JP7087468B2 - Aliphatic-Aromatic Petroleum Resin Manufacturing Method - Google Patents
Aliphatic-Aromatic Petroleum Resin Manufacturing Method Download PDFInfo
- Publication number
- JP7087468B2 JP7087468B2 JP2018041389A JP2018041389A JP7087468B2 JP 7087468 B2 JP7087468 B2 JP 7087468B2 JP 2018041389 A JP2018041389 A JP 2018041389A JP 2018041389 A JP2018041389 A JP 2018041389A JP 7087468 B2 JP7087468 B2 JP 7087468B2
- Authority
- JP
- Japan
- Prior art keywords
- aliphatic
- petroleum resin
- molecular weight
- aromatic petroleum
- average molecular
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Polymerisation Methods In General (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
Description
本発明は、脂肪族-芳香族石油樹脂の製法に関するものであり、特に製造途中の脂肪族-芳香族石油樹脂を取り出し、近赤外によるスペクトルから製造中の脂肪族-芳香族石油樹脂の重量平均分子量の値を推算し、該推算値と製造目的の重量平均分子量との差が小さくなるように製造条件の制御を行い、品質に優れる脂肪族-芳香族石油樹脂を効率的に製造する方法に関する。 The present invention relates to a method for producing an aliphatic-aromatic petroleum resin, and in particular, the weight of the aliphatic-aromatic petroleum resin being manufactured is taken out from a near-infrared spectrum by extracting the aliphatic-aromatic petroleum resin in the process of being manufactured. A method for efficiently producing an aliphatic-aromatic petroleum resin having excellent quality by estimating the value of the average molecular weight and controlling the production conditions so that the difference between the estimated value and the weight average molecular weight for the production purpose becomes small. Regarding.
ホットメルト型粘着剤は、一般的にスチレン-イソプレン-スチレン型ブロック共重合体をベースポリマーとして、石油樹脂などの粘着付与剤、必要に応じてナフテン系オイルやパラフィン系オイルなどの軟化剤を配合し構成される粘着性組成物が知られている。 The hot melt type pressure-sensitive adhesive generally uses a styrene-isoprene-styrene type block copolymer as a base polymer, and contains a pressure-sensitive adhesive such as petroleum resin and, if necessary, a softening agent such as naphthen-based oil or paraffin-based oil. A sticky composition composed of paraffin is known.
そして、この際の石油樹脂とは、石油類の分解、精製の際に得られる不飽和炭化水素含有留分を重合して得られるものであり、その製造方法としては、不飽和炭化水素含有留分を原料として、フリーデルクラフツ型触媒の存在下に重合する方法が良く知られている。その炭化水素含有留分としては、沸点範囲が20~110℃(C5留分と称する場合もある。)、沸点範囲が140~280℃(C9留分と称する場合もある。)の2種類が一般的であり、C5留分から得られる石油樹脂を脂肪族石油樹脂、C9留分から得られる石油樹脂を芳香族石油樹脂、C5留分とC9留分とを共重合して得られる石油樹脂を脂肪族-芳香族共重合石油樹脂として分類している。 The petroleum resin at this time is obtained by polymerizing an unsaturated hydrocarbon-containing distillate obtained during decomposition and purification of petroleum, and the production method thereof is an unsaturated hydrocarbon-containing distillate. A well-known method is to polymerize in the presence of a Friedelcrafts-type catalyst using a component as a raw material. There are two types of hydrocarbon-containing fractions, a boiling point range of 20 to 110 ° C (sometimes referred to as C5 fraction) and a boiling point range of 140 to 280 ° C (sometimes referred to as C9 fraction). Generally, the petroleum resin obtained from the C5 fraction is an aliphatic petroleum resin, the petroleum resin obtained from the C9 fraction is an aromatic petroleum resin, and the petroleum resin obtained by copolymerizing the C5 fraction and the C9 fraction is a fat. Classified as a group-aromatic copolymerized petroleum resin.
これら石油樹脂を製造する際には、C5留分、C9留分という混合物を原料として製造を行うことから、原料の混合組成等が異なると製品品質が安定し難いという、課題がありその傾向は特に混合物をさらに混合して原料として用いる脂肪族-芳香族石油樹脂の製造において顕著に表れていた。 When manufacturing these petroleum resins, since a mixture of C5 fraction and C9 fraction is used as a raw material, there is a problem that the product quality is difficult to stabilize if the mixed composition of the raw materials is different. This was particularly noticeable in the production of aliphatic-aromatic petroleum resins in which the mixture was further mixed and used as a raw material.
そして、各種目標物性の石油樹脂を製造する方法として製造中の石油樹脂を評価しそれより得られる推算値により製造条件を制御し、目的とする各種石油樹脂を製造する方法が提案されており、例えば近赤外分光分析を用い、波長12500~4000cm-1における吸収スペクトルの測定値に基づいて芳香族石油樹脂の物性を予測・制御し芳香族石油樹脂を製造する方法(例えば特許文献1参照)、水素化溶媒を除去した後の溶融樹脂の近赤外吸収を測定し、その結果に基づき、水添石油樹脂ペレットの製造・制御する水添石油樹脂の製造方法(例えば特許文献2参照)、近赤外分析により得た結果に基づき製造の運転を制御する運転方法(例えば特許文献3参照)等の方法が提案されている。 Then, as a method for producing petroleum resin having various target physical properties, a method has been proposed in which the petroleum resin being manufactured is evaluated, the manufacturing conditions are controlled by the estimated value obtained from the evaluation, and the desired petroleum resin is manufactured. For example, a method for producing an aromatic petroleum resin by predicting and controlling the physical properties of the aromatic petroleum resin based on the measured value of the absorption spectrum at a wavelength of 12500 to 4000 cm -1 using near-infrared spectroscopic analysis (see, for example, Patent Document 1). , A method for producing a hydrogenated petroleum resin (see, for example, Patent Document 2), which measures near-infrared absorption of a molten resin after removing a hydrogenated solvent and, based on the result, manufactures and controls hydrogenated petroleum resin pellets. A method such as an operation method for controlling the operation of manufacturing based on the result obtained by near-infrared analysis (see, for example, Patent Document 3) has been proposed.
しかし、脂肪族-芳香族石油樹脂は、その原料が脂肪族留分と芳香族留分の混合物であり、その反応系が複雑化し、安定に効率良く脂肪族-芳香族石油樹脂を製造する方法の出現が望まれてきた。そして、特許文献1~3に提案された方法は、測定値からの推算値に基づき製造条件等を制御する方法ではあるが、原料系が更に複雑化する脂肪族-芳香族石油樹脂に関してはなんら提案されていないものである。
However, the raw material of the aliphatic-aromatic petroleum resin is a mixture of the aliphatic fraction and the aromatic fraction, the reaction system is complicated, and the method for stably and efficiently producing the aliphatic-aromatic petroleum resin. Has been desired. The methods proposed in
そこで、本発明は、より簡易な方法により、脂肪族-芳香族石油樹脂の製造を制御し、品質に優れる脂肪族-芳香族石油樹脂を製造する方法を提供するものである。 Therefore, the present invention provides a method for controlling the production of an aliphatic-aromatic petroleum resin by a simpler method and producing an aliphatic-aromatic petroleum resin having excellent quality.
本発明の脂肪族-芳香族石油樹脂の製法は、製品の近赤外スペクトルより推算した重量平均分子量の値に基づき、脂肪族-芳香族石油樹脂の製造の際の製造条件を制御することを特徴とするものである。 The method for producing an aliphatic-aromatic petroleum resin of the present invention controls the production conditions for producing an aliphatic-aromatic petroleum resin based on the value of the weight average molecular weight estimated from the near-infrared spectrum of the product. It is a feature.
即ち、本発明は、石油類の熱分解留分である脂肪族留分及び芳香族留分より脂肪族-芳香族石油樹脂を製造する際に、脂肪族-芳香族石油樹脂の重合反応液から未反応溶媒及び低分子量分を分離後、冷却固化した脂肪族-芳香族石油樹脂の粒状物の近赤外スペクトルを測定し、該測定より推算した重量平均分子量の値に基づいて、該値と製造目標とする脂肪族-芳香族石油樹脂の重量平均分子量との差が小さくなるように原料組成中のシクロペンジエン比率を制御することを特徴とする脂肪族-芳香族石油樹脂の製法に関するものである。 That is, the present invention comprises a polymerization reaction solution of an aliphatic-aromatic petroleum resin when producing an aliphatic-aromatic petroleum resin from an aliphatic distillate and an aromatic distillate which are thermally decomposed distillates of petroleum. After separating the unreacted solvent and the low molecular weight component, the near-infrared spectrum of the granular material of the aliphatic-aromatic petroleum resin cooled and solidified was measured, and based on the value of the weight average molecular weight estimated from the measurement, the value was used. A method for producing an aliphatic-aromatic petroleum resin, which comprises controlling the cyclopendiene ratio in the raw material composition so that the difference from the weight average molecular weight of the aliphatic-aromatic petroleum resin, which is the production target, is small. Is.
以下に本発明の詳細に説明する。 The present invention will be described in detail below.
本発明の脂肪族-芳香族石油樹脂の製法に係る製造工程の概略を図1に示す。なお、図1における、1は原料である脂肪族留分、2はシクロペンタジエン蒸留分離装置、3は原料である芳香族留分、4は重合反応部、5は蒸留分離部、6は造粒部、7は近赤外分析部のそれぞれを示す。
FIG. 1 shows an outline of a manufacturing process according to a method for producing an aliphatic-aromatic petroleum resin of the present invention. In FIG. 1, 1 is an aliphatic fraction as a raw material, 2 is a cyclopentadiene distillation separation device, 3 is an aromatic fraction as a raw material, 4 is a polymerization reaction part, 5 is a distillation separation part, and 6 is granulation.
脂肪族-芳香族石油樹脂は、石油類の熱分解留分である脂肪族留分(C5留分と称する場合もある。)及び芳香族留分(C9留分と称する場合もある。)を原料とし、これを重合した後、重合反応液より未反応溶媒及び/又は低分子量分を分離した後、冷却固化することにより粒状物の製品として製造されている。そして、本発明は、脂肪族-芳香族石油樹脂を製造する際に、簡易な製品分析を行い、その分析値より推算した製品物性を基に製造条件の制御・適正化を行う製造方法に関するものであり、その制御・適正化に関しては、製品である脂肪族-芳香族石油樹脂の近赤外スペクトルより推算した重量平均分子量の値に基づき、重合反応系に影響を与える原料組成中のシクロペンタジエン比率を制御するものである。 Aliphatic-aromatic petroleum resins have aliphatic fractions (sometimes referred to as C5 fractions) and aromatic fractions (sometimes referred to as C9 fractions), which are pyrolyzed fractions of petroleum. It is produced as a granular product by using it as a raw material, polymerizing it, separating an unreacted solvent and / or a low molecular weight component from the polymerization reaction solution, and then cooling and solidifying it. The present invention relates to a manufacturing method in which a simple product analysis is performed when manufacturing an aliphatic-aromatic petroleum resin, and manufacturing conditions are controlled and optimized based on the product physical properties estimated from the analysis value. With regard to its control and optimization, cyclopentadiene in the raw material composition that affects the polymerization reaction system is based on the value of the weight average molecular weight estimated from the near-infrared spectrum of the product aliphatic-aromatic petroleum resin. It controls the ratio.
本発明により製造される脂肪族-芳香族石油樹脂は、石油類の熱分解留分であるC5留分に由来する脂肪族留分、C9留分に由来する芳香族留分を共重合成分として構成される石油樹脂である。 The aliphatic-aromatic petroleum resin produced by the present invention contains an aliphatic fraction derived from the C5 fraction, which is a thermally decomposed fraction of petroleum, and an aromatic fraction derived from the C9 fraction as copolymerization components. It is a petroleum resin composed.
該脂肪族留分としては、例えばブテン、ブタジエン、イソブテン等の炭素数4の脂肪族化合物;2-メチル-1-ブテン、3-メチル-1-ブテン、2-メチル-2-ブテン、イソプレン、ピペリレン等の炭素数5の鎖状脂肪族化合物;シクロペンタジエン等の炭素数5の環状脂肪族化合物;1-ヘキセン、2-ヘキセン、3-ヘキセン、2-メチル-1-ペンテン、3-メチル-1-ペンテン、4-メチル-1-ペンテン、2-メチル-2-ペンテン、3-メチル-2-ペンテン、4-メチル-2-ペンテン、2-エチル-1-ブテン、2,3-ジメチル-1-ブテン等の炭素数6の鎖状脂肪族化合物;メチルシクロペンタジエン等の炭素数6の環状脂肪族化合物;1-へプテン、2-へプテン、3-へプテン、2-メチル-3-ヘキセン、4-メチル-2-ヘキセン、3,4-ジメチル-2-ペンテン等の炭素数7の鎖状脂肪族化合物;これらの混合物、さらにはC5留分と称される混合物に基づく成分を挙げることができ、特に入手が容易であり、粘着付与剤として優れた性能を有することから、炭素数4~6の鎖状脂肪族化合物に基づく成分であることが好ましい。なお、該脂肪族留分には、脂肪族-芳香族石油樹脂の製造効率、分子量等に影響を大きく及ぼすシクロペンタジエンが含有されており、脂肪族-芳香族石油樹脂の製造の際には、シクロペンタジエンによる影響を小さくするために、図1の2で示すようなシクペンタジエン蒸留分離装置により脂肪族留分の蒸留を行い、シクロペンタジエン比率の調整を行うことが一般的である。そして、重量平均分子量の調整を行う際にはシクロペンジエン比率の調整により行うことができる。 Examples of the aliphatic distillate include aliphatic compounds having 4 carbon atoms such as butene, butadiene, and isobutene; 2-methyl-1-butene, 3-methyl-1-butene, 2-methyl-2-butene, isoprene, and the like. 5 carbon chain aliphatic compounds such as piperylene; 5 carbon cyclic aliphatic compounds such as cyclopentadiene; 1-hexene, 2-hexene, 3-hexene, 2-methyl-1-pentene, 3-methyl- 1-pentene, 4-methyl-1-pentene, 2-methyl-2-pentene, 3-methyl-2-pentene, 4-methyl-2-pentene, 2-ethyl-1-butene, 2,3-dimethyl- 6-carbon chain aliphatic compounds such as 1-butene; 6-carbon cyclic aliphatic compounds such as methylcyclopentadiene; 1-heptene, 2-heptene, 3-hepten, 2-methyl-3- Chain aliphatic compounds having 7 carbon atoms such as hexene, 4-methyl-2-hexene, 3,4-dimethyl-2-pentene; a mixture thereof, as well as a component based on a mixture called a C5 distillate. It is preferable that the component is based on a chain aliphatic compound having 4 to 6 carbon atoms because it can be obtained, is particularly easily available, and has excellent performance as a tackifier. The aliphatic distillate contains cyclopentadiene, which greatly affects the production efficiency, molecular weight, etc. of the aliphatic-aromatic petroleum resin, and is used in the production of the aliphatic-aromatic petroleum resin. In order to reduce the influence of cyclopentadiene, it is common to distill the aliphatic distillate by the cyclopentadiene distillation separation device as shown in FIG. 1 and 2 to adjust the cyclopentadiene ratio. The weight average molecular weight can be adjusted by adjusting the cyclopentadiene ratio.
該芳香族成分としては、例えばスチレン等の炭素数8の芳香族化合物;α-メチルスチレン、β-メチルスチレン、ビニルトルエン、インデン等の炭素数9の芳香族化合物;1-メチルインデン、2-メチルインデン、3-メチルインデン等の炭素数10の芳香族化合物;2,3-ジメチルインデン、2,5-ジメチルインデン等の炭素数11の芳香族化合物;これらの混合物、さらにはC9留分と称される混合物に基づく成分を挙げることができ、特に入手が容易であり、粘着付与剤として優れた性能を有することから、炭素数8~10の芳香族化合物に基づく成分であることが好ましい。 Examples of the aromatic component include aromatic compounds having 8 carbon atoms such as styrene; aromatic compounds having 9 carbon atoms such as α-methylstyrene, β-methylstyrene, vinyltoluene and inden; 1-methylinden and 2-. Aromatic compounds having 10 carbon atoms such as methylindene and 3-methylindene; aromatic compounds having 11 carbon atoms such as 2,3-dimethylindene and 2,5-dimethylindene; A component based on the so-called mixture can be mentioned, and since it is particularly easily available and has excellent performance as a tackifier, it is preferably a component based on an aromatic compound having 8 to 10 carbon atoms.
そして、脂肪族-芳香族石油樹脂の一般的な製法としては、例えば、石油類の熱分解により得られる、沸点範囲が20~110℃の留分(C5留分;脂肪族留分)、沸点範囲が140~280℃の留分(C9留分;芳香族留分)を含む混合物を原料油として用い、この混合物に触媒を加え、加熱し重合することにより製造できる。なお、上記したように重合に先だって脂肪族留分からシクロペンタジエンを蒸留分離してもよい。また、重合に用いる触媒としては、特に限定はなく、例えば三塩化アルミニウム、三臭化アルミニウム、三フッ化ホウ素あるいはその錯体等が挙げられる。中でも触媒活性に優れることから、三フッ化ホウ素のフェノール錯体が好ましい。重合時の溶媒は、C5留分およびC9留分中の飽和炭化水素を挙げることができる。 As a general method for producing an aliphatic-aromatic petroleum resin, for example, a fraction having a boiling point range of 20 to 110 ° C. (C5 fraction; aliphatic fraction) and a boiling point obtained by thermal decomposition of petroleums are used. It can be produced by using a mixture containing a fraction in the range of 140 to 280 ° C. (C9 fraction; aromatic fraction) as a raw material oil, adding a catalyst to this mixture, heating and polymerizing. As described above, cyclopentadiene may be distilled and separated from the aliphatic distillate prior to the polymerization. The catalyst used for the polymerization is not particularly limited, and examples thereof include aluminum trichloride, aluminum tribromide, boron trifluoride, and a complex thereof. Among them, a phenol complex of boron trifluoride is preferable because it has excellent catalytic activity. As the solvent at the time of polymerization, saturated hydrocarbons in the C5 fraction and the C9 fraction can be mentioned.
製造を行う際の重合温度としては、特に制限はなく、重合活性が高く生産性に優れることから、20~80℃が好ましく、特に30~60℃であることが好ましい。また、触媒量及び重合時間は、温度や原料油中の水分濃度により適宜選択可能であり、通常、例えば、原料油に対して触媒0.1~2.0重量%、重合時間0.1~10時間が好ましい。反応圧力も特に制限はなく、大気圧~1MPaが好ましい。雰囲気も特に制限はなく、中でも窒素雰囲気が好ましい。 The polymerization temperature at the time of production is not particularly limited, and is preferably 20 to 80 ° C., particularly preferably 30 to 60 ° C., because the polymerization activity is high and the productivity is excellent. The amount of catalyst and the polymerization time can be appropriately selected depending on the temperature and the water concentration in the raw material oil. Usually, for example, the catalyst is 0.1 to 2.0% by weight and the polymerization time is 0.1 to 0 with respect to the raw material oil. 10 hours is preferred. The reaction pressure is also not particularly limited, and is preferably atmospheric pressure to 1 MPa. The atmosphere is not particularly limited, and the nitrogen atmosphere is particularly preferable.
また、脂肪族-芳香族石油樹脂を製品として回収する際には、重合反応後に残C5留分及び飽和炭化水素である未反応溶媒及び/又は低分子量分を蒸留等により分離・除去し、冷却することにより、固化した粉状物として回収することができる。この際に脂肪族-芳香族石油樹脂の軟化点は未反応溶媒及び/低分子量の分離・除去により制御することが可能である。その際に未反応溶媒及び/又は低分子量の分離・除去が多い脂肪族-芳香族石油樹脂は軟化点の高いものとなり、これら成分の分離・除去が少ない脂肪族-芳香族石油樹脂は軟化点の低いものとなる。 When recovering an aliphatic-aromatic petroleum resin as a product, the residual C5 fraction and the unreacted solvent and / or low molecular weight component which are saturated hydrocarbons are separated and removed by distillation or the like after the polymerization reaction, and then cooled. By doing so, it can be recovered as a solidified powder. At this time, the softening point of the aliphatic-aromatic petroleum resin can be controlled by separating / removing the unreacted solvent and / the low molecular weight. At that time, the aliphatic-aromatic petroleum resin having a large separation / removal of the unreacted solvent and / or the low molecular weight has a high softening point, and the aliphatic-aromatic petroleum resin having a small separation / removal of these components has a softening point. Will be low.
本発明の脂肪族-芳香族石油樹脂の製法は、脂肪族-芳香族石油樹脂を製品として製造する際に、未反応溶媒及び低分子量を分離し、冷却固化した製品粒状物の近赤外スペクトルを測定し、該測定より推算した重量平均分子量の値により、製造条件の制御を行うものである。そして、その際の制御としては、測定より推算した重量平均分子量と、製造目的とする脂肪族-芳香族石油樹脂の重量平均分子量との差が小さくなるように原料組成中のシクロペンジエン比率を制御するものであり、例えば推算重量平均分子量が目標重量平均分子量より低い場合には、原料組成中のシクロペンタジエン比率の上昇を行う制御を挙げることができ、推算重量平均分子量より高い場合には、シクロペンジエン比率の下降を行う制御を挙げることができる。 The method for producing an aliphatic-aromatic petroleum resin of the present invention has a near-infrared spectrum of product granules obtained by separating an unreacted solvent and a low molecular weight and cooling and solidifying the aliphatic-aromatic petroleum resin as a product. Is measured, and the production conditions are controlled by the value of the weight average molecular weight estimated from the measurement. Then, as a control at that time, the cyclopentadiene ratio in the raw material composition is adjusted so that the difference between the weight average molecular weight estimated from the measurement and the weight average molecular weight of the aliphatic-aromatic petroleum resin to be manufactured becomes small. For example, when the estimated weight average molecular weight is lower than the target weight average molecular weight, the control for increasing the cyclopentadiene ratio in the raw material composition can be mentioned, and when it is higher than the estimated weight average molecular weight, it can be controlled. Controlled to lower the cyclopentadiene ratio can be mentioned.
そして、本発明の製法においては、該推算重量平均分子量の値を得る際に近赤外スペクトルを用いることを特徴とするものである。本発明は、近赤外はその波長が広いことから物質形状、色調等の影響を受けにくい性質を有することから、粒状物の脂肪族-芳香族石油樹脂の定性・定量分析手法として適したものとなることを見出したことによるものである。 The production method of the present invention is characterized in that a near-infrared spectrum is used when obtaining the value of the estimated weight average molecular weight. The present invention is suitable as a qualitative / quantitative analysis method for granular aliphatic-aromatic petroleum resins because the near-infrared has a wide wavelength and is not easily affected by the shape and color of the substance. This is due to the fact that it was found to be.
近赤外スペクトルを用いた定性・定量分析の具体的手法としては、例えば特定の近赤外の波長領域との相関関係を把握し、その相関関係に基づき評価・検証を行う方法を挙げることができる。その際に、近赤外スペクトルは複数の成分情報が含まれ、複数の要因が複雑に組合わされたスペクトルが形成されていることから、これらの要因が変化すると、ピークの位置や高さが変化するため、線形重回帰分析法や部分最小二乗法等の統計的手法により該相関関係を把握することが好ましい。そして、重量平均分子量が既知の複数の脂肪族-芳香族石油樹脂について、近赤外スペクトルを測定し特定波長領域の吸光度と重量平均分子量とを関連付け、その解析を実施することにより相関関係を得ることができる。さらに、近赤外スペクトルを測定し特定波長領域の吸光度を測定し、該相関関係より推算重量平均分子量の値を推算することが可能となる。例えば脂肪族-芳香族石油樹脂の場合には、波長領域6900~5460cm-1の吸光度が重量平均分子量との相関関係を有するとの結果を得ることができる。そして、波長領域6900~5460cm-1の吸光度から推算される推算重量平均分子量の値が重量平均分子量とよい一致を示すことは、例えば図2のグラフにて示されるように、脂肪族-芳香族石油樹脂の推算重量平均分子量の値と実測重量平均分子量の関係より明らかであります。 As a specific method of qualitative / quantitative analysis using the near-infrared spectrum, for example, there is a method of grasping the correlation with a specific near-infrared wavelength region and performing evaluation / verification based on the correlation. can. At that time, the near-infrared spectrum contains a plurality of component information, and a spectrum in which a plurality of factors are combined in a complicated manner is formed. Therefore, when these factors change, the position and height of the peak change. Therefore, it is preferable to grasp the correlation by a statistical method such as a linear multiple regression analysis method or a partial least squares method. Then, for a plurality of aliphatic-aromatic petroleum resins having a known weight average molecular weight, the near-infrared spectrum is measured, the absorbance in a specific wavelength region is associated with the weight average molecular weight, and the analysis is performed to obtain a correlation. be able to. Further, it is possible to measure the near-infrared spectrum, measure the absorbance in a specific wavelength region, and estimate the value of the estimated weight average molecular weight from the correlation. For example, in the case of an aliphatic-aromatic petroleum resin, it can be obtained that the absorbance in the wavelength region of 6900 to 5460 cm -1 has a correlation with the weight average molecular weight. The fact that the value of the estimated weight average molecular weight estimated from the absorbance in the wavelength region 6900 to 5460 cm -1 shows a good agreement with the weight average molecular weight is, for example, as shown in the graph of FIG. 2, that it is aliphatic-aromatic. It is clear from the relationship between the estimated weight average molecular weight of petroleum resin and the measured weight average molecular weight.
そして、近赤外スペクトルの測定結果から、該相関関係に基づいて、脂肪族-芳香族石油樹脂の重量平均分子量を推算し、製造中の脂肪族-芳香族石油樹脂が所望の重量平均分子量となるように、原料組成中のシクロペンタジエン比率の制御を行うことにより、効率的に目的とする脂肪族-芳香族石油樹脂を製造することが可能となる。 Then, the weight average molecular weight of the aliphatic-aromatic petroleum resin is estimated from the measurement results of the near-infrared spectrum based on the correlation, and the aliphatic-aromatic petroleum resin being manufactured has the desired weight average molecular weight. By controlling the cyclopentadiene ratio in the raw material composition, it becomes possible to efficiently produce the desired aliphatic-aromatic petroleum resin.
本発明は、簡易な分析手法を用い、その結果に基づき製造条件の制御を行うことにより、品質に優れる脂肪族-芳香族石油樹脂を効率的に製造することが可能となる。 The present invention makes it possible to efficiently produce an aliphatic-aromatic petroleum resin having excellent quality by using a simple analysis method and controlling the production conditions based on the result.
以下に、本発明を具体的に説明するために実施例として示し説明する。 Hereinafter, the present invention will be described and described as examples in order to specifically explain the present invention.
解析例1
100点の重量平均分子量が既知の脂肪族-芳香族石油樹脂の近赤外スペクトルの測定を行い、得られた近赤外スペクトルの吸光度を8cm-1毎に読み取った。そして、読み取った吸光度と重量平均分子量の解析を下記(1)で示される多変数解析を用い解析した結果、波長領域6900~5460cm-1の吸光度が重量平均分子量との関連付けを有することの結果が得られた。
y=a1x1+a2x2+・・・・+e=Σaixi+e (1)
さらに、別の30点の脂肪族-芳香族石油樹脂の近赤外スペクトルを測定し、上記関連付けと波長領域6900~5460cm-1の吸光度より重量平均分子量の値を推算した。そして、脂肪族-芳香族石油樹脂の重量平均分子量の測定を行い、推算重量平均分子量の値と実測重量平均分子量の関係を図2に示す。よい一致を示すことが確認できた。
Analysis example 1
The near-infrared spectrum of an aliphatic-aromatic petroleum resin having a known weight average molecular weight of 100 points was measured, and the absorbance of the obtained near-infrared spectrum was read every 8 cm -1 . Then, as a result of analyzing the read absorbance and the weight average molecular weight using the multivariate analysis shown in (1) below, the result that the absorbance in the wavelength region 6900 to 5460 cm -1 has a relation with the weight average molecular weight is obtained. Obtained.
y = a 1 x 1 + a 2 x 2 + ... + e = Σa i x i + e (1)
Furthermore, the near-infrared spectra of another 30 aliphatic-aromatic petroleum resins were measured, and the value of the weight average molecular weight was estimated from the above association and the absorbance in the wavelength region of 6900 to 5460 cm -1 . Then, the weight average molecular weight of the aliphatic-aromatic petroleum resin is measured, and the relationship between the value of the estimated weight average molecular weight and the measured weight average molecular weight is shown in FIG. It was confirmed that a good match was shown.
実施例1
図1に示すフロー図に従い、目標重量平均分子量3000~3400の脂肪族-芳香族石油樹脂の製造を行った。製造開始から10時間経過後に粒状物で脂肪族-芳香族石油樹脂が得られたので、近赤外スペクトルの測定を行った。波長領域6900~5460cm-1の吸光度より算出した重量平均分子量の値は3500であったため、原料組成中のシクロペンタジエンの比率を下げる制御を行った。原料組成の制御に要した時間は0.8時間であった。
Example 1
According to the flow chart shown in FIG. 1, an aliphatic-aromatic petroleum resin having a target weight average molecular weight of 3000 to 3400 was produced. Since an aliphatic-aromatic petroleum resin was obtained as a granular substance 10 hours after the start of production, the near-infrared spectrum was measured. Since the value of the weight average molecular weight calculated from the absorbance in the wavelength region of 6900 to 5460 cm -1 was 3500, the ratio of cyclopentadiene in the raw material composition was controlled to be lowered. The time required to control the raw material composition was 0.8 hours.
製造開始から120時間経過後に製造を終了し、重量平均分子量3200の脂肪族-芳香族石油樹脂を製品として24.2t製造した。また、重量平均分子量3500の脂肪族-芳香族石油樹脂が目標範囲外の製品として0.8t得られた。 The production was completed 120 hours after the start of production, and 24.2 tons of an aliphatic-aromatic petroleum resin having a weight average molecular weight of 3200 was produced as a product. Further, 0.8 tons of an aliphatic-aromatic petroleum resin having a weight average molecular weight of 3500 was obtained as a product outside the target range.
比較例1
近赤外スペクトルによる推算重量平均分子量の代わりに、重量平均分子量測定(ポリスチレンを標準物質とし、JIS K-0124(1994年)に準拠してゲル浸透クロマトグラフィーにより測定)を行い、シクロペンタジエン比率の制御を行った以外は実施例1と同様の方法により脂肪族-芳香族石油樹脂の製造を行った。重量平均分子量の測定からシクロペンタジエン比率の制御までに要した時間は7時間であった。
Comparative Example 1
Instead of the estimated weight average molecular weight based on the near-infrared spectrum, weight average molecular weight measurement (measured by gel permeation chromatography based on JIS K-0124 (1994) using polystyrene as a standard material) was performed to determine the cyclopentadiene ratio. The aliphatic-aromatic petroleum resin was produced by the same method as in Example 1 except that the control was performed. The time required from the measurement of the weight average molecular weight to the control of the cyclopentadiene ratio was 7 hours.
製造開始から120時間経過後に製造を終了し、重量平均分子量3200の脂肪族-芳香族石油樹脂を製品として18t製造した。また、重量平均分子量3500の脂肪族-芳香族石油樹脂の目標範囲外の製品は7tであり、効率の悪いものであった。 The production was completed 120 hours after the start of production, and 18 tons of an aliphatic-aromatic petroleum resin having a weight average molecular weight of 3200 was produced as a product. In addition, the product outside the target range of the aliphatic-aromatic petroleum resin having a weight average molecular weight of 3500 was 7 tons, which was inefficient.
1;脂肪族留分
2;シクロペンタジエン蒸留分離装置
3;芳香族留分
4;重合反応部
5;蒸留分離部
6;造粒部
7;近赤外分析部
1;
Claims (3)
(1);重量平均分子量が既知の脂肪族-芳香族石油樹脂の近赤外スペクトルを測定し、波数領域6900~5460cm -1 の吸光度と重量平均分子量の相関関係を取得し、これをもとに推算重量平均分子量値を推算する。 When an aliphatic-aromatic petroleum resin is produced from an aliphatic distillate and an aromatic distillate which are thermally decomposed distillates of petroleum, an unreacted solvent and a low molecular weight are used from the polymerization reaction solution of the aliphatic-aromatic petroleum resin. After separating the minutes, the near-infrared spectrum of the granules of the aliphatic-aromatic petroleum resin cooled and solidified was measured, and the weight average molecular weight was estimated from the measurement by the method (1) below . A method for producing an aliphatic-aromatic petroleum resin, which comprises controlling the cyclopendiene ratio in the raw material composition so that the difference between the value and the weight average molecular weight of the aliphatic-aromatic petroleum resin, which is the production target, becomes small. ..
(1); The near-infrared spectrum of an aliphatic-aromatic petroleum resin having a known weight average molecular weight was measured, and the correlation between the absorbance in the wave number region 6900 to 5460 cm -1 and the weight average molecular weight was obtained, and based on this. Estimate the weight average molecular weight value.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018041389A JP7087468B2 (en) | 2018-03-08 | 2018-03-08 | Aliphatic-Aromatic Petroleum Resin Manufacturing Method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018041389A JP7087468B2 (en) | 2018-03-08 | 2018-03-08 | Aliphatic-Aromatic Petroleum Resin Manufacturing Method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2019156889A JP2019156889A (en) | 2019-09-19 |
JP7087468B2 true JP7087468B2 (en) | 2022-06-21 |
Family
ID=67992385
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018041389A Active JP7087468B2 (en) | 2018-03-08 | 2018-03-08 | Aliphatic-Aromatic Petroleum Resin Manufacturing Method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7087468B2 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000159897A (en) | 1998-11-27 | 2000-06-13 | Mitsui Chemicals Inc | Method for separating defective product of polymer compound |
JP2001508354A (en) | 1996-12-31 | 2001-06-26 | エクソン・ケミカル・パテンツ・インク | Online control of chemical process plants |
JP2002145966A (en) | 2000-11-07 | 2002-05-22 | Mitsui Chemicals Inc | Method for producing aromatic petroleum resin |
JP2005535767A (en) | 2002-08-12 | 2005-11-24 | ボレアリス テクノロジー オイ | Batch property measurement |
JP2012251050A (en) | 2011-06-01 | 2012-12-20 | Idemitsu Kosan Co Ltd | Production method for hydrogenated petroleum resin |
-
2018
- 2018-03-08 JP JP2018041389A patent/JP7087468B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001508354A (en) | 1996-12-31 | 2001-06-26 | エクソン・ケミカル・パテンツ・インク | Online control of chemical process plants |
JP2000159897A (en) | 1998-11-27 | 2000-06-13 | Mitsui Chemicals Inc | Method for separating defective product of polymer compound |
JP2002145966A (en) | 2000-11-07 | 2002-05-22 | Mitsui Chemicals Inc | Method for producing aromatic petroleum resin |
JP2005535767A (en) | 2002-08-12 | 2005-11-24 | ボレアリス テクノロジー オイ | Batch property measurement |
JP2012251050A (en) | 2011-06-01 | 2012-12-20 | Idemitsu Kosan Co Ltd | Production method for hydrogenated petroleum resin |
Also Published As
Publication number | Publication date |
---|---|
JP2019156889A (en) | 2019-09-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3607761B2 (en) | Thermally polymerized dicyclopentadiene / vinyl aromatic resin | |
CA2986069C (en) | Method for producing bio hydrocarbons by thermally cracking a bio-renewable feedstock | |
CA2559151A1 (en) | Method for improving liquid yield during thermal cracking of hydrocarbons | |
US20190144755A1 (en) | PROCESS FOR THE PREPARATION OF A C20 to C60 WAX FROM THE SELECTIVE THERMAL DECOMPOSITION OF PLASTIC POLYOLEFIN POLYMER | |
JP6181181B2 (en) | Process for producing olefins by thermal steam cracking in a cracking furnace | |
GB2551010B (en) | Process for the preparation of a c20 to c60 wax from the selective thermal decomposition of plastic polyolefin polymer | |
CA2986067A1 (en) | Method for producing bio hydrocarbons by thermally cracking a bio-renewable feedstock containing at least 65 wt.% iso-paraffins | |
WO2015147027A1 (en) | Method for producing hydrogenated petroleum resin | |
CA2116903C (en) | Process for hydrotreating resins to lighten color | |
JP7087468B2 (en) | Aliphatic-Aromatic Petroleum Resin Manufacturing Method | |
US2404056A (en) | Manufacture of isoprene | |
JP7047470B2 (en) | Aliphatic-Aromatic Petroleum Resin Manufacturing Method | |
SU459891A3 (en) | The method of obtaining aromatic hydrocarbon resins | |
CA1047542A (en) | Production of hydrocarbons | |
JP2019151753A (en) | Production method of aliphatic-aromatic petroleum resin | |
US2436069A (en) | Oils and greases obtained by pyrolysis of tetrafluoroethyleneolefin copolymers | |
US2733280A (en) | Recovery of cyclo and methylcyclo | |
US2801270A (en) | Recovery of cyclodienes with vapor phase cracking | |
US2836581A (en) | Process for making resins | |
US4009094A (en) | Stabilizing pyrolysis naphtha | |
Cleverley et al. | Rapid identification of elastomers and their additives | |
US2035455A (en) | Method of | |
TW201531455A (en) | Method and apparatus for producing olefins | |
Luik et al. | UPGRADING OF ESTONIAN SHALE OIL DISTILLATION FRACTIONS | |
US3658780A (en) | Polymerization of olefins |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20210210 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20211117 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20211228 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220112 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20220510 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20220523 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 7087468 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |