JPH06193996A - Hydrogen occlusion alloy packed container having built-in heat exchanger - Google Patents

Hydrogen occlusion alloy packed container having built-in heat exchanger

Info

Publication number
JPH06193996A
JPH06193996A JP35725392A JP35725392A JPH06193996A JP H06193996 A JPH06193996 A JP H06193996A JP 35725392 A JP35725392 A JP 35725392A JP 35725392 A JP35725392 A JP 35725392A JP H06193996 A JPH06193996 A JP H06193996A
Authority
JP
Japan
Prior art keywords
storage alloy
hydrogen storage
heat
hydrogen
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP35725392A
Other languages
Japanese (ja)
Inventor
Koichi Sato
広一 佐藤
Teruhiko Imoto
輝彦 井本
Kenji Nasako
賢二 名迫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP35725392A priority Critical patent/JPH06193996A/en
Publication of JPH06193996A publication Critical patent/JPH06193996A/en
Pending legal-status Critical Current

Links

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

PURPOSE:To improve the endurance of heat carrier piping. CONSTITUTION:In a hydrogen occlusion alloy packed container comprising a container packed with hydrogen occlusion alloy and provided with fins 5 and a heat exchanger equipped with hydrogen piping and heat carrier piping 3 in the inside thereof and integrated in the container in such a manner that heat carrier fed from outside through a heat carrier connector pipe 9 connected to the heat carrier piping 3 effects heat exchange with the hydrogen occlusion alloy in the container through the heat carrier piping 3, a tubular reinforcement member 19 is inserted in the interior of connecting part of the heat carrier piping 3 and the heat carrier connector pipe 9.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、水素吸蔵合金を利用し
た冷暖房システムの高寿命化に貢献する熱交換器を内蔵
した水素吸蔵合金充填容器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hydrogen storage alloy filling container having a built-in heat exchanger which contributes to a longer life of a cooling and heating system using a hydrogen storage alloy.

【0002】[0002]

【従来の技術】従来より、水素吸蔵合金が水素を放出す
るときの吸熱反応を利用した冷却装置は種々提案されて
おり、例えば、特公昭58ー19955号公報では、水
素平衡圧力の異なる2種類の水素吸蔵合金をそれぞれ内
蔵した熱交換器対を2組設け、各組の一方の容器を交互
に冷暖房源として連続的に冷房あるいは暖房を行う装置
が提案されている。
2. Description of the Related Art Hitherto, various cooling devices utilizing an endothermic reaction when a hydrogen storage alloy releases hydrogen have been proposed. For example, Japanese Patent Publication No. 58-199555 discloses two types of cooling devices having different hydrogen equilibrium pressures. An apparatus has been proposed in which two pairs of heat exchangers each containing the hydrogen storage alloy are provided, and one of the vessels of each set is alternately used as a cooling / heating source to continuously perform cooling or heating.

【0003】上記した熱交換器を内蔵した水素吸蔵合金
充填容器(以下、水素吸蔵合金充填容器という)は、例
えば、図6に示す如くの構成のものが用いられ、この水
素吸蔵合金充填容器1は、内部に水素吸蔵合金2が充填
されると共に、この水素吸蔵合金2を貫通して熱媒管3
が配設され、さらに、水素配管4が設けられ、これらに
フィン5を設けて、内ケース6に収納され、外ケース7
に装着されるフランジ7aのボルト穴7bに図示しない
ボルトを用いて筐体8に固定されている。
As the hydrogen storage alloy filling container (hereinafter referred to as hydrogen storage alloy filling container) having the above-mentioned heat exchanger built therein, for example, one having a structure as shown in FIG. 6 is used. Is filled with the hydrogen storage alloy 2 and penetrates through the hydrogen storage alloy 2 to form the heat transfer medium pipe 3
Is provided, and further, hydrogen pipes 4 are provided, fins 5 are provided on these, and they are housed in the inner case 6, and the outer case 7
It is fixed to the housing 8 with bolts (not shown) in the bolt holes 7b of the flange 7a attached to the.

【0004】水素吸蔵合金充填容器1は、一対として、
それぞれに水素平衡圧力の異なる水素吸蔵合金2を充填
し、両者の水素配管4を連通させる。
The hydrogen storage alloy filling container 1 is composed of a pair of
Each of them is filled with a hydrogen storage alloy 2 having a different hydrogen equilibrium pressure, and both hydrogen pipes 4 are connected.

【0005】そして、冷熱モードでは、一方の低温側の
水素吸蔵合金充填容器1から対応する高温側の水素吸蔵
合金充填容器1へ水素を水素配管4を介して放出させ発
生する冷熱を熱媒管3から取り出し被冷却空間の冷房を
行う。このとき、高温側の水素吸蔵合金充填容器1で発
生する温熱は、熱媒管3から取り出し暖房に用いる。ま
た、再生モードとして他方の高温側の水素吸蔵合金充填
容器1から水素を水素配管4を介して対応する低温側の
水素吸蔵合金充填容器1に戻す。
In the cold heat mode, the cold heat generated by releasing hydrogen from the hydrogen storage alloy filling container 1 on one low temperature side to the corresponding hydrogen storage alloy filling container 1 on the high temperature side via the hydrogen pipe 4 is a heat transfer medium pipe. 3 is taken out and the space to be cooled is cooled. At this time, the heat generated in the high temperature side hydrogen storage alloy filling container 1 is taken out from the heat medium pipe 3 and used for heating. In the regeneration mode, hydrogen is returned from the other high temperature side hydrogen storage alloy filling container 1 to the corresponding low temperature side hydrogen storage alloy filling container 1 via the hydrogen pipe 4.

【0006】一般に、この種の冷房装置では、冷熱モー
ドの終了後に、次の再生モードに移行する際に、各水素
吸蔵合金充填容器1相互間の水素配管4を閉じて水素の
移動を停止して、次に再生モードとするため高温側の水
素吸蔵合金充填容器1へ熱媒管3から温熱を供給して加
熱する。このようにして、2つの水素吸蔵合金充填容器
1の間に水素を移動させて冷房および暖房がされる。
Generally, in this type of cooling apparatus, when the cooling mode is finished and the mode is changed to the next regeneration mode, the hydrogen pipes 4 between the hydrogen storage alloy filling containers 1 are closed to stop the movement of hydrogen. Next, in order to enter the regeneration mode, warm heat is supplied from the heat medium pipe 3 to the high temperature side hydrogen storage alloy filling container 1 to heat it. In this way, hydrogen is moved between the two hydrogen storage alloy filling containers 1 to perform cooling and heating.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、上記し
た従来の水素吸蔵合金充填容器1では、熱媒管3が熱疲
労や熱応力等により破断し、耐久性に問題があった。
However, in the above-mentioned conventional hydrogen storage alloy filled container 1, the heat transfer medium pipe 3 is broken due to thermal fatigue, thermal stress, etc., and there is a problem in durability.

【0008】すなわち、水素吸蔵合金充填容器1の熱媒
管3は、銅製で図6のA矢印部を拡大する図7および図
7のDーD方向断面図に示す如く、熱媒管3の端部3a
をやや開口部を広くした中空部の内壁に、他の水素吸蔵
合金充填容器1と連通する銅製の熱媒連結管9のやや開
口部を広くした端部9aの外壁が挿入されて図示B部分
が溶接され両者を接続している。
That is, the heat transfer medium pipe 3 of the hydrogen storage alloy filling container 1 is made of copper, and as shown in the sectional view taken along the line DD in FIG. 7 and FIG. End 3a
The outer wall of the end portion 9a having a slightly wide opening of the copper heat medium connecting pipe 9 communicating with another hydrogen storage alloy filling container 1 is inserted into the inner wall of the hollow portion having a slightly wide opening. Are welded to connect the two.

【0009】上記構成の水素吸蔵合金充填容器1の熱媒
管3では、交互に高温と低温の熱媒体が供給され、放出
されるから熱応力によって、特に図示C部分が短時間で
破断するという問題があった。
In the heat transfer medium pipe 3 of the hydrogen storage alloy filling container 1 having the above-described structure, the high-temperature and low-temperature heat mediums are alternately supplied and discharged, so that thermal stress causes a breakage in the portion C in the drawing in particular. There was a problem.

【0010】かかる問題は、水素吸蔵合金充填容器を用
いて冷暖房システムを連続運転する上で障害となり、水
素吸蔵合金充填容器の熱交換器の耐久性や信頼性を向上
させるために上記問題を解決することが急務となってい
た。
This problem is an obstacle to the continuous operation of the cooling and heating system using the hydrogen storage alloy filling container, and the above problems are solved in order to improve the durability and reliability of the heat exchanger of the hydrogen storage alloy filling container. There was an urgent need to do so.

【0011】そこで、本発明は上記課題を解決するた
め、水素吸蔵合金充填容器の熱媒体導入部の耐久性を向
上させる熱交換器を内蔵した水素吸蔵合金充填容器を提
供することを目的とする。
SUMMARY OF THE INVENTION In order to solve the above problems, it is an object of the present invention to provide a hydrogen storage alloy filling container having a built-in heat exchanger for improving the durability of the heat medium introducing portion of the hydrogen storage alloy filling container. .

【0012】[0012]

【課題を解決するための手段】本発明は、容器内部に水
素吸蔵合金を充填し、水素配管を取り付けた水素吸蔵合
金容器内部にフィンを付設した熱媒管を内蔵し、この熱
媒管に熱媒連結管を接続し容器外部に導出し、外部から
供給する熱媒体と熱媒管を介して容器内の水素吸蔵合金
と熱交換する熱交換器を内蔵した水素吸蔵合金充填容器
において、熱媒管と熱媒連結管との接続部内部に円筒状
の補強部材を嵌入するようにしたものである。
DISCLOSURE OF THE INVENTION According to the present invention, a hydrogen storage alloy is filled in a container, and a heat medium pipe having fins is provided inside the hydrogen storage alloy container having a hydrogen pipe attached thereto. In a hydrogen storage alloy filled container with a built-in heat exchanger that connects a heat medium connecting pipe and draws it out of the container, and exchanges heat with the heat storage medium supplied from the outside and the hydrogen storage alloy in the container through the heat medium pipe, A cylindrical reinforcing member is fitted inside the connecting portion between the medium pipe and the heat medium connecting pipe.

【0013】[0013]

【作用】上記構成により、熱媒管と熱媒連結管との接続
部に嵌入された円筒状の補強部材が高温および低温の熱
媒体による熱疲労や熱応力を緩和する。したがって、熱
媒管が短期間で破断することがなく、熱交換器を内蔵し
た水素吸蔵合金充填容器の耐久性が向上し、システムの
連続運転に貢献することができる。
With the above construction, the cylindrical reinforcing member fitted in the connecting portion between the heat medium pipe and the heat medium connecting pipe alleviates thermal fatigue and thermal stress due to the high and low temperature heat mediums. Therefore, the heat transfer medium pipe is not broken in a short period of time, the durability of the hydrogen storage alloy filling container incorporating the heat exchanger is improved, and it is possible to contribute to the continuous operation of the system.

【0014】[0014]

【実施例】以下、本発明の実施例を図面を参照して説明
する。
Embodiments of the present invention will be described below with reference to the drawings.

【0015】図1は、本発明の熱交換器を内蔵した水素
吸蔵合金充填容器(以下、水素吸蔵合金充填容器とい
う)を冷房装置に適用した構成図である。図において、
冷房装置には、2つの高温側の水素吸蔵合金充填容器1
a,1bとこれに対応する2つの低温側の水素吸蔵合金
充填容器1c,1dとが設置され、これら高温側の水素
吸蔵合金充填容器1a,1bと低温側の水素吸蔵合金充
填容器1c,1dは、水素バルブ10a,10bを介し
て水素配管4により連通している。そして、高温側の水
素吸蔵合金充填容器1a,1bの各々には、高温で水素
を吸放出する水素吸蔵合金2が充填されると共に、熱媒
管3が貫通して配置され、さらに、熱媒管3は三方弁1
1を介して冷却水により冷却する冷却器用熱交換器12
と加熱用熱交換器13とに交互に選択的に接続されるよ
うになっている。
FIG. 1 is a configuration diagram in which a hydrogen storage alloy filling container (hereinafter referred to as a hydrogen storage alloy filling container) incorporating the heat exchanger of the present invention is applied to a cooling device. In the figure,
The cooling device includes two high temperature side hydrogen storage alloy filled containers 1
a and 1b and two corresponding low-temperature side hydrogen storage alloy filling containers 1c and 1d are installed, and these high-temperature side hydrogen storage alloy filling containers 1a and 1b and low-temperature side hydrogen storage alloy filling containers 1c and 1d are installed. Are communicated with each other through a hydrogen pipe 4 via hydrogen valves 10a and 10b. Then, each of the hydrogen storage alloy filling containers 1a and 1b on the high temperature side is filled with a hydrogen storage alloy 2 that absorbs and releases hydrogen at a high temperature, and a heat medium pipe 3 is arranged so as to penetrate therethrough. Pipe 3 is a three-way valve 1
Heat exchanger 12 for cooler for cooling with cooling water via 1
And heating heat exchanger 13 are alternately and selectively connected.

【0016】一方、低温側の水素吸蔵合金充填容器1
c,1dの各々には、低温で水素を吸放出する水素吸蔵
合金2が充填されると共に、熱媒管3が貫通して配置さ
れ、さらに、熱媒管3は、四方弁14を介して被冷却空
間用熱交換器15と冷却器用熱交換器16とに交互に選
択的に接続されるようになっている。
On the other hand, the low temperature side hydrogen storage alloy filling container 1
Each of c and 1d is filled with a hydrogen storage alloy 2 that absorbs and releases hydrogen at a low temperature, and a heat transfer medium pipe 3 is arranged so as to penetrate therethrough. Furthermore, the heat transfer medium pipe 3 is connected via a four-way valve 14. The heat exchanger 15 for the space to be cooled and the heat exchanger 16 for the cooler are alternately and selectively connected.

【0017】なお、18はポンプを示している。Reference numeral 18 indicates a pump.

【0018】上記水素吸蔵合金充填容器は、例えば、図
2に示す如くの構成と同様のものが用いられ、この水素
吸蔵合金充填容器1は、内部に水素吸蔵合金2が充填さ
れると共に、この水素吸蔵合金2を貫通して熱媒管3が
配設され、さらに、水素配管4が設けられ、これら全体
にフィン5を設けて、内ケース6に収納され、外ケース
7に装着されるフランジ7aのボルト穴7bに図示しな
いボルトを用いて筐体8に固定されている。
The hydrogen storage alloy filling container has the same structure as that shown in FIG. 2, for example, and the hydrogen storage alloy filling container 1 is filled with the hydrogen storage alloy 2 at the same time. A heat medium pipe 3 is arranged to penetrate through the hydrogen storage alloy 2, a hydrogen pipe 4 is further provided, and fins 5 are provided on the whole thereof, and the fins are housed in the inner case 6 and attached to the outer case 7. It is fixed to the housing 8 by using a bolt (not shown) in the bolt hole 7b of 7a.

【0019】図3は、図2に示した水素吸蔵合金充填容
器1のE矢印部分の熱媒管3と熱媒連結管9との結合部
を示し、熱媒管3の端部3aをやや開口部を広くした中
空部の内壁に他の水素吸蔵合金充填容器1に連通する銅
製の熱媒連結管9の端部9aをやや開口部を広くした外
壁が挿入されF部分が溶接されている。さらに、この熱
媒管3と熱媒連結管9の接合部にパイプ19が挿入され
ている。
FIG. 3 shows a connecting portion between the heat medium pipe 3 and the heat medium connecting pipe 9 in a portion indicated by an arrow E of the hydrogen storage alloy filling container 1 shown in FIG. The end wall 9a of the copper heating medium connecting pipe 9 communicating with another hydrogen storage alloy filling container 1 is inserted into the inner wall of the hollow portion having the wide opening, and the outer wall of the F portion is welded. . Further, a pipe 19 is inserted at the joint between the heat medium pipe 3 and the heat medium connecting pipe 9.

【0020】すなわち、図3のG→G断面を示す図4の
ように熱媒管3の端部3aの内側の中空部に熱媒連結管
9の端部9aが内装され、その内側にSUS製のパイプ
19が内装されている。このパイプ19は、補強部材と
して、高温と低温の熱媒体による熱応力を緩和するよう
にしている。なお、補強部材としては熱伝導の悪い管、
例えば、SUSの他にテフロンなどが好ましい。
That is, as shown in FIG. 4 showing the G → G cross section of FIG. 3, the end portion 9a of the heat medium connecting pipe 9 is internally provided in the hollow portion inside the end portion 3a of the heat medium pipe 3, and the SUS is provided inside thereof. A pipe 19 made of metal is incorporated. The pipe 19 serves as a reinforcing member to relieve the thermal stress caused by the high-temperature and low-temperature heat media. As a reinforcing member, a tube with poor heat conduction,
For example, Teflon or the like is preferable in addition to SUS.

【0021】以上の構成で、高温側の水素吸蔵合金充填
容器1a,1bには、図5に示す特性の水素吸蔵合金2
として高温で吸放出する水素吸蔵合金MH1を予め充填
し、また、低温側の水素吸蔵合金充填容器1c,1dに
は、図5に示す特性の水素吸蔵合金2として低温で吸放
出する水素吸蔵合金MH2を予め充填しておく。
With the above structure, the hydrogen storage alloy filling containers 1a and 1b on the high temperature side have the characteristics of the hydrogen storage alloy 2 shown in FIG.
As a hydrogen storage alloy 2 having the characteristics shown in FIG. 5, a hydrogen storage alloy MH1 that absorbs and releases at high temperature is filled in advance, and the hydrogen storage alloy filling containers 1c and 1d on the low temperature side absorb and release at low temperature. Prefill with MH2.

【0022】初期状態として、水素バルブ10aは、閉
じられ低温側の水素吸蔵合金充填容器1cの水素吸蔵合
金2は、図5に示すサイクル線図のように低温合金MH
2として水素を吸蔵した状態(図示b1)となってお
り、これに対応する高温側の水素吸蔵合金充填容器1a
の水素吸蔵合金2は高温合金MH1として放出した状態
(図示a1)となっている。
In the initial state, the hydrogen valve 10a is closed and the hydrogen storage alloy 2 in the hydrogen storage alloy filling container 1c on the low temperature side has the low temperature alloy MH as shown in the cycle diagram of FIG.
2 is a state in which hydrogen is occluded (b1 in the figure), and the corresponding hydrogen occluding alloy filling container 1a on the high temperature side
The hydrogen storage alloy 2 is in a state of being released as the high temperature alloy MH1 (a1 in the figure).

【0023】一方、水素バルブ10bは、閉じられ高温
側の水素吸蔵合金充填容器1bの水素吸蔵合金2は、水
素を吸蔵した状態(図示a2)となっており、これに対
応する低温側の水素吸蔵合金充填容器1cの水素吸蔵合
金2は、水素を放出した状態(図示b2)となってい
る。なお、図示する実線は吸収状態を示し、破線は放出
状態を示している。
On the other hand, the hydrogen valve 10b is closed, and the hydrogen storage alloy 2 of the hydrogen storage alloy filling container 1b on the high temperature side is in a state of storing hydrogen (a2 in the figure). The hydrogen storage alloy 2 in the storage alloy filling container 1c is in a state of releasing hydrogen (b2 in the figure). The solid line shown in the figure shows the absorption state, and the broken line shows the emission state.

【0024】この状態で、まず、冷熱モードとして水素
バルブ10aを開くと、低温側の水素吸蔵合金充填容器
1cの水素吸蔵合金2から水素が放出されて連通する高
温側の水素吸蔵合金充填容器1aの水素吸蔵合金2に吸
蔵されていく(図示c方向)。
In this state, first, when the hydrogen valve 10a is opened in the cold heat mode, hydrogen is released from the hydrogen storage alloy 2 of the hydrogen storage alloy filling container 1c on the low temperature side and communicates with the hydrogen storage alloy filling container 1a on the high temperature side. Is absorbed in the hydrogen storage alloy 2 of FIG.

【0025】この冷熱モードのとき、低温側の水素吸蔵
合金充填容器1c内では吸熱反応となり熱媒管3により
切替弁として四方弁14を介して被冷却空間用熱交換器
15に接続され、被冷却空間用熱交換器15から冷熱が
取り出される。これに対して高温側の水素吸蔵合金充填
容器1a内では発熱反応となり、熱媒管3は三方弁11
を介して冷却器用熱交換器12に接続され、冷却がされ
る。
In this cold heat mode, an endothermic reaction occurs in the hydrogen storage alloy filling container 1c on the low temperature side, and the heat transfer medium pipe 3 is connected as a switching valve to the heat exchanger 15 for the space to be cooled through the four-way valve 14 and Cold heat is taken out from the heat exchanger 15 for the cooling space. On the other hand, an exothermic reaction occurs in the hydrogen storage alloy filling container 1a on the high temperature side, and the heat transfer medium pipe 3 has the three-way valve 11
It is connected to the heat exchanger 12 for a cooler via and is cooled.

【0026】この冷熱モードのとき、他方の高温側の水
素吸蔵合金充填容器1bと低温側の水素吸蔵合金充填容
器1cとは再生モードとして高温側の水素吸蔵合金充填
容器1bから低温側の水素吸蔵合金充填容器1dへ水素
を戻す工程が行われる。すなわち、水素バルブ10bが
開かれ、図5に示すサイクル線図のように高温側の水素
吸蔵合金充填容器1bの水素吸蔵合金2(図示a2)の
水素が放出され、図示d方向へ低温側の水素吸蔵合金充
填容器1dの水素吸蔵合金2(図示b2)に吸蔵されて
いく。
In the cold heat mode, the other hydrogen storage alloy filling container 1b on the high temperature side and the hydrogen storage alloy filling container 1c on the low temperature side are in the regeneration mode from the hydrogen storage alloy filling container 1b on the high temperature side to the hydrogen storage alloy on the low temperature side. A step of returning hydrogen to the alloy filling container 1d is performed. That is, the hydrogen valve 10b is opened, the hydrogen of the hydrogen storage alloy 2 (a2 in the drawing) of the hydrogen storage alloy filling container 1b on the high temperature side is released as shown in the cycle diagram of FIG. The hydrogen-absorbing alloy is filled in the hydrogen-absorbing alloy 2 (b2 in the figure) of the hydrogen-absorbing alloy filling container 1d.

【0027】この再生モードとき、高温側の水素吸蔵合
金充填容器1b内では、吸熱反応となり、熱媒管3によ
り切替弁として三方弁11を介して加熱用熱交換器13
に接続され加熱される。これに対して低温側の水素吸蔵
合金充填容器1dは発熱反応となっており、熱媒管3に
より切替弁として四方弁14を介して冷却器用熱交換器
16に接続され冷却される。
In this regeneration mode, an endothermic reaction occurs in the hydrogen storage alloy filled container 1b on the high temperature side, and the heating medium heat exchanger 13 is used as a switching valve by the heat transfer medium pipe 3 via the three-way valve 11.
Connected to and heated. On the other hand, the low temperature side hydrogen storage alloy filling container 1d is in an exothermic reaction, and is connected to the heat exchanger 16 for a cooler via the four-way valve 14 as a switching valve by the heat medium pipe 3 to be cooled.

【0028】その後、水素バルブ10a,10bが閉じ
られ予備モードとして、高温側の水素吸蔵合金充填容器
1aの熱媒管3により三方弁11を介して冷却器用熱交
換器12に接続される一方、高温側の水素吸蔵合金充填
容器1bが熱媒管3により三方弁11を介して冷却器用
熱交換器12に接続され、次の再生モードに移行する準
備をする。これによって、高温側の水素吸蔵合金充填容
器1a内は加熱され、図5に示すようにa2の位置にあ
り、高温側の水素吸蔵合金充填容器1bは冷却されて図
示a1の位置にあり、前記した初期状態と同じ状態とな
る。
After that, the hydrogen valves 10a, 10b are closed and in a preliminary mode, the heat medium pipe 3 of the hydrogen storage alloy filling container 1a on the high temperature side is connected to the heat exchanger 12 for the cooler via the three-way valve 11, The hydrogen storage alloy filling container 1b on the high temperature side is connected to the cooler heat exchanger 12 via the three-way valve 11 by the heating medium pipe 3 to prepare for transition to the next regeneration mode. As a result, the inside of the hydrogen storage alloy filling container 1a on the high temperature side is heated to the position a2 as shown in FIG. 5, and the hydrogen storage alloy filling container 1b on the high temperature side is cooled to the position a1 shown in the drawing. It becomes the same state as the initial state.

【0029】上記した冷熱モードと再生モードとは、交
互に繰り返され、これらのモードの切替えのときに予備
モードが設定されて被冷却空間用熱交換器15から連続
的な冷熱が取り出される。
The cold heat mode and the regeneration mode described above are alternately repeated, and when these modes are switched, the standby mode is set and continuous cold heat is taken out from the heat exchanger 15 for the space to be cooled.

【0030】このように、このような水素平衡圧力の異
なる2種類の水素吸蔵合金を各々内蔵した2つの熱交換
可能な低温側と高温側の水素吸蔵合金充填容器を水素配
管により連通させ、低温側の水素吸蔵合金充填容器から
高温側の水素吸蔵合金充填容器に水素の移動で冷熱を発
熱させる冷熱モードと高温側の水素吸蔵合金充填容器に
移動した水素を前記低温側の水素吸蔵合金充填容器に戻
す再生モードと、これらの冷熱モードと再生モード終了
後に、低温側および高温側の水素吸蔵合金充填容器間の
水素の移動を阻止する予備モードとを交互に実施して水
素吸蔵合金充填容器で発生した冷熱を利用して連続冷房
ができる。
As described above, two heat-exchangeable low-temperature-side and high-temperature-side hydrogen storage alloy filling containers each containing two types of hydrogen storage alloys having different hydrogen equilibrium pressures are connected by a hydrogen pipe, From the hydrogen storage alloy filling container on the high temperature side to the hydrogen storage alloy filling container on the high temperature side to generate cold heat by moving hydrogen and the hydrogen transferred to the hydrogen storage alloy filling container on the high temperature side, the hydrogen storage alloy filling container on the low temperature side In the hydrogen storage alloy filling container by alternately carrying out the regeneration mode for returning to the above and the standby mode for preventing the movement of hydrogen between the low temperature side and the high temperature side hydrogen storage alloy filling container after the completion of the cold heat mode and the regeneration mode. Continuous cooling can be performed by using the generated cold heat.

【0031】その上、水素吸蔵合金充填容器の熱媒管と
熱媒連結管の接合部に補強管としてパイプを配置したか
ら高温と低温の熱媒体によって熱媒管が短期間で破断す
ることがない。本実施例では、従来、約100時間で破
断したのが、約400時間〜500時間の寿命となっ
た。これによって、耐久性の優れた熱交換器となり、冷
房システムの連続運転に寄与することができる。
Moreover, since a pipe is arranged as a reinforcing pipe at the joint between the heat medium pipe of the hydrogen storage alloy filling container and the heat medium connecting pipe, the heat medium pipe may be broken in a short period of time by the high temperature and low temperature heat mediums. Absent. In the present example, the conventional breakage was about 100 hours, but the life was about 400 to 500 hours. As a result, the heat exchanger has excellent durability and can contribute to continuous operation of the cooling system.

【0032】[0032]

【発明の効果】以上説明したように本発明によれば、熱
媒管と熱媒連結管との接続部に嵌入された円筒状の補強
部材が高温および低温の熱媒体による熱疲労や熱応力を
緩和する。したがって、熱媒管が短期間で破断すること
がなく、熱交換器を内蔵した水素吸蔵合金充填容器の耐
久性が向上し、システムの連続運転に貢献することがで
きる。
As described above, according to the present invention, the cylindrical reinforcing member fitted in the connecting portion between the heat medium pipe and the heat medium connecting pipe has thermal fatigue and thermal stress caused by the heat medium at high temperature and low temperature. Alleviate. Therefore, the heat transfer medium pipe is not broken in a short period of time, the durability of the hydrogen storage alloy filling container incorporating the heat exchanger is improved, and it is possible to contribute to the continuous operation of the system.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の水素吸蔵合金充填容器を冷房装置に適
用した構成図。
FIG. 1 is a configuration diagram in which a hydrogen storage alloy filling container of the present invention is applied to a cooling device.

【図2】図1の水素吸蔵合金充填容器の要部を示す断面
図。
FIG. 2 is a sectional view showing a main part of the hydrogen storage alloy filling container of FIG.

【図3】図2のE矢印部分を示す拡大断面図。FIG. 3 is an enlarged cross-sectional view showing an E arrow portion in FIG.

【図4】図3のG→G方向の断面図。FIG. 4 is a sectional view taken along the line G → G in FIG.

【図5】図1の冷房装置に用いる水素吸蔵合金サイクル
線図。
5 is a cycle diagram of a hydrogen storage alloy used in the cooling device of FIG.

【図6】水素吸蔵合金充填容器の断面図。FIG. 6 is a cross-sectional view of a hydrogen storage alloy filling container.

【図7】従来例を示す図6のA矢印部分の拡大断面図。FIG. 7 is an enlarged cross-sectional view of a portion indicated by an arrow A in FIG. 6 showing a conventional example.

【図8】図7のD→D方向の断面図。FIG. 8 is a sectional view taken along the line D → D in FIG.

【符号の説明】[Explanation of symbols]

1a,1b,1c,1d 水素吸蔵合金充填容器 2 水素吸蔵合金 3 熱媒管 3a 端部 4 水素配管 5 フィン 9 熱媒連結管 9a 端部 10a,10b 水素バルブ 11 三方弁 12 冷却器用熱交換器 13 加熱用熱交換器 15 被冷却空間用熱交換器 16 冷却器用熱交換器 1a, 1b, 1c, 1d Hydrogen storage alloy filling container 2 Hydrogen storage alloy 3 Heat transfer medium pipe 3a End part 4 Hydrogen pipe 5 Fin 9 Heat transfer medium connecting pipe 9a End part 10a, 10b Hydrogen valve 11 Three way valve 12 Heat exchanger for cooler 13 heat exchanger for heating 15 heat exchanger for cooled space 16 heat exchanger for cooler

【手続補正書】[Procedure amendment]

【提出日】平成5年3月25日[Submission date] March 25, 1993

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0004[Correction target item name] 0004

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0004】 水素吸蔵合金充填容器1は、一対とし
て、それぞれに同一温度で水素平衡圧力の事なる水素吸
蔵合金2を充填し、両者の水素配管4を連通させる。
A pair of hydrogen storage alloy filling containers 1 are filled with hydrogen storage alloys 2 having different hydrogen equilibrium pressures at the same temperature, and both hydrogen pipes 4 are connected to each other.

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0031[Correction target item name] 0031

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0031】 その上、水素吸蔵合金充填容器の熱媒管
と熱媒連結管の接合部に補強管としてパイプを配置した
から高温と低温の熱媒体によって熱媒管が短期間で破断
することがない。本実施例では、従来、約100時間で
破断したのが、約400時間〜500時間以上の寿命と
なった。これによって、耐久性の優れた熱交換器とな
り、冷房システムの連続運転に寄与することができる。
Moreover, since the pipe is arranged as a reinforcing pipe at the joint between the heat medium pipe of the hydrogen storage alloy filling container and the heat medium connecting pipe, the heat medium pipe may be broken in a short period of time by the high temperature and low temperature heat mediums. Absent. In the present example, the conventional fracture occurred after about 100 hours, but the life was about 400 hours to 500 hours or longer. As a result, the heat exchanger has excellent durability and can contribute to continuous operation of the cooling system.

【手続補正3】[Procedure 3]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】図1[Name of item to be corrected] Figure 1

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図1】 [Figure 1]

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 容器内部に水素吸蔵合金を充填し、水素
配管を取り付けた水素吸蔵合金容器内部にフィンを付設
した熱媒管を内蔵し、この熱媒管に熱媒連結管を接続し
容器外部に導出し、外部から供給する熱媒体と前記熱媒
管を介して前記容器内の水素吸蔵合金と熱交換する熱交
換器を内蔵した水素吸蔵合金充填容器において、 前記熱媒管と前記熱媒連結管との接続部内部に円筒状の
補強部材を嵌入したことを特徴とする熱交換器を内蔵し
た水素吸蔵合金充填容器。
1. A container which is filled with a hydrogen storage alloy inside a container, and has a heat transfer medium pipe having fins attached to the inside of the hydrogen storage alloy container having a hydrogen pipe attached, and a heat medium connecting pipe being connected to the heat transfer medium pipe. In a hydrogen storage alloy filled container having a heat exchanger that draws out to the outside and exchanges heat with a hydrogen storage alloy in the container via a heat medium supplied from the outside and the heat medium pipe, the heat medium pipe and the heat A hydrogen storage alloy filling container having a built-in heat exchanger, characterized in that a cylindrical reinforcing member is fitted inside the connection portion with the medium connecting pipe.
【請求項2】 前記円筒状の補強部材として熱伝導度の
小さい材料を用いたことを特徴とする請求項1記載の熱
交換器を内蔵した水素吸蔵合金充填容器。
2. The hydrogen storage alloy filling container with a built-in heat exchanger according to claim 1, wherein a material having a low thermal conductivity is used as the cylindrical reinforcing member.
JP35725392A 1992-12-24 1992-12-24 Hydrogen occlusion alloy packed container having built-in heat exchanger Pending JPH06193996A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35725392A JPH06193996A (en) 1992-12-24 1992-12-24 Hydrogen occlusion alloy packed container having built-in heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35725392A JPH06193996A (en) 1992-12-24 1992-12-24 Hydrogen occlusion alloy packed container having built-in heat exchanger

Publications (1)

Publication Number Publication Date
JPH06193996A true JPH06193996A (en) 1994-07-15

Family

ID=18453179

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35725392A Pending JPH06193996A (en) 1992-12-24 1992-12-24 Hydrogen occlusion alloy packed container having built-in heat exchanger

Country Status (1)

Country Link
JP (1) JPH06193996A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002277095A (en) * 2001-03-19 2002-09-25 Takasago Thermal Eng Co Ltd Method for controlling operation of heat drive hydrogen absorbing alloy heat pump
US6899855B2 (en) * 2000-03-17 2005-05-31 Honda Giken Kogyo Kabushiki Kaisha Hydrogen-occlusion alloy regenerating apparatus
US6997242B2 (en) 2000-03-07 2006-02-14 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Reservoir with hydrogen storage material
JP2015140906A (en) * 2014-01-30 2015-08-03 カヤバ工業株式会社 Heat exchanger and hydrogen storage device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6997242B2 (en) 2000-03-07 2006-02-14 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Reservoir with hydrogen storage material
US6899855B2 (en) * 2000-03-17 2005-05-31 Honda Giken Kogyo Kabushiki Kaisha Hydrogen-occlusion alloy regenerating apparatus
JP2002277095A (en) * 2001-03-19 2002-09-25 Takasago Thermal Eng Co Ltd Method for controlling operation of heat drive hydrogen absorbing alloy heat pump
JP2015140906A (en) * 2014-01-30 2015-08-03 カヤバ工業株式会社 Heat exchanger and hydrogen storage device

Similar Documents

Publication Publication Date Title
EP0168062B1 (en) Metal hydride heat pump assembly
EP0053737B1 (en) Heat pump device
JP6285867B2 (en) Tanks that store hydrogen in the form of metal hydrides
JPH06193996A (en) Hydrogen occlusion alloy packed container having built-in heat exchanger
JP4167521B2 (en) Gas storage tank and manufacturing method thereof
JPH073250Y2 (en) Hydrogen storage / desorption heat exchanger
JP4435445B2 (en) Hydrogen storage alloy container
JP4082857B2 (en) Hydrogen storage alloy tank
JP2642830B2 (en) Cooling device
JP2006207719A (en) Hydrogen storage container
JP3046975B2 (en) Hydrogen storage container
JPS62294897A (en) Heat accumulation type heat exchanger
JPH09324960A (en) Heat generating or heat absorbing method and apparatus using hydrogen storing alloy
JPH0634230A (en) Cold generator
JP3032998B2 (en) Hydrogen storage alloy holding container
JP2506787Y2 (en) Connection structure between housing case and heat transfer medium conduit in endothermic / exothermic reaction heat exchanger
JPS6339829B2 (en)
JP3329222B2 (en) Heat exchanger manufacturing method
JP3133442B2 (en) Heat driven cold heat generation method and apparatus using metal hydride
JP2003130292A (en) Hydrogen absorbing alloy container
JPH02200522A (en) Hydrogen fueled engine type load working car
JPH0771838A (en) Cold generating device using metallic hydride
JPH02306068A (en) Cooling device for car using metal hydride
JP2004317047A (en) Hydrogen storage alloy-filled vessel and intermittent operating type heat pump using this vessel
JPH056120B2 (en)