JP4434156B2 - Treatment method of fluorine-contaminated soil - Google Patents

Treatment method of fluorine-contaminated soil Download PDF

Info

Publication number
JP4434156B2
JP4434156B2 JP2006040194A JP2006040194A JP4434156B2 JP 4434156 B2 JP4434156 B2 JP 4434156B2 JP 2006040194 A JP2006040194 A JP 2006040194A JP 2006040194 A JP2006040194 A JP 2006040194A JP 4434156 B2 JP4434156 B2 JP 4434156B2
Authority
JP
Japan
Prior art keywords
fluorine
contaminated soil
dcpd
mass
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006040194A
Other languages
Japanese (ja)
Other versions
JP2007216156A (en
Inventor
昌幹 袋布
哲治 丁子
巧 藤田
準一 羽田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chiyoda Ute Co Ltd
Institute of National Colleges of Technologies Japan
Original Assignee
Chiyoda Ute Co Ltd
Institute of National Colleges of Technologies Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chiyoda Ute Co Ltd, Institute of National Colleges of Technologies Japan filed Critical Chiyoda Ute Co Ltd
Priority to JP2006040194A priority Critical patent/JP4434156B2/en
Publication of JP2007216156A publication Critical patent/JP2007216156A/en
Application granted granted Critical
Publication of JP4434156B2 publication Critical patent/JP4434156B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Soil Conditioners And Soil-Stabilizing Materials (AREA)

Description

本発明はフッ素汚染土壌の処理方法に関し、更に詳しくは簡単な作業で経済的に且つ確実にフッ素汚染土壌からのフッ素の溶出量を土壌環境基準の0.8mg/L以下に低減することができる処理方法に関する。   The present invention relates to a method for treating fluorine-contaminated soil. More specifically, the amount of fluorine eluted from fluorine-contaminated soil can be reduced to 0.8 mg / L or less of the soil environment standard with a simple operation economically and reliably. It relates to the processing method.

従来、フッ素汚染土壌からのフッ素の溶出量を低減する処理方法として、アルミニウム塩及び鉄塩から選ばれるものを用いる例(例えば特許文献1参照)、カルシウム化合物及びアルミニウム化合物から選ばれるものを用いる例(例えば特許文献2参照)、希土類元素の化合物及び希土類鉱石から選ばれる希土類元素含有物質を用いる例(例えば特許文献3参照)、製鋼スラグ粉末及びアルカノールアミンを含有する捕集材を用いる例(例えば特許文献4参照)、カルシウム化合物及びリン酸化合物を用いる例(例えば特許文献5参照)等が知られている。   Conventionally, as a treatment method for reducing the amount of fluorine eluted from fluorine-contaminated soil, an example using an aluminum salt and an iron salt (see, for example, Patent Document 1), an example using a calcium compound and an aluminum compound are used. (For example, refer to Patent Document 2), an example using a rare earth element-containing material selected from rare earth element compounds and rare earth ores (for example, refer to Patent Document 3), an example using a steelmaking slag powder and a collection material containing alkanolamine (for example, Patent Document 4), examples using calcium compounds and phosphate compounds (see, for example, Patent Document 5) are known.

しかし、特許文献1のような従来の処理方法には、実際のところ、フッ素汚染土壌からのフッ素の溶出量を土壌環境基準の0.8mg/L以下に低減するのが難しいという問題がある。また特許文献2や5のような従来の処理方法には、フッ素汚染土壌からのフッ素の溶出量を土壌環境基準の0.8mg/L以下に低減することができるものの、そのためには処理剤として二つ以上の化合物を組合わせて用いる必要があるので、実際の使用が誠に煩わしく、組合わせによっては低減の程度が大きな影響を受けるという問題がある。更に特許文献3のような従来の処理方法には、希土類資源を用いるため、高価になるという問題がある。そして特許文献4のような従来の処理方法には、アルカノールアミンという有機物質を用いるため、二次的な環境汚染を引き起こすおそれがあるという問題がある。
特開2002−326081号公報 特開2003−236521号公報 特開2004−305935号公報 特開2005−74280号公報 特開2005−305387号公報
However, the conventional treatment method such as Patent Document 1 has a problem that it is actually difficult to reduce the amount of fluorine eluted from fluorine-contaminated soil to 0.8 mg / L or less of the soil environment standard. Moreover, in the conventional processing methods like patent document 2 and 5, although the elution amount of the fluorine from fluorine-contaminated soil can be reduced to 0.8 mg / L or less of soil environmental standard, as a treatment agent for that purpose Since it is necessary to use two or more compounds in combination, there is a problem that actual use is very bothersome and the degree of reduction is greatly affected by the combination. Furthermore, the conventional processing method such as Patent Document 3 has a problem that it is expensive because it uses rare earth resources. The conventional treatment method as disclosed in Patent Document 4 uses an organic material called alkanolamine, and thus has a problem of causing secondary environmental pollution.
JP 2002-326081 A JP 2003-236521 A JP 2004-305935 A JP-A-2005-74280 JP 2005-305387 A

本発明が解決しようとする課題は、二次的な環境汚染を引き起こすことなく、簡単な作業で経済的に且つ確実にフッ素汚染土壌からのフッ素の溶出量を土壌環境基準の0.8mg/L以下に低減することができる処理方法を提供する処にある。   The problem to be solved by the present invention is to reduce the amount of fluorine eluted from fluorine-contaminated soil economically and reliably by simple work without causing secondary environmental pollution. It exists in the process which provides the processing method which can be reduced below.

前記の課題を解決する本発明は、フッ素汚染土壌と、リン酸水素カルシウム二水和物(CaHPO・2HO)の粉状粒子を水に懸濁処理してその粒子表面を活性化した処理剤とを、特定の割合で且つ特定の水分となるよう混合し、少なくとも1日間養生して、フッ素汚染土壌中のフッ素を不溶化することを特徴とするフッ素汚染土壌の処理方法に係る。 The present invention that solves the above-mentioned problems activates the particle surface by suspending powdery particles of fluorine-contaminated soil and calcium hydrogen phosphate dihydrate (CaHPO 4 .2H 2 O) in water. A treatment agent is mixed with a specific ratio so as to have a specific moisture, and is cured for at least one day to insolubilize fluorine in the fluorine-contaminated soil.

先ず、本発明に係るフッ素汚染土壌の処理方法で用いる処理剤(以下単に本発明の処理剤という)について説明する。本発明の処理剤はリン酸水素カルシウム二水和物の粒子表面を活性化したものである。リン酸水素カルシウム二水和物を粉状のままで、又は水懸濁液の状態で、フッ素汚染土壌と混合すると、該フッ素汚染土壌中のフッ素をフッ素アパタイトとして不溶化する。フッ素アパタイトそれ自体は周知の通り天然のリン鉱石の主成分であり、他に有機物質や重金属類等を使用しないこともあって、かかるリン酸水素カルシウム二水和物によると、二次的な環境汚染を引き起こすことなく、簡単な作業で経済的に且つ確実にフッ素汚染土壌からのフッ素の溶出量を低減することができる。   First, the treating agent (hereinafter simply referred to as the treating agent of the present invention) used in the method for treating fluorine-contaminated soil according to the present invention will be described. The treatment agent of the present invention is obtained by activating the particle surface of calcium hydrogen phosphate dihydrate. When calcium hydrogen phosphate dihydrate is mixed with fluorine-contaminated soil in the form of powder or in the form of water suspension, fluorine in the fluorine-contaminated soil is insolubilized as fluorapatite. As is well known, fluorapatite itself is the main component of natural phosphate ore, and other organic substances and heavy metals may not be used. According to such calcium hydrogen phosphate dihydrate, Without causing environmental pollution, the elution amount of fluorine from fluorine-contaminated soil can be reduced economically and reliably by simple work.

フッ素汚染土壌中のフッ素をフッ素アパタイトとして不溶化するリン酸水素カルシウム二水和物の作用効果は特徴的である。例えばリン酸カルシウム(Ca(PO)にもフッ素汚染土壌中のフッ素を相応に不溶化する作用効果が認められるが、その程度はリン酸水素カルシウム二水和物に比べて著しく劣る。かかるリン酸水素カルシウム二水和物の特徴的な作用効果は、リン酸水素カルシウム二水和物の粉状粒子を水に懸濁処理してその粒子表面を活性化すると、更に一段と増大する。リン酸水素カルシウム二水和物の粉状粒子を水に懸濁して数時間〜数十時間撹拌乃至振とう条件下におくと、懸濁液から回収した粒子はその表面に大きさが数十nm程度の多数の微細結晶を均一に析出した構造のものとなる。かかる粒子はその表面が活性化されており、詳しくは後述するようにフッ素汚染土壌中のフッ素をより効率的に不溶化する。したがって、本発明の処理剤としては、以上のように、リン酸水素カルシウム二水和物の粉状粒子を水に懸濁し、その懸濁液から回収した粒子表面を活性化したものを用いる。
The effect of calcium hydrogen phosphate dihydrate, which insolubilizes fluorine in fluorine-contaminated soil as fluorapatite, is characteristic. For example, calcium phosphate (Ca 3 (PO 4 ) 2 ) has an effect of correspondingly insolubilizing fluorine in fluorine-contaminated soil, but the degree is significantly inferior to calcium hydrogen phosphate dihydrate. The characteristic action and effect of such calcium hydrogen phosphate dihydrate is further increased by suspending powder particles of calcium hydrogen phosphate dihydrate in water and activating the particle surface. When powder particles of calcium hydrogen phosphate dihydrate are suspended in water and left under stirring or shaking conditions for several hours to several tens of hours, the particles recovered from the suspension have a size of several tens on the surface. It has a structure in which a large number of fine crystals of about nm are uniformly deposited. Such particles have activated surfaces, and more effectively insolubilize fluorine in fluorine-contaminated soil as will be described in detail later. Therefore, as the treatment agent of the present invention, as described above, a powdered particle of calcium hydrogen phosphate dihydrate is suspended in water and the particle surface recovered from the suspension is activated. .

本発明に係るフッ素汚染土壌の処理方法(以下単に本発明の処理方法という)では、フッ素汚染土壌と前記したような本発明の処理剤とを混合し、所要期間養生して、該フッ素汚染土壌中のフッ素をフッ素アパタイトとして不溶化する。フッ素汚染土壌からのフッ素の溶出量を土壌環境基準の0.8mg/L以下にまで低減するために要する養生期間は、フッ素汚染土壌に対する本発明の処理剤の混合割合、混合時における水分等にも影響されるが、1日以上である。養生はフッ素汚染土壌と本発明の処理剤との混合物を緩やかに混合しながら行なってもよいが、かかる混合物を単に放置するだけでよく、例えば加温のような特別な処理は必要としない。   In the method for treating fluorine-contaminated soil according to the present invention (hereinafter simply referred to as the processing method of the present invention), the fluorine-contaminated soil and the treating agent of the present invention as described above are mixed, cured for a required period, and the fluorine-contaminated soil. The fluorine inside is insolubilized as fluorapatite. The curing period required to reduce the amount of fluorine eluted from the fluorine-contaminated soil to 0.8 mg / L or less of the soil environmental standard is determined by the mixing ratio of the treatment agent of the present invention to the fluorine-contaminated soil, the moisture at the time of mixing, etc. Is also affected, but more than a day. Curing may be performed while gently mixing a mixture of fluorine-contaminated soil and the treatment agent of the present invention, but such a mixture may be simply left, and no special treatment such as heating is required.

フッ素汚染土壌に対する本発明の処理剤の混合割合は、経済性にも配慮しつつより短期間で且つより確実にフッ素汚染土壌からのフッ素溶出量を土壌環境基準の0.8mg/L以下にまで低減するため、フッ素汚染土壌の乾燥物100質量部当たり本発明の処理剤を5〜20質量部の割合となるようにする。   The mixing ratio of the treatment agent of the present invention with respect to fluorine-contaminated soil is less than 0.8 mg / L of soil environmental standard, with the fluorine elution amount from the fluorine-contaminated soil being more reliably and in a shorter period of time while taking into consideration the economy. In order to reduce, the treatment agent of the present invention is adjusted to a ratio of 5 to 20 parts by mass per 100 parts by mass of the dry matter of fluorine-contaminated soil.

またフッ素汚染土壌と本発明の処理剤との混合物の水分は、前記の場合と同様、経済性にも配慮しつつより短期間で且つより確実にフッ素汚染土壌からのフッ素溶出量を土壌環境基準の0.8mg/L以下にまで低減するためには、混合物の水分が5〜20質量%となるようにする。かかる水分の調整は、フッ素汚染土壌に所要量の水を加える方法、本発明の処理剤を所要濃度の水懸濁液として用いる方法、混合物に所要量の水を加える方法、これらの二つ以上を併用する方法等で行なうことができる。かくして混合物の水分を調整した場合、混合物の養生はかかる水分の蒸発をできるだけ抑えるようにして行なうのが好ましい。   In addition, the moisture content of the mixture of the fluorine-contaminated soil and the treatment agent of the present invention is the same as in the case described above. In order to reduce it to 0.8 mg / L or less, the water content of the mixture is adjusted to 5 to 20% by mass. Such water adjustment includes a method of adding a required amount of water to fluorine-contaminated soil, a method of using the treatment agent of the present invention as a water suspension of a required concentration, a method of adding a required amount of water to a mixture, two or more of these. It can carry out by the method of using together. Thus, when the water content of the mixture is adjusted, the curing of the mixture is preferably carried out so as to suppress the evaporation of such water as much as possible.

既に明らかなように、以上説明した本発明には、二次的な環境汚染を引き起こすことなく、簡単な作業で経済的に且つ確実にフッ素汚染土壌からのフッ素の溶出量を土壌環境基準の0.8mg/L以下に低減することができるという効果がある。   As is clear from the above, the present invention described above has a simple and easy operation economically and reliably to reduce the amount of fluorine eluted from the fluorine-contaminated soil without causing secondary environmental pollution. There is an effect that it can be reduced to 8 mg / L or less.

図1はリン酸水素カルシウム二水和物の粉状粒子の表面を電解放射型走査型電子顕微鏡で観察したときの顕微鏡写真であり、また図2は図1と同じリン酸水素カルシウム二水和物の粉状粒子を200質量倍の純水に懸濁し、ポリ容器内にて毎分200回で24時間振とうした後に回収した粒子の表面を図1と同様に観察したときの顕微鏡写真である。図2は本発明の処理剤であるが、図1の粒子の表面が比較的に滑らかであるのに対し、図2の粒子の表面は大きさが数十nm程度の多数の微細結晶が均一に析出して複雑な微細凹凸が連続する構造となっている。詳しくは後述するように、図2の粒子はその表面が活性化されており、図1の粒子に比べて、フッ素汚染土壌中のフッ素をより効率的に不溶化する。   FIG. 1 is a photomicrograph of the surface of a powdered particle of calcium hydrogen phosphate dihydrate observed with an electrolytic emission scanning electron microscope, and FIG. 2 is the same calcium hydrogen phosphate dihydrate as FIG. In the micrograph when the surface of the particle | grains collect | recovered after suspending the powder-like particle | grains of a thing in 200 mass times pure water and shaking for 24 hours at 200 times / min in a plastic container similarly to FIG. is there. FIG. 2 shows the treatment agent of the present invention. The surface of the particle in FIG. 1 is relatively smooth, whereas the surface of the particle in FIG. It has a structure in which complex fine irregularities are deposited on the surface. As will be described later in detail, the surface of the particle in FIG. 2 is activated, and insoluble in the fluorine-contaminated soil more efficiently than the particle in FIG.

試験区分1
石膏工場から採取したフッ素汚染土壌をポリ容器に取り、純水を加えて水分10質量%とした。これに、リン酸水素カルシウム二水和物の粉状粒子(以下単にDCPDという)を、フッ素汚染土壌の乾燥物100質量部当たり1〜10質量部の割合となるよう加えて混合し、その混合物を5日間放置して養生した。養生した処理土壌を次のようなフッ素の溶出試験に供し、フッ素の溶出量(mg/L)を測定した。同様にして混合物を調製したが、その混合物を養生することなくそのまま、フッ素の溶出試験に供し、フッ素の溶出量(mg/L)を測定した。結果を図3にまとめて示した。
Test category 1
Fluorine-contaminated soil collected from a gypsum factory was placed in a plastic container, and pure water was added to make the moisture 10% by mass. To this, powdery particles of calcium hydrogen phosphate dihydrate (hereinafter simply referred to as DCPD) were added and mixed at a ratio of 1 to 10 parts by mass per 100 parts by mass of dry matter of fluorine-contaminated soil, and the mixture Was allowed to stand for 5 days. The cured treated soil was subjected to the following fluorine elution test, and the fluorine elution amount (mg / L) was measured. A mixture was prepared in the same manner, but the mixture was subjected to a fluorine elution test as it was without curing, and the amount of fluorine elution (mg / L) was measured. The results are summarized in FIG.

フッ素の溶出試験:処理土壌に10質量倍の純水を加え、毎分100回で24時間振とうした。10分間静置後、上澄み液を0.45μmのメンブレンフィルタで濾過し、その濾液を溶出液として得た。この溶出液中のフッ素濃度をイオン選択性電極で測定し、フッ素の溶出量(mg/L)とした。   Fluorine elution test: 10 mass times pure water was added to the treated soil and shaken at 100 times per minute for 24 hours. After standing for 10 minutes, the supernatant was filtered through a 0.45 μm membrane filter, and the filtrate was obtained as an eluent. The fluorine concentration in this eluate was measured with an ion-selective electrode, and the amount of fluorine eluted (mg / L) was determined.

図3の横軸は、フッ素汚染土壌の乾燥物100質量部当たり、添加したDCPDの質量部を示している。また図3中、白抜き丸印を結ぶ実線11は5日間養生した場合の結果を示しており、黒塗り丸印を結ぶ破線21は養生してない場合の結果を示している。この図3の結果からも明らかなように、処理剤としてDCPDを用いる場合、フッ素汚染土壌と単に混合するだけでもフッ素の溶出量を相応に低減できるが、それを土壌環境基準の0.8mg/L以下にまで低減するためには、ほぼ5日間程度の養生が必要であることがわかる。   The horizontal axis of FIG. 3 shows the mass part of the added DCPD per 100 mass parts of the dried material of fluorine-contaminated soil. In FIG. 3, the solid line 11 connecting the white circles indicates the result when the curing is performed for 5 days, and the broken line 21 connecting the black circles indicates the result when the curing is not performed. As is apparent from the results of FIG. 3, when DCPD is used as a treating agent, the amount of fluorine eluted can be reduced by simply mixing with fluorine-contaminated soil. It can be seen that in order to reduce to L or less, curing for about 5 days is necessary.

試験区分2
試験区分1と同様にDCPDを用いて5日間養生した処理土壌を得た。またDCPDに代えてリン酸カルシウムの粉状粒子を用いたこと以外は同様にして5日間養生した処理土壌を得た。双方の処理土壌について、試験区分1と同様にフッ素の溶出量(mg/L)を測定した。結果を図4にまとめて示した。図4の横軸は、フッ素汚染土壌の乾燥物100質量部当たり、添加したDCPD又はリン酸カルシウムの粉状粒子の質量部を示している。また図4中、白抜き丸印を結ぶ実線12は処理剤としてDCPDを用いた場合の結果を示しており、黒塗り丸印を結ぶ破線22は処理剤としてリン酸カルシウムを用いた場合の結果を示している。この図4の結果からも明らかなように、リン酸カルシウムの粉状粒子では5日間養生してもフッ素の溶出量を土壌環境基準の0.8mg/L以下に低減することができないが、DCPDによれば、5日間養生することによりフッ素の溶出量を土壌環境基準の0.8mg/L以下にまで低減できることがわかる。
Test category 2
The treated soil cured for 5 days using DCPD was obtained in the same manner as in test category 1. Further, treated soil cured for 5 days was obtained in the same manner except that powdered particles of calcium phosphate were used instead of DCPD. For both treated soils, the amount of fluorine eluted (mg / L) was measured in the same manner as in Test Category 1. The results are summarized in FIG. The horizontal axis of FIG. 4 shows the mass part of the added powder particles of DCPD or calcium phosphate per 100 mass parts of the dried material of fluorine-contaminated soil. In FIG. 4, the solid line 12 connecting the white circles indicates the result when DCPD is used as the treatment agent, and the broken line 22 connecting the black circles indicates the result when calcium phosphate is used as the treatment agent. ing. As is apparent from the results of FIG. 4, the calcium phosphate powder particles cannot reduce the fluorine elution amount to 0.8 mg / L or less of the soil environmental standard even after curing for 5 days. For example, it can be seen that the amount of fluorine eluted can be reduced to 0.8 mg / L or less of the soil environment standard by curing for 5 days.

試験区分3(実施例)
石膏工場から採取したフッ素汚染土壌をポリ容器に取り、純水を加えて水分10質量%とした。これに、DCPDをフッ素汚染土壌の乾燥物100質量部当たり5質量部、10質量部又は20質量部の割合となるよう加えて混合し、その混合物を1〜7日間放置して養生し、処理土壌を得た。別に、DCPDを200質量倍の純水に懸濁し、ポリ容器に入れて毎分200回で24時間振とうした後、懸濁液から表面を活性化した粒子(以下単にβ−DCPDという)を回収した。そしてDCPDに代えてβ−DCPDを用いたこと以外はDCPDを用いた実施例と同様にして1〜7日間養生した処理土壌を得た(実施例)。双方の処理土壌について、試験区分1と同様にフッ素の溶出量(mg/L)を測定した。
Test category 3 (Example)
Fluorine-contaminated soil collected from a gypsum factory was placed in a plastic container, and pure water was added to make the moisture 10% by mass. To this, DCPD is added and mixed at a ratio of 5 parts by weight, 10 parts by weight or 20 parts by weight per 100 parts by weight of the dried material of fluorine-contaminated soil, and the mixture is left to stand for 1 to 7 days and then cured. Soil was obtained. Separately, DCPD was suspended in 200 mass times pure water, placed in a plastic container, shaken at 200 times per minute for 24 hours, and then the surface activated particles from the suspension (hereinafter simply referred to as β-DCPD). It was collected. Then, treated soil cured for 1 to 7 days was obtained in the same manner as in the example using DCPD except that β-DCPD was used instead of DCPD (Example). For both treated soils, the amount of fluorine eluted (mg / L) was measured in the same manner as in Test Category 1.

DCPDを用いた場合の結果を図5にまとめて示し、またβ−DCPDを用いた場合の結果を図6にまとめて示した。図5及び6中、白抜き丸印を結ぶ実線13,16はDCPD又はβ−DCPDを5質量部の割合となるよう加えた場合の結果を示しており、また白抜き三角印を結ぶ実線14,17はDCPD又はβ−DCPDを10質量部の割合となるよう加えた場合の結果を示していて、更に白抜き四角印を結ぶ実線15,18はDCPD又はβ−DCPDを20質量部の割合となるよう加えた場合の結果を示している。この図5及び6の結果からも明らかなように、処理剤としてDCPDの粒子表面を活性化したβ−DCPDを用いる場合には、DCPDよりもはるかに少ない使用量で、またはるかに少ない養生期間で、フッ素の溶出量を土壌環境基準の0.8mg/Lにまで低減できることがわかる。   The results when DCPD is used are collectively shown in FIG. 5, and the results when β-DCPD is used are collectively shown in FIG. 5 and 6, solid lines 13 and 16 connecting the white circles indicate the results when DCPD or β-DCPD is added at a ratio of 5 parts by mass, and the solid line 14 connecting the white triangles. 17 and 17 show the results when DCPD or β-DCPD is added to a ratio of 10 parts by mass, and solid lines 15 and 18 connecting white square marks indicate the ratio of 20 parts by mass of DCPD or β-DCPD. The result when added so that As is apparent from the results of FIGS. 5 and 6, when β-DCPD in which the surface of DCPD particles is activated is used as the treatment agent, the curing period is much less than DCPD or much less. Thus, it can be seen that the fluorine elution amount can be reduced to 0.8 mg / L of the soil environment standard.

処理剤として用いたDCPDの粒子表面を示す電子顕微鏡写真。The electron micrograph which shows the particle | grain surface of DCPD used as a processing agent. 処理剤として用いたβ−DCPDの粒子表面を示す電子顕微鏡写真。The electron micrograph which shows the particle | grain surface of (beta) -DCPD used as a processing agent. DCPDの添加量(質量部)に対するフッ素溶出量(mg/L)の結果を例示するグラフ。The graph which illustrates the result of the fluorine elution amount (mg / L) with respect to the addition amount (mass part) of DCPD. DCPD又はリン酸カルシウムの添加量(質量部)に対するフッ素溶出量(mg/L)の結果を例示するグラフ。The graph which illustrates the result of the fluorine elution amount (mg / L) with respect to the addition amount (mass part) of DCPD or calcium phosphate. DCPDの添加量(質量部)及び養生日数(日)に対するフッ素溶出量(mg/L)の結果を例示するグラフ。The graph which illustrates the result of the amount of fluorine elution (mg / L) with respect to the addition amount (parts by mass) of DCPD and the number of days of curing (days). 本発明の処理方法においてβ−DCPDの添加量(質量部)及び養生日数(日)に対するフッ素溶出量(mg/L)の結果を例示するグラフ。The graph which illustrates the result of the amount of fluorine elution (mg / L) with respect to the addition amount (parts by mass) of β-DCPD and the number of days of curing (days) in the treatment method of the present invention.

11〜18,21,22 各例の結果を示す実線又は破線   11 to 18, 21 and 22 Solid line or broken line showing results of each example

Claims (1)

フッ素汚染土壌と、リン酸水素カルシウム二水和物の粉状粒子を水に懸濁し、その懸濁液から回収した粒子表面を活性化した処理剤とを、フッ素汚染土壌の乾燥物100質量部当たり処理剤を5〜20質量部の割合となるよう且つ混合物の水分が5〜20質量%となるよう混合して、少なくとも1日間養生し、フッ素汚染土壌中のフッ素を不溶化することを特徴とするフッ素汚染土壌の処理方法。 Fluorine-contaminated soil and a treatment agent obtained by suspending powder particles of calcium hydrogen phosphate dihydrate in water and activating the particle surface recovered from the suspension , 100 mass of dry matter of fluorine-contaminated soil The treatment agent per part is mixed so as to have a ratio of 5 to 20 parts by mass and the water content of the mixture becomes 5 to 20% by mass, and is cured for at least one day to insolubilize fluorine in the fluorine-contaminated soil. Fluorine-contaminated soil treatment method.
JP2006040194A 2006-02-17 2006-02-17 Treatment method of fluorine-contaminated soil Expired - Fee Related JP4434156B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006040194A JP4434156B2 (en) 2006-02-17 2006-02-17 Treatment method of fluorine-contaminated soil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006040194A JP4434156B2 (en) 2006-02-17 2006-02-17 Treatment method of fluorine-contaminated soil

Publications (2)

Publication Number Publication Date
JP2007216156A JP2007216156A (en) 2007-08-30
JP4434156B2 true JP4434156B2 (en) 2010-03-17

Family

ID=38493969

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006040194A Expired - Fee Related JP4434156B2 (en) 2006-02-17 2006-02-17 Treatment method of fluorine-contaminated soil

Country Status (1)

Country Link
JP (1) JP4434156B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4748608B2 (en) * 2008-03-13 2011-08-17 独立行政法人国立高等専門学校機構 Soil-solidifying agent and soil-solidifying method
EP2347835A4 (en) * 2008-10-10 2013-08-07 Inst Nat Colleges Tech Japan Fluorine insolubilizing agent, gypsum with elution of fluorine contained therein being reduced, and method for treating soil contaminated with fluirine
JP4998927B2 (en) * 2008-11-13 2012-08-15 アイシン高丘株式会社 Fluorine elution suppression method and inorganic porous material
JP5171705B2 (en) * 2009-03-23 2013-03-27 チヨダウーテ株式会社 Treatment method for fluorine-containing wastewater
CN102428038B (en) * 2009-05-21 2015-12-02 大金工业株式会社 Treatment agent and manufacture method thereof and treatment process
JP2011104540A (en) * 2009-11-18 2011-06-02 Institute Of National Colleges Of Technology Japan Method for effectively utilizing soil containing fluorine
WO2011064836A1 (en) * 2009-11-24 2011-06-03 独立行政法人国立高等専門学校機構 Process for producing calcium hydrogen phosphate dihydrate and fluorine insolubilizer
JP5584915B2 (en) * 2010-05-10 2014-09-10 独立行政法人国立高等専門学校機構 Fluorine insolubilizing agent and method for producing the same
KR101096100B1 (en) 2011-09-23 2011-12-22 경상대학교산학협력단 A method and apparatus for remediation of soils contaminated with fluorine by using electrokinetic technology enhanced by 2-dimensional electrode configuration
JP6326246B2 (en) * 2014-02-26 2018-05-16 石坂産業株式会社 Recycling method of selected soil extracted from earth and sand mixed waste
JP7315160B2 (en) * 2019-02-19 2023-07-26 独立行政法人国立高等専門学校機構 Fluorine insolubilizer, method for producing same, treated gypsum, method for treating fluorine-containing contaminated soil and contaminated water

Also Published As

Publication number Publication date
JP2007216156A (en) 2007-08-30

Similar Documents

Publication Publication Date Title
JP4434156B2 (en) Treatment method of fluorine-contaminated soil
CN107789787B (en) Stabilizing agent for repairing arsenic-containing waste residue and using method
JP5647371B1 (en) Detoxification method for contaminated soil
JP5582356B2 (en) Fluorine insolubilizer, gypsum with reduced elution of contained fluorine, and method for treating fluorine-contaminated soil
JP5158462B2 (en) Reduced solidification of toxic metals
CN110330978A (en) Soil-repairing agent and soil remediation method
WO2022199445A1 (en) Composite biochar for preventing and treating heavy metal pollution and preparation method therefor
JP2018100409A (en) Soil granulating additive
US9346087B2 (en) Non-embedding method for heavy metal stabilization using beef bone meal and blast media
JP2014227457A (en) Insolubilizing agent of heavy metal or the like and insolubilizing method
JP2009183907A (en) Decontaminating material and decontamination facility
JP6563771B2 (en) Method for producing calcium compound-coated insolubilized material for arsenic-containing sludge
JP6177528B2 (en) Insolubilizing material and insolubilizing method for arsenic-containing heavy metal contaminated soil
JP4752038B2 (en) Method for treating gypsum to reduce elution of contained fluorine
JP4748608B2 (en) Soil-solidifying agent and soil-solidifying method
CN104275346A (en) Insolubilization agent for harmful substances and insolubilization method
JP5789789B2 (en) Treatment method for fluorine-contaminated soil
JP2007222695A (en) Harmful metal elution reduction material and elution reduction method for harmful metal using it
JP6607760B2 (en) Calcium-based compound-insolubilized material for arsenic-containing sludge
JP2016150317A (en) Recycling treatment method for selected soil extracted from earth and sand-based mixed waste, and recycling treatment material
CN114985444B (en) Stabilization remediation of lead contaminated soil
JP2005319396A (en) Insolubilization method for cadmium in soil
JP6326246B2 (en) Recycling method of selected soil extracted from earth and sand mixed waste
JP3772552B2 (en) Solidified material for heavy metal contaminated soil and method for producing the same
JP2006175389A (en) Cleaning method of cyanide contaminated soil

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090525

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090721

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090817

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091001

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20091001

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091201

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20091204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091221

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091221

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130108

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140108

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees