JP3974937B2 - Ground improvement method - Google Patents

Ground improvement method Download PDF

Info

Publication number
JP3974937B2
JP3974937B2 JP2002180915A JP2002180915A JP3974937B2 JP 3974937 B2 JP3974937 B2 JP 3974937B2 JP 2002180915 A JP2002180915 A JP 2002180915A JP 2002180915 A JP2002180915 A JP 2002180915A JP 3974937 B2 JP3974937 B2 JP 3974937B2
Authority
JP
Japan
Prior art keywords
soil
excavation tool
rotating
ground
soil excavation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002180915A
Other languages
Japanese (ja)
Other versions
JP2004027494A (en
Inventor
伸一 山下
力 稲葉
正孝 武井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nishimatsu Construction Co Ltd
Original Assignee
Nishimatsu Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nishimatsu Construction Co Ltd filed Critical Nishimatsu Construction Co Ltd
Priority to JP2002180915A priority Critical patent/JP3974937B2/en
Publication of JP2004027494A publication Critical patent/JP2004027494A/en
Application granted granted Critical
Publication of JP3974937B2 publication Critical patent/JP3974937B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明に係る土壌改良工法及び建設機械は、軟弱な地盤の改良に関するものである。
【0002】
【従来の技術】
従来軟弱地盤を改良する方法として、超高圧で注入材を噴射攪拌する方法と大型の機械を用いて機械的に噴射攪拌する工法がある。
【0003】
従来の地盤改良工法では、超高圧噴射による噴射撹拌工法と大型機械によるオーガー撹拌工法と主体であるが、超高圧噴射工法では、撹拌杭を施工する場合にセメントミルクに20MPa乃至40MPaの高圧をかけて、ノズルの先端から噴射して圧力で杭を作る工法であるので排泥が多く出る欠点があり、又大型機械による機械式撹拌工法は機械が非常に大きいため施工場所が制約される等問題があった。
【0004】
超高圧噴射撹拌工法では比較的コンパクトな機械による工事が可能であるが、多量の排泥(排出スライム)が発生し、環境上好ましくなく、又、この排泥を処理しようとすれば高額な費用がかかるという問題がある。
【0005】
一方、大型機械による機械式撹拌工法においては、施工機械が大型であり、施工できる場所が限定されるという問題と、施工のため大型プラントの運搬、設置を必要とするため、広い場所を構えなければならず、その費用も高額であるという問題がある。
【発明が解決しようとする課題】
【0006】
軟弱地盤を強化するためには超高圧噴射撹拌工法が有力であるが、発生する排泥により環境問題あるいは処理のための費用の問題が発生することはすでに述べた。さらに従来の工法は、腐植土、硬質粘土、粘着性のある粘性土、有機物質を含む層、貝殻層などでは、均質な地中杭を得ることが困難である。環境問題を解決する有力な技術として、特開2001−159130号公開特許公報に「機械撹拌エアーセメントミルク混合圧送工法及び装置」として、コンプレッサにて空気を圧送し切削ビット先端部より空気を噴出しながら切削ビットにて地盤を掘り進み、削孔完了後グラウトポンプにてセメントミルクを圧送して切削ビットにて掘削された土壌とセメントミルクを撹拌し地中杭を造成する技術が記載されている。さらに、前述の技術を改良したものが、特開2002−97629号公開特許公報に「機械撹拌エアーセメントミルク混合圧送工法及び装置」として開示されており、らせん状の羽根を有する掘削工具で効果的に撹拌を行うことが記載されている。これら技術によれば、切削させた土壌とセメントミルクを完全に撹拌して地中杭を形成させることにより排泥を地上に排出することなく、環境問題を引き起こすことなく、しかも安価、簡便に土壌強化工事を施工することができる。本発明はこれらの発明に関連するものであり、当該発明をより発展させ、腐植土、硬質粘土、粘着性のある粘性土、有機物質を含む層、貝殻層などにおいても均質な地中坑を形成できる土壌改良工法及びその装置を提供することを目的とする。
【0007】
【課題を解決するための手段】
上述の目的を達成するために、本発明の地盤改良工法は、先導管と軸体と軸体の周囲に多段に設けられた最大回転半径が150mm以上1000mm以下である回転羽根を有し、前記回転羽根の上面および下面に爪を設けた土壌掘削工具を回転させ、かつ先導管より圧縮空気又は水或いは水と圧縮空気の混合体を噴出しながら土壌を掘削し、所定の深さに達した後に土壌掘削工具を毎分30回転以上60回転以下の回転速度で逆回転させて土壌を撹拌させながら回転羽根部より地盤強化材を注入して土壌と地盤強化材を混合させ、土壌中に改良体を造成する地盤改良工法であって、所定の深さに達した後、土壌掘削工具を一定の深さに保ちながら逆回転させる作業と土壌掘削工具を所定の間隔だけ短時間で引き上げる作業とを交互に繰り返すものである。ここで、多段に設けられた回転羽根とは、複数の円盤や多角形状板を軸体に沿って平行に設けたものでもよく、軸体のまわりにらせん状に設けられたものでもよい。らせん状羽根の場合には、軸体の長さ方向において中央部で半径が大きく両端部で半径が小さくなる形状にすることもできる
【0010】
【発明の実施の形態】
以下、本発明の実施の形態について説明する。図1は本発明で使われる土壌掘削工具の一例を示す断面図である。本例の土壌掘削工具1は軸体のまわりにらせん状羽根を有する。先端に先導管2を有し、切削チップ3が設けられている。切削チップ3により地盤を切削しながら、先導管2が地中に入っていく。先導管2に続いて軸体4が設けられ、その周囲にらせん状羽根5が設けられている。このように、本発明においては多段に設けられた回転羽根には、らせん状羽根も含むものとする。軸体4は中空となっているが、らせん状羽根5が設けられている部分は、軸方向に沿って中央部が太く両端部が細くなるように構成されている。ここでは、図1に示すように円筒の両側に円錐を接続したような形状になっており、両端部から中央部へ向かって径が大きくなっている。そして、らせん状羽根5を含む全体の形状で見ても、両端部から中央部へ向かって全体として径が大きくなっている。らせん状羽根5の最大径は、排泥を発生させずに大きな径の施工をするためには直径300mm以上(半径150mm以上)であることが好ましく、特に1000mm以上(半径500mm以上)であることが好ましい。また、設備の規模を余り大きくせずかつ均質な改良体を得るためには直径2000mm以下(半径1000mm以下)であることが好ましい。本例においてらせん状羽根5の最大径は1000mmである。また、軸体4の長さは約800mmで、中央部分の約160mmは一定の太さとなっており、上下の約320mmの範囲において軸径は約140mmから約400mmへと一定の割合で変化しており、そのテーパー角は22°程度である。軸体4のテーパー角はらせん状羽根5が地中を進行する場合にスムーズに土砂を後方に送るため有用な機能を有するが、かかる機能を十分に発揮するためには22°程度にするのが好ましい。らせん状羽根5は軸方向に160mm進むごとに一周するようなピッチになっており、軸体4の長さに沿って5周している。軸体4がテーパー状になっている範囲ではらせん状羽根5の外径は中央部に向かって一定の割合で大きくなっている。一方、軸体4の太さが一定である範囲では、らせん状羽根5の外径も一定となっている。本例においてはらせん状羽根5は外径が最大の状態で完全に一周しており、底面図で見れば外形は完全な円形を形成しているため、掘り進めていくときに軸はぶれることなく真直ぐに進んでいく。
【0011】
軸体4は中空となっているが、内部には内管が設けられており、内管は抽入材吐出ノズル7へつながっている。抽入材吐出ノズル7は軸体4の最も径が大きい位置において外へ向かって設けられている。本例では抽入材吐出ノズル7は2本設けられているが、3本以上設けてもよい。また、軸体4に対して完全に垂直に設ける以外にも、ある程度傾けてもよい。軸体と内管の間の隙間は圧縮空気の通路となり、先導管2の先端より圧縮空気が噴出できるようになっている。
【0012】
らせん状羽根6の上下面にはそれぞれ長方形の板状の爪6が複数取り付けられている。爪6は軸体4を中心とする円周に接する方向に、すなわち、爪6の板厚の方向が半径方向になるように設けられている。この方向で取付けることにより排泥の発生がより起こりにくくなる。図3に示すように爪6の長方形の形状のうち、一つの角が面取りされている。この面取りは、角を直線で切り落とすのでもよいし、丸みをつけるのでもよい。この面取りされた角は、らせん状羽根5の回転方向にあわせて向けられる。本例では、掘り進む際は図1において右方向に回転するが、らせん状羽根5の上面に設けられた爪6はこの回転方向に向いた側に面取りされた角を向けて取り付けられる。逆に、土壌掘削工具1を引き上げるときは、左回りに回転するが、らせん状羽根5の下面に設けられた爪6はこの左回りの方向に向いた側に面取りされた角を向けて取り付ける。このように向けることにより、掘り進めるときはらせん状羽根5の下面に設けられた爪6が鋭く土壌にくい込みながら土壌を効果的に撹拌し、一方、上面に設けられた爪6は切削・撹拌された土壌を滑らかに後方へ送り、こぶし程度の大きさの石が混ざっていても噛み込みにくくなっている。逆に、引き上げるときはらせん状羽根5の上面に設けられた爪6が効果的に土壌を切削・撹拌し、下面に設けられた爪6が土壌を滑らかに後方へ送る。爪6としては、このような長方形の板状のものほか、円柱状、4角柱や5角柱等の多角柱状、円錐状など各種の形状のものが使え、またこれらを組合わせて使用してもよい。
【0013】
本発明に使用する土壌掘削工具の別の例を図2に示す。本例においては、回転羽根6は複数の平板状の羽根を平行に、軸体4の長さ方向に沿って配設したものである。平板状の羽根の形状は円盤状が排泥を出さないためには好ましいが、3角形、4角形等多角形板状のもので代用してもよい。掘り進んだり引き上げたりする作業がスムーズに行われるためには、図2に示すように各板状材の最大回転半径が、軸体4の長さ方向に沿って中央付近では大きく、その上下においては小さくなるように配列することが好ましい。なお、回転羽根6の最大回転半径は150mm以上1000mm以下となるようにするのが好ましい。
【0014】
図4に本発明に係る建設機械の一例を示す。作業台車23は無限軌道24を備えて自走可能であり、工事現場において装置全体を容易に移動させることができるものである。作業台車23には上下動可能なアーム25を介してリーダー26が取り付けられている。リーダー26はチャック27を上下に移動可能に取り付けるスライド式の取り付け装置である。施工場所に作業台車23を移動させたら、アーム25の角度を調整してリーダー26を垂直に立てる。チャック27に最上段の中間ロッドを通し、チャック27で中間ロッドをつかむ。最上段の中間ロッドの上にスィベル9がつながれ、最下段の中間ロッドの下に土壌掘削工具1が接続される。チャック27は油圧駆動により中間ロッド22を正逆両方向に回転させることができる。すなわち、中間ロッド22はチャック27の回転を先端の土壌掘削工具1に伝達する駆動軸の働きをする。スィベル9に抽入材ホース28と空気ホース29とが接続され、それぞれのホースは図示しないプラントのグラウトポンプとコンプレッサーにつながれる。スィベル9、中間ロッド22および土壌掘削工具1は、それぞれ二重管構造であるが、空気および抽入材の通路がつながるよう接続される。
【0015】
土壌掘削工具1により掘り進めるときには、コンプレッサーで空気を送り土壌掘削工具1の先端より噴出するとともに、土壌掘削工具1のらせん状羽根が下向きに進行するよう回転させる。削孔は▲1▼空気を送る方法、▲2▼水を送る方法、▲3▼空気と水を送る方法、がある。道路等がある場所では空気と水を使用したほうが水の使用が少なくなって道路を水浸しにすることがないが、水を排出しても問題にならないような場所においては水のみで削孔してもよい。空気と水で削孔する場合は、コンプレッサーと水供給管をエジェクターに接続し、水と空気を混合した上で空気ホース29を通して圧送する。ある程度掘り進めたら、中間ロッド22を継ぎ足して、さらに深く掘り進める。切削した土砂を滑らかに後方に送るために、回転羽根は先端から中央部にむかって径が広がり、また上部へ向かって径が小さくなる形状になっている。回転羽根5には爪6が設けられているので、土砂は効果的にほぐされる。
【0016】
最終深さまで掘り進めたら、チャック27の回転方向を逆にして、回転羽根6が上向きに進行するよう回転させながら、土壌掘削工具1を引き上げる。この際、抽入材ホース28より抽入材を送り込み、土壌掘削工具1の抽入材吐出ノズルより抽入材を地中に注入する。ここで、回転羽根6の回転速度が重要である。回転速度が十分でないと土砂とセメントミルクや水ガラス等の地盤強化材が十分撹拌されず、腐植土、硬質粘土、粘着性のある粘性土、有機物質を含む層、貝殻層などでは、図5に示すようにセメントミルクが団子状にしか行き渡らず、均質な地中杭を造成することができない。本発明においては30〜60回転/分の速度で回転羽根を回転させるが、特に35〜40回転/分で回転させるのが好ましい。この範囲の回転速度を用いることにより従来の工法では均質な地中杭が造成しにくい土壌においても、均質で良好な地中杭を形成することができる。また、高速回転で撹拌することにより、施工時間を短縮することもできる。回転羽根5の上面にも爪が設けられているので、土砂とセメントミルクを効果的に撹拌する。そして、本発明に係る建設機械および工法においては、土砂の機械的撹拌と抽入材の噴出による土砂の撹拌が同時に行われ、切削された土砂と抽入材は効率的に混合される上、切削された土砂が排泥として地上に排出されることがない。ここで土壌掘削工具を逆回転させるながら引き上げる方法として、土壌掘削工具を一定の深さに保ちながら逆回転させる作業と土壌掘削工具を所定の間隔だけ短時間で引き上げる作業とを交互に繰り返えすようにすることが、排泥の発生をより効果的に防止するので好ましい。例えば本例においては、4.5秒間同じ深さにて逆回転および注入材の注入を行い、2.5cmずつ引き上げた。すなわち、1mの深さについて2.5cmきざみで40回の引き上げを行い、3分間をかけて上昇する。同一深さにとどまる時間に対して引き上げに要する時間は短い。引き上げるときは、掘り進めるときとは逆に、中間ロッドを順次取り外しながら作業を進める。所定の高さまで引き上げたら抽入材の注入を停止して、土壌掘削工具1を引き上げる。このようにして一つの穴の施工が完了したら、作業台車23を次の位置に移動させ、同様の施工を繰り返す。
【0017】
本発明に使用する建設機械の駆動装置の一例を図6に示す。本実施形態の土壌改良工法においては、回転半径が150〜1000mmと大型の回転羽根を含めて毎分30〜60回転という高速で回転させて土砂の撹拌を撹拌するため、使用する駆動装置も強力なものである必要がある。一方、この駆動装置は作業台車23に搭載できる程度のコンパクトなものでなければならない。そのため、図7に示すように、オイルモーター31を駆動原として用い、オイルモーター31の軸に減速比が1/6程度の遊星減速器32を接続し、遊星減速器32の出力側に第1のプーリー33を設ける。中間プーリーやベルト等の中間伝達装置34を介して、第1のプーリー33に対して減速比が1/6になるように第2のプーリーを接続する。この第2のプーリーに接続された出力軸36は、チャック27等を介して中間ロッドを回転させ、土壌掘削工具1を回転させる。このような構成をとることにより十分な出力を得ることができ、従来の土木工事用作業台車に搭載された駆動装置よりも高速回転が可能でコンパクトな駆動装置が得られる。
【0018】
次に、本発明の別の実施の形態について説明する。本実施形態においては、注入材としてセメントミルクの代わりに粉体のセメントを地中に直接送り込むものである。図7に本実施形態で用いるスィベルの一例を示す。スィベル9の上部は非回転部10であり、回転しない。非回転部10には抽入材導入口11と空気導入口12が側面に設けられている。非回転部10に対して回転自在に回転軸14がベアリング13を介して取り付けられている。回転軸14は内管15と外管16から構成される二重管構造になっている。内管15は中空となっており、この中空部が抽入材通路17を構成する。抽入材通路17は抽入材導入口11から導入された抽入材が通過できるようにつながっている。内管15と外管16の間にも隙間が設けられており、この隙間が空気通路18を構成する。空気通路18は空気導入口12から導入された空気が通過できるようにつながっている。この構造は、前述のセメントミルクを注入する実施形態で使用するものとほぼ同じであるが、本実施形態においては内管15を通して粉体のセメントを送るため、太い内管を使用している。図8に本実施形態で用いる中間ロッドの一例を示す。中間ロッドも二重管構造になっているが、スィベルと同様に、内管には3インチ程度の太い管を使用している。
【0019】
図9に本実施形態で用いる建設機械の一例を示す。スィベルと中間ロッドは前述の太い内管を有するものである。スィベル上部には注入材ホース28が接続され、注入材ホース28はエジェクター41に接続されている。エジェクター41の上部にはホッパー43が設けられ、粉体のセメント44をエジェクターに供給する。エジェクターの他端側はコンプレッサー42につながっており、圧縮空気が供給される。圧縮空気により粉体のセメントはエジェクター41内に取り込まれ、粉体のセメントは圧縮空気によって、注入材ホース28、スイベル、中間ロッドを通して、土壌掘削工具の回転羽根部にある注入材吐出ノズル7まで送られるようになっている。
【0020】
建設機械を用いた地盤改良工法において、作業は前述の実施形態の場合とほぼ同様に進められるが、土壌掘削工具1を逆回転させながら注入材吐出ノズル7より粉体のセメントを地中に注入する。地中に注入されたセメントは爪6を備えた回転羽根5により土砂とともに撹拌され、地中杭を形成する。セメントミルクの代わりに粉体のセメントを注入するので造成される地中杭の強度は高い。一方、セメントミルクを注入する工法では、地中杭の強度はやや低くなるが、回転羽根の回転半径以上の大きな径の地中杭を造成できるため経済性に優れるという利点がある。
【0021】
【実施例】
本発明を地盤改良工事に適用した例である。ここでは、抽入材としては高濃度のセメントミルクを用いる。本工法に使用するセメントミルクは改良体の強度を十分なものとするために従来の工法の場合(例えば練りあがりの抽入材1m中にセメント量760kg程度)よりセメントの比率を多くすることが好ましい。ここで、セメント量を多くすると抽入材の比重が大きくなりポンプでの圧送性が悪くなりやすいので、減水剤(例えば芳香族スルホンと特殊変性リグニンを主成分とするもの)を配合することが好ましい。この減水剤の配合によりセメントミルクが流れやすくなってポンプにより送りやすくなるとともに、改良体の強度が増す。本実施例においては減水剤として芳香族スルホンと特殊変性リグニンを主成分とする商品名サンフローSW−2000S(日本製紙株式会社)を使用し、練りあがりの抽入材1m中にセメント1000kgとサンフローSW−2000Sを5kg配合し、改良体の圧縮強度1MPa(設計基準強度)を得た。プラントで空気と混合されたセメントミルクを0.6〜2.5MPaの低圧で噴出する方法と、18.0〜29.0MPaの超高圧でセメントミルクを噴出する方法がある。後者の超高圧噴出撹拌の場合は、空気とセメントミルクは混合させずに別々に送り、空気は掘り進むときに先導管先端より下方向に、セメントミルクは引き上げるときにらせん状羽根の横の抽入材排出口7より横方向に噴出する。どちらの方法においても、切削された土砂はセメントミルクと混合され、改良体として地中杭を構成するので、地上に排泥として排出されない。引き上げるときは図3において時計回りにらせん状羽根は回転し、上から土砂を引き込むとともに撹拌・混合された土砂とセメントを羽根により下に強く押し付けるので、強固な地中杭を形成でき、また、排泥の発生を強力に抑制する。このため、排泥による環境問題を起こすことがなく、また、排泥の処理のための多額の費用も発生しないため、地球環境に優しく、施工性、経済性、安全性にすぐれた工法となっている。
【0022】
なお、超高圧噴出撹拌の場合は、セメントミルクを横方向に高圧噴射するために、らせん状羽根の径よりも広い範囲の改良体の造成が可能であり、工期の短縮および経済性の向上が実現できるとともに、密着施工や改良体相互の施工が可能となり工事の全体的な一体化がはかれる。本実施例のおいては、直径1mのらせん状羽根を使用し、らせん状羽根の回転速度を毎分35〜40回転と高速で撹拌を行った。抽入材吐出圧力を18〜22MPa、空気吐出量を1.5〜3.0m/min、空気吐出圧力を0.6〜0.7MPaとした。単位時間当たりの注入量には留意が必要で、過度の注入を行うと排泥を発生させないという本発明の効果が発揮できない場合がある。排泥を発生させない限界での単位時間当たり注入量を前もって把握した上で、その70%程度で注入するのが排泥防止をより確かなものにする上で好ましい。本実施例では70リットル/minとした。引き上げ速度(以下、1m引き上げるのに要する時間で表示)は、C<0.01N/mm(=MPa)での粘性土では3.0min/m、0.01N/mm≦C≦0.03N/mm(5≦N≦10)の土質では5.0min/m、10≦N≦15の砂質土では6.0min/mとした。
【0023】
一方、低圧噴出の場合は、抽入材噴射ノズル7の内径は8〜12mmとし、らせん状羽根の回転速度を毎分30回転、抽入材吐出圧力を0.6〜2.5MPa、注入速度は50リットル/minとした。
【0024】
本実施例の工法により、腐植土等の従来の工法では施工が困難な土壌においても、均質な改良体を造成できる。また、従来工法の対象となっている土壌においても、より均質な改良体を排泥を出すことなく容易に造成できる。
【0025】
【発明の効果】
本発明には、腐植土、硬質粘土、粘着性のある粘性土、有機物質を含む層、貝殻層などにおいても均質な地中坑を形成できるという効果があり、さらに、排泥を出すことなく土砂を掘削及び撹拌することができ、施工現場周辺の環境を保護することができるという効果がある。
【図面の簡単な説明】
【図1】本発明に使用する土壌掘削工具の例を示す断面図である。
【図2】本発明に使用する土壌掘削工具の別の例を示す断面図である。
【図3】爪の形状を示す斜視図である。
【図4】本発明に係る建設機械を示す正面図である。
【図5】従来の工法による地中杭を示す断面図である。
【図6】本発明に係る建設機械に使用する駆動装置を示す正面図である。
【図7】スィベルを示す断面図である。
【図8】中間ロッドを示す断面図である。
【図9】本発明に係る建設機械を示す正面図である。
【符号の説明】
1.土壌掘削工具
2.先導管
3.切削チップ
4.軸体
5.らせん状羽根
6.爪
7.抽入材吐出ノズル
8.空気噴出口
9.スィベル
10.非回転部
11.抽入材導入口
12.空気導入口
13.ベアリング
14.回転軸
15.内管
16.外管
17.抽入材通路
18.空気通路
19.オスカップリング
20.メスカップリング
21.ボルト
22.中間ロッド
23.作業台車
24.無限軌道
25.アーム
26.リーダー
27.チャック
28.抽入材ホース
29.空気ホース
31.オイルモーター
32.遊星減速器
33.第1のプーリー
34.中間伝達装置
35.第2のプーリー
41.エジェクター
42.コンプレッサー
43.ホッパー
44.粉体のセメント
[0001]
BACKGROUND OF THE INVENTION
The soil improvement method and construction machine according to the present invention relate to improvement of soft ground.
[0002]
[Prior art]
Conventional methods for improving soft ground include a method of jetting and stirring an injection material at ultra-high pressure and a method of mechanically jetting and stirring using a large machine.
[0003]
The conventional ground improvement method mainly consists of an agitation agitation method using an ultra-high pressure injection and an auger agitation method using a large machine. In the ultra-high pressure injection method, a high pressure of 20 to 40 MPa is applied to cement milk when constructing an agitation pile. In addition, since it is a method of making a pile by pressure by injecting from the tip of the nozzle, there is a disadvantage that a lot of mud is discharged, and the mechanical stirring method by a large machine is a very large machine, so the construction site is restricted, etc. was there.
[0004]
The ultra-high pressure jet agitation method allows construction with a relatively compact machine, but a large amount of mud (discharged slime) is generated, which is undesirable from the environment, and it is expensive to treat this mud. There is a problem that it takes.
[0005]
On the other hand, in the mechanical agitation method using a large machine, the construction machine is large and the place where it can be constructed is limited, and a large plant must be transported and installed for construction. There is a problem that the cost is high.
[Problems to be solved by the invention]
[0006]
The ultra-high pressure jet agitation method is effective for strengthening soft ground, but it has already been mentioned that the generated waste mud causes environmental problems and cost problems for treatment. Furthermore, it is difficult for the conventional construction method to obtain a homogeneous underground pile in humus soil, hard clay, sticky viscous soil, a layer containing an organic substance, a shell layer, and the like. As a promising technology to solve environmental problems, Japanese Laid-Open Patent Publication No. 2001-159130 discloses “Mechanical Stirring Air Cement Milk Mixing Pressure Feeding Method and Device”, and air is pumped by a compressor and blown from the tip of a cutting bit. The technology of digging the ground with a cutting bit while pumping the cement milk with a grout pump after completion of the drilling and stirring the soil and cement milk excavated with the cutting bit is described. . Further, an improvement of the above-described technique is disclosed in Japanese Patent Application Laid-Open No. 2002-97629 as “Mechanical stirring air cement milk mixing pressure feeding method and apparatus”, which is effective for a drilling tool having spiral blades. Describes that stirring is performed. According to these technologies, the cut soil and cement milk are completely agitated to form underground piles, so that waste mud is not discharged to the ground, causing environmental problems, and inexpensive and simple. Reinforcement work can be performed. The present invention relates to these inventions, and further develops the invention to provide a underground pit that is homogeneous even in humus soil, hard clay, sticky viscous soil, layers containing organic substances, shell layers, etc. It aims at providing the soil improvement construction method and apparatus which can be formed.
[0007]
[Means for Solving the Problems]
In order to achieve the above-mentioned object, the ground improvement method of the present invention has a rotary blade having a maximum turning radius of 150 mm or more and 1000 mm or less provided in multiple stages around the front conduit, the shaft body, and the shaft body, The soil excavation tool provided with claws on the upper and lower surfaces of the rotating blades was rotated, and the soil was excavated while jetting compressed air or water or a mixture of water and compressed air from the leading conduit, and reached a predetermined depth. Later, the soil excavation tool is reversely rotated at a rotation speed of 30 to 60 revolutions per minute to inject the ground reinforcement from the rotating blades while stirring the soil, and the soil and ground reinforcement are mixed to improve the soil. A ground improvement method for creating a body, and after reaching a predetermined depth, an operation of rotating the soil excavation tool in a reverse direction while maintaining a constant depth, and an operation of pulling up the soil excavation tool by a predetermined interval in a short time repeated alternately Than it is. Here, the rotary blades provided in multiple stages may be those in which a plurality of disks or polygonal plates are provided in parallel along the shaft body, or may be provided in a spiral shape around the shaft body. In the case of a spiral blade, it is possible to have a shape in which the radius is large at the center portion and the radius is small at both ends in the length direction of the shaft body .
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below. FIG. 1 is a sectional view showing an example of a soil excavation tool used in the present invention. The soil excavation tool 1 of this example has a spiral blade around the shaft. A tip conduit 2 is provided at the tip, and a cutting tip 3 is provided. While cutting the ground with the cutting tip 3, the leading conduit 2 enters the ground. A shaft body 4 is provided following the leading conduit 2, and a spiral blade 5 is provided around the shaft body 4. Thus, in the present invention, the rotary blades provided in multiple stages include helical blades. Although the shaft body 4 is hollow, the portion where the spiral blades 5 are provided is configured such that the central portion is thick and the both end portions are narrow along the axial direction. Here, as shown in FIG. 1, the shape is such that a cone is connected to both sides of the cylinder, and the diameter increases from both ends toward the center. And even if it sees with the whole shape containing the helical blade | wing 5, the diameter becomes large as a whole toward both ends from the center part. The maximum diameter of the spiral blade 5 is preferably 300 mm or more (radius 150 mm or more), particularly 1000 mm or more (radius 500 mm or more) in order to construct a large diameter without generating mud. Is preferred. Moreover, in order to obtain a uniform improved body without enlarging the scale of the facility, the diameter is preferably 2000 mm or less (radius 1000 mm or less). In this example, the maximum diameter of the spiral blade 5 is 1000 mm. In addition, the length of the shaft body 4 is about 800 mm, the center portion has a constant thickness of about 160 mm, and the shaft diameter changes at a constant rate from about 140 mm to about 400 mm in the upper and lower ranges of about 320 mm. The taper angle is about 22 °. The taper angle of the shaft body 4 has a useful function for smoothly sending earth and sand backward when the spiral blade 5 travels in the ground, but in order to fully exhibit such a function, the taper angle is set to about 22 °. Is preferred. The spiral blade 5 has a pitch that makes one turn every time it travels 160 mm in the axial direction, and makes five turns along the length of the shaft body 4. In the range where the shaft body 4 is tapered, the outer diameter of the spiral blade 5 increases at a constant rate toward the center. On the other hand, in the range where the thickness of the shaft body 4 is constant, the outer diameter of the spiral blade 5 is also constant. In this example, the spiral blade 5 makes a full circle with the maximum outer diameter, and when viewed from the bottom view, the outer shape forms a perfect circle, so the shaft will shake when digging. Without going straight.
[0011]
Although the shaft body 4 is hollow, an inner pipe is provided inside, and the inner pipe is connected to the drawing material discharge nozzle 7. The drawing material discharge nozzle 7 is provided outward at a position where the diameter of the shaft body 4 is the largest. In this example, two drawing material discharge nozzles 7 are provided, but three or more drawing material discharge nozzles 7 may be provided. In addition to providing the shaft body 4 completely perpendicularly, it may be tilted to some extent. A gap between the shaft body and the inner tube serves as a passage for compressed air, and compressed air can be ejected from the tip of the front conduit 2.
[0012]
A plurality of rectangular plate-like claws 6 are attached to the upper and lower surfaces of the spiral blade 6. The claw 6 is provided in a direction in contact with the circumference centered on the shaft body 4, that is, so that the thickness direction of the claw 6 is a radial direction. By attaching in this direction, generation of waste mud is less likely to occur. As shown in FIG. 3, one corner of the rectangular shape of the claw 6 is chamfered. In this chamfering, the corners may be cut off with a straight line or rounded. This chamfered corner is directed in accordance with the direction of rotation of the spiral blade 5. In this example, when digging proceeds, it rotates in the right direction in FIG. 1, but the claw 6 provided on the upper surface of the spiral blade 5 is attached with the chamfered corner facing the direction facing the rotation direction. Conversely, when the soil excavation tool 1 is pulled up, it rotates counterclockwise, but the claw 6 provided on the lower surface of the spiral blade 5 is attached with the chamfered corner directed to the side facing this counterclockwise direction. . By directing in this way, when digging, the claw 6 provided on the lower surface of the spiral blade 5 stirs the soil effectively while sharply impregnating the soil, while the claw 6 provided on the upper surface cuts and agitates. The soil is smoothly fed backwards, making it difficult to bite even if stones of the size of a fist are mixed. Conversely, when pulling up, the claws 6 provided on the upper surface of the spiral blade 5 effectively cut and agitate the soil, and the nails 6 provided on the lower surface smoothly feed the soil backward. As the claw 6, in addition to such a rectangular plate shape, various shapes such as a cylindrical shape, a polygonal column shape such as a quadrangular column and a pentagonal column, and a conical shape can be used, and these can be used in combination. Good.
[0013]
Another example of the soil excavation tool used in the present invention is shown in FIG. In the present example, the rotary blade 6 is configured by arranging a plurality of flat blades in parallel along the length direction of the shaft body 4. As the shape of the flat blade, a disk shape is preferable so as not to discharge mud, but a triangular plate shape such as a triangular shape or a quadrangular shape may be substituted. In order to smoothly carry out the digging and pulling up, the maximum turning radius of each plate-like material is large in the vicinity of the center along the length direction of the shaft body 4 as shown in FIG. Are preferably arranged so as to be small. The maximum rotation radius of the rotary blade 6 is preferably 150 mm or more and 1000 mm or less.
[0014]
FIG. 4 shows an example of a construction machine according to the present invention. The work carriage 23 is self-propelled with an endless track 24 and can easily move the entire apparatus at a construction site. A leader 26 is attached to the work carriage 23 via an arm 25 that can move up and down. The leader 26 is a sliding attachment device that attaches the chuck 27 so as to be movable up and down. When the work carriage 23 is moved to the construction site, the angle of the arm 25 is adjusted and the leader 26 is set up vertically. The uppermost intermediate rod is passed through the chuck 27, and the intermediate rod is grasped by the chuck 27. A swivel 9 is connected to the uppermost intermediate rod, and the soil excavation tool 1 is connected to the lowermost intermediate rod. The chuck 27 can rotate the intermediate rod 22 in both forward and reverse directions by hydraulic drive. That is, the intermediate rod 22 functions as a drive shaft that transmits the rotation of the chuck 27 to the soil excavation tool 1 at the tip. A drawing material hose 28 and an air hose 29 are connected to the swivel 9, and each hose is connected to a grout pump and a compressor (not shown) of the plant. The swivel 9, the intermediate rod 22 and the soil excavation tool 1 each have a double-pipe structure, but are connected so that the passages for the air and the drawing material are connected.
[0015]
When digging with the soil excavation tool 1, air is sent by a compressor and ejected from the tip of the soil excavation tool 1, and the spiral blades of the soil excavation tool 1 are rotated so as to advance downward. There are (1) a method of sending air, (2) a method of sending water, and (3) a method of sending air and water. In places where there are roads etc., using air and water will reduce water usage and will not flood the road, but in places where water does not pose a problem, drill only with water. May be. When drilling holes with air and water, a compressor and a water supply pipe are connected to the ejector, and water and air are mixed and then pumped through the air hose 29. After digging to some extent, the intermediate rod 22 is added to dig deeper. In order to feed the cut earth and sand smoothly backward, the rotary blade has a shape that increases in diameter from the tip toward the center and decreases in diameter toward the top. Since the claw 6 is provided in the rotary blade 5, earth and sand are effectively loosened.
[0016]
When digging to the final depth, the soil excavation tool 1 is pulled up while rotating the rotating blades 6 so that the rotation direction of the chuck 27 is reversed. At this time, the drawing material is fed from the drawing material hose 28, and the drawing material is injected into the ground from the drawing material discharge nozzle of the soil excavation tool 1. Here, the rotational speed of the rotary blade 6 is important. If the rotation speed is not sufficient, the earth and sand and the ground reinforcement such as cement milk and water glass are not sufficiently agitated. For humus soil, hard clay, sticky viscous soil, layers containing organic substances, shell layers, etc., FIG. As shown in Fig. 1, cement milk spreads only in the form of dumplings, and it is impossible to create a homogeneous underground pile. In the present invention, the rotating blades are rotated at a speed of 30 to 60 rotations / minute, and it is particularly preferable to rotate at 35 to 40 rotations / minute. By using the rotation speed within this range, a homogeneous and good underground pile can be formed even in soil in which it is difficult to form a homogeneous underground pile by the conventional method. Moreover, construction time can also be shortened by stirring at high speed rotation. Since the nail | claw is provided also in the upper surface of the rotary blade 5, earth and sand and cement milk are stirred effectively. And in the construction machine and construction method according to the present invention, the mechanical stirring of the earth and sand and the stirring of the earth and sand by the ejection of the drawing material is performed at the same time, the cut earth and sand and the drawing material are efficiently mixed, The cut earth and sand are not discharged to the ground as waste mud. Here, as a method of lifting the soil excavation tool while rotating it in reverse, the operation of rotating the soil excavation tool while keeping the soil excavation tool at a constant depth and the operation of pulling up the soil excavation tool within a short time are alternately repeated. It is preferable to prevent the generation of mud more effectively. For example, in this example, reverse rotation and injection of the injection material were performed at the same depth for 4.5 seconds, and the height was raised by 2.5 cm. That is, it is lifted 40 times in steps of 2.5 cm at a depth of 1 m, and rises over 3 minutes. The time required for pulling up is shorter than the time staying at the same depth. When pulling up, the work proceeds while removing the intermediate rods sequentially, contrary to when digging. If it raises to predetermined | prescribed height, injection | pouring of a drawing material will be stopped and the soil excavation tool 1 will be pulled up. When the construction of one hole is completed in this way, the work carriage 23 is moved to the next position and the same construction is repeated.
[0017]
An example of a construction machine drive device used in the present invention is shown in FIG. In the soil improvement method according to the present embodiment, since the rotating radius is 150 to 1000 mm and a large rotating blade is included and the earth and sand are stirred by rotating at a high speed of 30 to 60 revolutions per minute, the driving device to be used is also powerful. It needs to be something. On the other hand, this drive device must be compact enough to be mounted on the work carriage 23. Therefore, as shown in FIG. 7, the oil motor 31 is used as a driving source, a planetary speed reducer 32 having a reduction ratio of about 1/6 is connected to the shaft of the oil motor 31, and the first side is connected to the output side of the planetary speed reducer 32. The pulley 33 is provided. The second pulley is connected to the first pulley 33 through the intermediate transmission device 34 such as an intermediate pulley or a belt so that the reduction ratio becomes 1/6. The output shaft 36 connected to the second pulley rotates the intermediate rod through the chuck 27 and the like to rotate the soil excavation tool 1. By adopting such a configuration, a sufficient output can be obtained, and a compact drive device that can rotate at a higher speed than a drive device mounted on a conventional civil engineering work cart is obtained.
[0018]
Next, another embodiment of the present invention will be described. In this embodiment, powder cement is directly fed into the ground instead of cement milk as an injection material. FIG. 7 shows an example of a swivel used in this embodiment. The upper part of the swivel 9 is a non-rotating part 10 and does not rotate. The non-rotating portion 10 is provided with a drawing material inlet 11 and an air inlet 12 on the side surfaces. A rotating shaft 14 is attached via a bearing 13 so as to be rotatable with respect to the non-rotating portion 10. The rotating shaft 14 has a double tube structure including an inner tube 15 and an outer tube 16. The inner tube 15 is hollow, and this hollow portion constitutes the drawing material passage 17. The drawing material passage 17 is connected so that the drawing material introduced from the drawing material introduction port 11 can pass through. A gap is also provided between the inner pipe 15 and the outer pipe 16, and this gap constitutes an air passage 18. The air passage 18 is connected so that the air introduced from the air inlet 12 can pass through. This structure is almost the same as that used in the above-described embodiment of injecting cement milk, but in this embodiment, a thick inner tube is used to send powdered cement through the inner tube 15. FIG. 8 shows an example of the intermediate rod used in this embodiment. The intermediate rod also has a double tube structure, but a thick tube of about 3 inches is used for the inner tube, similar to the swivel.
[0019]
FIG. 9 shows an example of a construction machine used in this embodiment. The swivel and the intermediate rod have the aforementioned thick inner tube. An injection material hose 28 is connected to the upper part of the swivel, and the injection material hose 28 is connected to an ejector 41. A hopper 43 is provided above the ejector 41 to supply powder cement 44 to the ejector. The other end side of the ejector is connected to the compressor 42 and supplied with compressed air. The powdered cement is taken into the ejector 41 by the compressed air, and the powdered cement is fed by the compressed air through the injecting material hose 28, the swivel and the intermediate rod to the injecting material discharge nozzle 7 in the rotary blade portion of the soil excavation tool. It is supposed to be sent.
[0020]
In the ground improvement method using a construction machine, the work is carried out in substantially the same manner as in the above-described embodiment, but powder cement is injected into the ground from the injection material discharge nozzle 7 while rotating the soil excavating tool 1 in the reverse direction. To do. The cement injected into the ground is stirred together with the earth and sand by the rotary blade 5 provided with the claws 6 to form underground piles. The strength of underground piles is high because powder cement is injected instead of cement milk. On the other hand, in the method of injecting cement milk, the strength of the underground pile is slightly lowered, but there is an advantage that the underground pile having a diameter larger than the rotation radius of the rotary blade can be created, which is excellent in economic efficiency.
[0021]
【Example】
It is an example in which the present invention is applied to ground improvement work. Here, high concentration cement milk is used as the drawing material. The cement milk used in this construction method should have a higher cement ratio than the conventional construction method (for example, about 760 kg of cement in 1 m 3 of the drawn material). Is preferred. Here, if the amount of cement is increased, the specific gravity of the drawn material increases and the pumpability of the pump tends to deteriorate, so a water reducing agent (for example, an aromatic sulfone and specially modified lignin as a main component) may be blended. preferable. The blending of the water reducing agent facilitates the flow of cement milk and facilitates feeding by the pump, and increases the strength of the improved body. In this example, the product name Sunflow SW-2000S (Nippon Paper Industries Co., Ltd.) containing aromatic sulfone and specially modified lignin as main components is used as a water reducing agent, and 1000 kg of cement is used in 1 m 3 of the drawn material. 5 kg of Sunflow SW-2000S was blended to obtain an improved compression strength of 1 MPa (design standard strength). There are a method of jetting cement milk mixed with air at a low pressure of 0.6 to 2.5 MPa and a method of jetting cement milk at an ultrahigh pressure of 18.0 to 29.0 MPa. In the case of the latter ultra-high pressure jet agitation, air and cement milk are sent separately without mixing, and air is drawn downward from the tip of the leading conduit when digging, and cement milk is drawn next to the spiral blade when pulling up. It ejects from the material discharge port 7 in the lateral direction. In both methods, the cut earth and sand are mixed with cement milk and constitute an underground pile as an improved body, so that they are not discharged as waste mud on the ground. When pulling up, the spiral blades rotate clockwise in FIG. 3, drawing the earth and sand from above and pressing the agitated and mixed earth and cement downward with the blades, so that a strong underground pile can be formed, Strongly suppresses the generation of mud. For this reason, it does not cause environmental problems due to waste mud, and it does not incur a large amount of cost for the treatment of waste mud. Therefore, it is an environment-friendly construction method with excellent workability, economy and safety. ing.
[0022]
In the case of ultra-high pressure jet agitation, cement milk is injected in a horizontal direction at a high pressure, so that it is possible to create an improved body in a wider range than the diameter of the spiral blade, which shortens the construction period and improves the economy. In addition to being able to be realized, close construction and mutual construction are possible, and the overall construction can be integrated. In this example, a spiral blade having a diameter of 1 m was used, and stirring was performed at a high speed of 35 to 40 rotations per minute. The drawing material discharge pressure was 18 to 22 MPa, the air discharge amount was 1.5 to 3.0 m 3 / min, and the air discharge pressure was 0.6 to 0.7 MPa. It is necessary to pay attention to the injection amount per unit time, and if the excessive injection is performed, the effect of the present invention that no mud is generated may not be exhibited. In order to make sure prevention of waste mud, it is preferable to inject at about 70% after grasping in advance the injection amount per unit time at the limit where no waste mud is generated. In this example, it was 70 liters / min. The pulling speed (expressed in terms of time required for pulling up 1 m below) is 3.0 min / m, 0.01 N / mm 2 ≦ C ≦ 0 for clay soil with C <0.01 N / mm 2 (= MPa). It was set to 5.0 min / m for the soil of 03 N / mm 2 (5 ≦ N ≦ 10), and 6.0 min / m for the sand of 10 ≦ N ≦ 15.
[0023]
On the other hand, in the case of low pressure ejection, the inside diameter of the drawing material injection nozzle 7 is 8 to 12 mm, the rotational speed of the spiral blade is 30 rotations per minute, the drawing material discharge pressure is 0.6 to 2.5 MPa, and the injection speed. Was 50 liters / min.
[0024]
By the construction method of the present embodiment, a homogeneous improved body can be created even in soil that is difficult to construct by conventional construction methods such as humus soil. Moreover, even in the soil that has been the subject of conventional construction methods, it is possible to easily create a more homogeneous improved body without discharging mud.
[0025]
【The invention's effect】
In the present invention, there is an effect that a homogeneous underground pit can be formed even in humus soil, hard clay, sticky viscous soil, a layer containing an organic substance, a shell layer, and the like, and without draining mud. Sediment can be excavated and agitated, and the environment around the construction site can be protected.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing an example of a soil excavation tool used in the present invention.
FIG. 2 is a cross-sectional view showing another example of a soil excavation tool used in the present invention.
FIG. 3 is a perspective view showing a shape of a nail.
FIG. 4 is a front view showing a construction machine according to the present invention.
FIG. 5 is a cross-sectional view showing an underground pile by a conventional construction method.
FIG. 6 is a front view showing a drive device used in the construction machine according to the present invention.
FIG. 7 is a cross-sectional view showing a swivel.
FIG. 8 is a cross-sectional view showing an intermediate rod.
FIG. 9 is a front view showing a construction machine according to the present invention.
[Explanation of symbols]
1. Soil excavation tool2. Tip conduit3. Cutting tip 4. 4. Shaft body 5. Spiral blade Nails 7. 7. Drawing material discharge nozzle Air outlet 9 Sibel 10 Non-rotating part 11. Drawing material inlet 12. Air inlet 13. Bearing 14. Rotating shaft 15. Inner tube 16. Outer tube 17. Drawing material passage 18. Air passage 19. Male coupling 20. Female coupling 21. Bolt 22. Intermediate rod 23. Work carriage 24. Endless track 25. Arm 26. Leader 27. Chuck 28. Drawing material hose 29. Air hose 31. Oil motor 32. Planetary speed reducer 33. First pulley 34. Intermediate transmission device 35. Second pulley 41. Ejector 42. Compressor 43. Hopper 44. Powder cement

Claims (3)

先導管と軸体と軸体の周囲に多段に設けられた最大回転半径が150mm以上1000mm以下である回転羽根を有し、前記回転羽根の上面および下面に爪を設けた土壌掘削工具を回転させ、かつ先導管より圧縮空気又は水或いは水と圧縮空気の混合体を噴出しながら土壌を掘削し、所定の深さに達した後に土壌掘削工具を毎分30回転以上60回転以下の回転速度で逆回転させて土壌を撹拌させながら回転羽根部より地盤強化材を注入して土壌と地盤強化材を混合させ、土壌中に改良体を造成する地盤改良工法であって、所定の深さに達した後、土壌掘削工具を一定の深さに保ちながら逆回転させる作業と土壌掘削工具を所定の間隔だけ短時間で引き上げる作業とを交互に繰り返す地盤改良工法。 Rotating a soil excavation tool having rotating blades having a maximum turning radius of 150 mm to 1000 mm provided in multiple stages around the front conduit, the shaft body, and the shaft body, and having claws on the upper and lower surfaces of the rotating blade And excavating the soil while jetting compressed air or water or a mixture of water and compressed air from the leading conduit, and after reaching a predetermined depth, the soil excavation tool is rotated at a rotational speed of 30 to 60 revolutions per minute reverse rotation is allowed by injecting ground reinforcement from rotating vane portions while stirring the soil by mixing the soil and ground reinforcing material, a ground improvement method to construct a improved body soil, reaches a predetermined depth After that, the ground improvement method that alternately repeats the work of rotating the soil excavation tool in a reverse direction while keeping the soil excavation tool at a constant depth and the work of lifting the soil excavation tool by a predetermined interval in a short time. 前記回転羽根として、軸体の長さ方向において中央部で半径が大きく両端部で半径が小さくなる形状のらせん状羽根を使用するものである請求項1に記載の地盤改良工法。The ground improvement method according to claim 1, wherein a spiral blade having a shape in which a radius is large at a central portion and a radius is small at both ends in the length direction of the shaft body is used as the rotating blade. 地盤強化材の注入速度が毎分70リットル程度であり、土壌掘削工具を1m当たり3分乃至6分の速度で引き上げる請求項1または請求項に記載の地盤改良工法。The ground improvement construction method according to claim 1 or 2 , wherein an injection speed of the ground reinforcement is about 70 liters per minute, and the soil excavation tool is pulled up at a speed of 3 to 6 minutes per meter.
JP2002180915A 2002-06-21 2002-06-21 Ground improvement method Expired - Lifetime JP3974937B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002180915A JP3974937B2 (en) 2002-06-21 2002-06-21 Ground improvement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002180915A JP3974937B2 (en) 2002-06-21 2002-06-21 Ground improvement method

Publications (2)

Publication Number Publication Date
JP2004027494A JP2004027494A (en) 2004-01-29
JP3974937B2 true JP3974937B2 (en) 2007-09-12

Family

ID=31177880

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002180915A Expired - Lifetime JP3974937B2 (en) 2002-06-21 2002-06-21 Ground improvement method

Country Status (1)

Country Link
JP (1) JP3974937B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4601529B2 (en) * 2004-10-19 2010-12-22 小野田ケミコ株式会社 Ground improvement construction machine and ground improvement construction method
JP4695733B2 (en) * 2005-06-30 2011-06-08 山伸工業株式会社 Soil excavation tool, soil improvement method and soil purification method
JP6245543B2 (en) * 2013-10-21 2017-12-13 大地 山下 Soil improvement body construction method

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6158253U (en) * 1984-09-14 1986-04-19
JPS61188691U (en) * 1985-05-17 1986-11-25
JPH11269866A (en) * 1998-03-26 1999-10-05 Mitsubishi Constr Co Ltd Device for constructing rectangular continuous wall, pile, etc.
JP3389527B2 (en) * 1999-04-07 2003-03-24 不動建設株式会社 Ground mixing method
JP3737651B2 (en) * 1999-07-12 2006-01-18 株式会社日東テクノ・グループ Ground improvement material supply system
JP3481518B2 (en) * 1999-09-10 2003-12-22 ライト工業株式会社 How to clean contaminated ground
JP4679705B2 (en) * 2000-09-27 2011-04-27 山伸工業株式会社 Equipment for constructing mechanically stirred air cement milk mixed pressure feeding method
JP3391781B2 (en) * 2001-07-13 2003-03-31 山伸工業株式会社 Soil excavation tool, civil engineering machine for soil excavation, and soil improvement method

Also Published As

Publication number Publication date
JP2004027494A (en) 2004-01-29

Similar Documents

Publication Publication Date Title
JP2008121186A (en) Construction method of steel pipe soil cement pile and construction method of composite pile
KR101179604B1 (en) Auger device for excavating with five rods
JP4679705B2 (en) Equipment for constructing mechanically stirred air cement milk mixed pressure feeding method
KR101187582B1 (en) Auger device equiped with excavating rod and casing rod having same turning direction and different speed
KR100528682B1 (en) Soil excavating tool, swivel, connecting device, and ground improving method
JP3974937B2 (en) Ground improvement method
JP2007204983A (en) Swivel for soil excavating tool, and soil improving method
KR20120051142A (en) Drilling rod attaching screw wing and mixing blade and multiaxial earth auger machine using it
JP2000073354A (en) Preparating method of ground improving body and preparating method of continuous walls
JPH0813473A (en) Boring rod for soil improvement and soil improvement method
JP4695733B2 (en) Soil excavation tool, soil improvement method and soil purification method
JP5284168B2 (en) Excavation member for earth retaining member construction and earth retaining member construction method
JP3974936B2 (en) Soil drilling tool, construction machine with soil drilling tool, ground improvement method and soil purification method
JP4695734B2 (en) Soil excavation tool and soil improvement method
JP2006299538A (en) Soil improvement equipment
JP7231271B1 (en) Ground improvement method and ground improvement device
JP2004137722A (en) Drill/stir bit of underground pile formation and ground improvement method making use thereof
JP2004278034A (en) Soil excavating tool
JP6724200B1 (en) Excavator
JP7231273B1 (en) ground improvement method
JP2005307524A (en) Soil excavator
JP6245543B2 (en) Soil improvement body construction method
JP2003161093A (en) Apparatus for connecting rotating shaft of civil engineering machine
JP2000054367A (en) Ground improvement machine for deep layer mixing treatment method
JPH0493410A (en) Mixing and agitating vane device for foundation improvement machine

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050215

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061024

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070605

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070617

R150 Certificate of patent or registration of utility model

Ref document number: 3974937

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100622

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130622

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term