JP4435307B2 - Online control of chemical process plant - Google Patents

Online control of chemical process plant Download PDF

Info

Publication number
JP4435307B2
JP4435307B2 JP53015698A JP53015698A JP4435307B2 JP 4435307 B2 JP4435307 B2 JP 4435307B2 JP 53015698 A JP53015698 A JP 53015698A JP 53015698 A JP53015698 A JP 53015698A JP 4435307 B2 JP4435307 B2 JP 4435307B2
Authority
JP
Japan
Prior art keywords
spectrum
polymer
value
corrected
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP53015698A
Other languages
Japanese (ja)
Other versions
JP2001508354A (en
JP2001508354A5 (en
Inventor
マクドナルド、マイケル・エフ
ロング、ロバート・エル
トマス、カール・ジェイ
Original Assignee
エクソンモービル・ケミカル・パテンツ・インク
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=21877515&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP4435307(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by エクソンモービル・ケミカル・パテンツ・インク filed Critical エクソンモービル・ケミカル・パテンツ・インク
Publication of JP2001508354A publication Critical patent/JP2001508354A/en
Publication of JP2001508354A5 publication Critical patent/JP2001508354A5/ja
Application granted granted Critical
Publication of JP4435307B2 publication Critical patent/JP4435307B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D21/00Control of chemical or physico-chemical variables, e.g. pH value
    • G05D21/02Control of chemical or physico-chemical variables, e.g. pH value characterised by the use of electric means
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/04Monomers containing three or four carbon atoms
    • C08F210/08Butenes
    • C08F210/10Isobutene
    • C08F210/12Isobutene with conjugated diolefins, e.g. butyl rubber
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/45Interferometric spectrometry
    • G01J3/453Interferometric spectrometry by correlation of the amplitudes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3563Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing solids; Preparation of samples therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/359Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using near infrared light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2400/00Characteristics for processes of polymerization
    • C08F2400/02Control or adjustment of polymerization parameters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N2021/3595Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using FTIR
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N2021/8411Application to online plant, process monitoring
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/12Circuits of general importance; Signal processing
    • G01N2201/129Using chemometrical methods

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Automation & Control Theory (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Control Of Non-Electrical Variables (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Description

発明の分野
本発明は、化学プラント及び化学プラントでの化学的プロセスの制御方法に関する。より詳しくは、本発明は、イソオレフィンコポリマー及びマルチオレフィン、特にブチルゴム、の重合又はハロゲン化工程の間において、ムーニー粘度、ポリマーの不飽和度、コモノマーの組込み、ハロゲン含有量、分子量、及び分子量分布を制御する方法に関する。
関連技術の記載
不活性溶媒又は希釈剤のような媒質中でのオレフィンの重合を制御するための卓越した方法は、単一の変数、「ムーニー粘度」、を計算するために、媒質中のポリマー濃度及びポリマー溶液の粘度を測定することを含む。次に、ムーニー粘度は、プロセス全体を制御する、単一の変数として使用される。
「単一の変数」プロセス制御は、所望の生成物の品質が、ただ一つの変数に直接比例する場合、非常に有効である。「単一の変数」プロセス制御は、2つ以上の変数が生成物の品質に直接関連する場合、あまり有効でない。例えば、ブチルゴムの品質は、加工の間のポリマー溶液内のムーニー粘度及び分子量分布の両方に直接関連する。
ポリマーの分子量分布及びムーニー粘度に基づく、ブチルゴムの製造のための更なるプロセス制御を提供するために、種々の試みがなされてきた。不運なことに、これまでの方法は、効率が悪いか、又はムーニー粘度同様分子量分布に基づいてプロセスを効果的に制御するためには不十分な包括的なデータに基づいていた。
ムーニー粘度及びポリマー分子量の両方をプロセス制御パラメーターとして使用し、ブチルゴムの製造を制御するための効率的で正確な方法に対する需要が存在する。
発明の要約
本発明は、所望の値Dを有する特性Pを有する生成物を製造する複数の工程を有するプロセス・プラントをオンライン制御するための方法である。この方法では、プロセスでの少なくとも一つの中間工程を代表する一組の較正試料について、一組の測定されたスペクトルを得、較正試料についての測定誤差の影響を除去し、一組の較正試料についての一組の補正されたスペクトルを生じる。各較正試料の補正されたスペクトルを固有スペクトルに関係付けて一組の加重値が決定され、加重値の行列を与える。各較正試料について、最終生成物の特性Pの値が得られる。次に、較正試料についての生成物の特性Pの値を一組の加重値に関係付けて予測モデルが導かれる。次に、プロセスの中間工程での試験試料のスペクトルが測定され、測定誤差が補正される。試験試料についての特性Pの値は、較正試料及び試験試料の補正されたスペクトルに由来する一組の加重値を使用する予測モデルから予測される。予測された値と所望の値との間の差は、プロセスを制御するために使用される。任意に、スペクトルに加えて、測定が行われ得、予測モデル及び予測プロセスの導出に使用され得る。
【図面の簡単な説明】
第1図は、ブチルゴムの重合のためのプラントの簡素化された流れ図である。
第2図は、ブチルゴムのハロゲン化のためのプラントの簡素化された流れ図である。
第3図は、計装及びプロセス制御に使用される装置を記載する。
第4図は、本発明の方法に従って測定された及び予測されたムーニー粘度の比較である。
第5図は、本発明の方法に従って測定された及び予測された不飽和度の比較である。
発明の詳細な説明
本発明は、本発明の好ましい態様を例示する添付の第1図乃至第5図を参照して、最善に理解される。
ブチルゴムの世界生産のバルクは、−100℃乃至−900℃で塩化メチル希釈液中の塩化アルミニウムを使用してイソブチレン及び少量のイソプレンを共重合する沈殿(スラリー)重合法で製造される。ハロゲン化されたブチルゴムは、ブチルゴムを炭化水素溶媒中に溶解し、その溶液をハロゲン元素と接触させることにより、商業的に生産される。
第1図は、スラリー法の重合区画の簡素化された流れ図である。イソブチレン101は、乾燥塔103で乾燥され分別される。水103aは、除去され、イソブチレン、2−ブテン及び高沸点成分を含む画分103bが、イソブチレン精製塔105で精製される。供給原料ブレンド・ドラム109は、25乃至40重量%のイソブチレン105b、0.4乃至1.4重量%のイソプレン107(製造されるブチルゴムの等級による)、及び塩化メチル精製塔111から再循環された塩化メチル111aからなる供給原料をブレンドする。純粋な塩化メチル111bを、30乃至45℃にて粒状塩化アルミニウムの床113を通過させることにより、共開始剤溶液が生成される。この濃縮された溶液113bは、追加の塩化メチルで希釈され、ドラム115に貯蔵される。希釈された混合物は、触媒冷却器117で−100乃至−90℃の温度へ冷却される。冷却された共開始剤117bは、反応器119へ供給される。反応器は、同心列の冷却管に囲まれた中央に存在する垂直なドラフト管を含む。冷却管を通ってスラリーを循環させる、ドラフト管の底部に位置する軸流ポンプにより、反応器が混合される。共重合反応は、発熱反応であり、ポリマー1kg当たり約0.82MJ(350Btu/lb)を放出する。熱は、反応器の管区画を囲むジャケットに液体として供給されている沸騰エチレンに対して交換することにより、除去される。反応器は、重合反応の低温での適切な衝撃強さを有する合金で組み立てられている。第1図に示すように、ブレンドされた供給原料109aは、供給原料冷却器121で冷却され、反応器119へ供給される。反応器119中で生成されたポリマーの特性を制御するために、分枝剤109bが、ブレンドされた供給原料109aへ添加され得る。反応器のアウトプット119aは、ブチルゴム、塩化メチル、及び未反応のモノマーからなる。温かいヘキサン及びヘキサン蒸気125及び冷却剤125bが、反応器出口ライン119a及び溶液ドラム123へ添加され、塩化メチルのほとんど及び未反応のモノマーが気化され、再循環気体凝縮機151へ送られる。ブチルゴムの液体ヘキサン溶液が、セメント・ストリッパー131(ここには、熱いヘキサン蒸気133が添加される)へ供給される。セメント・ストリッパー131の底部からの熱いセメント131aは、ヘキサン溶液にてポリマーを含む。熱いセメント131aは、フラッシュ濃縮器137(ここでは、流れ131a中のヘキサンの一部を気化させることにより、セメントが濃縮される)を通って流れる。フラッシされたヘキサンは、溶液ドラム123へ再循環され、第2図を参照にして以下に記載されているように、フラッシュ濃縮器のアウトプット137bは、ハロゲン化の供給原料である。セメント・ストリッパーからの、塩化メチル、モノマー及び少量のヘキサンの全て131bが、再循環される。151は、乾燥機187、塩化メチル精製塔111、再循環塔183及びパージ塔185と関連して塩化メチル111a及びイソブチレン185aを再循環させる、再循環気体凝縮機である。流れ185bは、このプロセスからパージされる。
第2図に示されたハロゲン化プロセスでは、ブチルゴム溶液137bはタンク153に貯蔵される。その溶液は、塩素又は臭素155と、1つ以上の高度に攪拌された反応容器157において30乃至60℃で反応する。安全上の理由から、塩素は、蒸気又は希釈溶液として導入されるが、これは、液体塩素がブチルゴム溶液と激しく反応するためである。しかし、臭素は、液体又は蒸気の形態で使用され得、これは、その反応速度がより低いためである。ハロゲン化の副産物であるHCl又はHBrは、強度の高い混合器159中で、希釈された水性苛性アルカリ163で中和される。ステアリン酸カルシウム及びエポキシ化大豆油のような抗酸化剤及び安定化剤167が添加される。その溶液は、多容器溶媒除去系171(ここでは、蒸気及び水165が、溶媒を気化し、水中に団粒様ゴム粒子を生じさせる)へ送られる。最終的な溶媒含有量及び溶媒除去のために蒸気を使用することは、各容器の条件による。典型的には、鉛フラッシュドラムは、105乃至120℃及び200乃至300kPa(2乃至3atm)で操作される。最終的なストリッピング工程173での条件は、101℃及び105kPa(1.04atm)である。ヘキサン175aは、再循環され、一方、ハロブチルスラリー173aは、仕上げのために送られる。
第3図は、最終生成物の特性を予測することを可能にする方法での、流動流れ(flow stream)のオンライン監視のための、本発明に有用な装置の例示である。次に、この予測は、所望の特性を有する最終生成物を得るために、処理量及び装置の操作条件をうまく処理するのに使用される。
計装アセンブリー500は、一般に、プロセスの流動流れ中の流体を監視するために備え付けられる。上記のように、本発明の一つの態様では、これは、セメント・ストリッパー131へのアウトプットで、セメント溶液131a(第1図)及びハロゲン化の後のアウトプット157a(第2図)を監視するために行われる。セメント・ストリッパー131のアウトプットでは、測定値は、ムーニー粘度、不飽和度及び分子量分布を決定するために使用され、一方、ハロゲン化の後のアウトプット157a(第2図)では、測定値は、最終生成物のハロゲン含有量を予測するために使用される。図示されているように、プロセス流れ中の流体の流動の方向と共に、計装アセンブリーへの流れは、491で示され、一方、流出は493で示される。本発明の好ましい態様では、アセンブリーは、分光計、粘度計、及び温度測定装置を含む。第3図では、分光計は501にて示されている。好ましい態様では、これは、フーリエ変換近赤外(FTNIR)分光計である。その名が示すように、FTNIRは、近赤外領域で測定を行うために設計された分光計であり、入力されたデータのフーリエ変換を計算するために、適切なマイクロプロセッサー(図示せず)を含む。FTNIR分光計からの繊維−光リンク(fiber optic link)507は、隙間503と505の間の流動流れを横切って赤外信号を送る。FTNIR分光計の出力は、スペクトル・データN(これは、監視された流体の吸収スペクトルを詳細に述べており、下記するように、プロセス制御コンピューター(図示せず)により使用される)である。
計装は、又、509で示される粘度計を含み、これは、流体流動流れ中にプローブ511を有する。プローブは、流動流れ中の流体の粘度積(粘度と密度の積)を測定する。粘度積の測定値は、プロセス制御コンピューター(図示せず)による使用のための、Pでの出力である。
計装の次の要素は、温度測定装置511であり、流動流れ中に流体の温度を監視するプローブ513を含む。温度測定装置の出力は、流動流れ中の流体の温度の温度測定値Oである。温度測定値Oは、下記するように、プロセス制御コンピューター(図示せず)により使用される。
好ましい態様では、赤外信号のための径路長は、約0.8mmである。この径路長は、径路長が更に非常に短い従来の方法に比べ、径路長の変更ために、吸収スペクトルを補正する必要性を大きく減少させる。
計装の要素(温度測定装置、粘度計及び分光計)は、当業者が詳しく知っているであろうから、詳細には議論しない。
計装アセンブリーの出力N、O、及びPが、下記するように、測定値を分析するコンピューターへ送られ、プロセスから予期される最終生成物の特性を予測する。生成物の予測された特性と所望の特性との間の差も又、下記するように、プロセス・パラメータを制御するために使用される。
本明細書に開示した三つの測定装置(分光計、粘度計及び温度ゲージ)は、例示の目的のためのみのものである。当業者であれば、他の測定が行われ得ることを認識するであろう。これらの更なる測定は、本発明の範囲内であることが意図されている。
データの解析
Brown(米国特許第5,121,337号)は、スペクトル測定プロセス自体によるデータについてスペクトル・データを補正し、そのような方法を用いて試料の未知の特性及び/又は組成データを推定する方法を開示している。この特許は、参照により本明細書中に援用され、FTNIR分光計から得られるスペクトル・データの解析の基礎を形成する。
Brownにより開示されたように、解析の第一工程は、較正工程である。n個の較正試料についてのスペクトル・データが、f個の別個の周波数で定量され、較正データの(f×nの次元の)行列Xを生じさせる。この方法の第一工程は、f個の別個の周波数でのm個のデジタル化された補正スペクトルを含むf×mの次元の補正行列Umを生じさせることを包含し、この補正スペクトルは、測定プロセス自体から生じるデータをシミュレートしている。次の工程は、Umに関してXを直交させ、そのスペクトルがUm中のすべてのスペクトルに直交する補正スペクトル行列Xcを生じさせることを包含する。この直交性のため、行列Xc中のスペクトルは、測定プロセス自体から生じるスペクトルから統計的に独立である。
スペクトルは、吸収スペクトルであることができ、以下に記載する好ましい態様は、すべて吸収スペクトルを測定することを包含する。しかし、これは、例示として考えられるべきものであり、添付の請求の範囲により定義される本発明の範囲を制限するものではない。これは、本明細書中で開示される本方法が、反射スペクトル及び散乱スペクトル(例えばラマン散乱)のような他のタイプのスペクトルに適用できるものであるためである。本明細書における記載及び図面への言及は、NIR(近赤外線)及びMIR(中赤外線)に関連するが、それにもかかわらず、本方法には、例えば紫外線、可視分光分析及び核磁気共鳴(NMR)分光分析を含む他のスペクトル測定波長範囲での適用が見出されることが理解されるであろう。
一般に、測定プロセス自体から生じるデータは、二つの影響による。第一は、スペクトルの基線の変動によるものである。基線の変動は、測定中の光源温度変動、反射率、セルのウインドウによる散乱又は吸収、及び機器の検出器の温度(従って感度)変化のような、多数の原因から生じる。これらの基線の変動は、一般に、(広範な周波数範囲にわたって相関する)幅広いスペクトルの特徴を呈する。第二のタイプの測定プロセス信号は、測定プロセスの間に存在する前試料の化学化合物によるものであり、これは、スペクトル中に、よりシャープなラインの特徴を与える。本出願については、このタイプの補正は、一般に、分光計内の大気中の水蒸気及び/又は二酸化炭素による吸収を含む。光繊維中の水酸基による吸収もまた、この様式で処理され得る。試料中に存在する夾雑物についての補正もなされ得るが、これは、一般に、來雑物の濃度が試料成分の濃度を有意に希釈しないように充分に低いものであって、夾雑物と試料成分との間に有意な相互作用が起こらない場合のみである。これらの補正が、試料中の成分によらない信号についてのものであることを認識することは重要である。これに関連して、「試料」とは、モデル開発のためのデータを提供する目的で、その特性及び/又は成分濃度の測定が行われる物質をいう。「夾雑物」により、本発明者等は、特性/成分濃度測定の後であるが、スペクトル測定の前又はその最中に、試料に物理的に添加されたあらゆる物質を指し示す。
本発明を実施する好ましい方法において、補正行列Umに関して直交させられたスペクトル・データの行列Xに加えて、Umのスペクトル又は列が、すべて相互に直交する。相互に直交するスペクトル又は列を有する行列Umの作製は、最初に、一組の直交する周波数(又は波長)依存性多項式によって基線変動をモデル化(これは、基線変動のコンピュータで作製したシミュレーションであり、行列Upを形成する)することによって達成され、その後、少なくとも1つの、そして通常は複数の、機器で集められた実際のスペクトルである前試料の化学化合物(例えば二酸化炭素及び水蒸気)のスペクトルが供給されて、行列Xsを形成する。次に、Xsの列をUpに関して直交させて、新たな行列Xs’を形成する。先の工程は、前試料の化学化合物補正から、基線の影響を除去する。その後、Xs’の列を互いに関して直交させて新たな行列Usを形成し、最後に、Up及びUsを一緒にして、その列が、並べて配置されたUP及びUsの列である補正行列Umを形成する。Xsの列を最初に直交させてベクターの新たな行列を形成し、その後、行列Upを形成する(相互に直交する)多項式をこれらのベクターに関して直交させ、その後、それらと一緒にして補正行列Umを形成するように、工程の順序を変更することが可能であろう。しかし、この変更された順序は、好ましさが劣る。その理由は、それが、最初の段階で直交する多項式を生成する利点を無効にし、また、前試料の化学化合物によるスペクトル変動に基線変動を混入させて、機器の性能の診断として有用性が劣るものにさせるためである。
一旦、行列X(f×nの次元)が補正行列Um(f×mの次元)に関して直交されてしまっても、得られる補正されたスペクトル行列Xcは、なおノイズ・データを含む。このノイズは、以下のようにして除去され得る。最初に、Xc=UVtの形(ここで、Uは、f×nの次元の行列であり、列としての主要な要素のスペクトルを含み、n×nの次元の対角行列であり、特異値を含み、そして、Vは、n×nの次元の行列であり、主要な要素スコアを含み、Vtは、Vの転置である)の行列Xcについて、特異値分解が行われる。一般に、当初のn個の試料におけるスペクトル測定中のノイズに対応する主要な要素は、求めるスペクトル・データによるものに対して大きさの小さい特異値を有し、従って、真の試料成分による主要な要素からは区別され得る。従って、本方法の次の工程は、U及びVからノイズに対応するk+1〜nの主要な要素を除去し、それぞれf×k、k×k及びn×kの次元の新たな行列U’、’、及びV’を形成することを含む。これらの行列を一緒に掛け合わせると、得られる行列は、先に補正されたスペクトル行列Xcに相当し、ノイズによるスペクトル・データを含まない。
モデル中に保持するための主要な要素の数(k)の選択については、文献において示唆されている種々の統計的試験を用いることができるが、以下の工程が最良の結果を与えることが見出された。一般に、スペクトルのノイズ・レベルは、機器を用いる経験から知られる。固有スペクトル(特異値分解から得られる行列Uの列)の視覚検査から、訓練された分光分析者は、一般に、固有スペクトル中の信号レベルがノイズ・レベルにいつ匹敵するかを認識することができる。固有スペクトルの視覚検査により、保持すべき項の適切な数kが選択され得る。次に、モデル中に例えばk−2、k−1、k、k+1、k+2項を有するモデルが構築され得、標準誤差及びPRESS(二乗の予測残余誤差の合計)値が調べられる。次に、モデルにおいて、所望の正確さを得るために必要な項の最小数又は最小のPRESS値を与える項の数が選択される。工程の数の選択は、分光分析者によって行われ、自動化されない。二乗の予測残余誤差の合計は、試料(これは、較正に用いられなかったが、特性又は成分濃度の真の値は既知である)の試験セットについての特性及び/又は成分値の推定のための予測モデルを適用することにより、算出される。推定された値と真の値との間の差を二乗して、試験セット中のすべての試料について合計する(二乗の合計の商の平方根及び試験試料の数は、PRESS値を試料当たりの基準で表すために、しばしば算出される)。PRESS値は、交差確認手順を用いて算出され得る。この手順においては、較正試料の一つ又は二つ以上が、較正の間にデータ行列から除外され、次に、得られたモデルを用いて解析し、この手順を、各試料が1回除外されるまで繰り返す。
本方法は、c個の特性及び/又は組成データを、n個の較正試料の各々について集め、n×c(ここにおいて、cは1である)の次元の行列Yを形成することを、更に必要とする。較正試料の各々について、対応するXcの列は、主要な要素(列の)の重みがつけられた組み合わせにより表される。これらの加重値は、「スコア」と呼ばれ、siで表される。次に、特性(従属変数)と、「スコア」及び他の測定値(独立変数)の組み合わせとの間の回帰関係が決定される。本発明において用いる更なる測定値は、粘度積(粘度及び密度の積、vで表される)及び温度tである。一旦これらの回帰係数が決定されると、これらは、オンライン予測プロセスの一部として用いられる。予測プロセスにおいては、測定されたスペクトルは、上記のようにバックグラウンド効果について補正され、決定された主要な要素を伴う「スコア」が算出される。スコア、測定された粘度積及び温度、ならびに較正プロセスから導かれた回帰係数は、考慮中の特性の予測を与える。
FTNIRスペクトル測定を粘度積及び温度と共に用いて、ムーニー粘度が正確(1単位以内)に予測され得ることが見出された。これは、従来技術に対して重要な改良である。不飽和含有量及びハロゲン含有量は、FTNIRスペクトルとの直接の相関により、正確に予測され得る。
当業界の熟練者は、特異値分解を通じて本発明により得られる固有スペクトルが、用いた波長の範囲について一組の正規直交基底関数を形成することを認識するであろう。基底関数の正規直交セットの任意の要素は、それ自体について1の内積及び基底関数の正規直交セットの他の任意の要素についてはゼロを有する。他の正規直交基底関数もまた、ルジャンドル多項式及び三角関数(サイン及びコサイン)を含む予測モデルを誘導するのに用い得る。他の正規直交基底関数の使用は、本発明の範囲内であるものと意図されている。
第4図は、FTNIRスペクトル測定値ならびに粘度積及び温度の測定値からのムーニー粘度の予測の結果の比較を示す。横座標は、実験室試料の測定されたムーニー粘度であり、一方、縦座標は、回帰相関に基づいて予測されたムーニー粘度である。図からわかるように、適合は、1単位未満の予測の標準誤差しかなく、非常に良好である。
第5図は、不飽和度について、既知の値を有するハロブチルゴムの、スペクトル測定値のみに基づく不飽和度の予測を比較する同様のプロットである。横座標は、ハロブチルゴム不飽和含有量の測定された実験値であり、一方、縦座標は、スペクトル値の回帰からの、予測されたハロブチル不飽和度の値である。
第4図及び第5図において為された予測は、以下に記載するように、これらの特性のフィードバック制御を提供することができるのに十分な程、正確である。
プロセス制御
上記の方法により為されたムーニー粘度のその場(イン−サイツ)での決定は、第1図中の117bでの触媒添加又は共開始剤速度をうまく処理する制御装置への入力として用いられ得る。不飽和度は、第1図中の供給原料107のイソプレン含有量をうまく処理する制御装置への、その場での飽和測定値を用いることにより、制御され得る。コモノマーの組込みは、ブチル反応器の供給原料コモノマー(好ましい態様においてはイソプレンである)107をうまく処理する制御装置への入力として、その場でのコモノマー含有量を用いることにより、制御され得る。分子量分布は、ブチル反応器への冷却流125b及び/又は分岐剤流109bをうまく処理する制御装置への入力として、その場での分子量分布を用いることにより、制御され得る。ブチル反応器ハロゲン含有量は、ブチルハロゲン化反応器へのハロゲン流(第2図中の155)をうまく処理する制御装置への入力として、その場でのハロゲン含有量測定値を用いることにより、制御され得る。
上記の例は、例証のみを目的とするものである。本発明は、広範囲の種々のプロセス及び製造プラントについて用いられ得る。本方法が用いられ得るプロセスは、重合、水蒸気分解、オレフィン精製、芳香族精製、異性化、接触分解、接触改質、水素化、酸化、部分酸化、脱水、水和、ニトロ化、エポキシ化、蒸留、燃焼、アルキル化、中和、アミノ化、エステル化、二量化、膜分離、カルボニル化、ケトン化、ヒドロホルミル化、オリゴマー化、熱分解(pyrolysis)、スルホン化、結晶化、吸着、抽出蒸留、水素化脱アルキル化、脱水素化、芳香族化、環化、熱分解(thermal cracking)、水素化脱硫、水素化脱窒素、過酸化、脱灰及びハロゲン化を包含するが、これらに限定されない。制御される特性ては、ムーニー粘度、ポリマー不飽和度、コモノマーの組込み、ハロゲン含有量、ポリマー濃度、モノマー濃度、分子量、メルト・インデックス、流れ成分組成、生成物中の水分及び分子量分布を包含できる。プロセスに応じて、スペクトル測定値に加えて為されるその場での測定は、中でも、温度、粘度、圧力、密度、屈折率、pH値、コンダクタンス及び比誘電率を包含し得る。
プロセス、制御される特性及び制御される特性の予測のために為される測定におけるこれらの、そして他の同様の変異は、本発明の範囲内であると意図される。
Field of Invention
The present invention relates to a chemical plant and a method for controlling a chemical process in the chemical plant. More particularly, the present invention relates to Mooney viscosity, polymer unsaturation, comonomer incorporation, halogen content, molecular weight, and molecular weight distribution during the polymerization or halogenation process of isoolefin copolymers and multiolefins, particularly butyl rubber. It is related with the method of controlling.
Description of related technology
An excellent method for controlling the polymerization of olefins in a medium such as an inert solvent or diluent is to calculate a single variable, the “Mooney viscosity”, the polymer concentration in the medium and the polymer solution. Measuring the viscosity of the. The Mooney viscosity is then used as a single variable that controls the entire process.
"Single variable" process control is very effective when the desired product quality is directly proportional to a single variable. “Single variable” process control is less effective when two or more variables are directly related to product quality. For example, the quality of butyl rubber is directly related to both Mooney viscosity and molecular weight distribution within the polymer solution during processing.
Various attempts have been made to provide further process control for the production of butyl rubber based on the molecular weight distribution of the polymer and Mooney viscosity. Unfortunately, previous methods have been based on comprehensive data that is either inefficient or insufficient to effectively control the process based on molecular weight distribution as well as Mooney viscosity.
There is a need for an efficient and accurate method for controlling the production of butyl rubber, using both Mooney viscosity and polymer molecular weight as process control parameters.
Summary of invention
The present invention is a method for on-line control of a process plant having a plurality of steps for producing a product having a characteristic P having a desired value D. In this method, for a set of calibration samples representing at least one intermediate step in the process, a set of measured spectra is obtained, the effects of measurement errors on the calibration sample are removed, and for a set of calibration samples. Yields a set of corrected spectra. A set of weights is determined by relating the corrected spectrum of each calibration sample to the unique spectrum, giving a matrix of weights. For each calibration sample, a value of the final product characteristic P is obtained. A prediction model is then derived by relating the value of the product characteristic P for the calibration sample to a set of weights. Next, the spectrum of the test sample at an intermediate stage of the process is measured, and the measurement error is corrected. The value of characteristic P for the test sample is predicted from a predictive model that uses a set of weights derived from the calibration sample and the corrected spectrum of the test sample. The difference between the predicted value and the desired value is used to control the process. Optionally, in addition to the spectrum, measurements can be taken and used to derive the prediction model and prediction process.
[Brief description of the drawings]
FIG. 1 is a simplified flow diagram of a plant for the polymerization of butyl rubber.
FIG. 2 is a simplified flow diagram of a plant for halogenation of butyl rubber.
FIG. 3 describes the equipment used for instrumentation and process control.
FIG. 4 is a comparison of Mooney viscosity measured and predicted according to the method of the present invention.
FIG. 5 is a comparison of the degree of unsaturation measured and predicted according to the method of the present invention.
Detailed Description of the Invention
The present invention is best understood with reference to the accompanying FIGS. 1-5 which illustrate preferred embodiments of the invention.
The world production bulk of butyl rubber is produced by a precipitation (slurry) polymerization process in which isobutylene and a small amount of isoprene are copolymerized using aluminum chloride in dilute methyl chloride at -100 ° C to -900 ° C. Halogenated butyl rubber is produced commercially by dissolving butyl rubber in a hydrocarbon solvent and contacting the solution with a halogen element.
FIG. 1 is a simplified flow diagram of the polymerization section of a slurry process. The isobutylene 101 is dried and separated in the drying tower 103. The water 103a is removed, and the fraction 103b containing isobutylene, 2-butene and a high boiling point component is purified by the isobutylene purification tower 105. The feed blend drum 109 was recycled from 25 to 40% by weight of isobutylene 105b, 0.4 to 1.4% by weight of isoprene 107 (depending on the grade of butyl rubber produced), and the methyl chloride purification tower 111. A feedstock consisting of methyl chloride 111a is blended. By passing pure methyl chloride 111b through granular aluminum chloride bed 113 at 30-45 ° C., a coinitiator solution is produced. This concentrated solution 113b is diluted with additional methyl chloride and stored in drum 115. The diluted mixture is cooled to a temperature of −100 to −90 ° C. by the catalyst cooler 117. The cooled coinitiator 117b is supplied to the reactor 119. The reactor includes a central vertical draft tube surrounded by concentric rows of cooling tubes. The reactor is mixed by an axial pump located at the bottom of the draft tube that circulates the slurry through the cooling tube. The copolymerization reaction is an exothermic reaction and releases about 0.82 MJ (350 Btu / lb) per kg of polymer. Heat is removed by exchanging for boiling ethylene being supplied as a liquid to a jacket surrounding the reactor tube section. The reactor is constructed of an alloy having the appropriate impact strength at low temperatures for the polymerization reaction. As shown in FIG. 1, the blended feed 109a is cooled by a feed cooler 121 and supplied to a reactor 119. In order to control the properties of the polymer produced in reactor 119, branching agent 109b may be added to blended feed 109a. Reactor output 119a consists of butyl rubber, methyl chloride, and unreacted monomers. Warm hexane and hexane vapor 125 and coolant 125b are added to reactor outlet line 119a and solution drum 123, and most of the methyl chloride and unreacted monomer are vaporized and sent to recycle gas condenser 151. A liquid hexane solution of butyl rubber is fed to a cement stripper 131 (where hot hexane vapor 133 is added). Hot cement 131a from the bottom of cement stripper 131 contains the polymer in hexane solution. Hot cement 131a flows through flash concentrator 137, where the cement is concentrated by vaporizing a portion of hexane in stream 131a. The flushed hexane is recycled to the solution drum 123 and the output 137b of the flash concentrator is the halogenation feed as described below with reference to FIG. All of the methyl chloride, monomer and small amount of hexane 131b from the cement stripper is recycled. 151 is a recirculation gas condenser that recirculates methyl chloride 111a and isobutylene 185a in conjunction with dryer 187, methyl chloride purification tower 111, recirculation tower 183 and purge tower 185. Stream 185b is purged from this process.
In the halogenation process shown in FIG. 2, the butyl rubber solution 137 b is stored in the tank 153. The solution reacts with chlorine or bromine 155 at 30-60 ° C. in one or more highly stirred reaction vessels 157. For safety reasons, chlorine is introduced as a vapor or dilute solution because liquid chlorine reacts violently with the butyl rubber solution. However, bromine can be used in liquid or vapor form because its reaction rate is lower. The halogenated by-products HCl or HBr are neutralized with diluted aqueous caustic 163 in a high intensity mixer 159. Antioxidants and stabilizers 167 such as calcium stearate and epoxidized soybean oil are added. The solution is sent to a multi-vessel solvent removal system 171 where steam and water 165 vaporize the solvent and produce agglomerated rubber particles in the water. The use of steam for final solvent content and solvent removal depends on the conditions of each vessel. Typically, the lead flash drum is operated at 105-120 ° C. and 200-300 kPa (2-3 atm). The conditions in the final stripping step 173 are 101 ° C. and 105 kPa (1.04 atm). Hexane 175a is recycled while halobutyl slurry 173a is sent for finishing.
FIG. 3 is an illustration of an apparatus useful in the present invention for on-line monitoring of a flow stream in a manner that allows predicting the properties of the final product. This prediction is then used to successfully process the throughput and equipment operating conditions to obtain a final product with the desired properties.
The instrument assembly 500 is generally equipped to monitor fluid in the process flow stream. As mentioned above, in one embodiment of the invention, this is the output to the cement stripper 131, monitoring the cement solution 131a (FIG. 1) and the output 157a after halogenation (FIG. 2). To be done. At the output of the cement stripper 131, the measured values are used to determine Mooney viscosity, degree of unsaturation and molecular weight distribution, while at the output 157a after halogenation (FIG. 2) the measured values are Used to predict the halogen content of the final product. As shown, along with the direction of fluid flow in the process flow, the flow to the instrumentation assembly is shown at 491 while the outflow is shown at 493. In a preferred embodiment of the invention, the assembly includes a spectrometer, a viscometer, and a temperature measurement device. In FIG. 3, the spectrometer is indicated at 501. In a preferred embodiment, this is a Fourier transform near infrared (FTNIR) spectrometer. As its name suggests, FTNIR is a spectrometer designed for taking measurements in the near infrared region and an appropriate microprocessor (not shown) to calculate the Fourier transform of the input data. including. A fiber optic link 507 from the FTNIR spectrometer sends an infrared signal across the flow stream between gaps 503 and 505. The output of the FTNIR spectrometer is spectral data N (which details the absorption spectrum of the monitored fluid and is used by a process control computer (not shown) as described below).
The instrumentation also includes a viscometer, indicated at 509, which has a probe 511 in the fluid flow stream. The probe measures the viscosity product (product of viscosity and density) of the fluid in the flow stream. The viscosity product measurement is the output at P for use by a process control computer (not shown).
The next component of the instrumentation is a temperature measurement device 511, which includes a probe 513 that monitors the temperature of the fluid during the flow. The output of the temperature measuring device is a temperature measurement O of the temperature of the fluid in the flow stream. The temperature measurement O is used by a process control computer (not shown) as described below.
In a preferred embodiment, the path length for infrared signals is about 0.8 mm. This path length greatly reduces the need to correct the absorption spectrum in order to change the path length compared to conventional methods where the path length is much shorter.
Instrumentation elements (temperature measuring devices, viscometers and spectrometers) will not be discussed in detail since those skilled in the art will be familiar with them.
The outputs N, O, and P of the instrument assembly are sent to a computer that analyzes the measurements, as described below, to predict the expected end product characteristics from the process. The difference between the predicted and desired properties of the product is also used to control the process parameters as described below.
The three measuring devices (spectrometer, viscometer and temperature gauge) disclosed herein are for illustrative purposes only. One skilled in the art will recognize that other measurements can be made. These further measurements are intended to be within the scope of the present invention.
Analyzing data
Brown (US Pat. No. 5,121,337) describes a method for correcting spectral data for data from the spectral measurement process itself and using such methods to estimate unknown properties and / or composition data of the sample. Disclosure. This patent is hereby incorporated by reference and forms the basis for the analysis of spectral data obtained from FTNIR spectrometers.
As disclosed by Brown, the first step in the analysis is the calibration step. Spectral data for n calibration samples is quantified at f distinct frequencies, giving rise to a matrix X (of dimensions f × n) of calibration data. The first step of the method involves generating a correction matrix Um of dimension f × m containing m digitized correction spectra at f distinct frequencies, which correction spectrum is measured Simulates data resulting from the process itself. The next step involves orthogonalizing X with respect to Um, resulting in a corrected spectral matrix Xc whose spectrum is orthogonal to all the spectra in Um. Because of this orthogonality, the spectra in matrix Xc are statistically independent of the spectra that result from the measurement process itself.
The spectrum can be an absorption spectrum, and the preferred embodiments described below all involve measuring the absorption spectrum. However, this is to be considered as illustrative and does not limit the scope of the invention as defined by the appended claims. This is because the method disclosed herein can be applied to other types of spectra such as reflection spectra and scattering spectra (eg, Raman scattering). Reference to the description and drawings herein relates to NIR (Near Infrared) and MIR (Mid Infrared), nevertheless, the method includes, for example, ultraviolet, visible spectroscopy and nuclear magnetic resonance (NMR). It will be appreciated that applications in other spectral measurement wavelength ranges will be found, including spectroscopic analysis.
In general, the data resulting from the measurement process itself is due to two effects. The first is due to fluctuations in the baseline of the spectrum. Baseline variations arise from a number of sources, such as source temperature variations during measurement, reflectivity, scattering or absorption by the cell window, and instrument detector temperature (and hence sensitivity) changes. These baseline variations generally exhibit broad spectral features (correlated over a wide frequency range). The second type of measurement process signal is due to the chemical compound of the previous sample present during the measurement process, which gives sharper line features in the spectrum. For this application, this type of correction generally includes absorption by atmospheric water vapor and / or carbon dioxide in the spectrometer. Absorption by hydroxyl groups in the optical fiber can also be treated in this manner. Corrections for contaminants present in the sample can also be made, but generally this is sufficiently low so that the concentration of contaminants does not significantly dilute the concentration of the sample components. Only if no significant interaction occurs between It is important to recognize that these corrections are for signals that do not depend on the components in the sample. In this context, “sample” refers to a substance whose properties and / or component concentrations are measured for the purpose of providing data for model development. By “contaminants” we indicate any material physically added to the sample after the property / component concentration measurement but before or during the spectrum measurement.
In a preferred method of practicing the invention, in addition to the matrix X of spectral data orthogonalized with respect to the correction matrix Um, the spectra or columns of Um are all orthogonal to one another. The creation of a matrix Um with mutually orthogonal spectra or columns involves first modeling baseline variations with a set of orthogonal frequency (or wavelength) dependent polynomials (this is a computer-generated simulation of baseline variations). The spectrum of the chemical compounds (eg carbon dioxide and water vapor) of the previous sample, which is the actual spectrum collected by the instrument, which is then achieved by forming a matrix Up) Are supplied to form the matrix Xs. Next, the columns of Xs are orthogonalized with respect to Up to form a new matrix Xs ′. The previous step removes the influence of the baseline from the chemical compound correction of the previous sample. Thereafter, the columns of Xs ′ are orthogonalized with respect to each other to form a new matrix Us, and finally, Up and Us are combined to form a correction matrix Um whose columns are UP and Us columns arranged side by side. Form. The columns of Xs are first orthogonalized to form a new matrix of vectors, after which the polynomials that form the matrix Up (orthogonal to each other) are orthogonalized with respect to these vectors and then together with them the correction matrix Um It would be possible to change the order of the steps to form However, this changed order is less preferred. The reason is that it negates the advantage of generating an orthogonal polynomial in the first stage, and also introduces baseline fluctuations into the spectral fluctuations due to chemical compounds in the previous sample, making it less useful as a diagnostic of instrument performance. This is to make things happen.
Once the matrix X (dimension of f × n) is orthogonal with respect to the correction matrix Um (dimension of f × m), the resulting corrected spectral matrix Xc still contains noise data. This noise can be removed as follows. First, in the form of Xc = UVt, where U is a matrix of dimensions f × n, containing the spectrum of the main elements as columns, a diagonal matrix of dimensions n × n, and singular values And V is an n × n dimensional matrix, including the main element scores, and Vt is the transpose of V), singular value decomposition is performed. In general, the primary factor corresponding to noise during spectral measurements in the original n samples has a singular value that is small in magnitude relative to that from the desired spectral data, and thus the primary component due to the true sample component. It can be distinguished from the element. Therefore, the next step of the method removes k + 1 to n major elements corresponding to noise from U and V, and creates a new matrix U ′ with dimensions f × k, k × k and n × k, respectively. Forming 'and V'. When these matrices are multiplied together, the resulting matrix corresponds to the previously corrected spectral matrix Xc and does not include spectral data due to noise.
Various statistical tests suggested in the literature can be used to select the number of key elements (k) to keep in the model, but the following steps have been found to give the best results. It was issued. In general, the noise level of a spectrum is known from experience with the instrument. From visual inspection of the eigenspectrum (the column of the matrix U resulting from the singular value decomposition), a trained spectrographer can generally recognize when the signal level in the eigenspectrum is comparable to the noise level. . By visual inspection of the eigenspectrum, an appropriate number k of terms to keep can be selected. Next, a model can be built with, for example, k-2, k-1, k, k + 1, k + 2 terms in the model, and the standard error and PRESS (sum of squared prediction residual errors) values are examined. Next, in the model, the minimum number of terms required to obtain the desired accuracy or the number of terms that gives the minimum PRESS value is selected. The selection of the number of steps is done by the spectrograph and is not automated. The sum of the squared predicted residual errors is due to the estimation of properties and / or component values for the test set of the sample (which was not used for calibration but the true value of the property or component concentration is known) It is calculated by applying the prediction model. The difference between the estimated value and the true value is squared and summed for all samples in the test set (the square root of the quotient of the sum of squares and the number of test samples is the PRESS value per sample Often calculated to represent The PRESS value can be calculated using an intersection validation procedure. In this procedure, one or more of the calibration samples are excluded from the data matrix during calibration and then analyzed using the resulting model and this procedure is excluded once for each sample. Repeat until
The method further comprises collecting c characteristic and / or composition data for each of the n calibration samples to form a matrix Y of dimension n × c (where c is 1), I need. For each calibration sample, the corresponding column of Xc is represented by a weighted combination of the primary elements (of the column). These weights are called “scores” and are represented by si. Next, the regression relationship between the characteristic (dependent variable) and the combination of “score” and other measured values (independent variables) is determined. Further measurements used in the present invention are the viscosity product (product of viscosity and density, expressed as v) and temperature t. Once these regression coefficients are determined, they are used as part of the online prediction process. In the prediction process, the measured spectrum is corrected for background effects as described above, and a “score” with the determined key factors is calculated. The score, measured viscosity product and temperature, and regression coefficients derived from the calibration process give a prediction of the property under consideration.
It has been found that Mooney viscosity can be accurately predicted (within 1 unit) using FTNIR spectral measurements with viscosity product and temperature. This is an important improvement over the prior art. Unsaturated content and halogen content can be accurately predicted by direct correlation with the FTNIR spectrum.
Those skilled in the art will recognize that the eigen spectrum obtained by the present invention through singular value decomposition forms a set of orthonormal basis functions for the range of wavelengths used. Any element of the orthonormal set of basis functions has an inner product of 1 for itself and zero for any other element of the orthonormal set of basis functions. Other orthonormal basis functions can also be used to derive prediction models including Legendre polynomials and trigonometric functions (sine and cosine). The use of other orthonormal basis functions is intended to be within the scope of the present invention.
FIG. 4 shows a comparison of Mooney viscosity prediction results from FTNIR spectral measurements and viscosity product and temperature measurements. The abscissa is the measured Mooney viscosity of the laboratory sample, while the ordinate is the Mooney viscosity predicted based on the regression correlation. As can be seen, the fit is very good with a standard error of prediction of less than one unit.
FIG. 5 is a similar plot comparing unsaturation predictions based solely on spectral measurements for halobutyl rubber having a known value for unsaturation. The abscissa is the measured experimental value of the halobutyl rubber unsaturation content, while the ordinate is the predicted halobutyl unsaturation value from the regression of the spectral values.
The predictions made in FIGS. 4 and 5 are accurate enough to be able to provide feedback control of these characteristics, as described below.
Process control
The in-situ determination of Mooney viscosity made by the above method can be used as input to a controller that successfully handles catalyst addition or co-initiator rates at 117b in FIG. . The degree of unsaturation can be controlled by using in situ saturation measurements to a controller that successfully handles the isoprene content of the feedstock 107 in FIG. Comonomer incorporation can be controlled by using the in-situ comonomer content as an input to a controller that successfully processes the feed comonomer (in the preferred embodiment isoprene) 107 of the butyl reactor. The molecular weight distribution can be controlled by using the in-situ molecular weight distribution as an input to a controller that successfully processes the cooling stream 125b and / or the branching agent stream 109b to the butyl reactor. The butyl reactor halogen content is obtained by using the in-situ halogen content measurement as an input to a controller that successfully processes the halogen stream (155 in FIG. 2) to the butyl halogenation reactor. Can be controlled.
The above example is for illustrative purposes only. The present invention can be used with a wide variety of processes and manufacturing plants. Processes in which this method can be used include polymerization, steam cracking, olefin purification, aromatic purification, isomerization, catalytic cracking, catalytic reforming, hydrogenation, oxidation, partial oxidation, dehydration, hydration, nitration, epoxidation, Distillation, Combustion, Alkylation, Neutralization, Amination, Esterification, Dimerization, Membrane Separation, Carbonylation, Ketonization, Hydroformylation, Oligomerization, Pyrolysis, Sulfonation, Crystallization, Adsorption, Extractive Distillation Including, but not limited to, hydrodealkylation, dehydrogenation, aromatization, cyclization, thermal cracking, hydrodesulfurization, hydrodenitrogenation, peroxidation, deashing and halogenation Not. Controlled properties can include Mooney viscosity, polymer unsaturation, comonomer incorporation, halogen content, polymer concentration, monomer concentration, molecular weight, melt index, flow component composition, moisture and molecular weight distribution in the product . Depending on the process, the in situ measurements made in addition to the spectral measurements can include, among others, temperature, viscosity, pressure, density, refractive index, pH value, conductance and dielectric constant.
These and other similar variations in processes, controlled properties and measurements made for the prediction of controlled properties are intended to be within the scope of the present invention.

Claims (54)

プロセスの中間工程において試験試料のスペクトルが測定され、生成物の特性Pを制御するために用いられる、所望の値Dを有する特性Pを伴う最終生成物を製造する複数の工程を有するプロセスのオンライン制御のための方法であって、
a.前記プロセスの少なくともーつの中間工程の代表的な一組の較正試料のための、測定誤差を有する一組の測定されたスペクトルを得ること;
b.測定プロセス自体から生じるデータであって、校正試料の成分によるものでないデータをシミュレートする一組の補正されるスペクトルを生じさせること;
c.前記一組の補正されるスペクトルに関して前記一組の測定されたスペクトルを直交させることにより、前記測定されたスペクトルを測定誤差について補正し、前記一組の較正試料について、一組の補正されたスペクトルを生じさせること;
d.前記較正試料の各々の前記補正されたスペクトルを一組の正規直交基底関数に関係付けて一組の補正された較正試料スペクトルから一組の加重値を決定すること;
e.前記一組の較正試料の各較正試料に対応する生成物の前記特性Pの値を得ること;
f.前記生成物の前記特性Pについての前記値を前記一組の加重値に関係付けて予測モデルを決定すること;
g.前記プロセスの前記少なくともーつの中間工程において、試験試料のスペクトルを測定すること;
h.前記プロセスの前記少なくともーつの中間工程において、前記一組の補正されるスペクトルに関して前記試験試料の前記測定されたスペクトルを直交させることにより、前記試験試料の補正されたスペクトルを得ること;
i.前記予測モデル及び前記試験試料の前記補正されたスペクトルから、前記試験試料に対応する予測された生成物の前記特性Pについて、推定値Eを決定すること;及び
j.前記予測された生成物の前記推定値Eと前記所望の値Dとの間の算出された差を用いて前記プロセスを制御すること
を含む方法。
Online of a process with multiple steps to produce a final product with a characteristic P having a desired value D, where the spectrum of the test sample is measured in an intermediate step of the process and used to control the characteristic P of the product A method for control,
a. Obtaining a set of measured spectra with measurement errors for a representative set of calibration samples of at least one intermediate step of the process;
b. Generating a set of corrected spectra that simulate data that originates from the measurement process itself and not from the components of the calibration sample;
c. Correcting the measured spectrum for measurement error by orthogonalizing the set of measured spectra with respect to the set of corrected spectra, and for the set of calibration samples, a set of corrected spectra Producing;
d. Associating the corrected spectrum of each of the calibration samples with a set of orthonormal basis functions to determine a set of weights from the set of corrected calibration sample spectra;
e. Obtaining a value of the characteristic P of the product corresponding to each calibration sample of the set of calibration samples;
f. Associating the value for the characteristic P of the product with the set of weights to determine a prediction model;
g. Measuring the spectrum of the test sample in the at least one intermediate step of the process;
h. Obtaining a corrected spectrum of the test sample by orthogonalizing the measured spectrum of the test sample with respect to the set of corrected spectra in the at least one intermediate step of the process;
i. Determining an estimate E for the characteristic P of the predicted product corresponding to the test sample from the predicted model and the corrected spectrum of the test sample; and
j. Controlling the process with a calculated difference between the estimated value E of the predicted product and the desired value D.
前記生成物がポリマーを含む、請求項1の方法。The method of claim 1, wherein the product comprises a polymer. 前記測定されたスペクトルが、ラマン・スペクトル、NMRスペクトル及び赤外スペクトルからなる群から選択される、請求項1の方法。The method of claim 1, wherein the measured spectrum is selected from the group consisting of a Raman spectrum, an NMR spectrum and an infrared spectrum. 前記測定されたスペクトルが、近赤外領域の吸収スペクトルを含む、請求項1の方法。The method of claim 1, wherein the measured spectrum comprises an absorption spectrum in the near infrared region. 前記予測モデルが、直線最小二乗回帰によって決定される、請求項4の方法。The method of claim 4, wherein the predictive model is determined by linear least squares regression. 前記プロセスが、重合、水蒸気分解、オレフィン精製、芳香族精製、異性化、接触分解、接触改質、水素化、酸化、部分酸化、脱水、水和、ニトロ化、エボキシ化、蒸留、燃焼、アルキル化、中和、アミノ化、エステル化、二量化、膜分離、カルボニル化、ケトン化、ヒドロホルミル化、オリゴマー化、熱分解(pyrolysis)、スルホン化、結晶化、吸着、抽出蒸留、水素化脱アルキル化、脱水素化、芳香族化、環化、熱分解(thermal cracking)、水素化脱硫、水素化脱窒素、過酸化、脱灰及びハロゲン化からなる群から選択された手順を含む、請求項3の方法。The process is polymerization, steam cracking, olefin purification, aromatic purification, isomerization, catalytic cracking, catalytic reforming, hydrogenation, oxidation, partial oxidation, dehydration, hydration, nitration, eboxidation, distillation, combustion, alkyl , Neutralization, amination, esterification, dimerization, membrane separation, carbonylation, ketation, hydroformylation, oligomerization, pyrolysis, sulfonation, crystallization, adsorption, extractive distillation, hydrodealkylation Comprising a procedure selected from the group consisting of hydration, dehydrogenation, aromatization, cyclization, thermal cracking, hydrodesulfurization, hydrodenitrogenation, peroxidation, deashing and halogenation. Method 3. 前記プロセスが、重合、水蒸気分解、オレフィン精製、芳香族精製、異性化、接触分解、接触改質、水素化、酸化、部分酸化、脱水、水和、ニトロ化、エポキシ化、蒸留、燃焼、アルキル化、中和、アミノ化、エステル化、二量化、膜分離、カルボニル化、ケトン化、ヒドロホルミル化、オリゴマー化、熱分解(pyrolysis)、スルホン化、結晶化、吸着、抽出蒸留、水素化脱アルキル化、脱水素化、芳香族化、環化、熱分解(thermal cracking)、水素化脱硫、水素化脱窒素、過酸化、脱灰及びハロゲン化からなる群から選択された手順を含む、請求項4の方法。The process is polymerization, steam cracking, olefin purification, aromatic purification, isomerization, catalytic cracking, catalytic reforming, hydrogenation, oxidation, partial oxidation, dehydration, hydration, nitration, epoxidation, distillation, combustion, alkyl , Neutralization, amination, esterification, dimerization, membrane separation, carbonylation, ketation, hydroformylation, oligomerization, pyrolysis, sulfonation, crystallization, adsorption, extractive distillation, hydrodealkylation Comprising a procedure selected from the group consisting of hydration, dehydrogenation, aromatization, cyclization, thermal cracking, hydrodesulfurization, hydrodenitrogenation, peroxidation, deashing and halogenation. Method 4. 前記較正試料のための前記補正されたスペクトルを特徴付けている前記一組の正規直交基底関数が、特異値分解によって決定された固有のスペクトルを含む、請求項6の方法。The method of claim 6, wherein the set of orthonormal basis functions characterizing the corrected spectrum for the calibration sample comprises a unique spectrum determined by singular value decomposition. 前記較正試料のための前記補正されたスペクトルを特徴付けている前記一組の正規直交基底関数が、特異値分解によって決定された固有のスペクトルである、請求項7の方法。8. The method of claim 7, wherein the set of orthonormal basis functions characterizing the corrected spectrum for the calibration sample is a unique spectrum determined by singular value decomposition. 前記特性Pが、ムーニー粘度、ポリマー不飽和度、コモノマーの組込み、ハロゲン含有量、ポリマー濃度、モノマー濃度、分子量、メルト・インデックス、ポリマー密度、流れ成分組成、生成物中の水分及び分子量分布からなる群から選択される、請求項8の方法。The property P consists of Mooney viscosity, polymer unsaturation, comonomer incorporation, halogen content, polymer concentration, monomer concentration, molecular weight, melt index, polymer density, flow component composition, moisture in product and molecular weight distribution 9. The method of claim 8, wherein the method is selected from the group. 前記特性Pが、ムーニー粘度、ポリマー不飽和度、コモノマーの組込み、ハロゲン含有量、ポリマー濃度、モノマー濃度、分子量、メルト・インデックス、ポリマー密度、流れ成分組成、生成物中の水分及び分子量分布からなる群から選択される、請求項9の方法。The property P consists of Mooney viscosity, polymer unsaturation, comonomer incorporation, halogen content, polymer concentration, monomer concentration, molecular weight, melt index, polymer density, flow component composition, moisture in product and molecular weight distribution The method of claim 9, wherein the method is selected from the group. 前記近赤外スペクトルの測定が、フーリエ変換近赤外(FTNIR)分光計によって行われる、請求項9の方法。The method of claim 9, wherein the measurement of the near infrared spectrum is performed by a Fourier Transform Near Infrared (FTNIR) spectrometer. 前記近赤外スペクトルの測定が、フーリエ変換近赤外(FTNIR)分光計によって行われる、請求項11の方法。The method of claim 11, wherein the measurement of the near infrared spectrum is performed by a Fourier Transform Near Infrared (FTNIR) spectrometer. 前記試験試料についての前記スペクトルの測定が、少なくとも2分に一回行われる、請求項10の方法。The method of claim 10, wherein the measurement of the spectrum for the test sample is performed at least once every 2 minutes. 前記試験試料についての前記スペクトルの測定が、少なくとも2分に一回行われる、請求項11の方法。The method of claim 11, wherein the measurement of the spectrum for the test sample is performed at least once every two minutes. 前記一組の較正試料の各較正試料について少なくともーつの更なる特性の値を得ること;及び
前記プロセスの前記少なくともーつの中間工程において、前記試験試料の前記少なくともーつの更なる特性を測定すること
を含む、請求項1の方法であって、
前記特性Pについての前記値を、前記一組の加重値及び前記較正試料の前記少なくともーつの更なる特性の前記値に関係付けて予測モデルを決定し、前記予測モデル、前記補正されたスペクトル及び前記試験試料の前記少なくともーつの更なる特性の前記値から、前記試験試料に対応する予測された生成物の前記特性Pについて、前記推定値Eを決定する、方怯。
Obtaining at least one additional property value for each calibration sample of the set of calibration samples; and measuring the at least one additional property of the test sample in the at least one intermediate step of the process. The method of claim 1 comprising:
Determining a prediction model by relating the value for the characteristic P to the set of weights and the value of the at least one additional characteristic of the calibration sample, the prediction model, the corrected spectrum, and The method of determining the estimated value E for the property P of the predicted product corresponding to the test sample from the value of the at least one further property of the test sample.
前記少なくとも一つの更なる特性が、温度、粘度、圧力、密度、屈折率、pH値、コンダクタンス及び比誘電率からなる群から選択される、請求項16の方法。The method of claim 16, wherein the at least one additional property is selected from the group consisting of temperature, viscosity, pressure, density, refractive index, pH value, conductance, and dielectric constant. 前記生成物がポリマーを含む、請求項17の方法。The method of claim 17, wherein the product comprises a polymer. 前記スペクトルが、ラマン・スペクトル、NMRスペクトル及び赤外スペクトルからなる群から選択される、請求項17の方法。18. The method of claim 17, wherein the spectrum is selected from the group consisting of a Raman spectrum, an NMR spectrum, and an infrared spectrum. 前記測定されたスペクトルが、近赤外領域の吸収スペクトルを含む、請求項17の方法。The method of claim 17, wherein the measured spectrum comprises an absorption spectrum in the near infrared region. 前記予測モデルが、直線最小二乗回帰によって決定される、請求項20の方法。21. The method of claim 20, wherein the predictive model is determined by linear least squares regression. 前記プロセスが、重合、水蒸気分解、オレフィン精製、芳香族精製、異性化、接触分解、接触改質、水素化、酸化、部分酸化、脱水、水和、ニトロ化、エポキシ化、蒸留、燃焼、アルキル化、中和、アミノ化、エステル化、二量化、膜分離、カルボニル化、ケトン化、ヒドロホルミル化、オリゴマー化、熱分解(pyrolysis)、スルホン化、結晶化、吸着、抽出蒸留、水素化脱アルキル化、脱水素化、芳香族化、環化、熱分解(thermal cracking)、水素化脱硫、水素化脱窒素、過酸化、脱灰及びハロゲン化からなる群から選択された手順を含む、請求項19の方法。The process is polymerization, steam cracking, olefin purification, aromatic purification, isomerization, catalytic cracking, catalytic reforming, hydrogenation, oxidation, partial oxidation, dehydration, hydration, nitration, epoxidation, distillation, combustion, alkyl , Neutralization, amination, esterification, dimerization, membrane separation, carbonylation, ketation, hydroformylation, oligomerization, pyrolysis, sulfonation, crystallization, adsorption, extractive distillation, hydrodealkylation Comprising a procedure selected from the group consisting of hydration, dehydrogenation, aromatization, cyclization, thermal cracking, hydrodesulfurization, hydrodenitrogenation, peroxidation, deashing and halogenation. 19 methods. 前記プロセスが、重合、水蒸気分解、オレフィン精製、芳香族精製、異性化、接触分解、接触改質、水素化、酸化、部分酸化、脱水、水和、ニトロ化、エポキシ化、蒸留、燃焼、アルキル化、中和、アミノ化、エステル化、二量化、膜分離、カルボニル化、ケトン化、ヒドロホルミル化、オリゴマー化、熱分解(pyrolysis)、スルホン化、結晶化、吸着、抽出蒸留、水素化脱アルキル化、脱水素化、芳香族化、環化、熱分解(thermal cracking)、水素化脱硫、水素化脱窒素、過酸化、脱灰及びハロゲン化からなる群から選択された手順を含む、請求項20の方法。The process is polymerization, steam cracking, olefin purification, aromatic purification, isomerization, catalytic cracking, catalytic reforming, hydrogenation, oxidation, partial oxidation, dehydration, hydration, nitration, epoxidation, distillation, combustion, alkyl , Neutralization, amination, esterification, dimerization, membrane separation, carbonylation, ketation, hydroformylation, oligomerization, pyrolysis, sulfonation, crystallization, adsorption, extractive distillation, hydrodealkylation Comprising a procedure selected from the group consisting of hydration, dehydrogenation, aromatization, cyclization, thermal cracking, hydrodesulfurization, hydrodenitrogenation, peroxidation, deashing and halogenation. 20 methods. 前記較正試料のための前記補正された吸収スペクトルを特徴付けている前記一組の正規直交基底関数が、特異値分解によって決定された固有のスペクトルを含む、請求項20の方法。21. The method of claim 20, wherein the set of orthonormal basis functions characterizing the corrected absorption spectrum for the calibration sample comprises a unique spectrum determined by singular value decomposition. 前記較正試料のための前記補正された吸収スペクトルを特徴付けている前記一組の正規直交基底関数が、特異値分解によって決定された固有のスペクトルを含む、請求項21の方法。24. The method of claim 21, wherein the set of orthonormal basis functions characterizing the corrected absorption spectrum for the calibration sample comprises a unique spectrum determined by singular value decomposition. 前記特性Pが、ムーニー粘度、ポリマー不飽和度、コモノマーの組込み、ハロゲン含有量、ポリマー濃度、モノマー濃度、分子量、メルト・インデックス、ポリマー密度、流れ成分組成、生成物中の水分及び分子量分布からなる群から選択される、請求項22の方法。The property P consists of Mooney viscosity, polymer unsaturation, comonomer incorporation, halogen content, polymer concentration, monomer concentration, molecular weight, melt index, polymer density, flow component composition, moisture in product and molecular weight distribution 24. The method of claim 22, wherein the method is selected from the group. 前記特性Pが、ムーニー粘度、ポリマー不飽和度、コモノマーの組込み、ハロゲン含有量、ポリマー濃度、モノマー濃度、分子量、メルト・インデックス、ポリマー密度、流れ成分組成、生成物中の水分及び分子量分布からなる群から選択される、請求項23の方法。The property P consists of Mooney viscosity, polymer unsaturation, comonomer incorporation, halogen content, polymer concentration, monomer concentration, molecular weight, melt index, polymer density, flow component composition, moisture in product and molecular weight distribution 24. The method of claim 23, wherein the method is selected from the group. 前記近赤外スペクトルの測定が、フーリエ変換近赤外(FTNIR)分光計によって行われる、請求項23の方法。24. The method of claim 23, wherein the measurement of the near infrared spectrum is performed by a Fourier Transform Near Infrared (FTNIR) spectrometer. 前記近赤外スペクトルの測定が、フーリエ変換近赤外(FTNIR)分光計によって行われる、請求項25の方法。26. The method of claim 25, wherein the measurement of the near infrared spectrum is performed by a Fourier transform near infrared (FTNIR) spectrometer. 前記試験試料についての前記スペクトルの前記測定が、少なくとも2分に一回行われる、請求項24の方法。25. The method of claim 24, wherein the measurement of the spectrum for the test sample is performed at least once every 2 minutes. 前記試験試料についての前記スペクトルの前記測定が、少なくとも2分一回行われる、請求項25の方法。Said measurement of said spectrum for said test sample is performed at least once 2 minutes The method of claim 25. 所望の値Dを有する特性Pを伴う最終生成物を製造する複数の工程を有するプロセス・プラントであって、
(1)そのプロセスの少なくともーつの中間工程に対応する、測定誤差によって悪影響を及ぼされているスペクトルを測定し、一組の較正試料及び試験試料について一組の測定されたスペクトルを与えるための、第一の装置;
(2)前記較正試料の各々に対応する最終生成物の前記特性Pの前記値を測定するための第二の装置;及び
(i)測定プロセス自体から生じるデータであって、校正試料の成分によるものでないデータをシミュレートする一組の補正されるスペクトルを生じさせること
(ii)前記一組の補正されるスペクトルに関して前記校正試料及び前記試験試料の測定されたスペクトルを直交させることにより、前記較正試料及び前記試験試料の前記測定されたスペクトルを測定誤差について補正し、それらの組の補正されたスペクトルを与えること;
(iii)前記較正試料の各々の前記補正されたスペクトルを一組の正規直交基底関数に関係付けて一組の補正された較正試料スペクトルから一組の加重値を決定すること;
(iv)前記較正試料について、前記一組の加重値を、前記較正試料の各々に対応する前記生成物の前記特性Pの前記測定値に関係付けて予測モデルを得ること;
(v)前記試験試料に対応する予測された生成物の前記特性Pについての予測値Eを、前記予測モデル及び前記試験試料についての前記補正されたスペクトルから予測すること;及び
(vi)前記予測された生成物の前記予測値Eと前記所望の値Dとの間の算出された差を用いて前記プロセス・プラントを制御すること
に適合されたコンピュータ
を含む、プロセス・プラント。
A process plant having multiple steps to produce a final product with a characteristic P having a desired value D,
(1) measuring a spectrum that is adversely affected by measurement errors, corresponding to at least one intermediate step of the process, to give a set of measured spectra for a set of calibration samples and test samples; First device;
(2) a second device for measuring the value of the characteristic P of the final product corresponding to each of the calibration samples; and (i) data resulting from the measurement process itself, depending on the components of the calibration sample Producing a set of corrected spectra that simulate non-null data ;
(Ii) correcting the measured spectrum of the calibration sample and the test sample for measurement error by orthogonalizing the measured spectrum of the calibration sample and the test sample with respect to the set of corrected spectra ; Giving those sets of corrected spectra;
(Iii) associating the corrected spectrum of each of the calibration samples with a set of orthonormal basis functions to determine a set of weights from the set of corrected calibration sample spectra;
(Iv) for the calibration sample, obtaining the prediction model by relating the set of weights to the measured value of the characteristic P of the product corresponding to each of the calibration samples;
(V) predicting a predicted value E for the characteristic P of the predicted product corresponding to the test sample from the predicted model and the corrected spectrum for the test sample; and
(Vi) a process plant comprising a computer adapted to control the process plant using the calculated difference between the predicted value E and the desired value D of the predicted product .
前記生成物がポリマーを含む、請求項32のプロセス・プラント。35. The process plant of claim 32, wherein the product comprises a polymer. 前記測定されたスペクトルが、ラマン・スペクトル、NMRスペクトル及び赤外スペクトルからなる群から選択される、請求項32のプロセス・プラント。33. The process plant of claim 32, wherein the measured spectrum is selected from the group consisting of a Raman spectrum, an NMR spectrum, and an infrared spectrum. 前記測定されたスペクトルが、近赤外領域の吸収スペクトルを含む、請求項32のプロセス・プラント。The process plant of claim 32, wherein the measured spectrum comprises an absorption spectrum in the near infrared region. 前記予測モデルが、直線最小二乗回帰によって決定される、請求項35のプロセス・プラント。36. The process plant of claim 35, wherein the predictive model is determined by linear least squares regression. 前記プロセスが、重合、水蒸気分解、オレフィン精製、芳香族精製、異性化、接触分解、接触改質、水素化、酸化、部分酸化、脱水、水和、ニトロ化、エポキシ化、蒸留、燃焼、アルキル化、中和、アミノ化、エステル化、二量化、膜分離、カルボニル化、ケトン化、ヒドロホルミル化、オリゴマー化、熱分解(pyrolysis)、スルホン化、結晶化、吸着、抽出蒸留、水素化脱アルキル化、脱水素化、芳香族化、環化、熱分解(thermal cracking)、水素化脱硫、水素化脱窒素、過酸化、脱灰及びハロゲン化からなる群から選択された手順を含む、請求項34のプロセス・プラント。The process is polymerization, steam cracking, olefin purification, aromatic purification, isomerization, catalytic cracking, catalytic reforming, hydrogenation, oxidation, partial oxidation, dehydration, hydration, nitration, epoxidation, distillation, combustion, alkyl , Neutralization, amination, esterification, dimerization, membrane separation, carbonylation, ketation, hydroformylation, oligomerization, pyrolysis, sulfonation, crystallization, adsorption, extractive distillation, hydrodealkylation Comprising a procedure selected from the group consisting of hydration, dehydrogenation, aromatization, cyclization, thermal cracking, hydrodesulfurization, hydrodenitrogenation, peroxidation, deashing and halogenation. 34 process plants. 前記プロセスが、重合、水蒸気分解、オレフィン精製、芳香族精製、異性化、接触分解、接触改質、水素化、酸化、部分酸化、脱水、水和、ニトロ化、エポキシ化、蒸留、燃焼、アルキル化、中和、アミノ化、エステル化、二量化、膜分離、カルボニル化、ケトン化、ヒドロホルミル化、オリゴマー化、熱分解(pyrolysis)、スルホン化、結晶化、吸着、抽出蒸留、水素化脱アルキル化、脱水素化、芳香族化、環化、熱分解(thermal cracking)、水素化脱硫、水素化脱窒素、過酸化、脱灰及びハロゲン化からなる群から選択された手順を含む、請求項35のプロセス・プラント。The process is polymerization, steam cracking, olefin purification, aromatic purification, isomerization, catalytic cracking, catalytic reforming, hydrogenation, oxidation, partial oxidation, dehydration, hydration, nitration, epoxidation, distillation, combustion, alkyl , Neutralization, amination, esterification, dimerization, membrane separation, carbonylation, ketation, hydroformylation, oligomerization, pyrolysis, sulfonation, crystallization, adsorption, extractive distillation, hydrodealkylation Comprising a procedure selected from the group consisting of hydration, dehydrogenation, aromatization, cyclization, thermal cracking, hydrodesulfurization, hydrodenitrogenation, peroxidation, deashing and halogenation. 35 process plants. 前記特性Pが、ムーニー粘度、ポリマー不飽和度、コモノマーの組込み、ハロゲン含有量、ポリマー濃度、モノマー濃度、分子量、メルト・インデックス、ポリマー密度、流れ成分組成、生成物中の水分及び分子量分布からなる群から選択される、請求項37のプロセス・プラント。The property P consists of Mooney viscosity, polymer unsaturation, comonomer incorporation, halogen content, polymer concentration, monomer concentration, molecular weight, melt index, polymer density, flow component composition, moisture in product and molecular weight distribution 38. The process plant of claim 37, selected from the group. 前記特性Pが、ムーニー粘度、ポリマー不飽和度、コモノマーの組込み、ハロゲン含有量、ポリマー濃度、モノマー濃度、分子量、メルト・インデックス、ポリマー密度、流れ成分組成、生成物中の水分及び分子量分布からなる群から選択される、請求項38のプロセス・プラント。The property P consists of Mooney viscosity, polymer unsaturation, comonomer incorporation, halogen content, polymer concentration, monomer concentration, molecular weight, melt index, polymer density, flow component composition, moisture in product and molecular weight distribution 40. The process plant of claim 38, selected from the group. 前記近赤外スペクトルの測定が、フーリエ変換近赤外(FTNIR)分光計によって行われる、請求項39のプロセス・プラント。40. The process plant of claim 39, wherein the near infrared spectrum measurement is performed by a Fourier Transform Near Infrared (FTNIR) spectrometer. 前記近赤外スペクトルの測定が、フーリエ変換近赤外(FTNIR)分光計によって行われる、請求項40のプロセス・プラント。41. The process plant of claim 40, wherein the measurement of the near infrared spectrum is performed by a Fourier Transform Near Infrared (FTNIR) spectrometer. 前記較正試料及び前記試験試料の少なくともーつの更なる特性の値を得るための第三の装置をさらに含む、請求項32のプロセス・プラントであり、前記較正試料について、前記補正されたスペクトル及び前記少なくとも一つの更なる特性の前記値を、前記較正試料の各々に対応する前記生成物の前記特性Pの前記測定値に関係付けて予測モデルを得て、
前記試験試料に対応する予測された生成物の前記特性Pについての予測値Eを、前記予測モデル、前記補正されたスペクトル、及び前記試験試料についての前記少なくともーつの更なる特性の前記値から予測する、プロセス・プラント。
33. The process plant of claim 32, further comprising a third device for obtaining a value of at least one additional characteristic of the calibration sample and the test sample, wherein the corrected spectrum and the calibration sample for the calibration sample Associating the value of at least one further characteristic with the measured value of the characteristic P of the product corresponding to each of the calibration samples to obtain a prediction model;
Predicting a predicted value E for the characteristic P of the predicted product corresponding to the test sample from the value of the prediction model, the corrected spectrum, and the at least one additional characteristic for the test sample Process plant.
前記少なくとも一つの更なる特性が、温度、粘度、圧力、密度、屈折率、pH値、コンダクタンス及び比誘電率からなる群から選択される、請求項43のプロセス・プラント。44. The process plant of claim 43, wherein the at least one additional property is selected from the group consisting of temperature, viscosity, pressure, density, refractive index, pH value, conductance, and dielectric constant. 前記生成物がポリマーを含む、請求項43のプロセス・プラント。44. The process plant of claim 43, wherein the product comprises a polymer. 前記スペクトルが、ラマン・スペクトル、NMRスペクトル及び赤外スペクトルからなる群から選択される、請求項43のプロセス・プラント。44. The process plant of claim 43, wherein the spectrum is selected from the group consisting of a Raman spectrum, an NMR spectrum and an infrared spectrum. 前記測定されたスペクトルが、近赤外領域の吸収スペクトルを含む、請求項43のプロセス・プラント。44. The process plant of claim 43, wherein the measured spectrum comprises an absorption spectrum in the near infrared region. 前記予測モデルが、直線最小二乗回帰によって決定される、請求項45のプロセス・プラント。46. The process plant of claim 45, wherein the predictive model is determined by linear least squares regression. 前記プロセスが、重合、水蒸気分解、オレフィン精製、芳香族精製、異性化、接触分解、接触改質、水素化、酸化、部分酸化、脱水、水和、ニトロ化、エポキシ化、蒸留、燃焼、アルキル化、中和、アミノ化、エステル化、二量化、膜分離、カルボニル化、ケトン化、ヒドロホルミル化、オリゴマー化、熱分解(pyrolysis)、スルホン化、結晶化、吸着、抽出蒸留、水素化脱アルキル化、脱水素化、芳香族化、環化、熱分解(thermal cracking)、水素化脱硫、水素化脱窒素、過酸化、脱灰及びハロゲン化からなる群から選択された手順を含む、請求項44のプロセス・プラント。The process is polymerization, steam cracking, olefin purification, aromatic purification, isomerization, catalytic cracking, catalytic reforming, hydrogenation, oxidation, partial oxidation, dehydration, hydration, nitration, epoxidation, distillation, combustion, alkyl , Neutralization, amination, esterification, dimerization, membrane separation, carbonylation, ketation, hydroformylation, oligomerization, pyrolysis, sulfonation, crystallization, adsorption, extractive distillation, hydrodealkylation Comprising a procedure selected from the group consisting of hydration, dehydrogenation, aromatization, cyclization, thermal cracking, hydrodesulfurization, hydrodenitrogenation, peroxidation, deashing and halogenation. 44 process plants. 前記プロセスが、重合、水蒸気分解、オレフィン精製、芳香族精製、異性化、接触分解、接触改質、水素化、酸化、部分酸化、脱水、水和、ニトロ化、エポキシ化、蒸留、燃焼、アルキル化、中和、アミノ化、エステル化、二量化、膜分離、カルボニル化、ケトン化、ヒドロホルミル化、オリゴマー化、熱分解(pyrolysis)、スルホン化、結晶化、吸着、抽出蒸留、水素化脱アルキル化、脱水素化、芳香族化、環化、熱分解(thermal cracking)、水素化脱硫、水素化脱窒素、過酸化、脱灰及びハロゲン化からなる群から選択された手順を含む、請求項46のプロセス・プラント。The process is polymerization, steam cracking, olefin purification, aromatic purification, isomerization, catalytic cracking, catalytic reforming, hydrogenation, oxidation, partial oxidation, dehydration, hydration, nitration, epoxidation, distillation, combustion, alkyl , Neutralization, amination, esterification, dimerization, membrane separation, carbonylation, ketation, hydroformylation, oligomerization, pyrolysis, sulfonation, crystallization, adsorption, extractive distillation, hydrodealkylation Comprising a procedure selected from the group consisting of hydration, dehydrogenation, aromatization, cyclization, thermal cracking, hydrodesulfurization, hydrodenitrogenation, peroxidation, deashing and halogenation. 46 process plants. 前記特性Pが、ムーニー粘度、ポリマー不飽和度、コモノマーの組込み、ハロゲン含有量、ポリマー濃度、モノマー濃度、分子量、メルト・インデックス、ポリマー密度、流れ成分組成、生成物中の水分及び分子量分布からなる群から選択される、請求項47のプロセス・プラント。The property P consists of Mooney viscosity, polymer unsaturation, comonomer incorporation, halogen content, polymer concentration, monomer concentration, molecular weight, melt index, polymer density, flow component composition, moisture in product and molecular weight distribution 48. The process plant of claim 47, selected from the group. 前記特性Pが、ムーニー粘度、ポリマー不飽和度、コモノマーの組込み、ハロゲン含有量、ポリマー濃度、モノマー濃度、分子量、メルト・インデックス、ポリマー密度、流れ成分組成、生成物中の水分及び分子量分布からなる群から選択される、請求項48のプロセス・プラント。The property P consists of Mooney viscosity, polymer unsaturation, comonomer incorporation, halogen content, polymer concentration, monomer concentration, molecular weight, melt index, polymer density, flow component composition, moisture in product and molecular weight distribution 49. The process plant of claim 48, selected from the group. 前記近赤外スペクトルの測定が、フーリエ変換近赤外(FTNIR)分光計によって行われる、請求項51のプロセス・プラント。52. The process plant of claim 51, wherein the measurement of the near infrared spectrum is performed by a Fourier transform near infrared (FTNIR) spectrometer. 前記近赤外スペクトルの測定が、フーリエ変換近赤外(FTNIR)分光計によって行われる、請求項50のプロセス・プラント。51. The process plant of claim 50, wherein the near infrared spectrum measurement is performed by a Fourier Transform Near Infrared (FTNIR) spectrometer.
JP53015698A 1996-12-31 1997-12-31 Online control of chemical process plant Expired - Lifetime JP4435307B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US3461496P 1996-12-31 1996-12-31
US60/034,614 1996-12-31
PCT/US1997/023734 WO1998029787A1 (en) 1996-12-31 1997-12-31 On-line control of a chemical process plant

Publications (3)

Publication Number Publication Date
JP2001508354A JP2001508354A (en) 2001-06-26
JP2001508354A5 JP2001508354A5 (en) 2005-09-08
JP4435307B2 true JP4435307B2 (en) 2010-03-17

Family

ID=21877515

Family Applications (1)

Application Number Title Priority Date Filing Date
JP53015698A Expired - Lifetime JP4435307B2 (en) 1996-12-31 1997-12-31 Online control of chemical process plant

Country Status (18)

Country Link
US (1) US6072576A (en)
EP (1) EP0948761B2 (en)
JP (1) JP4435307B2 (en)
KR (1) KR100500802B1 (en)
CN (1) CN1105956C (en)
AU (1) AU727750B2 (en)
BR (1) BR9714450A (en)
CA (1) CA2276624C (en)
DE (1) DE69705323T3 (en)
ES (1) ES2160983T5 (en)
HK (1) HK1026034A1 (en)
IL (1) IL130731A (en)
MY (1) MY117038A (en)
NO (1) NO316346B1 (en)
PL (1) PL334397A1 (en)
RU (1) RU99116247A (en)
TW (2) TWI266769B (en)
WO (1) WO1998029787A1 (en)

Families Citing this family (111)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19736310A1 (en) * 1997-08-21 1999-02-25 Bayer Ag Process for the production of partially hydrogenated acrylonitrile butadiene rubbers (HNBR) using on-line Raman spectroscopy
US6200134B1 (en) 1998-01-20 2001-03-13 Kerr Corporation Apparatus and method for curing materials with radiation
EP1094926B1 (en) 1998-07-06 2002-04-10 ExxonMobil Chemical Patents Inc. Apparatus and method for dewatering an elastomeric polymer
US6635224B1 (en) * 1998-10-30 2003-10-21 General Electric Company Online monitor for polymer processes
FI991542A (en) * 1999-07-06 2001-01-07 Neste Chemicals Oy Process for controlling the production process for polyhydric alcohols
US6748334B1 (en) * 1999-12-06 2004-06-08 Jorge E. Perez Specialty gas analysis system
CN1221872C (en) 2000-04-27 2005-10-05 Bp北美公司 Method for control of chemical manufacturing process
US7191037B2 (en) * 2000-08-07 2007-03-13 Mitsui Chemicals, Inc. Method for controlling production process
US6632680B1 (en) * 2000-09-22 2003-10-14 Deslauriers Paul J. Measurement of short chain branching in olefin copolymers using chemometric analysis
GB0026173D0 (en) * 2000-10-26 2000-12-13 Imerys Minerals Ltd Processing of inorganic particulate materials
US20030135547A1 (en) * 2001-07-23 2003-07-17 Kent J. Thomas Extensible modular communication executive with active message queue and intelligent message pre-validation
KR100749589B1 (en) * 2001-10-25 2007-08-14 에스케이에너지 주식회사 Method for applying near-infrared spectroscopic analysis to ethylene plant
ATE389174T1 (en) 2001-10-30 2008-03-15 Lanxess Deutschland Gmbh DETERMINATION OF REACTION PROGRESS OF GRAFT POLYMERIZATION REACTIONS
KR20040053290A (en) 2001-11-09 2004-06-23 엑손모빌 케미칼 패턴츠 인코포레이티드 On-line measurement and control of polymer properties by raman spectroscopy
WO2003056281A2 (en) * 2002-01-01 2003-07-10 Exxonmobil Chemical Patents Inc. Method and apparatus for on-line measurement of polymer properties
US6847899B2 (en) 2002-04-26 2005-01-25 Dean Allgeyer, M.D., Inc. Device and method for qualitative and quantitative determination of intravenous fluid components
EP1578814A2 (en) * 2002-10-15 2005-09-28 ExxonMobil Chemical Patents Inc. On-line measurement and control of polymer properties by raman spectroscopy
CN102527307A (en) * 2002-10-28 2012-07-04 伊内奥斯美国公司 Process and method for chemical manufacturing using transformation of on-line instrumentation data
US7319040B2 (en) * 2002-10-28 2008-01-15 Ineos Usa Llc Process control using on-line instrumentation and process models
US7106437B2 (en) * 2003-01-06 2006-09-12 Exxonmobil Chemical Patents Inc. On-line measurement and control of polymer product properties by Raman spectroscopy
DE10304615A1 (en) * 2003-02-05 2004-08-19 Bayer Ag Process for monitoring and managing nitriding processes with the help of online spectrometers
DE10322439A1 (en) * 2003-05-19 2004-12-09 Bayer Ag Method and device for determining the isomer composition in isocyanate production processes
CN1809595B (en) * 2003-06-20 2010-05-12 阿克佐诺贝尔股份有限公司 Polymerization process involving the dosing initiators
US7402635B2 (en) * 2003-07-22 2008-07-22 Fina Technology, Inc. Process for preparing polyethylene
DE10336875A1 (en) * 2003-08-11 2005-03-17 Bayer Chemicals Ag Spectroscopic concentration determination in a rectification column
WO2005068516A2 (en) * 2004-01-14 2005-07-28 Chevron Phillips Chemical Company Lp Method and apparatus for monitoring polyolefin production
US7400941B2 (en) * 2004-01-14 2008-07-15 Chrevron Phillips Chemical Company Lp Method and apparatus for monitoring polyolefin production
CA2470887C (en) * 2004-06-14 2014-10-21 Nova Chemicals Corporation Detection of gels in a solution polymerization
ZA200701001B (en) * 2004-08-02 2008-05-28 Union Carbide Chem Plastic Stabilization of a hydroformylation process
US20060190137A1 (en) * 2005-02-18 2006-08-24 Steven W. Free Chemometric modeling software
JP4530040B2 (en) 2005-03-31 2010-08-25 日立化成工業株式会社 Method for evaluating polyimide dissolution rate, method for producing polyimide, and polyimide obtained by using these methods
DE102005020352A1 (en) * 2005-05-02 2007-08-16 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Chemical product`s production process controlling method for e.g. pipe system, involves providing variables by individual adjustment in production process and measuring variables in process, to generate horizon, with three scale arms
US7483129B2 (en) * 2005-07-22 2009-01-27 Exxonmobil Chemical Patents Inc. On-line properties analysis of a molten polymer by raman spectroscopy for control of a mixing device
US7505129B2 (en) 2005-07-22 2009-03-17 Exxonmobil Chemical Patents Inc. On-line analysis of polymer properties for control of a solution phase reaction system
US7505127B2 (en) * 2005-07-22 2009-03-17 Exxonmobil Chemical Patents Inc. On-line raman analysis and control of a high pressure reaction system
CA2617100A1 (en) * 2005-07-29 2007-02-08 Exxonmobil Research And Engineering Company Method to determine predictive tests and device applying same to lubricant formulations
DE102005036643A1 (en) * 2005-08-04 2007-02-08 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Method and device for determining the maturity of thermoset compositions
US20070059838A1 (en) * 2005-09-13 2007-03-15 Pavilion Technologies, Inc. Dynamic constrained optimization of chemical manufacturing
US7764379B1 (en) 2005-12-20 2010-07-27 Axsun Technologies, Inc. Semiconductor laser natural gas analysis system and method
US7803629B2 (en) * 2006-06-27 2010-09-28 Chevron Phillips Chemical Company, Lp Method for employing SEC-FTIR data to predict mechanical properties of polyethylene
DE102006052673A1 (en) * 2006-11-07 2008-05-08 Thomas Schneider Method and device for recalibrating manufacturing processes
EP2087433A4 (en) * 2006-11-14 2017-11-29 ABB, Inc. System for storing and presenting sensor and spectral data for batch processes
KR100913232B1 (en) * 2007-05-31 2009-08-24 학교법인 서강대학교 An online optimization system and optimization method for petrochemical process
EP2014641A3 (en) * 2007-06-06 2009-03-18 Huntsman International Llc Process for preparing mixtures of diphenylmethane diisocyanates and polyphenyl polymethylene polyisocyanates
JP5654343B2 (en) * 2007-06-15 2015-01-14 ビーピー ケミカルズ リミテッドBp Chemicals Limited Online analysis method for gas-phase process flow
US20090060783A1 (en) * 2007-09-04 2009-03-05 Kenneth Charles Barrett Polymer concentration monitoring system and use thereof
US20090192340A1 (en) * 2007-11-01 2009-07-30 Robert Dielman Culp Alkylaromatic dehydrogenation system and method for monitoring and controlling the system
US9072572B2 (en) 2009-04-02 2015-07-07 Kerr Corporation Dental light device
US9066777B2 (en) 2009-04-02 2015-06-30 Kerr Corporation Curing light device
SG176120A1 (en) 2009-05-29 2011-12-29 Exxonmobil Chem Patents Inc Feedback and feedforward closed loop purity and recovery control
DK2460017T3 (en) * 2009-07-30 2018-11-26 Sgs North America Inc PVT ANALYSIS OF COMPRESSED FLUIDS
US9223301B2 (en) * 2010-04-19 2015-12-29 Honeywell International Inc. Active cloud point controller for refining applications and related method
US8645082B2 (en) * 2010-09-13 2014-02-04 Mks Instruments, Inc. Monitoring, detecting and quantifying chemical compounds in a sample
US20120085151A1 (en) * 2010-10-07 2012-04-12 Bayer Materialscience Ag Method and apparatus for characterizing polymers
CA2814020C (en) 2010-10-08 2019-05-21 Lanxess Deutschland Gmbh Activity monitoring and polymerization process control
US8843324B2 (en) 2011-02-03 2014-09-23 Nova Chemicals (International) S.A. Double derivative NIR process control
US8618226B2 (en) 2011-05-19 2013-12-31 Bridgestone Corporation Method for quantitative analysis of styrene microblock content
JP5845001B2 (en) * 2011-06-01 2016-01-20 出光興産株式会社 Hydrogenated petroleum resin manufacturing method and hydrogenated petroleum resin pellet manufacturing plant
JP2014532873A (en) 2011-11-03 2014-12-08 ベリフード リミテッド Low-cost spectroscopic analysis system for end-user food analysis
US10082600B2 (en) * 2011-12-16 2018-09-25 Halliburton Energy Services, Inc. Methods of calibration transfer for a testing instrument
US9291553B2 (en) 2012-05-08 2016-03-22 Panaridus, Llc System and apparatus for analysis of a guayule plant in situ
US9170155B2 (en) 2012-05-08 2015-10-27 Panaridus, Llc System and apparatus for analysis of a guayule plant in situ
JP2015533818A (en) * 2012-10-01 2015-11-26 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Separation of hydrocarbon mixtures by extractive distillation
GB2529070B (en) 2013-08-02 2017-07-12 Verifood Ltd Spectrometer comprising a plurality of isolated optical paths
JP2017505901A (en) 2014-01-03 2017-02-23 ベリフード, リミテッドVerifood, Ltd. Spectroscopic system, method and application
CN104049624B (en) * 2014-07-07 2017-07-11 蓝星(北京)技术中心有限公司 Chemical products production model optimization method, device and continuous type chemical system
KR20170070079A (en) 2014-10-01 2017-06-21 어드밴스드 폴리머 모니터링 테크놀로지스, 인크. Systems and methods for control of polymer reactions and processing using automatic continuous online monitoring
EP3209983A4 (en) 2014-10-23 2018-06-27 Verifood Ltd. Accessories for handheld spectrometer
US10578567B2 (en) 2014-12-29 2020-03-03 Bridgestone Corporation Methods for quantifying rubber content in a plant with NMR
US10197500B2 (en) * 2015-01-22 2019-02-05 Advanced Polymer Monitoring Technologies, Inc. Systems and methods for predicting and controlling the properties of a chemical species during a time-dependent process
WO2016125165A2 (en) 2015-02-05 2016-08-11 Verifood, Ltd. Spectrometry system with visible aiming beam
WO2016125164A2 (en) 2015-02-05 2016-08-11 Verifood, Ltd. Spectrometry system applications
WO2016162865A1 (en) 2015-04-07 2016-10-13 Verifood, Ltd. Detector for spectrometry system
CN104792725B (en) * 2015-04-30 2018-01-23 西安近代化学研究所 Monoethanolamine dehydration prepares the rapid analysis method of aziridine product stream
US10066990B2 (en) 2015-07-09 2018-09-04 Verifood, Ltd. Spatially variable filter systems and methods
US20170097330A1 (en) * 2015-10-05 2017-04-06 Honeywell International Inc. Hybrid analyzer for fluid processing processes
DE102015223789A1 (en) * 2015-10-07 2017-04-13 Sms Group Gmbh Online analysis by means of near-infrared spectroscopy analysis NIR, in particular for the production of polyaluminum chloride hydroxide
US10203246B2 (en) 2015-11-20 2019-02-12 Verifood, Ltd. Systems and methods for calibration of a handheld spectrometer
CN106892843A (en) * 2015-12-17 2017-06-27 英尼奥斯欧洲股份公司 Recovery tower is controlled
EP3427031A4 (en) * 2016-03-07 2019-11-06 Advanced Polymer Monitoring Technologies Inc. Device and methods for simultaneous determination of intrinsic viscosity and non-newtonian behavior of polymers
US10254215B2 (en) 2016-04-07 2019-04-09 Verifood, Ltd. Spectrometry system applications
WO2018015951A1 (en) 2016-07-20 2018-01-25 Verifood, Ltd. Accessories for handheld spectrometer
US10791933B2 (en) 2016-07-27 2020-10-06 Verifood, Ltd. Spectrometry systems, methods, and applications
IT201600081868A1 (en) * 2016-08-03 2018-02-03 Versalis Spa METHOD AND SYSTEM FOR THE CONTROL OF A CONTINUOUS POLYMER PRODUCTION PLANT.
CN106290068A (en) * 2016-08-25 2017-01-04 青岛励赫化工科技有限公司 A kind of sizing material half parts surface viscosity on-line measuring device and using method thereof
GB201616787D0 (en) * 2016-10-03 2016-11-16 Renishaw Plc Measurement apparatus and methods
CN107957379B (en) * 2016-10-18 2020-07-24 中国石油化工股份有限公司 On-line continuous detection device and method and polymerization reaction system and method
CN106526653B (en) * 2016-12-19 2023-02-28 桂林百锐光电技术有限公司 Scintillation detector
KR102153474B1 (en) * 2017-06-20 2020-09-08 주식회사 엘지화학 Control system and method for ethylene vinyl acetate copolymerization process
US10696906B2 (en) 2017-09-29 2020-06-30 Marathon Petroleum Company Lp Tower bottoms coke catching device
US11098139B2 (en) * 2018-02-28 2021-08-24 Chevron Phillips Chemical Company Lp Advanced quality control tools for manufacturing bimodal and multimodal polyethylene resins
JP7087468B2 (en) * 2018-03-08 2022-06-21 東ソー株式会社 Aliphatic-Aromatic Petroleum Resin Manufacturing Method
SG11202008576WA (en) * 2018-03-28 2020-10-29 Dow Global Technologies Llc Method to monitor and control the polymerization of a polymer
CN110873699A (en) * 2018-08-30 2020-03-10 广东生益科技股份有限公司 Method, device and system for online quality control of bonding sheet and storage medium
US12000720B2 (en) 2018-09-10 2024-06-04 Marathon Petroleum Company Lp Product inventory monitoring
KR102479346B1 (en) * 2018-11-12 2022-12-19 주식회사 엘지화학 Method for predicting fouling in proccess of preparing polyolefin
EP3711852A1 (en) 2019-03-21 2020-09-23 Covestro Deutschland AG Method and apparatus for quantitative monitoring of the composition of a oligomer/monomer mixture
US11975316B2 (en) 2019-05-09 2024-05-07 Marathon Petroleum Company Lp Methods and reforming systems for re-dispersing platinum on reforming catalyst
US11384174B2 (en) 2019-05-15 2022-07-12 Exxonmobil Chemical Patents Inc. Detection of polymer concentration in polymerization process using refractive index measurement
CN112676193B (en) * 2019-10-18 2022-08-09 李和伟 Application of spectrum detection in detecting quality of modified membrane cloth, detection method and detection equipment
CA3109675A1 (en) 2020-02-19 2021-08-19 Marathon Petroleum Company Lp Low sulfur fuel oil blends for stability enhancement and associated methods
US11898109B2 (en) 2021-02-25 2024-02-13 Marathon Petroleum Company Lp Assemblies and methods for enhancing control of hydrotreating and fluid catalytic cracking (FCC) processes using spectroscopic analyzers
US11702600B2 (en) 2021-02-25 2023-07-18 Marathon Petroleum Company Lp Assemblies and methods for enhancing fluid catalytic cracking (FCC) processes during the FCC process using spectroscopic analyzers
US20220268694A1 (en) 2021-02-25 2022-08-25 Marathon Petroleum Company Lp Methods and assemblies for determining and using standardized spectral responses for calibration of spectroscopic analyzers
US11905468B2 (en) 2021-02-25 2024-02-20 Marathon Petroleum Company Lp Assemblies and methods for enhancing control of fluid catalytic cracking (FCC) processes using spectroscopic analyzers
KR20220147932A (en) * 2021-04-28 2022-11-04 에스케이가스 주식회사 System and method for process core factor screening in commercial chemical processes
CN113390821B (en) * 2021-05-21 2024-04-12 北京中医药大学 Real-time monitoring equipment and method for quality of intelligent honey refining process
US11692141B2 (en) 2021-10-10 2023-07-04 Marathon Petroleum Company Lp Methods and systems for enhancing processing of hydrocarbons in a fluid catalytic cracking unit using a renewable additive
CA3188122A1 (en) 2022-01-31 2023-07-31 Marathon Petroleum Company Lp Systems and methods for reducing rendered fats pour point
CN114752056B (en) * 2022-03-02 2024-01-26 双驱智能科技(宁波)有限公司 Device and method for repeatedly and stably producing polyaryletherketone with narrow molecular weight distribution
DE102022131690A1 (en) 2022-11-30 2024-06-06 Carl Freudenberg Kg Process for the thermal treatment of a pre-crosslinked elastomer component

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3553295A (en) * 1968-04-25 1971-01-05 Shell Oil Co Polymerization monitor
EP0120084A1 (en) * 1982-09-30 1984-10-03 Owens-Corning Fiberglas Corporation Methods and apparatus for measuring and controlling curing of polymeric materials
BR8406889A (en) * 1983-05-12 1985-04-16 Broken Hill Pty Co Ltd CHARACTERIZATION AND HANDLING OF MULTIPLE COMPONENT SUBSTANCES
US4830757A (en) * 1985-08-06 1989-05-16 The Mogul Corporation Telemetry system for water and energy monitoring
ES2095205T3 (en) 1987-08-18 1997-02-16 Bp Oil Int METHOD FOR THE DIRECT DETERMINATION OF PHYSICAL PROPERTIES OF HYDROCARBON PRODUCTS.
ES2041801T3 (en) 1987-08-18 1993-12-01 Bp Oil International Limited METHOD FOR THE DIRECT DETERMINATION OF PHYSICAL PROPERTIES OF HYDROCARBON PRODUCTS.
US5116915A (en) * 1987-12-28 1992-05-26 Giprokautchuk Method of controlling polymerization process of olefinic hydrocarbons
FR2625506B1 (en) 1987-12-31 1992-02-21 Bp Chimie Sa METHOD AND APPARATUS FOR THE MANUFACTURE OF CONTROLLED POLYMERS USING A REGULATION SYSTEM INCLUDING AN INFRARED SPECTROPHOTOMETER
FR2626579B1 (en) 1988-02-01 1990-06-15 Bp Chimie Sa METHOD AND APPARATUS FOR MANUFACTURING CONTROLLED POLYOXYALCOYLENE USING A REGULATION SYSTEM INCLUDING AN INFRARED SPECTROPHOTOMETER
FR2631957B1 (en) 1988-05-30 1990-08-31 Bp Chimie Sa PROCESS AND APPARATUS FOR MANUFACTURING OLEFINS AND DIOLEFINS BY CONTROLLED HYDROCARBON SPRAYING REACTION USING A SYSTEM COMPRISING AN INFRARED SPECTROPHOTOMETER
US5132916A (en) * 1990-05-21 1992-07-21 Elsag International B.V. Methodology for ph titration curve estimation for adaptive control
MY107650A (en) * 1990-10-12 1996-05-30 Exxon Res & Engineering Company Method of estimating property and / or composition data of a test sample
US5121337A (en) * 1990-10-15 1992-06-09 Exxon Research And Engineering Company Method for correcting spectral data for data due to the spectral measurement process itself and estimating unknown property and/or composition data of a sample using such method
US5243546A (en) * 1991-01-10 1993-09-07 Ashland Oil, Inc. Spectroscopic instrument calibration
DE4118232A1 (en) 1991-06-04 1992-12-10 Bayer Ag CONTINUOUS PREPARATION OF POLYCARBONATES
DE4127512C2 (en) 1991-08-20 1995-02-23 Bayer Ag Process for the production of polycarbonate with constant viscosity
CH685003A5 (en) 1992-08-11 1995-02-28 Buehler Ag A method of continuously crystallizing and polymerizing plastic material, and apparatus therefor.
EP0706049A1 (en) * 1994-10-07 1996-04-10 Bp Chemicals S.N.C. Cracking property determination
US5532487A (en) * 1994-11-23 1996-07-02 E. I. Du Pont De Nemours And Company Near-infrared measurement and control of polyamide processes

Also Published As

Publication number Publication date
US6072576A (en) 2000-06-06
TW558557B (en) 2003-10-21
EP0948761B2 (en) 2011-09-07
WO1998029787A1 (en) 1998-07-09
EP0948761A1 (en) 1999-10-13
CA2276624A1 (en) 1998-07-09
IL130731A0 (en) 2000-06-01
EP0948761B1 (en) 2001-06-20
JP2001508354A (en) 2001-06-26
CN1245570A (en) 2000-02-23
NO316346B1 (en) 2004-01-12
CN1105956C (en) 2003-04-16
DE69705323T3 (en) 2012-02-09
NO993261D0 (en) 1999-06-30
HK1026034A1 (en) 2000-12-01
CA2276624C (en) 2001-07-24
IL130731A (en) 2004-07-25
DE69705323T2 (en) 2002-04-25
PL334397A1 (en) 2000-02-28
KR20000062408A (en) 2000-10-25
AU727750B2 (en) 2000-12-21
BR9714450A (en) 2000-12-05
RU99116247A (en) 2001-08-20
ES2160983T3 (en) 2001-11-16
NO993261L (en) 1999-08-26
DE69705323D1 (en) 2001-07-26
AU5714998A (en) 1998-07-31
ES2160983T5 (en) 2012-02-15
KR100500802B1 (en) 2005-07-12
TWI266769B (en) 2006-11-21
MY117038A (en) 2004-04-30

Similar Documents

Publication Publication Date Title
JP4435307B2 (en) Online control of chemical process plant
US6723804B1 (en) Monitoring and control of slurry processes for polymerizing olefins
US5763883A (en) Chemicals property determination
EP0552291B1 (en) Method of estimating property and/or composition data of a test sample
US6479597B1 (en) Raman analysis system for olefin polymerization control
US5583049A (en) Control of low inventory alkylation unit
US6420595B1 (en) Process control for vinyl acetate manufacture
CA2759535C (en) Double derivative nir process control
NO319388B1 (en) Process for predicting chemical and physical properties of complex mixtures
WO2000060336A1 (en) Apparatus and process for monitor and control of an ammoxidation reactor with a fourier transform infrared spectrometer
Hernández-Fernández et al. Development and Application of a Principal Component Analysis Model to Quantify the Green Ethylene Content in Virgin Impact Copolymer Resins During Their Synthesis on an Industrial Scale
Cherfi et al. Robust on‐line measurement of conversion and molecular weight using NIR spectroscopy during solution polymerization
EP1214363B1 (en) Raman analysis system for olefin polymerization control
MXPA01000047A (en) An in-line method for determining the residue content of an isocyanate and apparatus useful therefor
CN100470235C (en) Method for measuring content of dialkene in gasoline through spectrum of near infrared light
JP5763287B2 (en) Method for determining the content of conjugated diolefins from the near-infrared spectrum of a sample and its application to instrument control
CN115248193B (en) On-line multichannel measuring method for oil generated by catalytic reforming process
JP2002145966A (en) Method for producing aromatic petroleum resin
JPH08301799A (en) Control of dehydrogenation reaction with near infrared rays
Kadenkin Lifecycle of multivariate methods according to United States Pharmacopeia Chapter< 1039> Chemometrics

Legal Events

Date Code Title Description
A524 Written submission of copy of amendment under article 19 pct

Free format text: JAPANESE INTERMEDIATE CODE: A524

Effective date: 20041228

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041228

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070831

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071009

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20071228

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20080208

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20080207

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20080324

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20080306

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20080414

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080403

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090929

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091215

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091224

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130108

Year of fee payment: 3

S802 Written request for registration of partial abandonment of right

Free format text: JAPANESE INTERMEDIATE CODE: R311802

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130108

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term