を改良するための長尺の固化処理杭あるいは継ぎ打ちの固化処理杭を造成する際、円滑な施工を実現できる改良された固化処理杭の造成方法に関するものである。
【0002】
【従来の技術】
地盤の改良工法のひとつに固化処理杭造成工法がある。この固化処理杭造成工法は、例えば、図4に示すように、機械式攪拌装置10の先端を、施工する柱体の芯に合わせて回転軸1を回転させ、回転軸1の下部に放射状に設けた1以上の攪拌翼2a、2bの回転域の地盤中に、回転軸1の所定の位置に付設された固化材吐出管口3から固化材を吐出させ、原位置土と攪拌混合しながら貫入を行い、設計深度に達したところで吐出を停止し、回転軸1をそのまま回転又は逆転して、更に攪拌混合しながら地盤中に引き抜いて柱状体を造成する工法である。図4中、符号21は掘削用ビットである。
【0003】
通常、固化材は貫入工程において吐出されるか、あるいは引き上げ工程において吐出されるが、貫入工程において吐出される方が、固化材吐出管口の設置位置が攪拌翼と同等かあるいはそれより下方のいずれの場所でもよい点、更に、原位置土と固化材の攪拌効率がよい点で都合がよい。
【0004】
【発明が解決しようとする課題】
しかしながら、固化材が貫入工程において吐出される方法では、40m以上の長尺固化杭の造成や、継ぎ打ち固化杭の造成のように地中深くにまで固化処理杭を造成する場合、固化材を吐出し始めてから、相当の時間が経過した後に、回転軸を引き抜くことになる。この場合、最初に投入された固化材の固化が始まることもあり、引き抜き施工が困難となるという問題があった。
【0005】
従って、本発明の目的は、長尺固化杭の造成や、継ぎ打ち固化杭の造成のように地中深くにまで固化杭を造成する場合においても、円滑な施工を実現できる固化処理杭の造成方法を提供することにある。
【0006】
【課題を解決するための手段】
かかる実情において、本発明者らは鋭意検討を行った結果、先ず、固化材を貫入工程において固化処理杭造成領域の下方部分に吐出し、次いで、引き抜き後の再度の貫入工程において残りの上方部分に吐出すれば、貫入吐出の長所を有しつつ、且つ投入された固化材の固化前に攪拌翼を引き抜くことができ、円滑な施工を実現できることなどを見出し、本発明を完成するに至った。
【0007】
すなわち、本発明は、回転軸の下部に放射状に設けた1以上の攪拌翼の回転域の地盤中に、回転軸の所定の位置に付設された固化材吐出管口から固化材を吐出させ、原位置土と攪拌混合して固化処理杭を造成する方法であって、固化材は貫入工程において固化処理杭造成領域の下方部分に吐出され、次いで、引き抜き後の再度の貫入工程において残りの上方部分に吐出される固化処理杭の造成方法を提供するものである。かかる構成を採ることにより、最初に投入された固化材は造成される固化処理杭長の、例えば半分程度の長さであり、しかも貫入工程の後半部分であるため、当該部分における攪拌翼の引き上げは固化材投入時期から比較的短時間で済むことから、固化材の固化前に攪拌翼を引き抜くことができる。一方、残りの部分は造成される固化処理杭長の、例えば半分程度の長さの上方部分であり、残りの部分のみ通常の施工方法で行えば、長尺固化杭の造成や、継ぎ打ち固化杭の造成のように地中深くにまで固化杭を造成する場合においても、円滑な施工を実現できる。
【0008】
また、本発明は、前記再度の貫入工程において、固化材は残りの上方部分の下方部分に吐出され、次いで、引き抜き後の再再度の貫入工程において残りの上方部分に吐出される前記の固化処理杭の造成方法を提供するものである。かかる構成を採ることにより、最初に投入された固化材は造成される固化処理杭長の、例えば1/3程度の長さとし、且つ貫入工程の後半部分であるため、当該部分における攪拌翼の引き抜きは固化材投入時期から比較的短時間で済み、固化材の固化前に攪拌翼を引き抜くことができる。一方、残りの部分において、先ず、固化材は造成される固化処理杭長の、例えば1/3程度(残りの部分の半分程度)の長さとし、しかも再貫入工程の後半部分であるため、当該部分における攪拌翼の引き抜きは当該部分の固化材の投入時期から比較的短時間であり、当該固化材の固化前に攪拌翼を引き抜くことができる。更に、残りの1/3部分は通常の施工方法で行えば、3回貫入工程を有する、特に長い長尺固化杭の造成や、地表部分に高圧電線などで高さ制限のある継ぎ打ちが必要となる固化杭の造成の場合においても、円滑な施工を実現できる。
【0009】
【発明の実施の形態】
本発明の実施の形態における固化処理杭の造成方法を図1〜図3を参照して説明する。図1は本例の固化処理杭の造成方法の工程を説明する模式図、図2は本実施の形態例の工法における回転軸先端の軌跡を示す図で、(A)は長尺固化杭の造成例、(B)は継ぎ打ち固化杭の造成例であり、図3は従来の工法における回転軸先端の軌跡を示す図で、(A)は長尺固化杭の造成例、(B)は継ぎ打ち固化杭の造成例である。なお、図1中、斜線部分12、13及び図2及び図3中、軌跡に付した斜め線は、共に、固化材が吐出された部分であることを示す。
【0010】
本例の固化処理杭の造成方法で使用される機械式攪拌施工装置は、例えば、図4に示すような従来のものが使用でき、その固化処理杭の造成方法は、機械式攪拌施工装置1の回転軸1の下方部に放射状に設けた1以上の攪拌翼2a、2bの回転域の地盤中に、回転軸1の所定の位置に付設された固化材吐出管口3から固化材を吐出させ、原位置土と攪拌混合して固化処理杭を造成するものである。
【0011】
具体的には、回転軸1は、施工設備の回転駆動機7に昇降自在、且つ回転自在に吊り下げられ、丸パイプ状をなし、パイプ内には固化材が流通する通路が通されている(不図示)。回転軸1の下部には複数の攪拌翼2が設けられ、それらの1の攪拌翼2bにおける回転方向の裏側の付け根部分の回転軸1の外周に固化材吐出管3が設けられている。この固化材吐出管3は一端が固化材吐出管口31で、他端はいずれも回転軸1の中を通る通路に接続し、この通路は地上の固化材供給設備に接続している(不図示)。
【0012】
固化材としては、特に制限されず、粉粒状の地盤改良材やセメントミルクが挙げられる。粉粒状の地盤改良材は、空気と共に吐出される。また、回転軸1は丸パイプ以外に、例えば、角パイプ状であってもよい。機械式攪拌装置は回転駆動機に接続される回転軸が1本の単軸型であっても、図1に示すような回転軸が2本の2軸型であってもよい。
【0013】
次に、長尺固化処理杭を造成する方法について説明する。先ず、回転駆動機7により回転軸1を正転方向に回転させながら地盤9をほぐしつつ貫入させる。固化材は貫入工程において固化処理杭造成領域Zの下方部分Yに吐出される。すなわち、地表のA点から地盤途中のB点までは固化材吐出管口31からは固化材を吐出させない(図1(A))。次いで、B点からC点まで固化材を吐出させ、原位置土11と固化材を攪拌混合させる。B点の位置は特に制限されず、固化処理杭造成長により適宜決定されるが、固化処理杭造成長の半分程度とすることが円滑な施工ができる点で好適である。第1の貫入工程終了後、回転軸1を正転方向又は逆転方向に回転させながら地盤中を引き抜く(図1(B))。次いで、引き抜き後、固化材は再度の貫入工程において固化処理杭造成領域Zの上方部分Xに吐出される(図1(C))。すなわち、E点から地盤途中のF点まで固化材を吐出させ、原位置土11と固化材を攪拌混合させる。第2の貫入工程終了後、回転軸1を正転方向又は逆転方向に回転させながら地盤中を引き抜いて、固化処理杭の造成を終了する(図1(D))。
【0014】
図3(A)のd〜eに示すように、従来の方法では、固化材を吐出し始めてから、相当の時間が経過した後に、回転軸を引き抜くことになり、最初に投入された固化材の固化が始まることもあって、引き抜き施工が困難となるが、本例においては、最初の引き抜き工程では投入された固化材は造成される固化処理杭長の、例えば半分程度の長さで、しかも貫入工程の後半部分であるため、当該部分における攪拌翼の引き抜きは固化材投入時期から比較的短時間で済み、固化材の固化前に攪拌翼を引き抜くことができる。また、第2の貫入工程において造成される残りの部分は固化処理杭長の、例えば半分程度の長さの上方部分であり、残りの部分のみ通常の施工方法で行えば、長尺固化杭の造成においても、円滑な施工を実現できる。
【0015】
次に、継ぎ打ち固化処理杭を造成する方法について説明する。先ず、回転駆動機7により回転軸1を正転方向に回転させながら地盤をほぐしつつ貫入させる。固化材は当初の貫入工程では吐出せず、回転軸を継ぎ足した後の貫入工程において固化処理杭造成領域Zの下方部分Yに吐出される。すなわち、H点から地盤途中のI点までは固化材吐出管口31からは固化材を吐出させない。I点の位置は特に制限されず、第1回転軸の長さ及び継ぎ足す第2回転軸の長さにより適宜決定されるが、固化処理杭造成長の半分程度とすることが、施工効率の点で好適である。次いで、継ぎ足し時間経過後、J点からK点まで固化材を吐出させる。第1の貫入工程終了後、回転軸1を正転方向又は逆転方向に回転させながら地盤中を引き抜く。次いで、引き抜き後、固化材は再度の貫入工程において固化処理杭造成領域Zの上方部分Xに吐出される。すなわち、O点から地盤途中のP点までは固化材を吐出させる。第2の貫入工程終了後、回転軸1を正転方向又は逆転方向に回転させながら地盤中を引き抜いて、固化処理杭の造成を終了する。
【0016】
図3(B)のm〜nに示すように、従来の方法では、固化材を吐出し始めてから、相当の時間が経過した後に、回転軸を引き抜くことになり、最初に投入された固化材の固化が始まることもあり、引き抜き施工が困難となるが、本例においては、当初の引き抜き工程で投入された固化材は造成される固化処理杭長の、例えば半分程度の長さで、しかも貫入工程の継ぎ足し後の部分であるため、当該部分における攪拌翼の引き抜きは固化材投入時期から比較的短時間で済み、固化材の固化前に攪拌翼を引き抜くことができる。また、第2の貫入工程において造成される残りの部分は固化処理杭長の、例えば半分程度の長さであり、残りの部分のみ通常の施工方法で行えば、継ぎ打ち固化杭の造成においても、円滑な施工を実現できる。
【0017】
本発明においては、前記引き抜き後の再度の貫入工程において、固化材は残りの上方部分における下方部分に吐出し、次いで、引き抜きされたその後の再再度の貫入工程において残りの上方部分に吐出してもよい。この場合、貫入工程は3度繰り返され、従って固化材は3度に分けて吐出されるが、その投入長(1回の貫入工程で固化材が吐出されて造成される固化処理杭長)としては、特に制限されないが、それぞれ固化処理杭造成長の1/3程度とすることが、施工を円滑に行うことができる点で好適である。すなわち、最初に投入された固化材は造成される固化処理杭長の、例えば1/3程度の長さで、しかも貫入工程の後半部分であるため、当該部分における攪拌翼の引き抜きは固化材投入時期から比較的短時間で済むことから、固化材の固化前に攪拌翼を引き抜くことができる。一方、残りの部分において、先ず、固化材は造成される固化処理杭長の、例えば1/3程度(残りの部分の半分程度)の長さで、しかも再貫入工程の後半部分であるため、当該部分における攪拌翼の引き抜きは2番目の固化材投入時期から比較的短時間であり、当該固化材の固化前に攪拌翼を引き抜くことができる。更に、残りの1/3部分は通常の施工方法で行えば、特に長い長尺固化杭の造成や、地表部分に高圧電線などで高さ制限のある継ぎ打ち固化杭の造成の場合においても、円滑な施工を実現できる。また、本発明においては、更に、長い長尺固化杭の造成や、更に、高さ制限のある継ぎ打ち固化杭の造成の場合においては、貫入工程を4度以上、すなわち、固化材は4度以上に分けて吐出する方法で行ってもよい。
【0018】
【発明の効果】
本発明によれば、長尺固化杭の造成や、継ぎ打ち固化杭の造成のように地中深くにまで固化杭を造成する場合においても、円滑な施工を実現できる。
【図面の簡単な説明】
【図1】本例の固化処理杭の造成方法の工程を説明する模式図である。
【図2】本実施の形態例の工法における回転軸先端の軌跡を示す図で、(A)は長尺固化杭の造成例、(B)は継ぎ打ち固化杭の造成例である。
【図3】従来の工法における回転軸先端の軌跡を示す図で、(A)は長尺固化杭の造成例、(B)は継ぎ打ち固化杭の造成例である。
【図4】固化処理杭造成装置の先端部分構造を示す図である。
【符号の説明】
1 回転軸
2、2a、2b 攪拌翼
3 固化材吐出管
31 固化材吐出管口
5 振れ止め防止板
7 回転駆動機
9 地盤
10 機械式攪拌施工装置(固化処理杭造成装置)
11 掘削地盤
12 固化処理杭(当初造成杭)
13 固化処理杭(第2造成杭)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an improved solidification pile creation method capable of realizing smooth construction when creating a long solidification pile for improving the ground or a solidification pile for seaming.
[0002]
[Prior art]
One of the ground improvement methods is the solidification pile construction method. For example, as shown in FIG. 4, this solidification pile construction method rotates the rotary shaft 1 with the tip of the mechanical stirring device 10 aligned with the core of the column to be constructed, and radiates to the lower part of the rotary shaft 1. While solidifying material is discharged from the solidifying material discharge pipe port 3 attached to a predetermined position of the rotating shaft 1 in the ground of the rotation region of the one or more stirring blades 2a, 2b provided, and stirring and mixing with the in-situ soil It is a construction method in which the penetration is stopped when the design depth is reached, the discharge is stopped, the rotating shaft 1 is rotated or reversed as it is, and further drawn out into the ground while stirring and mixing to create a columnar body. In FIG. 4, reference numeral 21 denotes an excavation bit.
[0003]
Usually, the solidified material is discharged in the penetration step or discharged in the pulling step, but when it is discharged in the penetration step, the installation position of the solidified material discharge pipe port is equal to or lower than the stirring blade. It is convenient in that it can be at any place, and further, the stirring efficiency of the in-situ soil and the solidified material is good.
[0004]
[Problems to be solved by the invention]
However, in the method in which the solidified material is discharged in the intrusion process, if the solidified pile is created deep into the ground, such as the construction of a long solidified pile of 40 m or more, or the creation of joint solidified piles, The rotating shaft is pulled out after a considerable period of time has elapsed since the beginning of discharge. In this case, there is a problem that the solidification of the first input solidified material may start, and the drawing work becomes difficult.
[0005]
Therefore, the object of the present invention is to create a solidified pile that can realize smooth construction even when creating a solidified pile deep into the ground like the creation of a long solidified pile or the formation of jointed solidified piles. It is to provide a method.
[0006]
[Means for Solving the Problems]
In this situation, as a result of intensive studies, the inventors first discharged the solidified material to the lower part of the solidified pile formation region in the penetration process, and then the remaining upper part in the re-penetration process after drawing. It has been found that, while having the advantage of penetration discharge, the agitating blade can be pulled out before solidifying the charged solidified material, and smooth construction can be realized, and the present invention has been completed. .
[0007]
That is, in the present invention, the solidification material is discharged from the solidification material discharge pipe port attached to a predetermined position of the rotation shaft in the ground of the rotation region of one or more stirring blades provided radially below the rotation shaft, This is a method of creating a solidified pile by stirring and mixing with in-situ soil, and the solidified material is discharged to the lower part of the solidified pile creation area in the penetration process, and then the remaining upper part in the re-penetration process after drawing The construction method of the solidification process pile discharged to a part is provided. By adopting such a configuration, the initially supplied solidified material is, for example, about half the length of the solidified pile length to be created, and is the latter half part of the penetration process. Since it takes only a relatively short time from the time of charging the solidifying material, the stirring blade can be pulled out before the solidifying material is solidified. On the other hand, the remaining part is the upper part of the solidified pile length to be created, for example, about half the length, and if only the remaining part is done by the normal construction method, the creation of a long solidified pile or joint solidification Even when solidified piles are built deep into the ground, such as piles, smooth construction can be realized.
[0008]
Further, according to the present invention, in the re-penetration step, the solidification material is discharged to the lower portion of the remaining upper portion, and then discharged to the remaining upper portion in the re-penetration step after drawing. It provides a method for creating piles. By adopting such a configuration, the solidified material first charged is, for example, about 1/3 of the solidified pile length to be created, and is the latter half of the penetration process. Is a relatively short time from the time of charging the solidifying material, and the stirring blade can be pulled out before the solidifying material is solidified. On the other hand, in the remaining part, first, the solidified material is the length of the solidified pile to be formed, for example, about 1/3 (about half of the remaining part), and the latter part of the re-penetration process. The extraction of the stirring blade in the portion is a relatively short time from the time when the solidification material in the portion is charged, and the stirring blade can be extracted before the solidification material is solidified. Furthermore, if the remaining 1/3 part is carried out by a normal construction method, it is necessary to create a particularly long and long solidified pile with a three-penetration process and to connect the ground part with a height restriction with a high-voltage electric wire etc. Even in the case of creating solidified piles, smooth construction can be realized.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
The formation method of the solidification process pile in embodiment of this invention is demonstrated with reference to FIGS. FIG. 1 is a schematic diagram for explaining the steps of the method for producing a solidified pile according to this example. FIG. 2 is a diagram showing the locus of the tip of the rotating shaft in the construction method according to this embodiment. Example of construction, (B) is a construction example of joint solidified pile, FIG. 3 is a diagram showing the locus of the rotating shaft tip in the conventional construction method, (A) is a construction example of a long solidified pile, (B) is It is an example of creation of jointed solidified piles. In FIG. 1, the hatched portions 12 and 13 and the oblique lines attached to the locus in FIGS. 2 and 3 indicate that the solidified material is discharged.
[0010]
As the mechanical stirring construction device used in the method for creating a solidified pile according to the present example, for example, a conventional mechanical stirring construction device as shown in FIG. 4 can be used. The solidified material is discharged from the solidified material discharge pipe port 3 provided at a predetermined position of the rotary shaft 1 in the ground of the rotation region of the one or more stirring blades 2a and 2b provided radially below the rotary shaft 1 The solidified pile is created by stirring and mixing with the in situ soil.
[0011]
Specifically, the rotating shaft 1 can be lifted and lowered freely by a rotary drive machine 7 of the construction facility, has a round pipe shape, and a passage through which a solidifying material flows is passed through the pipe. (Not shown). A plurality of stirring blades 2 are provided at the lower portion of the rotating shaft 1, and a solidified material discharge pipe 3 is provided on the outer periphery of the rotating shaft 1 at the root portion on the back side in the rotation direction of the one stirring blade 2 b. One end of the solidified material discharge pipe 3 is a solidified material discharge pipe port 31, and the other end is connected to a passage passing through the rotary shaft 1, and this passage is connected to a ground solidifying material supply facility (not shown). (Illustrated).
[0012]
The solidifying material is not particularly limited, and examples thereof include powdery ground improvement material and cement milk. The powdery ground improvement material is discharged together with air. Further, the rotary shaft 1 may be, for example, a square pipe shape other than the round pipe. The mechanical stirrer may be a single-shaft type rotating shaft connected to the rotary driving machine or may be a two-axis type rotating shaft as shown in FIG.
[0013]
Next, a method for creating a long solidified pile will be described. First, the ground 9 is allowed to penetrate while the rotary shaft 1 is rotated in the normal rotation direction by the rotary drive machine 7. The solidified material is discharged to the lower portion Y of the solidified pile formation area Z in the penetration process. That is, the solidified material is not discharged from the solidified material discharge pipe port 31 from the point A on the ground surface to the point B in the middle of the ground (FIG. 1A). Next, the solidification material is discharged from the point B to the point C, and the in-situ soil 11 and the solidification material are stirred and mixed. The position of point B is not particularly limited and is appropriately determined by solidification pile construction growth, but about half of the solidification pile construction growth is preferable in terms of smooth construction. After completion of the first penetration step, the ground is pulled out while rotating the rotating shaft 1 in the normal direction or the reverse direction (FIG. 1 (B)). Next, after the drawing, the solidified material is discharged to the upper portion X of the solidified pile forming area Z in the re-penetration process (FIG. 1C). That is, the solidified material is discharged from the point E to the point F in the middle of the ground, and the in-situ soil 11 and the solidified material are stirred and mixed. After completion of the second penetration step, the ground is pulled out while rotating the rotating shaft 1 in the normal rotation direction or the reverse rotation direction, and the formation of the solidified pile is completed (FIG. 1D).
[0014]
As shown in FIGS. 3A to 3D, in the conventional method, after a considerable time has elapsed after the solidified material starts to be ejected, the rotating shaft is pulled out, and the first solidified material that has been charged. However, in this example, the solidified material introduced in the first drawing process is about half the length of the solidified pile to be created, for example, Moreover, since it is the latter half part of the penetration step, the extraction of the stirring blade in that part can be done in a relatively short time from the time of charging the solidifying material, and the stirring blade can be extracted before the solidifying material is solidified. In addition, the remaining part created in the second penetration step is the upper part of the solidified pile length, for example, about half the length, and if only the remaining part is carried out by a normal construction method, Even in the creation, smooth construction can be realized.
[0015]
Next, a method for creating a spliced solidified pile will be described. First, the rotary shaft 7 is penetrated while loosening the ground while rotating the rotary shaft 1 in the forward rotation direction. The solidified material is not discharged in the initial penetration process, but is discharged to the lower portion Y of the solidified pile formation area Z in the penetration process after adding the rotating shaft. That is, the solidified material is not discharged from the solidified material discharge pipe port 31 from the H point to the I point in the middle of the ground. The position of the point I is not particularly limited, and is determined as appropriate depending on the length of the first rotating shaft and the length of the second rotating shaft to be added. This is preferable in terms of points. Next, after the addition time has elapsed, the solidified material is discharged from point J to point K. After completion of the first penetration step, the ground is pulled out while rotating the rotary shaft 1 in the forward direction or the reverse direction. Next, after the drawing, the solidified material is discharged to the upper portion X of the solidified pile forming area Z in the re-penetration process. That is, the solidified material is discharged from point O to point P in the middle of the ground. After completion of the second penetration step, the ground is pulled out while rotating the rotary shaft 1 in the normal rotation direction or the reverse rotation direction, thereby completing the formation of the solidified pile.
[0016]
As shown in m to n of FIG. 3 (B), in the conventional method, the rotating shaft is pulled out after a lapse of a considerable time from the start of discharging the solidified material, and the solidified material first introduced. However, in this example, the solidified material introduced in the initial drawing process is about half the length of the solidified pile pile to be created, Since it is a portion after the addition in the penetration step, the stirring blade can be pulled out in this portion in a relatively short time from the time of charging the solidifying material, and the stirring blade can be pulled out before the solidifying material is solidified. In addition, the remaining part created in the second intrusion step is about half the length of the solidified pile length, and if only the remaining part is carried out by a normal construction method, even in the creation of joint solidified piles Smooth construction can be realized.
[0017]
In the present invention, in the re-penetration step after the drawing, the solidified material is discharged to the lower portion in the remaining upper portion, and then discharged to the remaining upper portion in the subsequent re-penetration step. Also good. In this case, the penetration process is repeated three times, so the solidified material is discharged in three parts, but as the input length (solidification treatment pile length formed by discharging the solidified material in one penetration process) Although it does not restrict | limit in particular, It is suitable at the point which can be constructed smoothly that it is set as about 1/3 of each solidification processing pile structure growth. In other words, the solidified material that is initially input is about 1/3 of the length of the solidified pile to be created, and is the latter half of the penetration process. Since a relatively short time is sufficient from the time, the stirring blade can be pulled out before the solidified material is solidified. On the other hand, in the remaining portion, first, the solidified material is the length of the solidified pile to be formed, for example, about 1/3 (about half of the remaining portion), and is the second half of the re-penetration process. The extraction of the stirring blade in the portion is a relatively short time from the second solidification material charging time, and the stirring blade can be extracted before the solidification material is solidified. Furthermore, if the remaining 1/3 part is carried out by a normal construction method, especially in the case of creation of a long solidified pile or a jointed solidified pile having a height restriction with a high-voltage electric wire on the ground surface part, Smooth construction can be realized. Further, in the present invention, in the case of creation of a long long solidified pile or a jointed solidified pile having a height restriction, the penetration process is performed at least 4 degrees, that is, the solidified material is 4 degrees. You may carry out by the method of discharging by dividing into the above.
[0018]
【The invention's effect】
According to the present invention, smooth construction can be realized even when a solidified pile is formed deep into the ground like a long solidified pile or a jointed solidified pile.
[Brief description of the drawings]
BRIEF DESCRIPTION OF DRAWINGS FIG. 1 is a schematic diagram for explaining steps of a method for producing a solidified pile according to the present example.
FIGS. 2A and 2B are diagrams showing a locus of a rotating shaft tip in the construction method of the present embodiment, in which FIG. 2A is an example of creating a long solidified pile, and FIG. 2B is an example of creating a joint solidified pile.
3A and 3B are diagrams showing a locus of a rotating shaft tip in a conventional construction method, in which FIG. 3A is an example of creating a long solidified pile, and FIG. 3B is an example of creating a jointed solidified pile.
FIG. 4 is a diagram showing a tip partial structure of a solidified pile forming apparatus.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Rotating shaft 2, 2a, 2b Agitation blade 3 Solidification material discharge pipe 31 Solidification material discharge pipe port 5 Stabilization prevention plate 7 Rotation drive machine 9 Ground 10 Mechanical stirring construction apparatus (solidification processing pile creation apparatus)
11 Excavated ground 12 Solidified pile (initially built pile)
13 Solidified pile (2nd pile)

Claims (2)

回転軸の下部に放射状に設けた1以上の攪拌翼の回転域の地盤中に、回転軸の所定の位置に付設された固化材吐出管口から固化材を吐出させ、原位置土と攪拌混合して固化処理杭を造成する方法であって、固化材は貫入工程において固化処理杭造成領域の下方部分に吐出され、次いで、引き抜き後の再度の貫入工程において残りの上方部分に吐出されることを特徴とする固化処理杭の造成方法。The solidification material is discharged from the solidification material discharge pipe port attached to a predetermined position of the rotation shaft into the ground of the rotation region of one or more stirring blades provided radially at the lower part of the rotation shaft, and mixed with the original soil. In this method, the solidified pile is formed, and the solidified material is discharged to the lower part of the solidified pile formation area in the penetration process, and then discharged to the remaining upper part in the re-penetration process after drawing. A method for building a solidified pile characterized by 前記引き抜き後の再度の貫入工程において、固化材は残りの上方部分における下方部分に吐出され、次いで、引き抜きされたその後の再再度の貫入工程において残りの上方部分に吐出されることを特徴とする請求項1記載の固化処理杭の造成方法。In the re-penetration step after the drawing, the solidified material is discharged to the lower portion in the remaining upper portion, and then discharged to the remaining upper portion in the subsequent re-penetration step after being pulled out. A method for creating a solidified pile according to claim 1.
JP2001155457A 2001-05-24 2001-05-24 Solidification pile construction method Expired - Fee Related JP4437627B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001155457A JP4437627B2 (en) 2001-05-24 2001-05-24 Solidification pile construction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001155457A JP4437627B2 (en) 2001-05-24 2001-05-24 Solidification pile construction method

Publications (2)

Publication Number Publication Date
JP2002348852A JP2002348852A (en) 2002-12-04
JP4437627B2 true JP4437627B2 (en) 2010-03-24

Family

ID=18999643

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001155457A Expired - Fee Related JP4437627B2 (en) 2001-05-24 2001-05-24 Solidification pile construction method

Country Status (1)

Country Link
JP (1) JP4437627B2 (en)

Also Published As

Publication number Publication date
JP2002348852A (en) 2002-12-04

Similar Documents

Publication Publication Date Title
JP4437627B2 (en) Solidification pile construction method
JPH0457805B2 (en)
JPH0813473A (en) Boring rod for soil improvement and soil improvement method
JPH09268554A (en) Construction method of basic pile and device thereof
JP2700781B2 (en) Construction method of soil cement pile
JP2011137358A (en) Device and method for constructing ground improving body
JPH07189241A (en) Ground improving machine and method of ground improving construction
JPH0745672Y2 (en) Earth auger
JP6518558B2 (en) Construction method of casing pipe and crushed stone pile
JP2004300847A (en) Construction method for columnar foundation improvement body using steel pipe pile
JP3974937B2 (en) Ground improvement method
JP3665028B2 (en) Excavation stirrer for ground improvement
JPH06313313A (en) Rectangular agitating mechanism
JP3005741B2 (en) Ground improvement method
JPH07310315A (en) Soil improvement method
JPS63297623A (en) Method and apparatus for constructing soil continuous column-line wall
JPS6044451B2 (en) Ground improvement method
JP3739831B2 (en) Method for producing improved consolidated body in the ground
JP2002275884A (en) Soft ground improving method and pile constructing device
JPH06200521A (en) Land formation device for compaction sand pile, etc.
JP3727017B2 (en) Construction method of soil cement pile
JPH04237713A (en) Bearing ground injecting method
JP2000282453A (en) Soil agitating and mixing process device
JP3686252B2 (en) Drilling and stirring equipment
JP3988294B2 (en) Ground improvement method and ground improvement device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091224

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091224

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130115

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4437627

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130115

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130115

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160115

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees