JP4435445B2 - Hydrogen storage alloy container - Google Patents

Hydrogen storage alloy container Download PDF

Info

Publication number
JP4435445B2
JP4435445B2 JP2001145433A JP2001145433A JP4435445B2 JP 4435445 B2 JP4435445 B2 JP 4435445B2 JP 2001145433 A JP2001145433 A JP 2001145433A JP 2001145433 A JP2001145433 A JP 2001145433A JP 4435445 B2 JP4435445 B2 JP 4435445B2
Authority
JP
Japan
Prior art keywords
heat medium
storage alloy
hydrogen storage
heat
heat transfer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001145433A
Other languages
Japanese (ja)
Other versions
JP2002340430A (en
Inventor
幸雄 佐藤
隆志 岩本
政征 河合
将一 佐藤
康志 大脇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Steel Works Ltd
Original Assignee
Japan Steel Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Steel Works Ltd filed Critical Japan Steel Works Ltd
Priority to JP2001145433A priority Critical patent/JP4435445B2/en
Publication of JP2002340430A publication Critical patent/JP2002340430A/en
Application granted granted Critical
Publication of JP4435445B2 publication Critical patent/JP4435445B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/45Hydrogen technologies in production processes

Description

【0001】
【発明の属する技術分野】
本発明は、水素吸蔵合金を収容して、熱媒と水素吸蔵合金との間での熱の授受と、水素吸蔵合金での水素の吸放出がなされる水素吸蔵合金容器に関するものである。
【0002】
【従来の技術】
水素吸蔵合金を収容して水素を吸放出させる容器は、熱媒が移動する熱媒移動管を水素吸蔵合金間に配置しておき、この熱媒移動管に高温の熱媒と低温の熱媒とを交互に流して水素吸蔵合金を加熱、冷却させることによって、水素が放出、吸収される性質を利用した、水素貯蔵タンク、水素精製装置、等に使用される。また、逆に水素を放出、吸収させると吸熱、発熱する性質を利用して、その熱を熱媒移動管を流れる熱媒に伝えて熱を取り出す、ヒートポンプ、冷凍機、等にも使用される。
【0003】
図3に、従来の水素吸蔵合金容器の例を示す。
水素吸蔵合金容器は、図3に示すように容器シェル1を有しており、該容器シェル1内に熱媒が通る伝熱チューブ2が内部熱媒移動管として配設されている。該伝熱チューブ2は、開口部を有する端部側がチューブシート3で固定され、折り返し部である他端部側がエンドプレート4で束ねられて固定されている。前記チューブシート3とエンドプレート4との間の容器シェル1内には、粒あるいは粉状の水素吸蔵合金5が収容されている。また、伝熱チューブ2の外壁には、該チューブ2と水素吸蔵合金5との伝熱性を高めるために多数のフィン6が固定されている。さらに容器シェル1は伝熱チューブ2の開口部側にシェルヘッド9を有しており、該シェルヘッド9には、水素吸蔵合金を加熱、冷却したり、吸熱、発熱した合金から熱を伝えたりするための熱媒を外部から容器に送り込むための熱媒流入管7と、その熱媒を容器から外部に排出するための熱媒流出管8が外部熱媒移動管として挿入されており、該シェルヘッド9内で、該熱媒流入管7の端部開口部7aと前記伝熱チューブ2の端部開口部2a、熱媒流出管8の端部開口部8bと伝熱チューブ2の端部開口部2bとが接続されている。
【0004】
図4は、上記熱媒流入管7および熱媒流出管8と、伝熱チューブ2との接続部分を示す拡大図であり、伝熱チューブ2の開口端部2a、2bが熱媒流入管7、熱媒流出管8の開口端部7a、8bの内側になるように嵌入され、溶接やロウ接等により固定されている。また、この図とは逆に、熱媒流入管7、熱媒流出管8の開口端部7a、8bを、伝熱チューブ2の開口端部2a、2bの内側に嵌入する場合もある。
図5は、特開平6−193996号公報に示された接続構造のうち熱媒の流入側を示すものであり、熱媒流入管7の開口端部7aと伝熱チューブ2の開口端部2aとの接続部分の内側に、円筒状補強材であるパイプ10が挿入・固定されている。
【0005】
次に上記水素吸蔵合金容器の作用について説明する。図3において、熱媒は熱媒流入管7を通って伝熱チューブ2に送られると、熱媒温度が水素吸蔵合金5の温度よりも高い場合は、熱媒の持つ熱が伝熱チューブ2を介して水素吸蔵合金5に伝わる。すると水素吸蔵合金5は、温度上昇に伴い水素を放出する。また、熱媒温度が水素吸蔵合金5の温度よりも低い場合は、水素吸蔵合金5の持つ熱が伝熱チューブ2を介して熱媒に伝わる。すると水素吸蔵合金5は、温度降下に伴い水素を吸収する。一方、水素吸蔵合金5から水素が放出状態にある場合は吸熱反応となり、水素吸蔵合金5の温度が下がって、熱媒の持つ熱が伝熱チューブ2を介して水素吸蔵合金5に伝わり、熱媒の温度が下がる。また、水素吸蔵合金5へ水素が吸収される状態にある場合は放熱反応となり、水素吸蔵合金5の温度が上がって、その熱が伝熱チューブ2を介して熱媒に伝わり、熱媒温度が上がる。この際、熱媒流入管7および熱媒流出管8と伝熱チューブ2とは熱媒によって加熱と冷却を受け、それに伴って膨張と収縮の寸法変化が起こる。
【0006】
【発明が解決しようとする課題】
しかし、従来の容器構造では、熱媒流入管7、熱媒流出管8、伝熱チューブ2は熱媒によって加熱と冷却を受け、それに伴って膨張と収縮の寸法変化が起こると、図4に示すようにフィンの配置がとぎれる部分20や接合部分の根本部21、22、断面変化の始まる部分23に応力が集中し、歪が発生して、それが繰り返されると、伝熱チューブ2や熱媒流入管7、熱媒流出管8において断面形状のつぶれ変形や極端な場合には部材の破壊に至ることもある。
【0007】
また、図5の例ではその歪を抑えるために前述したように補強材としてパイプ10を配置しているが、結局は必ず接合部の根本部分24ができるため、変形や破壊の危険性の完全回避は難しい。また、この例ではパイプ10と熱媒流入管7/熱媒流出管8、伝熱チューブ2との接合部が、管の奥に設けられているため、接合作業がやりにくく、コスト高や長い作業時間、品質管理が難しいといった問題も避けられない。
【0008】
本発明は、上記のような従来の水素吸蔵合金容器の課題を解決するためになされたもので、伝熱チューブの熱膨張/収縮を吸収する構造を設けることにより、熱媒の加熱と冷却によるチューブの膨張と収縮の寸法変化によるつぶれ変形や部材破壊を回避しながら、熱効率の良い水素吸蔵合金容器とすることを目的としている。
【0009】
【課題を解決するための手段】
上記課題を解決するため本発明の水素吸蔵合金容器のうち請求項1に記載の発明は、素吸蔵合金と該合金間に配設された内部熱媒移動管とが収容され、前記合金間外で前記内部熱媒移動管の端部開口部と容器外部に伸長する外部熱媒移動管の端部開口部とが接続された水素吸蔵合金容器において、前記両端部開口部の接続部分周辺にあって、前記外部熱媒移動管に、非拘束状態で変形可能な逆向きのエルボが連なる屈曲形状が付与され、かつ、前記内部移動管がストレート形状で該外部熱媒移動管に接続されていることを特徴とする。
【0010】
請求項2に記載の水素吸蔵合金容器の発明は、請求項1記載の発明において、前記外部熱媒移動管は、前記内部熱媒移動管と比して、疲労強度が高い材質からなることを特徴とする。
【0011】
請求項3に記載の水素吸蔵合金容器の発明は、請求項1または2に記載の発明において、前記外部熱媒移動管は、前記内部熱媒移動管と比して、熱伝導性が低い材質からなることを特徴とする。
【0012】
すなわち、本発明によれば、伝熱チューブの熱膨張/収縮の寸法変化は、変形可能で非拘束の状態にある外部熱媒移動管の屈曲形状部分で曲げ変形することによって吸収される。これにより伝熱チューブや熱媒移動管のつぶれ変形や部材破壊が回避される。
【0013】
なお、上記屈曲形状は接続部分周辺にある。これは、内部熱媒移動管の膨張、収縮の応力が最も集中しやすいのが開口部同士の接続部分であり、この応力を効果的に解消するためには、接続部分にできるだけ近い位置で屈曲形状を付与するのが望ましい。なお、この屈曲形状の付与を接続部分からどの程度離れた位置で行うかは任意であり、本発明としては特に限定されない。ただし、非拘束で変形可能な範囲に限定される。この範囲は、通常、接続部分に近いところに限られる。
【0014】
非拘束状態で変形可能とは、屈曲形状部分での曲げ変形が可能なように、これが不可である直接に拘束された状態にないことを意味している。
なお、付与される屈曲形状は特に限定されるものではなく、屈曲部分を含むものであればよく、内部熱媒移動管の膨張、収縮の変形力の全部または一部を屈曲形状部分で曲げ変形によって吸収できるものであればよい。
【0015】
また、屈曲形状は外部熱媒移動管に設けられており、該外部熱媒移動管に疲労強度が高い材質を用いれば、熱媒移動管のつぶれ変形、部材破壊がより確実に防止される。さらに、該外部熱媒移動管に熱伝導性が低い材質を用いれば、水素吸蔵合金容器の熱効率の向上が可能となる。
上記の疲労強度や熱伝導性は、内部熱媒移動管との相対的な比較において、高低をいうことができる。これら特性が上記を満たすものとしては、伝熱チューブが銅製である場合に、ステンレス鋼、チタン合金等を挙げることができる。
【0016】
【発明の実施の形態】
次に、本発明の一実施形態を図1、2に基づいて説明する。なお、従来の容器と同様の構造については同一の符号を付している。図1に本発明の容器の全体構造図、図2に内部熱媒移動管と外部熱媒移動管の接合部分周辺の拡大図を示す。
該容器では、容器シェル1を有し、該容器シェル1内に熱媒が通る銅管製の伝熱チューブ2が内部熱媒移動管として配設されている。伝熱チューブ2は、開口部を有する端部側がチューブシート3で固定され、折り返し部である他端部側がエンドプレート4で固定されている。前記チューブシート3とエンドプレート4との間に、粒あるいは粉状の水素吸蔵合金5が収容されており、前記伝熱チューブ2の外壁には多数のフィン6が固定されている。
【0017】
シェルヘッド9には、熱媒流入管17と熱媒流出管18が外部熱媒移動管として外側から挿入されており、シェルヘッド9内で、該熱媒流入管17の端部開口部17aが前記伝熱チューブ2の端部開口部2aに外嵌され、熱媒流出管18の端部開口部18bが前記伝熱チューブ2の端部開口部2bに外嵌され、溶接やロウ接等により接続されている。
上記熱媒流入管17と熱媒流出管18は、伝熱チューブ2に比較して疲労強度が高く、熱伝導性の低い、ステンレス鋼やチタン合金により構成されている。
【0018】
また、上記熱媒流入管17と熱媒流出管18は、図2に特に詳細に示すように、シェルヘッド9内において逆向きの90度エルボが連なる屈曲形状の屈曲部170、180が付与されている。この屈曲形状部分は、シェルヘッド9の壁部と、チューブシート3の間にあって、非拘束の状態にあり、曲げ変形が可能な状態にある。
【0019】
次に、上記水素吸蔵合金容器の作用について説明する。
熱媒は熱媒流入管17を通って開口端部17a、開口端部2aから伝熱チューブ2に送られると、熱媒温度が水素吸蔵合金5の温度よりも高い場合は、熱媒の持つ熱が伝熱チューブ2を介して水素吸蔵合金5に伝わる。すると水素吸蔵合金5は温度上昇に伴い水素を放出する。また、熱媒温度が水素吸蔵合金5の温度よりも低い場合は、水素吸蔵合金5の持つ熱が伝熱チューブ2を介して熱媒に伝わる。すると水素吸蔵合金5は、温度降下に伴い水素を吸収する。
【0020】
その他の動作例として、水素吸蔵合金5から水素が放出状態にある場合は吸熱反応となり、水素吸蔵合金5の温度が下がって、熱媒の持つ熱が伝熱チューブ2を介して水素吸蔵合金5に伝わり、熱媒の温度が下がる。また、水素吸蔵合金5へ水素が吸収される状態にある場合は放熱反応となり、水素吸蔵合金5の温度が上がって、その熱が伝熱チューブ2を介して熱媒に伝わり、熱媒温度が上がる。上記のように水素吸蔵合金容器は、熱を利用した水素の吸放出や水素の吸放出を利用した熱の移動に利用される。伝熱チューブ2を通った熱媒は、開口端部2b、開口端部18bから熱媒流出管18へと送られる。
【0021】
上記作用の際、熱媒流入管17と熱媒流出管18、伝熱チューブ2は熱媒によって加熱と冷却を受け、それに伴って膨張と収縮の寸法変化が起こる。そしてその寸法変化は、熱媒流入管17と熱媒流出管18に設けられた屈曲部170、180が変形屈曲部(図2では変形屈曲部170aのみ図示)となるように変形することによって吸収される。特に、熱媒流入管17と熱媒流出管18とは、疲労強度の高い材質で構成されているので、上記変形を繰り返し受けても損傷を受けにくい。
さらに、熱媒流入管17と熱媒流出管18には、熱伝導性が低い材質を用いているので、熱媒からシェルヘッド9や容器シェル1に逃げる熱ロスが少なくなり、熱交換効率が向上する。
【0022】
なお、上記実施形態では、外部熱媒移動管である熱媒流入管17および熱媒流出管18に、屈曲部170、180を設けた。本発明としては、内部熱媒移動管である伝熱チューブをストレートにして、外部熱媒移動管側に屈曲形状を付与する。
【0023】
【発明の効果】
以上のように、本発明の水素吸蔵合金容器によれば、素吸蔵合金と該合金間に配設された内部熱媒移動管とが収容され、前記合金間外で前記内部熱媒移動管の端部開口部と容器外部に伸長する外部熱媒移動管の端部開口部とが接続された水素吸蔵合金容器において、前記両端部開口部の接続部分周辺にあって、前記外部熱媒移動管に、非拘束状態で変形可能な逆向きのエルボが連なる屈曲形状が付与され、かつ、前記内部移動管がストレート形状で該外部熱媒移動管に接続されているので、熱媒の加熱と冷却による熱媒移動管の膨張と収縮の繰り返し寸法変化による熱媒移動管のつぶれ変形や部材破壊を回避できる。
【0024】
また、上記屈曲形状を付与した外部熱媒移動管を疲労強度が高い材質で構成すれば、上記寸法変化による熱媒移動管の耐久性が一層向上する。さらに、上記外部熱媒移動管を熱伝導性の低い材質で構成すれば、熱媒からシェルヘッドや容器シェルに逃げる熱ロスが少なくなり、水素吸蔵合金容器としての熱効率が向上する。
また、構成部品数が少なく接合構造も簡単であるため、ロウ接や溶接等の接合作業が楽にでき、製造コストが安価にでき、また品質の安定性も向上するという効果が得られる。
【図面の簡単な説明】
【図1】 本発明の一実施形態の水素吸蔵合金容器を示す正面断面図である。
【図2】 同じく熱媒移動管の接合部分付近を示す拡大正面断面図である。
【図3】 従来の水素吸蔵合金容器を示す正面断面図である。
【図4】 同じく熱媒移動管の接合部分付近を示す拡大正面断面図である。
【図5】 熱媒移動管の接合部分を改良した従来の水素吸蔵合金容器の接合部分付近を示す拡大正面断面図である。
【符号の説明】
1 容器シェル
2 伝熱チューブ
2a 開口端部
5 水素吸蔵合金
6 フィン
17 熱媒流入管
17a 開口端部
170 屈曲部
18 熱媒流出管
18b 開口端部
180 屈曲部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a hydrogen storage alloy container in which a hydrogen storage alloy is accommodated to transfer heat between a heat medium and the hydrogen storage alloy and to absorb and release hydrogen in the hydrogen storage alloy.
[0002]
[Prior art]
A container that contains a hydrogen storage alloy and absorbs and releases hydrogen has a heat medium moving tube between which the heat medium moves arranged between the hydrogen storage alloy, and a high temperature heat medium and a low temperature heat medium in the heat medium moving tube. Are alternately used to heat and cool the hydrogen-occlusion alloy, so that it is used in hydrogen storage tanks, hydrogen purifiers, etc. utilizing the property of releasing and absorbing hydrogen. On the other hand, it is also used in heat pumps, refrigerators, etc. that take advantage of the property of absorbing and generating heat when hydrogen is released and absorbed, and transferring the heat to the heat medium flowing through the heat medium moving tube. .
[0003]
FIG. 3 shows an example of a conventional hydrogen storage alloy container.
The hydrogen storage alloy container has a container shell 1 as shown in FIG. 3, and a heat transfer tube 2 through which a heat medium passes is disposed as an internal heat medium moving pipe. The heat transfer tube 2 has an end portion side having an opening portion fixed by a tube sheet 3, and the other end portion side which is a folded portion is bundled and fixed by an end plate 4. In the container shell 1 between the tube sheet 3 and the end plate 4, granular or powdered hydrogen storage alloy 5 is accommodated. A large number of fins 6 are fixed to the outer wall of the heat transfer tube 2 in order to enhance the heat transfer between the tube 2 and the hydrogen storage alloy 5. Furthermore, the container shell 1 has a shell head 9 on the opening side of the heat transfer tube 2. The shell head 9 heats and cools the hydrogen storage alloy, and transfers heat from the alloy that absorbs heat and generates heat. A heat medium inflow pipe 7 for feeding a heat medium for carrying out to the container from the outside, and a heat medium outflow pipe 8 for discharging the heat medium from the container to the outside are inserted as external heat medium moving pipes, Within the shell head 9, the end opening 7 a of the heat medium inflow pipe 7 and the end opening 2 a of the heat transfer tube 2, the end opening 8 b of the heat medium outflow pipe 8 and the end of the heat transfer tube 2 The opening 2b is connected.
[0004]
FIG. 4 is an enlarged view showing a connection portion between the heat medium inflow pipe 7 and the heat medium outflow pipe 8 and the heat transfer tube 2, and the opening ends 2 a and 2 b of the heat transfer tube 2 are the heat medium inflow pipe 7. The heat medium outlet pipe 8 is fitted so as to be inside the open ends 7a and 8b, and is fixed by welding, brazing or the like. Contrary to this figure, the opening end portions 7 a and 8 b of the heat medium inflow tube 7 and the heat medium outflow tube 8 may be fitted inside the opening ends 2 a and 2 b of the heat transfer tube 2.
FIG. 5 shows the inflow side of the heat medium in the connection structure disclosed in Japanese Patent Laid-Open No. 6-193996. The open end 7a of the heat medium inflow pipe 7 and the open end 2a of the heat transfer tube 2 are shown. A pipe 10 that is a cylindrical reinforcing material is inserted and fixed inside the connecting portion.
[0005]
Next, the operation of the hydrogen storage alloy container will be described. In FIG. 3, when the heat medium is sent to the heat transfer tube 2 through the heat medium inflow pipe 7, when the heat medium temperature is higher than the temperature of the hydrogen storage alloy 5, the heat of the heat medium is the heat transfer tube 2. It is transmitted to the hydrogen storage alloy 5 via. Then, the hydrogen storage alloy 5 releases hydrogen as the temperature rises. When the heat medium temperature is lower than the temperature of the hydrogen storage alloy 5, the heat of the hydrogen storage alloy 5 is transmitted to the heat medium via the heat transfer tube 2. Then, the hydrogen storage alloy 5 absorbs hydrogen with a temperature drop. On the other hand, when hydrogen is released from the hydrogen storage alloy 5, an endothermic reaction occurs, the temperature of the hydrogen storage alloy 5 decreases, and the heat of the heating medium is transferred to the hydrogen storage alloy 5 through the heat transfer tube 2, The temperature of the medium decreases. Further, when hydrogen is absorbed by the hydrogen storage alloy 5, a heat dissipation reaction occurs, the temperature of the hydrogen storage alloy 5 rises, and the heat is transferred to the heat medium via the heat transfer tube 2, so that the heat medium temperature is increased. Go up. At this time, the heat medium inflow pipe 7 and the heat medium outflow pipe 8 and the heat transfer tube 2 are heated and cooled by the heat medium, and accordingly, dimensional changes of expansion and contraction occur.
[0006]
[Problems to be solved by the invention]
However, in the conventional container structure, when the heat medium inflow pipe 7, the heat medium outflow pipe 8, and the heat transfer tube 2 are heated and cooled by the heat medium, and the accompanying dimensional change of expansion and contraction occurs, FIG. As shown, stress concentrates on the portion 20 where the fin arrangement is interrupted, the base portions 21 and 22 of the joint portion, and the portion 23 where the cross-sectional change starts, and when distortion occurs and is repeated, the heat transfer tube 2 and heat In the medium inflow pipe 7 and the heat medium outflow pipe 8, the cross-sectional shape may be crushed and, in extreme cases, the member may be destroyed.
[0007]
Further, in the example of FIG. 5, the pipe 10 is disposed as a reinforcing material as described above in order to suppress the distortion. However, since the base portion 24 of the joint portion is surely formed in the end, the risk of deformation and destruction is completely eliminated. Avoidance is difficult. Moreover, in this example, since the joint part of the pipe 10, the heat-medium inflow pipe 7 / heat-medium outflow pipe 8, and the heat transfer tube 2 is provided in the back of the pipe, it is difficult to perform the joining work, and the cost is high and long. Problems such as work time and quality control are inevitable.
[0008]
The present invention has been made in order to solve the problems of the conventional hydrogen storage alloy container as described above. By providing a structure for absorbing the thermal expansion / contraction of the heat transfer tube, the heating medium is heated and cooled. An object of the present invention is to make a hydrogen-absorbing alloy container with high thermal efficiency while avoiding crushing deformation and member destruction due to dimensional change of expansion and contraction of the tube.
[0009]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the invention according to claim 1 of the hydrogen storage alloy container of the present invention contains an element storage alloy and an internal heat transfer pipe arranged between the alloys, In the hydrogen storage alloy container in which the end opening of the internal heat transfer pipe and the end opening of the external heat transfer pipe extending to the outside of the container are connected to each other around the connection portion of the opening of both ends. The outer heat transfer pipe is provided with a bent shape in which reverse elbows that can be deformed in an unconstrained state are connected , and the inner transfer pipe is connected to the outer heat transfer pipe in a straight shape. It is characterized by that.
[0010]
Invention of the hydrogen storage alloy container of claim 2 is the invention of claim 1, wherein said outer portion heat medium moving tube, wherein as compared with the internal heat medium moving tube, the fatigue strength having a higher material It is characterized by.
[0011]
The invention of the hydrogen storage alloy container of claim 3, in the invention described in claim 1 or 2, wherein the outer portion heat medium moving tube, wherein as compared with the internal heat medium moving tube, low thermal conductivity It is made of a material.
[0012]
That is, according to the present invention, dimensional changes of the thermal expansion / contraction of the heat transfer tube is absorbed by bending deformation in bending piece shaped part of the situations that near-deformable unconstrained external heat medium moves tube The Thereby, crushing deformation and member destruction of the heat transfer tube and the heat transfer tube are avoided.
[0013]
The bent shape is around the connection portion. This is because the stress of expansion and contraction of the internal heat transfer pipe is most likely to be concentrated at the connection part of the openings, and in order to effectively eliminate this stress, it is bent as close as possible to the connection part. It is desirable to give shape. It should be noted that it is arbitrary how far this bent shape is imparted from the connecting portion, and the present invention is not particularly limited. However, it is limited to an unconstrained and deformable range. This range is usually limited to the vicinity of the connection.
[0014]
Deformable in an unconstrained state means that it is not in a directly constrained state where this is not possible so that bending deformation at the bent portion is possible.
The bent shape to be imparted is not particularly limited as long as it includes a bent portion, and all or a part of the deformation force of expansion and contraction of the internal heat transfer medium moving tube is bent and deformed at the bent shape portion. As long as it can be absorbed by
[0015]
Further, bent shape are found provided on the outer portion heat medium moving tubes, the use of the fatigue strength to the external heat medium moving tube material high collapse deformation of the heat transfer medium moving tube member breaking is more reliably prevented The Furthermore, the use of low thermal conductivity material in the external heat medium moving pipe, thereby improving the thermal efficiency of the hydrogen storage alloy container.
The above fatigue strength and thermal conductivity can be said to be high or low in relative comparison with the internal heat transfer pipe. As those satisfying the above characteristics, when the heat transfer tube is made of copper, stainless steel, titanium alloy and the like can be mentioned.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Next, an embodiment of the present invention will be described with reference to FIGS. In addition, the same code | symbol is attached | subjected about the structure similar to the conventional container. FIG. 1 is an overall structural view of a container according to the present invention, and FIG.
The container has a container shell 1, and a heat transfer tube 2 made of a copper tube through which the heat medium passes is disposed as an internal heat medium moving tube. In the heat transfer tube 2, the end side having the opening is fixed by the tube sheet 3, and the other end side which is the folded portion is fixed by the end plate 4. Granulated or powdered hydrogen storage alloy 5 is accommodated between the tube sheet 3 and the end plate 4, and a large number of fins 6 are fixed to the outer wall of the heat transfer tube 2.
[0017]
In the shell head 9, a heat medium inflow pipe 17 and a heat medium outflow pipe 18 are inserted from the outside as external heat medium moving pipes, and an end opening 17 a of the heat medium inflow pipe 17 is formed in the shell head 9. The end opening 2a of the heat transfer tube 2 is fitted over the end opening 2a, the end opening 18b of the heat transfer pipe 18 is fitted over the end opening 2b of the heat transfer tube 2, and welding or brazing is performed. It is connected.
The heat medium inflow pipe 17 and the heat medium outflow pipe 18 are made of stainless steel or titanium alloy having higher fatigue strength and lower thermal conductivity than the heat transfer tube 2.
[0018]
Further, the heat medium inflow pipe 17 and the heat medium outflow pipe 18 are provided with bent portions 170 and 180 having bent shapes in which 90-degree elbows in the opposite direction are connected in the shell head 9, as shown in detail in FIG. ing. This bent shape portion is between the wall portion of the shell head 9 and the tube sheet 3, is in an unconstrained state, and is in a state where bending deformation is possible.
[0019]
Next, the operation of the hydrogen storage alloy container will be described.
When the heating medium passes through the heating medium inflow pipe 17 and is sent from the opening end 17a and the opening end 2a to the heat transfer tube 2, the heating medium has a heating medium temperature higher than that of the hydrogen storage alloy 5. Heat is transferred to the hydrogen storage alloy 5 through the heat transfer tube 2. Then, the hydrogen storage alloy 5 releases hydrogen as the temperature rises. When the heat medium temperature is lower than the temperature of the hydrogen storage alloy 5, the heat of the hydrogen storage alloy 5 is transmitted to the heat medium via the heat transfer tube 2. Then, the hydrogen storage alloy 5 absorbs hydrogen with a temperature drop.
[0020]
As another example of operation, when hydrogen is released from the hydrogen storage alloy 5, an endothermic reaction occurs, the temperature of the hydrogen storage alloy 5 decreases, and the heat of the heat transfer medium 2 passes through the heat transfer tube 2. The temperature of the heating medium decreases. Further, when hydrogen is absorbed by the hydrogen storage alloy 5, a heat dissipation reaction occurs, the temperature of the hydrogen storage alloy 5 rises, and the heat is transferred to the heat medium via the heat transfer tube 2, so that the heat medium temperature is increased. Go up. As described above, the hydrogen storage alloy container is used for the absorption and release of hydrogen using heat and the movement of heat using the absorption and release of hydrogen. The heat medium that has passed through the heat transfer tube 2 is sent to the heat medium outlet pipe 18 from the opening end 2b and the opening end 18b.
[0021]
During the above operation, the heat medium inflow pipe 17, the heat medium outflow pipe 18, and the heat transfer tube 2 are heated and cooled by the heat medium, and the dimensional change of expansion and contraction occurs accordingly. The dimensional change is absorbed when the bent portions 170 and 180 provided in the heat medium inflow pipe 17 and the heat medium outflow pipe 18 are deformed so as to become deformed bent portions (only the deformed bent portion 170a is shown in FIG. 2). Is done. In particular, since the heat medium inflow pipe 17 and the heat medium outflow pipe 18 are made of a material having high fatigue strength, they are not easily damaged even if the deformation is repeated.
Furthermore, since the heat medium inflow pipe 17 and the heat medium outflow pipe 18 are made of a material having low heat conductivity, heat loss that escapes from the heat medium to the shell head 9 or the container shell 1 is reduced, and heat exchange efficiency is improved. improves.
[0022]
In the above embodiment, the bent portions 170 and 180 are provided in the heat medium inflow pipe 17 and the heat medium outflow pipe 18 which are external heat medium moving pipes . The present invention, the heat transfer tube is an internal heat medium moving tube and straight, to grant bent shape to the external heat medium moving pipe side.
[0023]
【The invention's effect】
As described above, according to the hydrogen storage alloy container of the present invention, the element storage alloy and the internal heat medium moving tube disposed between the alloys are accommodated, and the internal heat medium moving tube is disposed between the alloys . In a hydrogen storage alloy container in which an end opening and an end opening of an external heat medium moving tube extending outside the container are connected to each other, the external heat medium moving tube is located around a connecting portion of the both end openings. In addition, a bent shape in which reverse elbows that can be deformed in an unconstrained state are connected , and the internal moving pipe is connected to the external heat medium moving pipe in a straight shape, so that the heating medium is heated and cooled. It is possible to avoid crushing deformation and member destruction of the heat transfer tube due to repeated dimensional changes of expansion and contraction of the heat transfer tube.
[0024]
Further, by forming the external heat medium moving tube imparted on SL bent shape in fatigue strength material high durability of the heat medium moving pipe according to the dimensional change is further improved. Furthermore , if the external heat transfer pipe is made of a material having low heat conductivity, the heat loss that escapes from the heat transfer to the shell head or the container shell is reduced, and the thermal efficiency of the hydrogen storage alloy container is improved.
In addition, since the number of components is small and the joining structure is simple, joining operations such as brazing and welding can be facilitated, manufacturing costs can be reduced, and quality stability can be improved.
[Brief description of the drawings]
FIG. 1 is a front sectional view showing a hydrogen storage alloy container according to an embodiment of the present invention.
FIG. 2 is an enlarged front sectional view showing the vicinity of a joining portion of the heat transfer pipe.
FIG. 3 is a front sectional view showing a conventional hydrogen storage alloy container.
FIG. 4 is an enlarged front sectional view showing the vicinity of a joining portion of the heat transfer pipe.
FIG. 5 is an enlarged front sectional view showing the vicinity of a joining portion of a conventional hydrogen storage alloy container in which a joining portion of a heat transfer pipe is improved.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Container shell 2 Heat transfer tube 2a Open end 5 Hydrogen storage alloy 6 Fin 17 Heat medium inflow pipe 17a Open end 170 Bending part 18 Heat medium outflow pipe 18b Open end 180 Bending part

Claims (3)

水素吸蔵合金と該合金間に配設された内部熱媒移動管とが収容され、前記合金間外で前記内部熱媒移動管の端部開口部と容器外部に伸長する外部熱媒移動管の端部開口部とが接続された水素吸蔵合金容器において、前記両端部開口部の接続部分周辺にあって、前記外部熱媒移動管に、非拘束状態で変形可能な逆向きのエルボが連なる屈曲形状が付与され、かつ、前記内部移動管がストレート形状で該外部熱媒移動管に接続されていることを特徴とする水素吸蔵合金容器。A hydrogen storage alloy and an internal heat medium moving tube disposed between the alloys are accommodated, and an external heat medium moving tube extending between the end opening of the internal heat medium moving tube and the outside of the container between and outside the alloy . In the hydrogen storage alloy container connected to the end opening, a bent elbow in the vicinity of the connecting portion of the opening at both ends and a reverse elbow that can be deformed in an unconstrained state is connected to the external heat transfer pipe. A hydrogen storage alloy container characterized by having a shape and connecting the inner moving pipe to the outer heat medium moving pipe in a straight shape. 前記外部熱媒移動管は、前記内部熱媒移動管と比して、疲労強度が高い材質からなることを特徴とする請求項1記載の水素吸蔵合金容器。  2. The hydrogen storage alloy container according to claim 1, wherein the external heat transfer pipe is made of a material having higher fatigue strength than the internal heat transfer pipe. 前記外部熱媒移動管は、前記内部熱媒移動管と比して、熱伝導性が低い材質からなることを特徴とする請求項1または2に記載の水素吸蔵合金容器。  3. The hydrogen storage alloy container according to claim 1, wherein the external heat medium moving tube is made of a material having lower thermal conductivity than the internal heat medium moving tube.
JP2001145433A 2001-05-15 2001-05-15 Hydrogen storage alloy container Expired - Fee Related JP4435445B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001145433A JP4435445B2 (en) 2001-05-15 2001-05-15 Hydrogen storage alloy container

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001145433A JP4435445B2 (en) 2001-05-15 2001-05-15 Hydrogen storage alloy container

Publications (2)

Publication Number Publication Date
JP2002340430A JP2002340430A (en) 2002-11-27
JP4435445B2 true JP4435445B2 (en) 2010-03-17

Family

ID=18991246

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001145433A Expired - Fee Related JP4435445B2 (en) 2001-05-15 2001-05-15 Hydrogen storage alloy container

Country Status (1)

Country Link
JP (1) JP4435445B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100620303B1 (en) 2003-03-25 2006-09-13 도요다 지도샤 가부시끼가이샤 Gas storage tank and its manufacturing method
JP4511851B2 (en) * 2003-05-08 2010-07-28 株式会社豊田自動織機 High pressure tank and manufacturing method thereof
US7537748B2 (en) 2003-08-11 2009-05-26 National University Corporation, Hiroshima University Hydrogen storage matter and manufacturing method and apparatus for the same
JP6307289B2 (en) * 2014-01-30 2018-04-04 Kyb株式会社 Heat exchanger and hydrogen storage device

Also Published As

Publication number Publication date
JP2002340430A (en) 2002-11-27

Similar Documents

Publication Publication Date Title
US6988541B2 (en) Oil-cooler-equipped radiator
US20050006079A1 (en) Heat exchanger and manufacturing method for the same
EP0860676A3 (en) Heat exchanger
US20070000652A1 (en) Heat exchanger with dimpled tube surfaces
JP4450887B2 (en) Heat exchanger
WO2006123536A1 (en) Heat exchanger
EP1048343A3 (en) Heat exchanger type reactor
JP4435445B2 (en) Hydrogen storage alloy container
JP2014035181A (en) Heat exchanger tube, heat exchanger tube assembly, and method of making the same
JP4661526B2 (en) Heat exchanger
JP3558131B2 (en) Double tube heat exchanger
US20060048930A1 (en) Heat exchanger
JP2014034061A (en) Tube for heat exchanger, tube assembly of heat exchanger and method for manufacturing the same
JP4009157B2 (en) Element tube for heat exchanger and heat exchanger using the same
JP2001108390A (en) Multi-tube type heat exchanger and its manufacturing method
JP4354412B2 (en) Heat exchanger
WO2008023569A1 (en) Tank structure of heat exchanger
JPH0616309Y2 (en) Heat exchanger
JPH0221198A (en) Heat exchanger
JPH066961U (en) Hydrogen storage body storage unit in hydrogen storage / release heat exchanger
JP4332870B2 (en) Multi-tube heat exchanger
JPH06193996A (en) Hydrogen occlusion alloy packed container having built-in heat exchanger
JP2005030673A (en) Heat exchanger and manufacturing method therefor
JP2005076893A (en) Accessory attachable to u-tube part of air conditioner heat exchanger
JP2004138313A (en) Heat exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090423

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090609

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090909

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20091109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091222

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091224

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130108

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140108

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees