JP2016150317A - Recycling treatment method for selected soil extracted from earth and sand-based mixed waste, and recycling treatment material - Google Patents
Recycling treatment method for selected soil extracted from earth and sand-based mixed waste, and recycling treatment material Download PDFInfo
- Publication number
- JP2016150317A JP2016150317A JP2015029272A JP2015029272A JP2016150317A JP 2016150317 A JP2016150317 A JP 2016150317A JP 2015029272 A JP2015029272 A JP 2015029272A JP 2015029272 A JP2015029272 A JP 2015029272A JP 2016150317 A JP2016150317 A JP 2016150317A
- Authority
- JP
- Japan
- Prior art keywords
- soil
- recycling
- mass
- fluorine
- mixed waste
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000002689 soil Substances 0.000 title claims abstract description 176
- 238000004064 recycling Methods 0.000 title claims abstract description 89
- 239000000463 material Substances 0.000 title claims abstract description 87
- 238000000034 method Methods 0.000 title claims abstract description 78
- 239000004576 sand Substances 0.000 title claims abstract description 54
- 239000010812 mixed waste Substances 0.000 title claims abstract description 53
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 claims abstract description 137
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 claims abstract description 100
- 229910052731 fluorine Inorganic materials 0.000 claims abstract description 100
- 239000011737 fluorine Substances 0.000 claims abstract description 100
- 150000001875 compounds Chemical class 0.000 claims abstract description 72
- 229910000147 aluminium phosphate Inorganic materials 0.000 claims abstract description 68
- 239000000126 substance Substances 0.000 claims abstract description 44
- 150000002506 iron compounds Chemical class 0.000 claims abstract description 28
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 22
- 239000000203 mixture Substances 0.000 claims abstract description 13
- 238000000605 extraction Methods 0.000 claims abstract description 5
- 229910000389 calcium phosphate Inorganic materials 0.000 claims description 24
- 235000019700 dicalcium phosphate Nutrition 0.000 claims description 23
- 239000002245 particle Substances 0.000 claims description 22
- 238000012545 processing Methods 0.000 claims description 22
- YYRMJZQKEFZXMX-UHFFFAOYSA-L calcium bis(dihydrogenphosphate) Chemical compound [Ca+2].OP(O)([O-])=O.OP(O)([O-])=O YYRMJZQKEFZXMX-UHFFFAOYSA-L 0.000 claims description 17
- 229940062672 calcium dihydrogen phosphate Drugs 0.000 claims description 17
- 235000019691 monocalcium phosphate Nutrition 0.000 claims description 17
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 15
- 229910052698 phosphorus Inorganic materials 0.000 claims description 15
- 239000011574 phosphorus Substances 0.000 claims description 15
- 239000010893 paper waste Substances 0.000 claims description 14
- 239000002916 wood waste Substances 0.000 claims description 14
- FUFJGUQYACFECW-UHFFFAOYSA-L calcium hydrogenphosphate Chemical compound [Ca+2].OP([O-])([O-])=O FUFJGUQYACFECW-UHFFFAOYSA-L 0.000 claims description 11
- 235000003891 ferrous sulphate Nutrition 0.000 claims description 9
- 239000011790 ferrous sulphate Substances 0.000 claims description 9
- BAUYGSIQEAFULO-UHFFFAOYSA-L iron(2+) sulfate (anhydrous) Chemical compound [Fe+2].[O-]S([O-])(=O)=O BAUYGSIQEAFULO-UHFFFAOYSA-L 0.000 claims description 9
- 229910000359 iron(II) sulfate Inorganic materials 0.000 claims description 9
- 229960001714 calcium phosphate Drugs 0.000 claims description 7
- 239000001506 calcium phosphate Substances 0.000 claims description 7
- 235000011010 calcium phosphates Nutrition 0.000 claims description 7
- 238000003672 processing method Methods 0.000 claims description 7
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 claims description 7
- 229960002089 ferrous chloride Drugs 0.000 claims description 3
- 235000019850 ferrous citrate Nutrition 0.000 claims description 3
- 239000011640 ferrous citrate Substances 0.000 claims description 3
- NMCUIPGRVMDVDB-UHFFFAOYSA-L iron dichloride Chemical compound Cl[Fe]Cl NMCUIPGRVMDVDB-UHFFFAOYSA-L 0.000 claims description 3
- APVZWAOKZPNDNR-UHFFFAOYSA-L iron(ii) citrate Chemical compound [Fe+2].OC(=O)CC(O)(C([O-])=O)CC([O-])=O APVZWAOKZPNDNR-UHFFFAOYSA-L 0.000 claims description 3
- 229910019142 PO4 Inorganic materials 0.000 claims description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 claims description 2
- 239000010452 phosphate Substances 0.000 claims description 2
- AVWJKAIFMUEKMH-UHFFFAOYSA-L calcium hydrogen phosphate phosphoric acid Chemical compound [Ca+2].OP(O)(O)=O.OP(O)(O)=O.OP([O-])([O-])=O AVWJKAIFMUEKMH-UHFFFAOYSA-L 0.000 claims 1
- 239000000284 extract Substances 0.000 claims 1
- 238000000746 purification Methods 0.000 claims 1
- 239000007788 liquid Substances 0.000 abstract description 9
- 238000000926 separation method Methods 0.000 abstract description 9
- 239000002699 waste material Substances 0.000 abstract description 7
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 abstract 1
- 230000002708 enhancing effect Effects 0.000 abstract 1
- 238000010828 elution Methods 0.000 description 43
- JOPOVCBBYLSVDA-UHFFFAOYSA-N chromium(6+) Chemical compound [Cr+6] JOPOVCBBYLSVDA-UHFFFAOYSA-N 0.000 description 26
- XAAHAAMILDNBPS-UHFFFAOYSA-L calcium hydrogenphosphate dihydrate Chemical compound O.O.[Ca+2].OP([O-])([O-])=O XAAHAAMILDNBPS-UHFFFAOYSA-L 0.000 description 18
- 238000002156 mixing Methods 0.000 description 14
- 239000002351 wastewater Substances 0.000 description 14
- 229910001385 heavy metal Inorganic materials 0.000 description 12
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 11
- 238000012360 testing method Methods 0.000 description 10
- 230000000052 comparative effect Effects 0.000 description 8
- 230000000694 effects Effects 0.000 description 8
- 238000010438 heat treatment Methods 0.000 description 6
- 229910052742 iron Inorganic materials 0.000 description 6
- 239000013049 sediment Substances 0.000 description 6
- 230000002378 acidificating effect Effects 0.000 description 5
- 238000007922 dissolution test Methods 0.000 description 5
- 239000010440 gypsum Substances 0.000 description 5
- 229910052602 gypsum Inorganic materials 0.000 description 5
- 239000006148 magnetic separator Substances 0.000 description 5
- 238000002485 combustion reaction Methods 0.000 description 4
- 239000003795 chemical substances by application Substances 0.000 description 3
- 238000005530 etching Methods 0.000 description 3
- 230000005484 gravity Effects 0.000 description 3
- 239000003864 humus Substances 0.000 description 3
- 230000008520 organization Effects 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- 230000001629 suppression Effects 0.000 description 3
- 229960005069 calcium Drugs 0.000 description 2
- 229910052791 calcium Inorganic materials 0.000 description 2
- 239000011575 calcium Substances 0.000 description 2
- -1 calcium hydrogen dihydrate Chemical class 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000010332 dry classification Methods 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 150000002505 iron Chemical class 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000000691 measurement method Methods 0.000 description 2
- 238000001000 micrograph Methods 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 238000010187 selection method Methods 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 description 1
- 238000001994 activation Methods 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 150000004683 dihydrates Chemical class 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 230000008635 plant growth Effects 0.000 description 1
- 239000011505 plaster Substances 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 229910052711 selenium Inorganic materials 0.000 description 1
- 239000011669 selenium Substances 0.000 description 1
- 239000003802 soil pollutant Substances 0.000 description 1
- 239000002910 solid waste Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 235000013311 vegetables Nutrition 0.000 description 1
- 238000004065 wastewater treatment Methods 0.000 description 1
Images
Landscapes
- Processing Of Solid Wastes (AREA)
Abstract
Description
本発明は、土砂系混合廃棄物から抽出された精選土の再資源化処理方法及び土砂系混合廃棄物から抽出された精選土の再資源化処理材に関し、より詳細には、所定温度、所定湿度の条件下において一定時間処理したリン酸含有化合物により土砂系混合廃棄物から抽出された精選土に含まれるフッ素を不溶化する工程を含む土砂系混合廃棄物から抽出された精選土の再資源化処理方法及びこのような再資源化処理方法に好適に使用することができる土砂系混合廃棄物から抽出された精選土の再資源化処理材に関する。 TECHNICAL FIELD The present invention relates to a method for recycling selected soil extracted from earth-and-sand mixed waste and a material for recycling recycled material selected from earth-and-sand mixed waste. Recycling of selected soil extracted from soil-and-sand mixed waste, including the process of insolubilizing fluorine contained in the selected soil extracted from soil-and-sand mixed waste by phosphoric acid-containing compounds treated for a certain period of time under humidity conditions The present invention relates to a processing method and a material for processing a recycled material of finely selected soil extracted from an earth-and-sand mixed waste that can be suitably used in such a recycling method.
従来より、汚染土壌や固体廃棄物などに含有される土壌の汚染物質の溶出を抑制し、環境省の定める環境基準値を満たすようにするための技術が種々提案されており、例えば、特許文献1には、フッ素含有排水にリン酸水素カルシウム二水和物を40℃以上の水中で撹拌して、その粒子表面をエッチング処理した活性化リン酸水素カルシウム二水和物を加えて混合し、排水中のフッ素を該活性化リン酸水素カルシウム二水和物の粒子表面で不溶化させた後、固液分離して、排水中のフッ素を除去するフッ素含有排水の処理方法が記載されている。また、特許文献2にも、重金属含有排水にpH4.0〜10.0の調整下でリン酸水素カルシウム二水和物を加えて混合し、排水中の重金属をリン酸水素カルシウム二水和物の粒子表面に吸着させた後、固液分離して、排水中の重金属を除去する重金属含有排水の処理方法が記載されており、更に、リン酸水素カルシウム二水和物として、リン酸水素カルシウム二水和物を水中で撹拌して、その粒子表面をエッチング処理した活性化リン酸水素カルシウム二水和物を用いることが記載されている。 Conventionally, various techniques have been proposed for suppressing the elution of soil pollutants contained in contaminated soil or solid waste, and satisfying the environmental standard values set by the Ministry of the Environment. 1, the calcium hydrogen phosphate dihydrate is stirred in water containing 40 ° C. or higher in the fluorine-containing waste water, and the activated calcium hydrogen phosphate dihydrate obtained by etching the particle surface is added and mixed; A method of treating fluorine-containing wastewater is described in which fluorine in wastewater is insolubilized on the surface of the activated calcium hydrogen phosphate dihydrate particles and then solid-liquid separated to remove fluorine in wastewater. In Patent Document 2, calcium hydrogen phosphate dihydrate is added to and mixed with heavy metal-containing wastewater under pH 4.0 to 10.0, and the heavy metal in the wastewater is mixed with calcium hydrogen phosphate dihydrate. A treatment method of heavy metal-containing wastewater is described in which the heavy metal in the wastewater is removed by solid-liquid separation after being adsorbed on the surface of the particles. Further, as calcium hydrogenphosphate dihydrate, calcium hydrogenphosphate is described. It is described to use activated calcium hydrogen phosphate dihydrate in which the dihydrate is stirred in water and the particle surface is etched.
しかしながら、リン酸水素カルシウム二水和物を水中で撹拌して、その粒子表面をエッチング処理した活性化リン酸水素カルシウム二水和物は、水からの分離、乾燥などの工程を要することから、工程が煩雑であるとともに無駄なエネルギーを必要としていた。なお、特許文献3には、リン酸水素カルシウム二水和物を水中で懸濁処理して粒子表面を活性化した活性化リン酸水素カルシウム二水和物を工業的に必要とされる量で製造しようとすると、大量の排水が発生し、この排水には相当の高濃度でリン分が含まれているため、そのままでは河川に排出することができず、そのための厄介な排水処理が必要になるという問題があるなどの問題を解決するために、リン酸水素カルシウム二水和物を温水中で撹拌することによりその粒子表面をエッチング処理して活性化した後、固液分離し、分離した固状分を活性化リン酸水素カルシウム二水和物として回収する一方、分離した液状分をpH6.0以上に調整してから前記のエッチング処理へと戻すことを特徴とする活性化リン酸水素カルシウム二水和物の製造方法が提案されており、リン酸水素カルシウム二水和物に工業的な規模で活性化処理をする場合には分離した水の処理にも課題があることが示唆されている。従って、フッ素の不溶化効率を高めるためにリン酸水素カルシウム二水和物などのリン酸含有化合物に処理を施すリン酸含有化合物処理工程において、固液分離の工程を不要とし、工業的な規模で処理を施す場合であっても排水の問題もなくリン酸含有化合物に処理を施すことができ、そのフッ素の不溶化能力を高めることができる技術の開発が望まれていた。 However, activated calcium hydrogen phosphate dihydrate obtained by stirring calcium hydrogen phosphate dihydrate in water and etching the particle surface requires steps such as separation from water and drying. The process is complicated and wasteful energy is required. In Patent Document 3, activated calcium hydrogen phosphate dihydrate obtained by suspending calcium hydrogen phosphate dihydrate in water to activate the particle surface is used in an industrially required amount. When trying to manufacture, a large amount of wastewater is generated, and this wastewater contains phosphorus at a considerably high concentration. Therefore, it cannot be discharged into the river as it is, which requires troublesome wastewater treatment. In order to solve problems such as the problem of becoming, the particle surface was etched and activated by stirring calcium hydrogen phosphate dihydrate in warm water, and then separated into solid and liquid and separated. An activated hydrogen phosphate characterized in that the solid content is recovered as activated calcium hydrogen phosphate dihydrate, and the separated liquid content is adjusted to pH 6.0 or higher and then returned to the etching treatment. Calcium dihydration Manufacturing methods have been proposed, that in the case of the activation process on an industrial scale calcium hydrogen phosphate dihydrate is a problem in the separated water treatment have been suggested. Therefore, in the phosphoric acid-containing compound treatment process in which the phosphoric acid-containing compound such as calcium hydrogen phosphate dihydrate is treated in order to increase the insolubilization efficiency of fluorine, a solid-liquid separation process is not required, and it is performed on an industrial scale. There has been a demand for the development of a technique that can treat phosphoric acid-containing compounds without problems of waste water even when the treatment is performed, and can increase the insolubility of fluorine.
一方、特許文献4には、鉛および六価クロムからなる重金属及びヒ素、セレン、ホウ素、フッ素から選ばれるすべてあるいは1つ以上の有害物質によって汚染された土壌及び焼却灰の不溶化剤が記載されており、更に、有害物質の不溶化剤が酸性鉄塩を含有することを特徴とすることが記載されているが、不溶化剤中の酸性鉄塩の含有量及び不溶化助剤の種類によっては、土壌及び焼却灰と混合した際のpHが強酸性になり、重金属類の溶出を引き起こす場合がある旨、記載されている。これに対し、例えば、特許文献2には、「本発明では先ず、重金属含有排水を、そのpHが4.0〜10.0の範囲を外れている場合には、pH4.0〜10.0に調整する。pHがこの範囲を外れると、そのような重金属含有排水にリン酸水素カルシウム二水和物(CaHPO4・2H2O)を加えて混合しても、排水中の重金属をリン酸水素カルシウム二水和物の粒子表面に充分に吸着させることができない」旨、記載されており、土砂系混合廃棄物中に存在する重金属類の一つである六価クロムの不溶化に有用である酸性鉄をリン酸含有化合物などと併用した場合、フッ素、重金属類の不溶化率が低下することが予想される。従って、六価クロムの不溶化に有用である酸性鉄をリン酸含有化合物などと併用しても、フッ素、重金属類の不溶化率が低下することがなく、土砂系混合廃棄物から抽出した精選土中にフッ素及び六価クロムが併存した場合であっても、いずれも効率的に不溶化することを可能とし、土砂系混合廃棄物から抽出された精選土を再資源化することができる技術の開発も望まれていた。 On the other hand, Patent Document 4 describes an insolubilizing agent for soil and incinerated ash contaminated by all or one or more harmful substances selected from heavy metals and arsenic, selenium, boron and fluorine consisting of lead and hexavalent chromium. In addition, it is described that the harmful substance insolubilizing agent contains an acidic iron salt, but depending on the content of the acidic iron salt in the insolubilizing agent and the type of the insolubilizing aid, It is stated that the pH when mixed with incinerated ash becomes strongly acidic and may cause elution of heavy metals. On the other hand, for example, in Patent Document 2, “In the present invention, first, when the pH of the heavy metal-containing wastewater is out of the range of 4.0 to 10.0, the pH is 4.0 to 10.0. When .pH adjusting is out of this range, even if mixed with such a heavy metal-containing wastewater calcium hydrogenphosphate dihydrate (CaHPO 4 · 2H 2 O) , phosphate heavy metals in waste water `` Cannot be sufficiently adsorbed on the particle surface of calcium hydrogen dihydrate '' and is useful for insolubilization of hexavalent chromium, one of the heavy metals present in mixed sediments When acidic iron is used in combination with a phosphoric acid-containing compound, the insolubilization rate of fluorine and heavy metals is expected to decrease. Therefore, even when acidic iron, which is useful for insolubilization of hexavalent chromium, is used in combination with phosphoric acid-containing compounds, the insolubilization rate of fluorine and heavy metals does not decrease, and the selected soil extracted from earth and sand mixed waste Even when fluorine and hexavalent chromium coexist in the same area, it is possible to efficiently insolubilize both, and the development of technology that can recycle the selected soil extracted from the mixed sediment waste It was desired.
本発明は、上記課題を鑑みなされたもので、フッ素の不溶化効率を高めるためにリン酸水素カルシウム二水和物などのリン酸含有化合物に処理を施すリン酸含有化合物処理工程において、固液分離の工程を不要とし、工業的な規模で処理を施す場合であっても排水の問題もなくリン酸含有化合物に処理を施すことによって、リン酸含有化合物のフッ素不溶化能力を高めることができ、更には、土砂系混合廃棄物から抽出した精選土中にフッ素及び六価クロムが併存した場合であっても、いずれも効率的に不溶化することを可能とし、土砂系混合廃棄物から抽出された精選土を再資源化することも可能とする土砂系混合廃棄物から抽出された精選土の再資源化処理方法及びこのような土砂系混合廃棄物から抽出された精選土の再資源化処理方法に好適に使用される土砂系混合廃棄物から抽出された精選土の再資源化処理材を提供することを目的とする。 The present invention has been made in view of the above problems, and in a phosphoric acid-containing compound treatment step for treating a phosphoric acid-containing compound such as calcium hydrogenphosphate dihydrate in order to increase the insolubilization efficiency of fluorine, solid-liquid separation is performed. This process is unnecessary, and even if the treatment is performed on an industrial scale, by treating the phosphoric acid-containing compound without the problem of drainage, the fluorine insolubilizing ability of the phosphoric acid-containing compound can be enhanced. Enables efficient insolubilization of both refined soil extracted from soil-and-sand mixed waste, even if both fluorine and hexavalent chromium coexist. Recycling method of selected soil extracted from soil-and-sand mixed waste, which can also recycle soil, and recycling method of selected soil extracted from such soil-and-sand mixed waste And to provide a recycling process material extracted from soil-based mixed waste suitable for use selective soil.
本発明者は、上記目的を達成するため鋭意検討した結果、リン酸カルシウム、リン酸水素カルシウム、リン酸二水素カルシウムなどのリン酸含有化合物を所定温度、所定湿度の条件下において一定時間処理することによって、固液分離の工程をしなくてもリン酸含有化合物のフッ素不溶化能力が向上したリン酸含有化合物の処理物が得られることを知見し、更に、鋭意検討した結果、土砂系混合廃棄物から抽出した精選土中にフッ素及び六価クロムが併存した場合であっても、六価クロムの不溶化に有用である二価鉄化合物を腐植物質と共に、上述したリン酸含有化合物の処理物と併用するとフッ素及び六価クロムのいずれも効率的に不溶化することが可能となることを見出し、本発明をなすに至った。 As a result of intensive studies to achieve the above object, the present inventor has treated phosphoric acid-containing compounds such as calcium phosphate, calcium hydrogen phosphate, calcium dihydrogen phosphate and the like for a certain period of time under conditions of a predetermined temperature and a predetermined humidity. As a result of knowing that a processed product of a phosphoric acid-containing compound with improved fluorine insolubilizing ability of the phosphoric acid-containing compound can be obtained without performing a solid-liquid separation process, Even when fluorine and hexavalent chromium coexist in the extracted selected soil, when the divalent iron compound useful for insolubilization of hexavalent chromium is used together with the processed product of the phosphoric acid-containing compound described above together with humic substances It has been found that both fluorine and hexavalent chromium can be efficiently insolubilized, and the present invention has been made.
即ち、本発明は、土砂系混合廃棄物から抽出された精選土を再資源化する処理方法であって、土砂系混合廃棄物を分別分級し、粒径5mm以下で、且つ紙と木くずの含有率が質量比で5%未満となるように選別された土を精選土とする精選土抽出工程と、リン酸カルシウム、リン酸水素カルシウム、リン酸二水素カルシウムから選ばれる1種又は2種以上であるリン酸含有化合物を温度25〜65℃、湿度80〜100%の条件下に1〜48時間放置してリン酸含有化合物を再資源化処理材とするリン酸含有化合物処理工程と、精選土に再資源化処理材を加え、更に水を加えて混合した混合物を養生して、精選土中のフッ素を不溶化処理するフッ素不溶化処理工程と、を含むことを特徴とする土砂系混合廃棄物から抽出された精選土の再資源化処理方法を提供する。 That is, the present invention is a processing method for recycling the selected soil extracted from the earth and sand mixed waste, and the earth and sand mixed waste is classified and classified, and has a particle size of 5 mm or less and contains paper and wood waste. The selected soil extraction step using the selected soil as the ratio of less than 5% by mass ratio, and one or more selected from calcium phosphate, calcium hydrogen phosphate, calcium dihydrogen phosphate A phosphoric acid-containing compound treatment step using the phosphoric acid-containing compound as a recycling material by leaving the phosphoric acid-containing compound at a temperature of 25 to 65 ° C. and a humidity of 80 to 100% for 1 to 48 hours; Extracting from soil-and-sand mixed waste characterized by adding a recycling material, curing the mixture by adding water, and insolubilizing fluorine in the selected soil Recycling of selected soil To provide a processing method.
ここで、本発明の土砂系混合廃棄物から抽出された精選土の再資源化処理方法のフッ素不溶化処理工程において、再資源化処理材の添加量が、精選土100質量部に対してリン成分量として0.3〜10質量部であったり、フッ素不溶化処理工程における水の添加量が、精選土100質量部に対して10〜30質量部であったり、混合物を養生する時間が、5分間から72時間であると、より好適である。また、本発明の土砂系混合廃棄物から抽出された精選土の再資源化処理方法が、更に、二価鉄化合物及び腐植物質を添加する再資源化補助材添加工程を含むものであると、より好適であり、この再資源化補助材添加工程において、二価鉄化合物及び腐植物質を予め混合して再資源化補助材としたり、フッ素不溶化処理工程の後に、再資源化補助材添加工程を行なったり、二価鉄化合物が、硫酸第一鉄、塩化第一鉄、クエン酸第一鉄から選ばれる1種又は2種以上であったり、二価鉄化合物の添加量が、精選土100質量部に対して0.03〜2質量部であったり、腐植物質の添加量が、精選土100質量部に対して0.1〜5質量部であると、更に好適である。 Here, in the fluorine insolubilization treatment step of the method of recycling the selected soil extracted from the earth-and-sand mixed waste of the present invention, the amount of the recycled material added is a phosphorus component with respect to 100 parts by mass of the selected soil. The amount of water is 0.3 to 10 parts by mass, the amount of water added in the fluorine insolubilization treatment step is 10 to 30 parts by mass with respect to 100 parts by mass of the selected soil, and the time for curing the mixture is 5 minutes. 72 hours is more preferable. Further, it is more preferable that the method for recycling the selected soil extracted from the earth-and-sand mixed waste of the present invention further includes a recycling auxiliary material addition step of adding a divalent iron compound and humic substance. In this recycling auxiliary material addition process, divalent iron compounds and humic substances are mixed in advance to make a recycling auxiliary material, or a recycling auxiliary material addition process is performed after the fluorine insolubilization treatment process. The divalent iron compound is one or more selected from ferrous sulfate, ferrous chloride and ferrous citrate, or the added amount of the divalent iron compound is 100 parts by mass of the selected soil. On the other hand, it is more preferable that it is 0.03 to 2 parts by mass, or the addition amount of humic substance is 0.1 to 5 parts by mass with respect to 100 parts by mass of the selected soil.
また、本発明は、リン酸カルシウム、リン酸水素カルシウム、リン酸二水素カルシウムから選ばれる1種又は2種以上であるリン酸含有化合物を温度25〜65℃、湿度80〜100%の条件下に1〜48時間放置してなることを特徴とする土砂系混合廃棄物から抽出された精選土の再資源化処理材を提供する。 In the present invention, a phosphoric acid-containing compound that is one or more selected from calcium phosphate, calcium hydrogen phosphate, and calcium dihydrogen phosphate is placed under the conditions of a temperature of 25 to 65 ° C. and a humidity of 80 to 100%. Provided is a material for treating recycled resources of selected soil extracted from a soil-and-sand mixed waste characterized by being left for ˜48 hours.
本発明の土砂系混合廃棄物から抽出された精選土の再資源化処理方法によれば、フッ素の不溶化効率を高めるためにリン酸水素カルシウム二水和物などのリン酸含有化合物に処理を施すリン酸含有化合物処理工程において固液分離の工程を不要とし、工業的な規模で処理を施す場合であっても排水の問題もなくリン酸含有化合物に処理を施すことによって、リン酸含有化合物のフッ素不溶化能力を高めることができ、更には、土砂系混合廃棄物から抽出した精選土中にフッ素及び六価クロムが併存した場合であっても、いずれも効率的に不溶化することも可能となる。また、本発明の土砂系混合廃棄物から抽出された精選土の再資源化処理材によれば、このような土砂系混合廃棄物から抽出された精選土の再資源化処理を好適に行うことが可能となる。 According to the method of recycling the selected soil extracted from the earth-and-sand mixed waste of the present invention, the phosphoric acid-containing compound such as calcium hydrogenphosphate dihydrate is treated in order to increase the insolubilization efficiency of fluorine. In the phosphoric acid-containing compound treatment step, the process of solid-liquid separation is not required, and even if the treatment is performed on an industrial scale, the phosphoric acid-containing compound is treated by treating the phosphoric acid-containing compound without any problem of drainage. Fluorine insolubilization capability can be increased, and even when fluorine and hexavalent chromium coexist in the selected soil extracted from the earth and sand mixed waste, both can be efficiently insolubilized. . In addition, according to the material for recycling of selected soil extracted from the earth-and-sand mixed waste of the present invention, it is preferable to appropriately perform the processing of recycling the selected soil extracted from such an earth-and-sand mixed waste. Is possible.
以下、本発明につき、より詳細に説明すると、本発明の土砂系混合廃棄物から抽出された精選土を再資源化する処理方法は、精選土抽出工程と、リン酸含有化合物処理工程と、フッ素不溶化処理工程と、を含むものである。ここで、本発明の土砂系混合廃棄物とは、例えば、建物の新築や解体工事から発生する建築系廃棄物などであり、土砂に紙と木くず、石膏等が混ざったものである。 Hereinafter, the present invention will be described in more detail. The processing method for recycling the selected soil extracted from the earth-and-sand mixed waste of the present invention includes a selected soil extraction step, a phosphoric acid-containing compound processing step, a fluorine And an insolubilization process step. Here, the earth-and-sand mixed waste of the present invention is, for example, building-related waste generated from new construction or demolition of a building, and is a mixture of earth, sand, paper waste, plaster, and the like.
本発明の精選土抽出工程は、土砂系混合廃棄物を分別分級し、粒径5mm以下で、且つ紙と木くずの含有率が質量比で5%未満となるように選別するものであり、より具体的には、例えば、土砂系混合廃棄物に含まれる成分の物理特性を基に、乾式で分別・分級する方法によって、精選する精選方法などが挙げられ、より具体的には、得られる精選土の粒径が5mm以下となり、且つ紙と木くずの含有率が質量比で5%未満となるように、スクリーン、比重差選別装置、風力選別機、吸選別機、磁力選別機などの乾式分別分級装置を利用することによって、複合的に土砂系混合廃棄物から粒径5mm以下で、且つ紙と木くずの含有率が質量比で5%未満となる精選土を選別することができる。なお、選別された精選土の粒径は、例えばスクリーニングの際に粒径5mm以下の物質が篩い分けられるような篩を選定することによって5mm以下の土が選別されていることを確認することができ、精選土全量に対する紙と木くずの質量含有率は、選別処理後の精選土から適量をサンプリングし、その全質量を測定した後、加熱処理を施し、精選土中の紙と木くずを燃焼させた後、加熱・燃焼処理後の質量を測定し、加熱・燃焼処理前後の質量差により確認することができる。また、精選土の粒径は、5mm以下であれば良く、粒径5mm以下の物質が篩い分けられる篩などを通過したものである限り、その下限値は特に制限されるものではない。そして、精選土全量に対する紙と木くずの含有率は、低ければ低いほど好適であり、その下限値は特に制限されるものではない。 The refined soil extraction process of the present invention classifies and classifies the earth-and-sand mixed waste and sorts it so that the particle size is 5 mm or less and the content ratio of paper and wood waste is less than 5% by mass. Specifically, for example, based on the physical characteristics of the components contained in the earth-and-sand mixed waste, there is a selection method for selection by a dry separation and classification method, and more specifically, the selection method to be obtained Dry separation of screens, specific gravity separators, wind separators, suction separators, magnetic separators, etc., so that the soil particle size is 5mm or less and the content ratio of paper and wood waste is less than 5% by mass. By using a classification device, it is possible to select a selected soil that has a particle size of 5 mm or less and a content ratio of paper and wood waste of less than 5% in terms of mass ratio from a mixed sand and sand waste. In addition, it is possible to confirm that the soil of 5 mm or less is sorted by selecting a sieve that can screen a substance having a particle size of 5 mm or less during screening, for example. The mass content of paper and wood waste relative to the total amount of finely selected soil can be sampled from the finely selected soil after the sorting process, and after measuring its total mass, heat treatment is performed to burn the paper and wood waste in the finely selected soil. Thereafter, the mass after the heating / combustion treatment can be measured, and the mass difference before and after the heating / combustion treatment can be confirmed. Further, the grain size of the selected soil may be 5 mm or less, and the lower limit is not particularly limited as long as it passes through a sieve or the like through which a substance having a particle diameter of 5 mm or less is sieved. And the content rate of the paper and the wood waste with respect to the total amount of the selected soil is preferably as low as possible, and the lower limit value is not particularly limited.
本発明のリン酸含有化合物処理工程は、リン酸カルシウム、リン酸水素カルシウム、リン酸二水素カルシウムから選ばれる1種又は2種以上であるリン酸含有化合物を温度25〜65℃、より好ましくは30〜60℃、更に好ましくは40〜60℃、湿度80〜100%、より好ましくは85〜100%、更に好ましくは85〜95%の条件下に、1〜48時間、より好ましくは2〜24時間、更に好ましくは4〜24時間放置してリン酸含有化合物を再資源化処理材とするものである。温度が低すぎても高すぎても、フッ素の不溶化能力の向上が認められない場合がある。また、湿度が低すぎると、フッ素の不溶化能力の向上が認められない場合があり、高すぎるとリン酸含有化合物が固まってしまう場合がある。そして、放置時間が短すぎるとフッ素の不溶化能力の向上が認められない場合があり、長すぎるとそれ以上の長時間の処理による効果の向上が得られ難くなる場合がある。なお、本発明のリン酸含有化合物処理工程において、所定の温度、湿度の条件下で放置する手段は、特に制限されるものではなく、例えば、恒温恒湿槽や恒温恒湿機能を備えたタンクなどを利用し、槽内、タンクの中にリン酸含有化合物を放置することによって、リン酸含有化合物を所定の温度、湿度の条件下で所定の時間、放置することができる。 In the phosphoric acid-containing compound treatment step of the present invention, the temperature of the phosphoric acid-containing compound selected from calcium phosphate, calcium hydrogen phosphate, and calcium dihydrogen phosphate is 25 to 65 ° C., more preferably 30 to 30 ° C. 60 ° C., more preferably 40 to 60 ° C., humidity 80 to 100%, more preferably 85 to 100%, still more preferably 85 to 95%, for 1 to 48 hours, more preferably 2 to 24 hours, More preferably, it is allowed to stand for 4 to 24 hours to use the phosphoric acid-containing compound as a recycling treatment material. Even if the temperature is too low or too high, an improvement in fluorine insolubilization ability may not be observed. Further, if the humidity is too low, improvement in the insolubility of fluorine may not be recognized, and if it is too high, the phosphoric acid-containing compound may solidify. If the standing time is too short, the improvement in fluorine insolubilization ability may not be recognized, and if it is too long, it may be difficult to obtain the effect of longer treatment. In the phosphoric acid-containing compound treatment step of the present invention, the means for leaving under predetermined temperature and humidity conditions is not particularly limited. For example, a constant temperature and humidity tank or a tank having a constant temperature and humidity function. The phosphoric acid-containing compound can be allowed to stand for a predetermined period of time at a predetermined temperature and humidity by leaving the phosphoric acid-containing compound in the tank or tank.
本発明のフッ素不溶化処理工程は、精選土に上記処理後のリン酸含有化合物を再資源化処理材として加え、更に水を加えて混合した混合物を養生して、精選土中のフッ素を不溶化処理するものであるが、本発明のフッ素不溶化処理工程の場合、精選土に処理後のリン酸含有化合物を再資源化処理材として加えて混合した後、更に水を加えて混合して混合物とし、この混合物を養生すると、より好適である。ここで、本発明のフッ素不溶化処理工程における再資源化処理材の添加量は、精選土中のフッ素を不溶化処理し得る量であり、また、本発明の処理方法の最終処理物が再資源化処理精選土であることを考慮すれば、再資源化処理精選土の環境省告示46号で規定された溶出試験によるフッ素溶出量が0.8mg/l以下であることから、再資源化処理材(リン酸含有化合物処理工程により得られたリン酸含有化合物)の添加量は、最終処理物の環境省告示46号で規定された溶出試験によるフッ素溶出量が0.8mg/l以下となるようにする量でもあり、このような再資源化処理材の添加量は、精選土中のフッ素含有量や精選土の含水率などを考慮して適宜選定することができるが、例えば、再資源化処理材の添加量が、好ましくは精選土100質量部に対してリン成分量として0.3〜10質量部、より好ましくは、0.3〜5質量部、更に好ましくは0.4〜2質量部であると、より好適である。精選土に対する再資源化処理材(リン酸含有化合物処理工程後のリン酸含有化合物)の添加量が少なすぎると、本発明の目的とするフッ素の溶出抑制効果が得られ難くなる場合があり、多すぎると、それ以上の添加量の増加による効果の向上が得られ難くなる場合がある。従って、本発明のフッ素不溶化処理工程における再資源化処理材の添加量としては、精選土100質量部に対してリン成分量として、0.3〜10質量部であり、且つ再資源化処理精選土の環境省告示46号で規定された溶出試験によるフッ素溶出量が0.8mg/l以下となるようにする量であると、より好適である。 In the fluorine insolubilization treatment process of the present invention, the phosphoric acid-containing compound after the above treatment is added to the selected soil as a recycling treatment material, and the mixture mixed by adding water is further cured to insolubilize the fluorine in the selected soil. However, in the case of the fluorine insolubilization treatment step of the present invention, after adding and mixing the treated phosphoric acid-containing compound as a recycling treatment material to the finely selected soil, water is further added and mixed to obtain a mixture, It is more preferable to cure this mixture. Here, the addition amount of the recycling treatment material in the fluorine insolubilization treatment step of the present invention is an amount capable of insolubilizing the fluorine in the selected soil, and the final treated product of the treatment method of the present invention is recycled. In consideration of the fact that the soil is treated, the amount of fluorine eluted by the dissolution test stipulated in Ministry of the Environment Notification No. 46 of the recycled material is 0.8 mg / l or less. The added amount of (the phosphoric acid-containing compound obtained by the phosphoric acid-containing compound treatment step) is such that the amount of fluorine eluted by the dissolution test specified in Ministry of the Environment Notification No. 46 of the final treated product is 0.8 mg / l or less. The amount of the recycled material added can be selected as appropriate in consideration of the fluorine content in the selected soil and the moisture content of the selected soil. The amount of treatment material added is preferably finely selected soil 0.3 to 10 parts by weight as a phosphorus component amount with respect to 00 parts by weight, more preferably 0.3 to 5 parts by weight, further preferably is 0.4 to 2 parts by mass is more preferable. If there is too little addition amount of the recyclable treatment material (phosphoric acid-containing compound after the phosphoric acid-containing compound treatment step) for the finely selected soil, it may be difficult to obtain the fluorine elution suppression effect of the present invention, If the amount is too large, it may be difficult to obtain an improvement in effect due to an increase in the amount added beyond that. Therefore, the addition amount of the recycling material in the fluorine insolubilization treatment step of the present invention is 0.3 to 10 parts by mass as the phosphorus component amount with respect to 100 parts by mass of the selected soil, and the recycling process is carefully selected. It is more preferable that the amount of fluorine dissolved in the dissolution test specified in Ministry of the Environment Notification No. 46 of the soil is 0.8 mg / l or less.
本発明のフッ素不溶化処理工程における水の添加量は、再資源化処理材を添加した精選土を混合し、養生し得る量であり、その量は、精選土の含水率などを考慮して適宜選定することができるが、例えば、精選土100質量部に対して、好ましくは10〜30質量部、より好ましくは15〜25質量部、更に好ましくは18〜22質量部であると、より好適である。精選土に対する水の添加量が少なすぎると、精選土と再資源化処理材を均一に混合し難くなる場合があり、多すぎると、混合物を養生させるのに要する時間が長くなりすぎる場合がある。 The amount of water added in the fluorine insolubilization treatment step of the present invention is an amount capable of mixing and curing the selected soil to which the recycled material is added, and the amount is appropriately determined in consideration of the moisture content of the selected soil and the like. Although it can select, for example with respect to 100 mass parts of finely selected soil, Preferably it is 10-30 mass parts, More preferably, it is 15-25 mass parts, More preferably, it is more suitable in it being 18-22 mass parts. is there. If the amount of water added to the selected soil is too small, it may be difficult to uniformly mix the selected soil and the recycled material. If it is too much, it may take too long to cure the mixture. .
本発明のフッ素不溶化処理工程における養生時間は、特に制限されるものではなく、温度や湿度などを考慮して適宜選定することができるが、例えば、好ましくは5分間〜72時間、より好ましくは60分間〜72時間、更に好ましくは12時間〜72時間であると、より好適である。養生時間が短すぎると、精選土中のフッ素を十分に不溶化し難くなる場合があり、長すぎると、それ以上の養生時間の延長による効果が得られ難くなる場合がある。 The curing time in the fluorine insolubilization treatment step of the present invention is not particularly limited, and can be appropriately selected in consideration of temperature, humidity, etc. For example, preferably 5 minutes to 72 hours, more preferably 60. It is more preferable that it is minutes to 72 hours, more preferably 12 hours to 72 hours. If the curing time is too short, it may be difficult to sufficiently insolubilize the fluorine in the selected soil, and if it is too long, it may be difficult to obtain an effect by further extending the curing time.
また、本発明の土砂系混合廃棄物から抽出された精選土の再資源化処理方法の場合、更に、二価鉄化合物及び腐植物質を添加する再資源化補助材添加工程を含むものであると、本発明のリン酸含有化合物処理工程によって得られた再資源化処理材(処理後のリン酸含有化合物)の優れたフッ素の不溶化効果が損なわれることなく、二価鉄化合物による六価クロムの不溶化効果を得ることができるので、より好適である。このように二価鉄化合物及び腐植物質を併用する場合、本発明の再資源化処理材、二価鉄化合物、腐植物質の添加方法は、特に制限されるものではなく、これらを同時に処理対象の土砂系混合廃棄物に添加したり、腐植物質、二価鉄化合物を同時にフッ素不溶化処理工程後の精選土に添加したり、別々にフッ素不溶化処理工程後の精選土に添加してもよいが、本発明の再資源化補助材添加工程では、二価鉄化合物及び腐植物質を予め混合して再資源化補助材としておくと、腐植物質と鉄イオンは、複合体をつくりやすいことから、常温において腐植物質及び二価鉄化合物を混合することによって、二価鉄腐植複合体が形成されるので、より好適である。なお、腐植物質及び二価鉄化合物の混合方法については、特に限定されないが、二価鉄腐植複合体が形成されやすいように混合されることが好適であり、水などの溶媒を添加して混合することも好適である。また、フッ素不溶化処理工程の後に、再資源化補助材添加工程を行なうと、フッ素の不溶化処理工程においてフッ素と反応したリン成分を腐植物質に吸着させると共に、二価鉄化合物により六価クロムを不溶化することができるので、より好適である。さらに、前記二価鉄化合物及び腐植物質は、リン酸含有化合物処理工程を行う前にリン酸含有化合物に混合することもできる。この場合、前記混合物についてリン酸含有化合物処理工程を行い、好ましく土砂系混合廃棄物から抽出された精選土の再資源化処理に用いることができる。 Further, in the case of the method for recycling the selected soil extracted from the earth-and-sand mixed waste of the present invention, it further includes a recycling auxiliary material addition step of adding a divalent iron compound and humic substance. The insolubilizing effect of hexavalent chromium by a divalent iron compound without impairing the excellent fluorine insolubilizing effect of the recycled material (the phosphoric acid-containing compound after the treatment) obtained by the phosphoric acid-containing compound treatment step of the invention Is more preferable. Thus, when using a divalent iron compound and a humic substance together, the recycling processing material of this invention, a divalent iron compound, and the addition method of a humic substance are not restrict | limited, These are to be processed simultaneously. It may be added to earth and sand mixed waste, or humic substances and divalent iron compounds may be added simultaneously to the selected soil after the fluorine insolubilization process, or separately to the selected soil after the fluorine insolubilization process, In the recycling auxiliary material addition step of the present invention, when divalent iron compounds and humic substances are mixed in advance and used as a recycling auxiliary material, humic substances and iron ions easily form a complex. By mixing the humic substance and the divalent iron compound, a divalent iron humus complex is formed, which is more preferable. The method for mixing the humic substance and the divalent iron compound is not particularly limited, but is preferably mixed so that a divalent iron humus complex is easily formed, and mixed by adding a solvent such as water. It is also suitable to do. In addition, when a recycling aid is added after the fluorine insolubilization process, the phosphorus component that reacts with fluorine in the fluorine insolubilization process is adsorbed to humic substances, and hexavalent chromium is insolubilized with a divalent iron compound. This is more preferable. Furthermore, the divalent iron compound and the humic substance can be mixed with the phosphoric acid-containing compound before the phosphoric acid-containing compound treatment step. In this case, the phosphoric acid-containing compound treatment step is performed on the mixture, and it can be preferably used for the recycling treatment of the selected soil extracted from the earth-and-sand mixed waste.
本発明の土砂系混合廃棄物から抽出された精選土の再資源化処理方法が、更に、二価鉄化合物及び腐植物質を添加する再資源化補助材添加工程を含む場合、二価鉄化合物は、その種類が特に制限されるものではなく、例えば、硫酸第一鉄、塩化第一鉄、クエン酸第一鉄から選ばれる1種又は2種以上を適宜組み合わせて使用することができる。一方、腐植物質は、その種類が特に制限されるものではなく、例えば、市販されている腐植物質を適宜選定して使用することができる。 In the case where the method for recycling the selected soil extracted from the earth-and-sand mixed waste of the present invention further includes a recycling auxiliary material adding step of adding a divalent iron compound and humic substance, the divalent iron compound is The type is not particularly limited, and for example, one or more selected from ferrous sulfate, ferrous chloride, and ferrous citrate can be used in appropriate combination. On the other hand, the kind of humic substance is not particularly limited, and for example, commercially available humic substances can be appropriately selected and used.
また、二価鉄化合物及び腐植物質を併用する場合、これらの添加量は特に制限されるものではなく、二価鉄化合物、土砂系混合廃棄物中の六価クロム含有量などにより適宜選定することができるが、本発明の処理方法の最終処理物が再資源化処理精選土であることを考慮すれば、再資源化処理精選土の環境省告示46号で規定された溶出試験による六価クロム溶出量が0.05mg/l以下であることから、二価鉄化合物の添加量は、最終処理物である再資源化処理精選土の環境省告示46号で規定された溶出試験による六価クロム溶出量が0.05mg/l以下となるようにする量であると、より好適であり、このような二価鉄化合物の添加量は、精選土中の六価クロム含有量などを考慮して適宜選定することができるが、例えば、二価鉄化合物の添加量が、精選土100質量部に対して好ましくは0.03〜2質量部、より好ましくは0.05〜2質量部、更に好ましくは0.1〜1.5質量部であると、より好適である。精選土に対する二価鉄化合物の添加量が少なすぎると、本発明の目的とする六価クロムの溶出抑制効果が得られ難くなる場合があり、多すぎると、それ以上の添加量の増加による効果の向上が得られ難くなる場合がある。従って、本発明の二価鉄化合物の添加量としては、精選土100質量部に対して0.03〜2質量部であり、且つ再資源化処理精選土の環境省告示46号で規定された溶出試験による六価クロム溶出量が0.05mg/l以下となる量であると、更に好適である。 In addition, when a divalent iron compound and humic substance are used in combination, the amount of these added is not particularly limited, and should be appropriately selected depending on the divalent iron compound and the hexavalent chromium content in the earth and sand mixed waste. However, considering that the final treated product of the treatment method of the present invention is a recycled material, the hexavalent chromium obtained by the dissolution test specified in Ministry of the Environment Notification No. 46 of the recycled material is selected. Since the elution amount is 0.05 mg / l or less, the addition amount of the divalent iron compound is the hexavalent chromium according to the elution test prescribed in Ministry of the Environment Notification No. 46 of the recycled material selected as the final processed product. It is more preferable that the amount of elution be 0.05 mg / l or less, and the amount of such a divalent iron compound added is determined in consideration of the hexavalent chromium content in the selected soil. For example, divalent iron The amount of the compound added is preferably 0.03 to 2 parts by mass, more preferably 0.05 to 2 parts by mass, and still more preferably 0.1 to 1.5 parts by mass with respect to 100 parts by mass of the selected soil. And more preferable. If the amount of the divalent iron compound added to the finely selected soil is too small, it may be difficult to obtain the target hexavalent chromium elution suppression effect of the present invention. It may be difficult to obtain the improvement. Therefore, the addition amount of the divalent iron compound of the present invention is 0.03 to 2 parts by mass with respect to 100 parts by mass of the finely selected soil, and is specified in Ministry of the Environment Notification No. 46 of the recycled material. It is further preferred that the hexavalent chromium elution amount by the dissolution test is 0.05 mg / l or less.
一方、腐植物質の添加量は、本発明の目的を考慮すれば、再資源化処理精選土の環境省告示46号で規定された溶出試験によるフッ素溶出量が0.8mg/l以下となるようにする量でもあり、このような腐植物質の添加量は、精選土中のフッ素含有量やフッ素不溶化処理工程におけるリン成分の添加量などを考慮して適宜選定することができるが、例えば、精選土100質量部に対して好ましくは0.1〜5質量部、より好ましくは0.5〜5質量部、更に好ましくは0.8〜3質量部とすると、より好適である。精選土に対する腐植物質の添加量が少なすぎると、本発明の目的とするフッ素の溶出抑制効果が得られ難くなる場合があり、多すぎると、それ以上の添加量の増加による効果の向上が得られ難くなる場合がある。また、再資源化補助材添加工程における腐植物質の添加量としては、フッ素不溶化処理工程により得られたフッ素不溶化処理精選土中のフッ素と反応したリン成分を吸着し得る量であると、より好適であり、例えば、再資源化処理材(上記処理工程により得られたリン酸含有化合物)の添加量に対する腐植物質の添加量の比率が質量比でリン成分量/腐植物質量=0.3/5〜10/0.1、好ましくは0.5/2〜1.25/0.2、より好ましくは1.0/1〜1.25/0.5であると、より好適である。再資源化処理材(リン酸含有化合物処理工程により得られたリン酸含有化合物)の添加量に対する腐植物質の添加量の比率が小さすぎると、フッ素不溶化処理精選土中のフッ素と反応したリン成分を吸着し難くなる場合があり、大きすぎると、それ以上の腐植物質量の割合の増加による効果の向上が得られ難くなる場合がある。従って、再資源化補助材添加工程における腐植物質の添加量としては、精選土100質量部に対して0.1〜5質量部であり、且つ再資源化処理材の添加量に対する腐植物質の添加量の比率が質量比でリン成分量/腐植物質量=0.3/5〜10/0.1であると、更に好適である。 On the other hand, in consideration of the object of the present invention, the amount of humic substance added is such that the fluorine elution amount by the elution test stipulated in Ministry of the Environment Notification No. 46 of the reclaimed soil is 0.8 mg / l or less. The amount of humic substance added can be appropriately selected in consideration of the fluorine content in the selected soil and the amount of phosphorus component added in the fluorine insolubilization treatment process. Preferably it is 0.1-5 mass parts with respect to 100 mass parts of soil, More preferably, it is 0.5-5 mass parts, More preferably, it is 0.8-3 mass parts. If the amount of humic substance added to the finely selected soil is too small, it may be difficult to obtain the target fluorine elution suppression effect of the present invention. It may be difficult to get caught. Further, the amount of humic substance added in the recycling auxiliary material addition step is more preferably an amount capable of adsorbing the phosphorus component that has reacted with fluorine in the fluorine insolubilized treatment selected soil obtained by the fluorine insolubilization treatment step. For example, the ratio of the added amount of humic substance to the added amount of the recycled material (the phosphoric acid-containing compound obtained by the above treatment process) is the phosphorus component amount / humic plant mass = 0.3 / 5-10 / 0.1, preferably 0.5 / 2 to 1.25 / 0.2, more preferably 1.0 / 1 to 1.25 / 0.5. If the ratio of the added amount of humic substance to the added amount of the recycled material (phosphoric acid-containing compound obtained by the phosphoric acid-containing compound treatment step) is too small, the phosphorus component that reacts with fluorine in the fluorine insolubilized refined soil May be difficult to adsorb, and if it is too large, it may be difficult to improve the effect due to an increase in the proportion of humic mass. Therefore, the amount of humic substances added in the recycling auxiliary material addition step is 0.1 to 5 parts by mass with respect to 100 parts by mass of the selected soil, and the addition of humic substances to the amount of the resources to be recycled is added. It is more preferable that the ratio of the amount is phosphorus component amount / humic plant mass = 0.3 / 5 to 10 / 0.1 by mass ratio.
なお、本発明の精選土の再資源化処理方法は、1回のフッ素不溶化処理工程、再資源化補助材添加工程を含む場合は、1回の再資源化補助材添加工程によって所望の再資源化処理精選土を得ることが望ましいが、1回の処理では得られた最終処理物のフッ素溶出量、六価クロム溶出量が環境基準値を満たさなかった場合、再度、フッ素不溶化処理工程、再資源化補助材添加工程を行って所望の再資源化処理精選土を得ることもできる。 In addition, when the method of recycling the selected soil according to the present invention includes a single fluorine insolubilization process step and a recycling auxiliary material addition step, a desired recycling resource is added by a single recycling auxiliary material addition step. However, if the amount of fluorine elution and hexavalent chromium elution of the final processed product obtained in one treatment does not meet the environmental standard values, the fluorine insolubilization treatment process is repeated. It is also possible to obtain a desired resource recycling treated fine soil by performing a resource recycling auxiliary material addition step.
本発明の再資源化処理方法において、フッ素不溶化処理工程、再資源化補助材添加工程の混合方法、混合時間などは特に制限されるものではなく、処理する際の規模などに合わせて、例えば、ミキサー、攪拌混合機、ブレンダー等の通常用いられる混合装置を適宜選定して、内容物が均一に混合されるように、使用する混合装置の常法に従って混合することができる。また、処理物を均一に混合することができる限り、手作業や手動にて混合することもできる。 In the recycling treatment method of the present invention, the fluorine insolubilization treatment step, the mixing method of the recycling auxiliary material addition step, the mixing time and the like are not particularly limited, according to the scale at the time of processing, for example, Mixing can be performed according to a conventional method of a mixing apparatus to be used so that the contents can be uniformly mixed by appropriately selecting a commonly used mixing apparatus such as a mixer, a stirring mixer, and a blender. Moreover, as long as a processed material can be mixed uniformly, it can also mix manually or manually.
本発明の精選土の再資源化処理方法の最終処理物として得られる再資源化処理精選土は、上述したように環境省告示46号で規定された溶出試験によるフッ素溶出量が0.8mg/l以下、六価クロム溶出量が0.05mg/l以下である。そして、本発明の再資源化処理方法により得られた再資源化処理精選土は、その用途が特に制限されるものではなく、例えば、農業用等の用土として利用することができるが、再資源化補助材添加工程を含む場合、例えば、農業用土壌として再利用するのであれば、再資源化処理精選土中の腐植物質の含有量が再資源化処理精選土全量に対して0.1〜5質量%であると、より好適である。再資源化処理精選土中の腐植物質の含有量が低すぎると、例えば、再資源化処理精選土を農業用土壌とした場合に野菜などの植物の育成促進効果が得られ難くなる場合があり、高すぎると、それ以上の含有量の増加による効果の向上が得られ難くなる場合がある。ここで、本発明において腐植物質の含有量の測定方法は、特に制限されるものではなく、公知の測定方法を適宜選定して測定することができ、このような測定方法としては熊田法、チューリン法などを挙げることができ、これらの中でも、特に熊田法により測定すると、より好適である。 As described above, the reclaimed soil obtained as a final treated product of the reclaimed soil reclaim method of the present invention has a fluorine elution amount of 0.8 mg / kg according to the elution test prescribed in Ministry of the Environment Notification No. 46. 1 or less, and the hexavalent chromium elution amount is 0.05 mg / l or less. And the use of the resource-recovered treated soil obtained by the resource-recycling method of the present invention is not particularly limited, and for example, it can be used as a soil for agriculture, etc. In the case of including a recycling auxiliary material addition step, for example, if it is reused as agricultural soil, the content of humic substances in the recycled treated refined soil is 0.1 to 0.1% of the recycled treated refined total amount. It is more preferable that it is 5 mass%. If the content of the humic substance in the recycled treated fine soil is too low, for example, when the recycled treated selective soil is used as agricultural soil, it may be difficult to obtain the effect of promoting the growth of plants such as vegetables. If it is too high, it may be difficult to improve the effect due to an increase in the content. Here, in the present invention, the method for measuring the content of humic substances is not particularly limited, and a known measurement method can be appropriately selected and measured. Examples of such a measurement method include the Kumada method and the Turin. Among these, it is more preferable to measure by the Kumada method.
また、本発明の土砂系混合廃棄物から抽出された精選土の再資源化処理材は、リン酸カルシウム、リン酸水素カルシウム、リン酸二水素カルシウムから選ばれる1種又は2種以上であるリン酸含有化合物を温度25〜65℃、湿度80〜100%の条件下に1〜48時間処理してなるものである。本発明の再資源化処理材については、本発明の土砂系混合廃棄物から抽出された精選土の再資源化処理方法のリン酸含有化合物処理工程における処理温度、処理湿度、処理時間に準じる。また、本発明の再資源化処理材の使用方法、使用量は、本発明の土砂系混合廃棄物から抽出された精選土の再資源化処理方法のフッ素不溶化処理工程における使用方法、添加量に準じる。 Moreover, the recycle processing material of the selective soil extracted from the earth-and-sand system mixed waste of this invention is phosphoric acid containing which is 1 type (s) or 2 or more types chosen from calcium phosphate, calcium hydrogen phosphate, and calcium dihydrogen phosphate The compound is treated for 1 to 48 hours under conditions of a temperature of 25 to 65 ° C. and a humidity of 80 to 100%. About the recycling processing material of this invention, it conforms to the processing temperature, processing humidity, and processing time in the phosphoric acid containing compound processing process of the recycling processing method of the selective soil extracted from the earth-and-sand mixed waste of this invention. In addition, the usage method and usage amount of the recycling material of the present invention are the usage method and addition amount in the fluorine insolubilization processing step of the recycling method of the selected soil extracted from the mixed sediment waste of the present invention. Follow.
以下、実施例、比較例及び実験例を示して本発明をより具体的に説明するが、本発明は下記実施例に限定されるものではない。 EXAMPLES Hereinafter, although an Example, a comparative example, and an experiment example are shown and this invention is demonstrated more concretely, this invention is not limited to the following Example.
最初に本発明の実施例などに使用する精選土についてフッ素及び六価クロムの溶出試験を以下のように行った。 First, the elution test of fluorine and hexavalent chromium was performed as follows for the selected soil used in the examples of the present invention.
土砂系混合廃棄物を、得られる精選土の粒径が5mm以下となり、且つ紙と木くずの含有率が質量比で5%未満となるようにスクリーン、比重差選別装置、風力選別機、吸選別機、磁力選別機などの乾式分別分級装置を利用し、複合的に土砂系混合廃棄物から粒径5mm以下で、且つ紙と木くずの含有率が質量比で5%未満となる精選土を選別した。この精選土について上述した加熱・燃焼処理によって精選土全量に対する紙と木くずの含有率を測定したところ、4質量%であった。また、この精選土全量に対する石膏の含有率は30質量%であった。この精選土を未処理精選土とし、未処理精選土について環境省告示46号で規定された溶出試験を行ったところ、フッ素溶出量は、2mg/l、六価クロム溶出量は、0.1mg/lであった。 Sediment-based mixed waste, screen, specific gravity difference sorter, wind power sorter, suction sorter so that the grain size of the selected fine soil obtained is 5 mm or less and the content ratio of paper and wood waste is less than 5% by mass ratio Using a dry classification and classification device such as a magnetic separator or a magnetic separator, the finely selected soil with a particle size of 5 mm or less and a content ratio of paper and wood waste of less than 5% is selected from the mixed sand and sand waste. did. When the content of paper and wood waste with respect to the total amount of the finely selected soil was measured by the above-described heating / combustion treatment, it was 4% by mass. Moreover, the content rate of the gypsum with respect to this finely selected soil whole quantity was 30 mass%. When this refined soil was used as an untreated refined soil, an elution test stipulated in Ministry of the Environment Notification No. 46 was conducted on the untreated refined soil. As a result, the elution amount of fluorine was 2 mg / l, and the elution amount of hexavalent chromium was 0.1 mg. / L.
[実験例1〜4]
リン酸含有化合物処理工程におけるリン酸含有化合物としてリン酸水素カルシウムを使用して、下記表1に示す温度、湿度の条件下に24時間放置して、実験例1〜4の再資源化処理材を得た。次に、フッ素不溶化処理工程として、各再資源化処理材を上述した土砂系混合廃棄物から抽出された精選土100質量部に対して各再資源化処理材を2質量部となるように、即ち、精選土100質量部に対して、各再資源化処理材をリン成分量として0.44質量部となるように加えて混合し、さらに精選土100質量部に対して水20質量部を加えて混合し、24時間養生して実験例1〜4のフッ素不溶化処理精選土を得た。
[Experimental Examples 1-4]
Using calcium hydrogen phosphate as the phosphoric acid-containing compound in the phosphoric acid-containing compound treatment step, the material is allowed to stand for 24 hours under the conditions of temperature and humidity shown in Table 1 below, and the recycled material of Experimental Examples 1 to 4 Got. Next, as a fluorine insolubilization treatment step, each recycled material is 2 parts by mass with respect to 100 parts by mass of each selected recycled material extracted from the above-mentioned soil-based mixed waste. That is, with respect to 100 parts by mass of the selected soil, each recycled material is added and mixed so that the amount of phosphorus component is 0.44 parts by mass. Further, 20 parts by mass of water is added to 100 parts by mass of the selected soil. In addition, they were mixed and cured for 24 hours to obtain fluorine-insolubilized treated soil of Experimental Examples 1 to 4.
[実験例5〜8]
上記実験例1〜4において、リン酸含有化合物処理工程におけるリン酸含有化合物をリン酸水素カルシウムに替えてリン酸二水素カルシウムとし、下記表1に示す温度、湿度の条件下に8時間放置して、フッ素不溶化処理工程における各再資源化処理材の添加量を精選土100質量部に対して各再資源化処理材を2質量部となるように、即ち、精選土100質量部に対して、各再資源化処理材をリン成分量として0.5質量部となるように加えて混合した以外は、実験例1〜4と同様にして実験例5〜8のフッ素不溶化処理精選土を得た。
[Experimental Examples 5 to 8]
In Experimental Examples 1 to 4, the phosphoric acid-containing compound in the phosphoric acid-containing compound treatment step was changed to calcium dihydrogen phosphate to form calcium dihydrogen phosphate, and left for 8 hours under the conditions of temperature and humidity shown in Table 1 below. Thus, the amount of each recycling treatment material added in the fluorine insolubilization treatment step is set to 2 parts by mass with respect to 100 parts by mass of the selected soil, that is, with respect to 100 parts by mass of the selected soil. Except for adding and mixing each recycled material so as to be 0.5 parts by mass as the phosphorus component amount, the fluorine insolubilized treated fine soil of Experimental Examples 5 to 8 was obtained in the same manner as Experimental Examples 1 to 4. It was.
実験例1〜8のフッ素不溶化処理精選土について、環境省告示46号で規定された溶出試験を行い、フッ素溶出量(溶出F量)を求めた。また、フッ素溶出量からフッ素の除去率(Fの除去率)を算出した。結果を下記表1に併記する。 About the fluorine insolubilization process selection soil of Experimental Examples 1-8, the elution test prescribed | regulated by Ministry of the Environment notification 46 was performed, and the fluorine elution amount (elution F amount) was calculated | required. Further, the fluorine removal rate (F removal rate) was calculated from the fluorine elution amount. The results are also shown in Table 1 below.
[実施例1〜3]
リン酸含有化合物処理工程におけるリン酸含有化合物としてリン酸水素カルシウムを使用して、下記表2に示す温度、湿度の条件下に24時間放置して、実施例1〜3の再資源化処理材を得た。次に、フッ素不溶化処理工程として、各再資源化処理材を上述した土砂系混合廃棄物から抽出された精選土100質量部に対して各再資源化処理材を下記表2に示すように、2質量部又は5質量部、即ち、精選土100質量部に対して、各再資源化処理材をリン成分量として0.44質量部又は1.1質量部となるように加えて混合し、さらに精選土100質量部に対して水20質量部を加えて混合し、24時間養生して実施例1〜3のフッ素不溶化処理精選土(再資源化処理精選土)を得た。
[Examples 1 to 3]
Using calcium hydrogen phosphate as the phosphoric acid-containing compound in the phosphoric acid-containing compound treatment step, the material is allowed to stand for 24 hours under the conditions of temperature and humidity shown in Table 2 below, and the recycled material of Examples 1 to 3 Got. Next, as a fluorine insolubilization treatment process, as shown in Table 2 below, each recycling treatment material is shown in Table 2 below with respect to 100 parts by mass of the selected soil extracted from the above-mentioned sediment-based mixed waste. 2 parts by mass or 5 parts by mass, that is, with respect to 100 parts by mass of the selected soil, each recycled material is added as a phosphorus component amount to 0.44 parts by mass or 1.1 parts by mass and mixed. Furthermore, 20 parts by mass of water was added to 100 parts by mass of the finely selected soil, mixed, and cured for 24 hours to obtain the fluorine insolubilized processed selective soil (recycled processed selective soil) of Examples 1 to 3.
[実施例4〜6]
上記実施例1において、リン酸含有化合物処理工程におけるリン酸含有化合物をリン酸二水素カルシウムとし、フッ素不溶化処理工程における各再資源化処理材の添加量を精選土100質量部に対して各再資源化処理材を下記表2に示すように、2質量部又は5質量部、即ち、精選土100質量部に対して、各再資源化処理材をリン成分量として0.5質量部又は1.25質量部となるように加えた以外は、実施例1と同様にして実施例4〜6のフッ素不溶化処理精選土(再資源化処理精選土)を得た。なお、実施例5は、上記実験例7と同じである。また、未処理のリン酸二水素カルシウムとリン酸含有化合物処理後のリン酸二水素カルシウムの粒子表面を顕微鏡により観察した。図1は、リン酸含有化合物処理工程により処理する前のリン酸二水素カルシウム(未処理リン酸二水素カルシウム)の粒子表面の200倍の顕微鏡写真、図2は、実施例4のリン酸含有化合物処理工程によりリン酸二水素カルシウムを処理した後の粒子表面の200倍の顕微鏡写真である。図1と図2の顕微鏡写真を比較すると、本発明のリン酸含有化合物処理工程における加温、加湿処理により、リン酸含有化合物が平板形状から細かい粒状になっていることが認められ、これによって、本発明の再資源化処理材は、フッ素の不溶化に効果を発揮していると考えられる。
[Examples 4 to 6]
In Example 1 described above, the phosphoric acid-containing compound in the phosphoric acid-containing compound treatment step is calcium dihydrogen phosphate, and the amount of each recycling treatment material added in the fluorine insolubilization treatment step is set to 100 parts by mass of the selected soil. As shown in Table 2 below, 2 parts by mass or 5 parts by mass, that is, 100 parts by mass of the selected soil, 0.5 parts by mass or 1 Except for adding to 25 parts by mass, in the same manner as in Example 1, the fluorine insolubilized treated soil (recycled treated soil) of Examples 4 to 6 was obtained. Note that Example 5 is the same as Experimental Example 7 described above. In addition, the particle surfaces of untreated calcium dihydrogen phosphate and phosphoric acid-containing compound-treated calcium dihydrogen phosphate were observed with a microscope. FIG. 1 is a 200 × micrograph of the particle surface of calcium dihydrogen phosphate (untreated calcium dihydrogen phosphate) before being treated in the phosphoric acid-containing compound treatment step, and FIG. It is a 200-times microscope picture of the particle | grain surface after processing a calcium dihydrogen phosphate by a compound processing process. Comparing the micrographs of FIG. 1 and FIG. 2, it can be seen that the phosphoric acid-containing compound is in the form of fine particles from the flat plate shape by the heating and humidification treatment in the phosphoric acid-containing compound treatment step of the present invention. The recycled material according to the present invention is considered to be effective in insolubilizing fluorine.
実施例1〜6のフッ素不溶化処理精選土について、環境省告示46号で規定された溶出試験を行い、フッ素溶出量(溶出F量)を求めた。また、フッ素溶出量からフッ素の除去率(Fの除去率)を算出した。結果を下記表2に併記する。 About the fluorine insolubilization process selection soil of Examples 1-6, the elution test prescribed | regulated by Ministry of the Environment notification 46 was performed, and the fluorine elution amount (elution F amount) was calculated | required. Further, the fluorine removal rate (F removal rate) was calculated from the fluorine elution amount. The results are also shown in Table 2 below.
[実施例7]
リン酸含有化合物処理工程におけるリン酸含有化合物としてリン酸水素カルシウムを使用して、下記表3に示す温度、湿度の条件下に24時間放置して、実施例7の再資源化処理材を得た。次に、フッ素不溶化処理工程として、再資源化処理材を上述した土砂系混合廃棄物から抽出された精選土100質量部に対して再資源化処理材を下記表3に示すように5質量部、即ち、精選土100質量部に対して、再資源化処理材をリン成分量として1.1質量部となるように加えて混合し、さらに精選土100質量部に対して水20質量部を加えて混合し、24時間養生して実施例7のフッ素不溶化処理精選土を得た。次に、再資源化補助材添加工程として、硫酸第一鉄及び市販の腐植物質(合同会社土づくり推進機構社製)を下記表3に示す添加量となるように、即ち、精選土100質量部に対して、それぞれ0.03質量部、1質量部となるように、所定量の腐植物質を加え混合した後、硫酸第一鉄を加え、混合して、実施例7の再資源化処理精選土を得た。
[Example 7]
Using calcium hydrogen phosphate as the phosphoric acid-containing compound in the phosphoric acid-containing compound treatment step, the material is allowed to stand for 24 hours under the conditions of temperature and humidity shown in Table 3 below to obtain the recycled material of Example 7. It was. Next, as a fluorine insolubilization treatment step, 5 parts by mass of the recycled material is shown in Table 3 below with respect to 100 parts by mass of the selected soil extracted from the above-mentioned soil-based mixed waste. That is, with respect to 100 parts by mass of the selected soil, the recycled material is added and mixed so that the amount of phosphorus component is 1.1 parts by mass, and further 20 parts by mass of water is added to 100 parts by mass of the selected soil. In addition, they were mixed and cured for 24 hours to obtain a fluorine insolubilized finely selected soil of Example 7. Next, as a recycling auxiliary material addition step, ferrous sulfate and commercially available humic substances (manufactured by GOD Soil Making Promotion Organization Co., Ltd.) are added in the amounts shown in Table 3 below, that is, 100 mass of finely selected soil. After adding and mixing a predetermined amount of humic substances to 0.03 parts by mass and 1 part by mass with respect to parts, ferrous sulfate is added and mixed, and the recycling process of Example 7 is performed. Got a carefully selected soil.
[実施例8]
上記実施例7において、リン酸含有化合物処理工程におけるリン酸含有化合物をリン酸二水素カルシウムとし、下記表3に示す温度、湿度の条件下に8時間放置して、フッ素不溶化処理工程における再資源化処理材の添加量を精選土100質量部に対して再資源化処理材を下記表3に示すように5質量部、即ち、精選土100質量部に対して、再資源化処理材をリン成分量として1.25質量部となるように加えて混合した以外は、実施例7と同様にして実施例8の再資源化処理精選土を得た。
[Example 8]
In Example 7 above, the phosphoric acid-containing compound in the phosphoric acid-containing compound treatment step is calcium dihydrogen phosphate, and left for 8 hours under the conditions of temperature and humidity shown in Table 3 below to recycle in the fluorine insolubilization treatment step. As shown in Table 3 below, the amount of the treated material added to 100 parts by mass of the selected soil is 5 parts by mass, that is, the recycled material is added to 100 parts by mass of the selected material. Except for adding and mixing so as to be 1.25 parts by mass as the component amount, a recycled material selected soil of Example 8 was obtained in the same manner as Example 7.
[比較例1〜7]
下記表3に示す条件、添加量に従って上記実施例7と同様に各工程を行って比較例1〜7の処理精選土を得た。なお、比較例1は、上述した未処理精選土と同じである。
[Comparative Examples 1 to 7]
According to the conditions and addition amounts shown in Table 3 below, each step was performed in the same manner as in Example 7 to obtain treated finely selected soils of Comparative Examples 1-7. In addition, the comparative example 1 is the same as the untreated finely selected soil described above.
実施例7、8の再資源化処理精選土及び比較例1〜7の処理精選土について、環境省告示46号で規定された溶出試験を行い、フッ素溶出量(溶出F量)及び六価クロム溶出量(溶出六価クロム量)を求めた。また、フッ素溶出量からフッ素の除去率(Fの除去率)を算出した。結果を下記表3に併記する。なお、実施例7、8により得られた再資源化処理精選土中の腐植物質の含有量を測定器として土壌分析器(富士平工業株式会社製 ZA−II)を用いて熊田法により測定したところ、いずれも再資源化処理精選土全量に対して腐植物質量は2質量%であった。 The elution test specified in Ministry of the Environment Notification No. 46 was conducted on the recycled material selected from Examples 7 and 8 and the processed selected material from Comparative Examples 1 to 7, and the fluorine elution amount (elution F amount) and hexavalent chromium were measured. The elution amount (elution hexavalent chromium amount) was determined. Further, the fluorine removal rate (F removal rate) was calculated from the fluorine elution amount. The results are also shown in Table 3 below. In addition, it measured by the Kumada method using the soil analyzer (FUJIHIRA KOGYO Co., Ltd. ZA-II) as a measuring device for content of the humic substance in the recycling processing selective soil obtained by Example 7,8. However, in all cases, the mass of the humus was 2% by mass with respect to the total amount of the selected ground for the recycling treatment.
[比較例8]
土砂系混合廃棄物を、得られる精選土の粒径が5mm以下となり、且つ紙と木くずの含有率が質量比で5%未満となるようにスクリーン、比重差選別装置、風力選別機、吸選別機、磁力選別機などの乾式分別分級装置を利用し、複合的に土砂系混合廃棄物から粒径5mm以下で、且つ紙と木くずの含有率が質量比で5%未満となる精選土を選別した。この精選土について上述した加熱・燃焼処理によって精選土全量に対する紙と木くずの含有率を測定したところ、4質量%であった。この精選土に精選土全量に対する石膏の含有率が40質量%となるように石膏を混合した。この精選土を未処理精選土とし、未処理精選土について環境省告示46号で規定された溶出試験を行ったところ、フッ素溶出量は、2.3mg/l、六価クロム溶出量は、0.1mg/lであった。
[Comparative Example 8]
Sediment-based mixed waste, screen, specific gravity difference sorter, wind power sorter, suction sorter so that the grain size of the selected fine soil obtained is 5 mm or less and the content ratio of paper and wood waste is less than 5% by mass ratio Using a dry classification and classification device such as a magnetic separator or a magnetic separator, the finely selected soil with a particle size of 5 mm or less and a content ratio of paper and wood waste of less than 5% is selected from the mixed sand and sand waste. did. When the content of paper and wood waste with respect to the total amount of the finely selected soil was measured by the above-described heating / combustion treatment, it was 4% by mass. Gypsum was mixed with this selected soil so that the content of gypsum with respect to the total amount of the selected soil was 40% by mass. When this refined soil was used as an untreated refined soil, an elution test prescribed in Ministry of the Environment Notification No. 46 was conducted on the untreated refined soil. As a result, the elution amount of fluorine was 2.3 mg / l, and the elution amount of hexavalent chromium was 0. .1 mg / l.
[実施例9]
上記実施例7と同じ再資源化処理材を上記比較例8の石膏を40質量%含む精選土に加え、実施例7と同じフッ素不溶化処理工程を行い、フッ素不溶化処理精選土を得た。次に、再資源化補助材添加工程として、硫酸第一鉄及び市販の腐植物質(合同会社土づくり推進機構社製)を下記表3に示す添加量となるように、即ち、精選土100質量部に対して、それぞれ0.03質量部、1質量部となるように、所定量の腐植物質を加え混合した後、硫酸第一鉄を加え、混合して、実施例9の再資源化処理精選土を得た。
[Example 9]
The same recycled material as in Example 7 was added to the selected soil containing 40% by mass of the gypsum of Comparative Example 8, and the same fluorine insolubilization processing step as in Example 7 was performed to obtain a fluorine insolubilized processed soil. Next, as a recycling auxiliary material addition step, ferrous sulfate and commercially available humic substances (manufactured by GOD Soil Making Promotion Organization Co., Ltd.) are added in the amounts shown in Table 3 below, that is, 100 mass of finely selected soil. After adding a predetermined amount of humic substance and mixing so that it may become 0.03 mass part and 1 mass part, respectively, to each part, ferrous sulfate is added and mixed. Got a carefully selected soil.
[実施例10]
上記実施例8と同じ再資源化処理材を上記比較例8の石膏を40質量%含む精選土に加え、実施例8と同じフッ素不溶化処理工程を行い、フッ素不溶化処理精選土を得た。次に、再資源化補助材添加工程として、硫酸第一鉄及び市販の腐植物質(合同会社土づくり推進機構社製)を下記表3に示す添加量となるように、即ち、精選土100質量部に対して、それぞれ0.03質量部、1質量部となるように、所定量の腐植物質を加え混合した後、硫酸第一鉄を加え、混合して、実施例10の再資源化処理精選土を得た。
[Example 10]
The same recycling treatment material as in Example 8 above was added to the selected soil containing 40% by mass of the gypsum of Comparative Example 8 above, and the same fluorine insolubilization processing step as in Example 8 was performed to obtain a fluorine insolubilized processed soil. Next, as a recycling auxiliary material addition step, ferrous sulfate and commercially available humic substances (manufactured by GOD Soil Making Promotion Organization Co., Ltd.) are added in the amounts shown in Table 3 below, that is, 100 mass of finely selected soil. After adding and mixing a predetermined amount of humic substances to 0.03 parts by mass and 1 part by mass with respect to parts, ferrous sulfate is added and mixed, and the recycling treatment of Example 10 is performed. Got a carefully selected soil.
実施例9、10の再資源化処理精選土について、環境省告示46号で規定された溶出試験を行い、フッ素溶出量(溶出F量)及び六価クロム溶出量(溶出六価クロム量)を求めた。また、フッ素溶出量からフッ素の除去率(Fの除去率)を算出した。結果を下記表3に併記する。 The elution test stipulated in Ministry of the Environment Notification No. 46 was conducted on the resources selected for recycling in Examples 9 and 10, and the fluorine elution amount (elution F amount) and the hexavalent chromium elution amount (elution hexavalent chromium amount) were determined. Asked. Further, the fluorine removal rate (F removal rate) was calculated from the fluorine elution amount. The results are also shown in Table 3 below.
Claims (11)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015029272A JP6567288B2 (en) | 2015-02-18 | 2015-02-18 | Recycling method of selected soil extracted from earth and sand mixed waste |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015029272A JP6567288B2 (en) | 2015-02-18 | 2015-02-18 | Recycling method of selected soil extracted from earth and sand mixed waste |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2016150317A true JP2016150317A (en) | 2016-08-22 |
JP6567288B2 JP6567288B2 (en) | 2019-08-28 |
Family
ID=56694904
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015029272A Active JP6567288B2 (en) | 2015-02-18 | 2015-02-18 | Recycling method of selected soil extracted from earth and sand mixed waste |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6567288B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110293128A (en) * | 2019-07-24 | 2019-10-01 | 中国科学院亚热带农业生态研究所 | A method of light moderate heavy-metal contaminated soil is repaired using mugwort wormwood artemisia |
JP2020104109A (en) * | 2018-12-27 | 2020-07-09 | 公立大学法人県立広島大学 | Method for insolubilizing contaminant and insolubilizing agent for contaminant |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006000789A (en) * | 2004-06-18 | 2006-01-05 | Nippon Steel Corp | Separation method of construction mixed waste, and facility therefor |
WO2010041330A1 (en) * | 2008-10-10 | 2010-04-15 | 独立行政法人国立高等専門学校機構 | Fluorine insolubilizing agent, gypsum with elution of fluorine contained therein being reduced, and method for treating soil contaminated with fluirine |
-
2015
- 2015-02-18 JP JP2015029272A patent/JP6567288B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006000789A (en) * | 2004-06-18 | 2006-01-05 | Nippon Steel Corp | Separation method of construction mixed waste, and facility therefor |
WO2010041330A1 (en) * | 2008-10-10 | 2010-04-15 | 独立行政法人国立高等専門学校機構 | Fluorine insolubilizing agent, gypsum with elution of fluorine contained therein being reduced, and method for treating soil contaminated with fluirine |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020104109A (en) * | 2018-12-27 | 2020-07-09 | 公立大学法人県立広島大学 | Method for insolubilizing contaminant and insolubilizing agent for contaminant |
JP7311862B2 (en) | 2018-12-27 | 2023-07-20 | 広島県公立大学法人 | Contaminant insolubilization method and contaminant insolubilizer |
CN110293128A (en) * | 2019-07-24 | 2019-10-01 | 中国科学院亚热带农业生态研究所 | A method of light moderate heavy-metal contaminated soil is repaired using mugwort wormwood artemisia |
Also Published As
Publication number | Publication date |
---|---|
JP6567288B2 (en) | 2019-08-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107789787B (en) | Stabilizing agent for repairing arsenic-containing waste residue and using method | |
Tor | Removal of fluoride from an aqueous solution by using montmorillonite | |
Lasheen et al. | Assessment of metals speciation in sewage sludge and stabilized sludge from different Wastewater Treatment Plants, Greater Cairo, Egypt | |
JP5647371B1 (en) | Detoxification method for contaminated soil | |
CN103073166A (en) | Method for simultaneously stabilizing heavy metals and deeply dewatering municipal sludge for municipal sludge | |
CN104496139A (en) | Pretreatment method of heavy metal sludge | |
JP6567288B2 (en) | Recycling method of selected soil extracted from earth and sand mixed waste | |
Basri et al. | Aluminium recovery from water treatment sludge under different dosage of sulphuric acid | |
CN104438288B (en) | A kind of containing the stable of arsenic in arsenic waste material and separation method | |
JP2014227457A (en) | Insolubilizing agent of heavy metal or the like and insolubilizing method | |
CN103055801A (en) | Alkylamine modified inorganic clay mineral adsorbing material, and preparation method as well as application of same | |
CN1942406A (en) | Process for the treatment of sludge | |
TWI441797B (en) | A flue dust of an aluminum smelting aggregate manufacturing methods | |
JP6326246B2 (en) | Recycling method of selected soil extracted from earth and sand mixed waste | |
Huang et al. | Synergistic stabilization/solidification of heavy metal ions in electrolytic manganese solid waste and phosphogypsum | |
JP2018103133A (en) | Soil treatment material and purification method of heavy metal contaminated soil | |
CN101913921B (en) | Method for preparing compound fertilizer from sludge after town sewage treatment | |
Lee et al. | Adsorption of Pb (II) by cherry (Prunus x yedoensis) leaf-derived biochar | |
JP5852276B1 (en) | Method for producing soil amendment | |
Saud et al. | Lead transport in soils amended with municipal solid waste ash | |
Redding et al. | Enhancing the P trapping of pasture filter strips: successes and pitfalls in the use of water supply residue and polyacrylamide | |
KR20150047742A (en) | The method of making a arsenic immobilizer using acid mine drainage sludge and method of purifying the contaminated soil using the acid mine drainage sludge | |
JP2003320365A (en) | Method for treating object to be treated containing contaminant and treating agent for contaminated object to be treated | |
KR20180050620A (en) | A preparation method of media for treating rare earth compounds extracted waste water, a water treating method, a composition for treating the same and media using the same | |
JP6872072B1 (en) | How to purify contaminated soil |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20171221 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20181213 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20190108 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190205 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20190716 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20190731 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6567288 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |