JP2020104109A - Method for insolubilizing contaminant and insolubilizing agent for contaminant - Google Patents

Method for insolubilizing contaminant and insolubilizing agent for contaminant Download PDF

Info

Publication number
JP2020104109A
JP2020104109A JP2019235442A JP2019235442A JP2020104109A JP 2020104109 A JP2020104109 A JP 2020104109A JP 2019235442 A JP2019235442 A JP 2019235442A JP 2019235442 A JP2019235442 A JP 2019235442A JP 2020104109 A JP2020104109 A JP 2020104109A
Authority
JP
Japan
Prior art keywords
calcium
insolubilizing
soil
contaminant
arsenic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019235442A
Other languages
Japanese (ja)
Other versions
JP7311862B2 (en
Inventor
三苫 好治
Koji Mitoma
好治 三苫
石渡 寛之
Hiroyuki Ishiwatari
寛之 石渡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nishimatsu Construction Co Ltd
Prefectural University of Hiroshima
Original Assignee
Nishimatsu Construction Co Ltd
Prefectural University of Hiroshima
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nishimatsu Construction Co Ltd, Prefectural University of Hiroshima filed Critical Nishimatsu Construction Co Ltd
Publication of JP2020104109A publication Critical patent/JP2020104109A/en
Application granted granted Critical
Publication of JP7311862B2 publication Critical patent/JP7311862B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Processing Of Solid Wastes (AREA)

Abstract

To provide a method for insolubilizing contaminant and an insolubilizing agent for contaminant which can easily and effectively insolubilize a heavy metal such as arsenic As, fluorine F, selenium Se, cadmium Cd, chromium Cr or lead Pb contained in soil.SOLUTION: There is provided a method for insolubilizing contaminant by adding an agent to soil containing the contaminant, and mixing the mixture. The agent includes: a metallic calcium dispersion in which at least a part of metallic calcium in a nano-order size is dispersed in calcium oxide; and calcium phosphate, and the contaminant is at least one of arsenic, fluorine, selenium, and heavy metals.SELECTED DRAWING: Figure 1

Description

本発明は、土壌に含まれるヒ素などの汚染物質を不溶化させる汚染物質不溶化方法及び汚染物質不溶化剤に関する。 The present invention relates to a pollutant insolubilizing method and a pollutant insolubilizing agent for insolubilizing pollutants such as arsenic contained in soil.

ヒ素Asを含有する土壌の処理方法としては、セメント固化、ガラス固化、土壌洗浄等が知られている。薬剤を用いてヒ素Asを不溶化させる方法としては、鉄系薬剤による固化、石膏粉を添加することで石膏粉から溶け出したカルシウムイオンCa2+によりヒ酸イオンの土壌粒子表面への吸着を促進する方法、フッ素を含む石膏を添加することで固化する方法等がある。 Cement solidification, vitrification, soil washing and the like are known as a method for treating soil containing arsenic As. As a method of insolubilizing arsenic As using a chemical, solidification by an iron-based chemical, and addition of gypsum powder promotes adsorption of arsenate ions on the surface of soil particles by calcium ions Ca 2+ dissolved from the gypsum powder. And a method of solidifying by adding gypsum containing fluorine.

薬剤を使用し乾式でヒ素Asを不溶化処理する方法としては、ナノサイズの金属カルシウムCa(以下、ナノカルシウムnCaと記す)を不溶化剤とした方法もある(例えば特許文献1参照)。特許文献1に記載の方法は、ナノカルシウムnCaを不溶化剤とし、これをヒ素、その他重金属(Cd、Cr、Pb)を含む土壌に10重量%程度添加、混合することでヒ素、重金属等を不溶化させることができる。 As a method of insolubilizing arsenic As by a dry method using a chemical, there is also a method of using nanosized metallic calcium Ca (hereinafter referred to as nanocalcium nCa) as an insolubilizing agent (see, for example, Patent Document 1). The method described in Patent Document 1 uses nanocalcium nCa as an insolubilizing agent, and insolubilizes arsenic, heavy metals, etc. by adding and mixing about 10% by weight of this with soil containing arsenic and other heavy metals (Cd, Cr, Pb). Can be made.

特許第5752387号公報Patent No. 575387

トンネル掘削作業によって発生した建設残土から環境基準値(溶出濃度0.01ppm)の数倍のヒ素Asが検出されるなどヒ素Asに汚染された土壌の発生量は非常に多い。このような大量に発生するヒ素Asを含有する土壌を湿式処理法で処理すると、大量の排水が発生し排水の後処理が大変である。この点において乾式処理法が好ましいといえる。乾式処理法には、加熱処理法もあるが処理コストが高くなる。 The amount of arsenic-As-contaminated soil is very large, such as arsenic As that is several times higher than the environmental standard value (elution concentration 0.01 ppm) is detected in the soil left over from tunnel excavation work. When such a soil containing a large amount of arsenic As is treated by a wet treatment method, a large amount of wastewater is generated, and post-treatment of wastewater is difficult. In this respect, the dry treatment method is preferable. The dry treatment method includes a heat treatment method, but the treatment cost is high.

以上のことから薬剤を使用し安価に処理できる方法が期待される。さらに処理後の土壌を再利用できることが望ましい。また土壌にはヒ素Asの他、カドミウムCd、クロムCr、鉛Pbなどの重金属が含まれる場合もあり、これら汚染物質も不溶化できることが好ましい。これらの点において特許文献1に記載の汚染土壌処理方法は、優れた方法といえる。 From the above, a method that uses a chemical and can be processed at low cost is expected. Furthermore, it is desirable that the treated soil can be reused. In addition to arsenic As, the soil may contain heavy metals such as cadmium Cd, chromium Cr, and lead Pb, and it is preferable that these pollutants can be insolubilized. In these respects, the contaminated soil treatment method described in Patent Document 1 can be said to be an excellent method.

しかしながら特許文献1のナノカルシウムnCaを不溶化剤とした方法は、汚染土壌に対して不溶化剤を10重量%程度添加する必要があるため薬剤費が高額となる。このため少ない薬剤の添加量で効果的にヒ素As、カドミウムCd、クロムCr、鉛Pbなどの重金属を含む土壌を処理できる技術の開発が待たれている。 However, in the method of using nanocalcium nCa as an insolubilizing agent of Patent Document 1, it is necessary to add about 10% by weight of the insolubilizing agent to the contaminated soil, resulting in high drug cost. Therefore, the development of a technique capable of effectively treating soil containing heavy metals such as arsenic As, cadmium Cd, chromium Cr, and lead Pb with a small amount of added chemicals is awaited.

本発明の目的は、土壌に含まれるヒ素As、フッ素F、セレンSe、又はカドミウムCd、クロムCr、鉛Pbなどの重金属を簡便にまた効果的に不溶化させることができる汚染物質不溶化方法及び汚染物質不溶化剤を提供することである。 An object of the present invention is to provide a pollutant insolubilizing method and pollutant capable of easily and effectively insolubilizing heavy metals such as arsenic As, fluorine F, selenium Se, or cadmium Cd, chromium Cr, and lead Pb contained in soil. It is to provide an insolubilizer.

本発明は、汚染物質を含有する土壌に薬剤を添加、混合し、前記汚染物質を不溶化させる汚染物質不溶化方法であって、前記薬剤が、少なくとも一部がナノサイズの大きさの金属カルシウムが酸化カルシウム中に分散した金属カルシウム分散体と、リン酸カルシウムとを含み、前記汚染物質が、ヒ素、フッ素、セレン、重金属のいずれか一種以上であることを特徴とする汚染物質不溶化方法である。 The present invention is a pollutant insolubilization method in which a drug is added to soil containing a pollutant and mixed to insolubilize the pollutant, wherein the drug is at least partially oxidized by metallic calcium having a nano-size. A contaminant insolubilizing method comprising a metallic calcium dispersion dispersed in calcium and calcium phosphate, wherein the contaminant is one or more of arsenic, fluorine, selenium and heavy metal.

本発明の汚染物質不溶化方法において、前記金属カルシウム分散体は、金属カルシウムと酸化カルシウムとの混合物を、金属カルシウムの少なくとも一部がナノサイズとなるまで粉砕し得られたものであることを特徴とする。 In the contaminant insolubilizing method of the present invention, the metallic calcium dispersion is obtained by pulverizing a mixture of metallic calcium and calcium oxide until at least a part of metallic calcium becomes nano-sized. To do.

本発明の汚染物質不溶化方法において、前記リン酸カルシウムが、リン酸三カルシウムCa(POであることを特徴とする。 In the contaminant insolubilization method of the present invention, the calcium phosphate is tricalcium phosphate Ca 3 (PO 4 ) 2 .

本発明は、ヒ素、フッ素、セレン、重金属のいずれか一種以上を汚染物質とする汚染物質含有土壌に添加、混合し、前記汚染物質を不溶化させる不溶化剤であって、少なくとも一部がナノサイズの大きさの金属カルシウムが酸化カルシウム中に分散した金属カルシウム分散体と、リン酸カルシウムとを含む汚染物質不溶化剤である。 The present invention is an insolubilizer for adding and mixing arsenic, fluorine, selenium, or any one or more of heavy metals to a pollutant-containing soil as a pollutant, and insolubilizing the pollutant, at least a part of which has a nanosize It is a contaminant insolubilizing agent containing a calcium metal phosphate dispersion in which calcium metal of a size is dispersed in calcium oxide, and calcium phosphate.

本発明によれば、土壌に含まれるヒ素As、フッ素F、セレンSe、又はカドミウムCd、クロムCr、鉛Pbなどの重金属を簡便にまた効果的に不溶化させることができる汚染物質不溶化方法及び汚染物質不溶化剤を提供することができる。 According to the present invention, a contaminant insolubilizing method and a contaminant capable of easily and effectively insolubilizing heavy metals such as arsenic As, fluorine F, selenium Se, or cadmium Cd, chromium Cr, and lead Pb contained in soil. An insolubilizer can be provided.

本発明の実施例の実験結果である。It is an experimental result of the Example of this invention. 本発明の実施例のXRD分析結果である。It is an XRD analysis result of the Example of this invention.

本発明に係る汚染物質不溶化方法は、汚染物質を含有する土壌(以下、汚染土壌と記す)に薬剤を添加、混合し、汚染物質を不溶化させる。 The pollutant insolubilization method according to the present invention makes a pollutant insolubilize by adding and mixing a chemical to soil containing the pollutant (hereinafter referred to as polluted soil).

ここで汚染物質は、ヒ素As、フッ素F、セレンSe、重金属である。重金属としては、カドミウムd、クロムCr、鉛Pbが挙げられる。 Here, the pollutants are arsenic As, fluorine F, selenium Se, and heavy metals. Examples of heavy metals include cadmium d, chromium Cr, and lead Pb.

汚染土壌は、特に限定されるものではなく、焼却灰などが含まれていてもよい。また汚染土壌に含まれる汚染物質の濃度も特に限定されるものではない。 The contaminated soil is not particularly limited, and may include incinerated ash or the like. Further, the concentration of pollutants contained in the contaminated soil is not particularly limited.

本発明に係る汚染物質不溶化方法で使用する薬剤(不溶化剤)は、少なくとも一部がナノサイズの大きさの金属カルシウムCaが酸化カルシウムCaO中に分散した金属カルシウム分散体(金属Ca分散体)と、リン酸カルシウムとを含む。 The chemical agent (insolubilizing agent) used in the contaminant insolubilizing method according to the present invention is a metal calcium dispersion (metal Ca dispersion) in which at least a part of nano-sized metal calcium Ca is dispersed in calcium oxide CaO. , And calcium phosphate.

金属カルシウム分散体は、金属カルシウムCaと酸化カルシウムCaOとの混合物を、金属カルシウムCaの少なくとも一部がナノサイズとなるまで粉砕し得ることができる。ここでナノサイズとは、粒径が数nm〜サブミクロンの大きさをいう。金属カルシウムCaと酸化カルシウムCaOとの混合割合は、重量比で1:1〜1:10が好ましいがこの割合に限定されるものではなく、重量比で1:20〜1:1000、さらに金属カルシウムCaの混合割合を少なくしてもよい。 The metal calcium dispersion can be obtained by pulverizing a mixture of metal calcium Ca and calcium oxide CaO until at least a part of the metal calcium Ca has a nano size. Here, the nano size means a size of several nm to submicron. The mixing ratio of metal calcium Ca and calcium oxide CaO is preferably 1:1 to 1:10 in weight ratio, but is not limited to this ratio, and it is 1:20 to 1:1000 in weight ratio, and metal calcium The mixing ratio of Ca may be reduced.

金属カルシウム分散体において、ナノサイズの金属カルシウムCaの表面は酸化カルシウムCaOでコーティングされている。一般的に金属をナノサイズまで微細化すると、環境中では酸化し失活するが、金属カルシウム分散体においては、ナノサイズの金属カルシウムCa粒子の表面を覆う酸化カルシウムCaOが、金属カルシウムCa粒子の大部分が酸素、二酸化炭素又は水と直接接触することを阻止するので、ナノサイズの金属カルシウムCa粒子は、大気中においても高い活性を維持することができる。 In the metallic calcium dispersion, the surface of nano-sized metallic calcium Ca is coated with calcium oxide CaO. Generally, when a metal is miniaturized to a nano size, it is oxidized and deactivated in the environment, but in a metal calcium dispersion, calcium oxide CaO covering the surface of nano size metal calcium Ca particles is Since most prevent direct contact with oxygen, carbon dioxide, or water, the nano-sized metallic calcium Ca particles can maintain high activity even in the atmosphere.

金属カルシウム分散体において、酸化カルシウムCaOは、汚染土壌に含まれる水分を吸着する水分調整剤として機能すると共に吸着した水を脱着させる。この水は水素源として作用する。 In the metallic calcium dispersion, calcium oxide CaO functions as a water content adjusting agent for adsorbing the water contained in the contaminated soil and desorbs the adsorbed water. This water acts as a hydrogen source.

リン酸カルシウムは、金属カルシウム分散体と協働して土壌中の汚染物資を不溶化させる。本発明において、リン酸カルシウムは、リン酸三カルシウムCa(POが好ましい。 Calcium phosphate cooperates with metallic calcium dispersions to insolubilize pollutants in soil. In the present invention, the calcium phosphate is preferably tricalcium phosphate Ca 3 (PO 4 ) 2 .

金属カルシウム分散体に対するリン酸三カルシウムCa(POの重量割合は、1:0.2〜0.8が好ましい。薬剤(不溶化剤)中の金属カルシウムCa含有量とリン含有量との比は、モル比で1:1が好ましい。薬剤(不溶化剤)の汚染土壌に対する添加割合は、汚染土壌に対して0.5〜3.6重量%でよい。 The weight ratio of tricalcium phosphate Ca 3 (PO 4 ) 2 to the metal calcium dispersion is preferably 1:0.2 to 0.8. The ratio of the metal calcium Ca content and the phosphorus content in the drug (insolubilizer) is preferably 1:1 in terms of molar ratio. The addition ratio of the drug (insolubilizer) to the contaminated soil may be 0.5 to 3.6% by weight with respect to the contaminated soil.

汚染土壌と薬剤との混合操作は、汚染土壌中の汚染物質と薬剤との接触機会を高めるために行う操作であるから撹拌強度は小さくてもよい。汚染物質と薬剤との接触機会を高めるためには汚染土壌の表面を更新しながら汚染土壌と薬剤とを撹拌混合することが好ましい。このため粉砕機能を備えるミルは、撹拌混合機として好ましい。混合時間は、後述の実施例2では10minであり、迅速に不溶化が進行することが分かる。 The mixing operation of the contaminated soil and the drug is an operation performed to increase the chance of contact between the pollutant in the contaminated soil and the drug, and thus the stirring strength may be low. In order to increase the chance of contact between the pollutant and the drug, it is preferable to stir and mix the polluted soil and the drug while renewing the surface of the polluted soil. Therefore, a mill having a crushing function is preferable as a stirring mixer. The mixing time was 10 min in Example 2 described later, which shows that the insolubilization proceeds rapidly.

メカノケミカル処理法の場合、反応に必要なエネルギーをミルを通じて与える必要があるが、本方法において、撹拌混合操作は、汚染土壌と薬剤との接触機会を高めることができればよく、汚染物質の不溶化に必要なエネルギーを撹拌混合操作を通じて与えなくてもよい。 In the case of the mechanochemical treatment method, it is necessary to supply the energy required for the reaction through the mill, but in this method, the stirring and mixing operation should increase the chance of contact between the contaminated soil and the drug, and it is necessary to make the contaminant insoluble. The required energy does not have to be applied through the stirring and mixing operation.

後述の実施例に示すように本発明に係る薬剤(不溶化剤)を汚染土壌に添加、混合すると汚染土壌表面に炭酸アパタイトCa10(POCO(OH)、ヒドロキシアパタイトCa(PO(OH)が形成されることが分かった。 As shown in Examples described later, when the agent (insolubilizer) according to the present invention is added to and mixed with contaminated soil, carbonate apatite Ca 10 (PO 4 ) 5 CO 3 (OH) and hydroxyapatite Ca 5 (PO) are formed on the surface of the contaminated soil. It was found that 4 ) 3 (OH) was formed.

以上のように本発明に係る汚染物質不溶化方法は、ヒ素As、フッ素F、セレンSe、重金属などの汚染物質を含有する土壌に薬剤を添加、混合するだけでよく操作も簡単である。さらに薬剤添加量も少ないので、処理コストを抑えることができる。さらに薬剤添加量も少ないので、汚染土壌を処理した後の量が、処理前の汚染土壌の量と比較しほとんど増加しない。さらに本発明に係る汚染物質不溶化方法を用いれば処理後の汚染土壌を再利用できる。このような特徴を有する汚染物質不溶化方法は、掘削工事などで大量に排出される汚染土壌の処理に好適に使用することができる。 As described above, the pollutant insolubilization method according to the present invention is easy to operate by simply adding and mixing a chemical agent to soil containing pollutants such as arsenic As, fluorine F, selenium Se, and heavy metals. Furthermore, since the amount of chemicals added is small, the processing cost can be suppressed. Furthermore, since the amount of chemicals added is small, the amount after treating the contaminated soil hardly increases as compared with the amount before the treatment. Further, by using the pollutant insolubilizing method according to the present invention, the treated contaminated soil can be reused. The pollutant insolubilization method having such characteristics can be suitably used for treating contaminated soil that is discharged in large quantities during excavation work and the like.

実施例1
模擬汚染土壌の調製
1000ppmのヒ素標準液(三酸化二ヒ素:0.13%含量,As and NaOH in water pH5.0 with HCl,Wako)を10倍希釈し、100ppmのヒ素As溶液を調製した。調製したヒ素As溶液10mLをプラスチック製の容器に入れ、10gの真砂土(粒径2mm以下)を加えて薬さじで撹拌し、大気中で6日間乾燥した。模擬汚染土壌は、溶出試験毎に10gずつ調製した。
Example 1
Preparation of simulated polluted soil 1000 ppm arsenic standard solution (diarsenic trioxide: 0.13% content, As 2 O 3 and NaOH in water pH 5.0 with HCl, Wako) was diluted 10 times, and 100 ppm arsenic As solution was diluted. Prepared. 10 mL of the prepared arsenic As solution was placed in a plastic container, 10 g of sand sand (particle size: 2 mm or less) was added, the mixture was stirred with a spoon, and dried in the air for 6 days. The simulated contaminated soil was prepared in an amount of 10 g for each elution test.

検量線の作成
1000ppmのヒ素標準溶液を10倍希釈したものを母液とし、これを200倍と100倍に希釈して0.5ppm,1ppmのヒ素As溶液を調製した。Blankと調製したそれぞれのヒ素As溶液に硝酸(硝酸含量:61%,有害金属測定用,Wako,原液)を2、3滴加えて酸性にし、ICP発光分光分析装置(iCAP6300 DuoView, Thermo scientific社製, 波長:As189.042 nm)を用いてヒ素As濃度を測定し、検量線を作成した。
Preparation of calibration curve A 1000 ppm arsenic standard solution was diluted 10 times to make a mother liquor, and this was diluted 200 times and 100 times to prepare 0.5 ppm and 1 ppm arsenic As solutions. Add 2 or 3 drops of nitric acid (nitric acid content: 61%, for measuring harmful metals, Wako, stock solution) to each Arsenic As solution prepared with Blank to make it acidic, and use an ICP emission spectrophotometer (iCAP6300 DuoView, Thermo scientific) , Wavelength: As189.042 nm) was used to measure the arsenic As concentration, and a calibration curve was prepared.

金属カルシウム分散体(金属Ca分散体)の調製
乾燥した酸化カルシウムCaO(850℃,2hで焼成)20gと金属カルシウムCa8g(重量比でCaO:金属Ca=5:2)とを、遊星ボールミルを用いて室温下、アルゴンガス雰囲気下で粉砕(400rpm,60min,Φ=20×5個)し、その後、ふるい(目開き710μm)で粉砕物と未粉砕物とに分けた。粉砕物を金属カルシウム分散体(金属Ca分散体)とした。水と反応させたときに発生した水素ガスの体積から金属カルシウム分散体中に含まれる金属カルシウムCa量(mmol)を求めた。このときCa+2HO→Ca(OH)+Hの関係式を利用した。
Preparation of Metal Calcium Dispersion (Metal Ca Dispersion) 20 g of dried calcium oxide CaO (calcined at 850° C. for 2 hours) and 8 g of metal calcium Ca (weight ratio of CaO:metal Ca=5:2) were used in a planetary ball mill. At room temperature under an argon gas atmosphere (400 rpm, 60 min, Φ=20×5 pieces), and thereafter, a sieve (opening 710 μm) was used to divide into a pulverized material and an unpulverized material. The pulverized product was used as a metal calcium dispersion (metal Ca dispersion). The amount (mmol) of metallic calcium Ca contained in the metallic calcium dispersion was determined from the volume of hydrogen gas generated when the reaction was performed with water. At this time, the relational expression of Ca+2H 2 O→Ca(OH) 2 +H 2 was used.

不溶化試験及び溶出試験
模擬汚染土壌(As含有濃度:6.5×10−2ppm)5gに表1に示す各種薬剤を添加し、窒素雰囲気下、マグネット乳鉢スターラー150rpmで1時間撹拌し、不溶化処理を行った(第1ステップ)。第1ステップで得られた模擬汚染土壌1gに水10mLを加え、振とう機(200往復/min,6h)で振とう後、メンブレンフィルター(0.45μm)で吸引ろ過し土壌を取り除いた(第2ステップ)。第2ステップで得られたろ液に対して、2、3滴の硝酸(硝酸含量:61%,有害金属測定用,Wako,原液)を加えてろ液を酸性にした後、メスフラスコを用いて25mLに定容した。これをヒ素As溶出濃度測定時のサンプルとした。
Insolubilization test and elution test Various chemicals shown in Table 1 were added to 5 g of simulated contaminated soil (As 2 O 3 content concentration: 6.5×10 −2 ppm), and the mixture was stirred for 1 hour at 150 rpm in a magnet mortar stirrer under a nitrogen atmosphere. , Insolubilization treatment was performed (first step). 10 mL of water was added to 1 g of the simulated contaminated soil obtained in the first step, shaken with a shaker (200 reciprocations/min, 6 h), and suction-filtered with a membrane filter (0.45 μm) to remove the soil (No. 2 steps). To the filtrate obtained in the second step, add a few drops of nitric acid (nitric acid content: 61%, for measuring harmful metals, Wako, stock solution) to acidify the filtrate, and then use a measuring flask to prepare 25 mL. The volume was adjusted to. This was used as a sample when measuring the arsenic As elution concentration.

サンプルのヒ素As濃度測定は、ICP発光分光分析装置(iCAP6300 DuoView,Thermo scientific社製,波長:As189.042nm)を用いて行った。土壌の含水率および添加薬剤の重量を考慮し、測定値を土壌単独重量1gあたりに換算した値をヒ素As溶出濃度とした。 The arsenic As concentration of the sample was measured using an ICP emission spectroscopic analyzer (iCAP6300 DuoView, Thermo scientific, wavelength: As189.042 nm). Considering the water content of the soil and the weight of the added chemicals, the value obtained by converting the measured value per 1 g of the soil alone was taken as the arsenic As elution concentration.

結果を表1及び図1に示した。表1及び図1に示す薬剤無添加の場合も窒素雰囲気下でマグネット乳鉢スターラー150rpmで1時間撹拌操作を実施した。リン酸三カルシウムCa(POは、850℃で2時間焼成したものを使用した。 The results are shown in Table 1 and FIG. Even in the case where no chemicals were added as shown in Table 1 and FIG. 1, stirring operation was carried out at 150 rpm with a magnetic mortar stirrer for 1 hour in a nitrogen atmosphere. Tricalcium phosphate Ca 3 (PO 4 ) 2 used was calcined at 850° C. for 2 hours.

表1及び図1に示すように模擬汚染土壌に金属カルシウム分散体とリン酸三カルシウムCa(POとを添加、混合した場合、ヒ素As溶出濃度は、0.045ppm(mg/L)であった(実施例1)。このときの模擬汚染土壌に対する薬剤添加量は、0.72重量%、金属カルシウムCa含有量及びリン含有量はそれぞれ0.100mmolである。薬剤無添加の場合、ヒ素As溶出濃度は0.561ppm(mg/L)であり(比較例1)、金属カルシウム分散体とリン酸三カルシウムCa(POとを添加、混合することでヒ素As溶出濃度は、92%低減した。 As shown in Table 1 and FIG. 1, when the metal calcium dispersion and tricalcium phosphate Ca 3 (PO 4 ) 2 were added to and mixed with the simulated contaminated soil, the arsenic As elution concentration was 0.045 ppm (mg/L ) Was obtained (Example 1). The amount of chemicals added to the simulated contaminated soil at this time was 0.72% by weight, and the metallic calcium Ca content and phosphorus content were each 0.100 mmol. When no drug is added, the arsenic As elution concentration is 0.561 ppm (mg/L) (Comparative Example 1), and a calcium metal dispersion and tricalcium phosphate Ca 3 (PO 4 ) 2 should be added and mixed. The arsenic As elution concentration was reduced by 92%.

実施例1に示すように金属カルシウム分散体とリン酸三カルシウムCa(POとを添加、混合することで汚染土壌に含まれるヒ素Asを十分に不溶化させることができるが、金属カルシウム分散体又はリン酸三カルシウムCa(POのいずれか一方を添加した場合には、ヒ素Asを不溶化させる効果は小さかった(比較例3、比較例4)。 As shown in Example 1, by adding and mixing the calcium metal dispersion and tricalcium phosphate Ca 3 (PO 4 ) 2 , arsenic As contained in the contaminated soil can be sufficiently insolubilized. When either the dispersion or tricalcium phosphate Ca 3 (PO 4 ) 2 was added, the effect of insolubilizing arsenic As was small (Comparative Examples 3 and 4).

金属カルシウム分散体のみを添加、混合した場合、ヒ素As溶出濃度は0.417ppmであり(比較例3)、その濃度は薬剤無添加の場合の約74%であった。またリン酸三カルシウムCa(POのみを添加、混合した場合、ヒ素As溶出濃度は0.394ppmであり(比較例4)、その濃度は薬剤無添加の場合の約70%であった。 When only the metallic calcium dispersion was added and mixed, the arsenic As elution concentration was 0.417 ppm (Comparative Example 3), which was about 74% of that in the case where no drug was added. In addition, when only tricalcium phosphate Ca 3 (PO 4 ) 2 was added and mixed, the arsenic As elution concentration was 0.394 ppm (Comparative Example 4), which was about 70% of that without drug addition. It was

また酸化カルシウムCaO又はヒドロキシアパタイトHApを添加、混合したときのヒ素As溶出濃度は、前者で0.706ppm、後者で0.749ppmであり(比較例2、比較例5)、ヒ素Asを不溶化させる効果は見られなかった。 Further, the elution concentration of arsenic As when calcium oxide CaO or hydroxyapatite HAp was added and mixed was 0.706 ppm in the former and 0.749 ppm in the latter (Comparative Examples 2 and 5), and the effect of insolubilizing arsenic As was found. Was not seen.

XRD分析結果
実施例1で使用した模擬汚染土壌と同様に調製した模擬汚染土壌5gに、上記金属カルシウム分散体及びリン酸三カルシウムCa(POをそれぞれ、金属カルシウム含有量(M−Ca含有量)及びリン含有量(P含有量)が20mmolとなるように添加し、Arガス雰囲気下、マグネット乳鉢スターラー150rpmで1時間撹拌した。得られた混合物をXRD分析した。
XRD analysis result The above-mentioned metallic calcium dispersion and tricalcium phosphate Ca 3 (PO 4 ) 2 were added to 5 g of the simulated polluted soil prepared in the same manner as the simulated polluted soil used in Example 1, respectively. The Ca content) and the phosphorus content (P content) were added so as to be 20 mmol, and the mixture was stirred for 1 hour at 150 rpm in a magnet mortar stirrer under an Ar gas atmosphere. The resulting mixture was analyzed by XRD.

結果を図2に示した。図2中、(A)のnCa/Ca(PO添加土壌は、模擬汚染土壌に薬剤を添加した直後の状態を示し、(B)のnCa/Ca(PO混合物は、模擬汚染土壌に薬剤を添加し、マグネット乳鉢スターラー150rpmで1時間撹拌した後の状態(不溶化処理後)を示す写真である。図2の(A)と(B)との写真から、不溶化処理することで模擬汚染土壌の外観が変化し、色彩もよりグレーになっていることが分かる。図2中、(C)のチャートは、XRD分析結果であり、模擬汚染土壌の表面に炭酸アパタイトCa10(POCO(OH)及びヒドロキシアパタイトCa(PO(OH)が形成されていた。 The results are shown in Fig. 2. In FIG. 2, (A) nCa/Ca 3 (PO 4 ) 2 -added soil shows a state immediately after the chemical is added to the simulated contaminated soil, and (B) nCa/Ca 3 (PO 4 ) 2 mixture is FIG. 7 is a photograph showing a state (after insolubilization treatment) after the chemical was added to the simulated contaminated soil and the mixture was stirred at 150 rpm with a magnetic mortar stirrer for 1 hour. From the photographs of (A) and (B) of FIG. 2, it can be seen that the appearance of the simulated contaminated soil is changed by the insolubilization treatment, and the color is more gray. In FIG. 2, the chart (C) is the result of XRD analysis, and carbonate apatite Ca 10 (PO 4 ) 5 CO 3 (OH) and hydroxyapatite Ca 5 (PO 4 ) 3 (OH) on the surface of the simulated polluted soil. Was formed.

実施例2
土壌にトチクレー粘土/砂を用い、実施例1と同じ要領で500ppmAs模擬汚染土壌0.50gを調製した。これにトチクレー粘土/砂4.50gを加えたものを供試土壌とした。金属カルシウム分散体(金属Ca分散体)は、実施例1と同じ要領で調製したものを使用し、リン酸三カルシウムCa(POは、850℃で2時間焼成したものを使用した。
Example 2
0.50 g of 500 ppm As simulated contaminated soil was prepared in the same manner as in Example 1 using the soil clay/sand. The soil to which 4.50 g of tochiclay clay/sand was added was used as the test soil. The metal calcium dispersion (metal Ca dispersion) used was prepared in the same manner as in Example 1, and the tricalcium phosphate Ca 3 (PO 4 ) 2 used was calcined at 850° C. for 2 hours. ..

不溶化試験及び溶出試験
供試土壌5gに金属カルシウム分散体(金属Ca分散体)を0.10g、リン酸三カルシウムCa(POを0.080g加え、アルゴンガス雰囲気下、マグネット乳鉢スターラー150rpmで10min間撹拌し、不溶化処理を行った(第1ステップ)。第1ステップで得られた不溶化処理土壌1gに蒸留水10mLを加え、振とう機(200往復/min,6h,25℃)で振とう後、メンブレンフィルター(0.45μm)で吸引ろ過し土壌を取り除いた(第2ステップ)。第2ステップで得られたろ液10mLに対して、2、3滴の硝酸(硝酸含量:61%,有害金属測定用,Wako,原液)を加えてろ液を酸性にした後、メスフラスコを用いて50mLに定容した。これをヒ素As溶出濃度測定時のサンプルとし、ICPで分析を行った。
Insolubilization test and elution test To 5 g of test soil, 0.10 g of metal calcium dispersion (metal Ca dispersion) and 0.080 g of tricalcium phosphate Ca 3 (PO 4 ) 2 were added, and under magnetic argon atmosphere, magnetic mortar stirrer The mixture was stirred at 150 rpm for 10 minutes to perform insolubilization treatment (first step). 10 mL of distilled water was added to 1 g of the insolubilized soil obtained in the first step, the mixture was shaken with a shaker (200 reciprocations/min, 6 h, 25° C.), and suction-filtered with a membrane filter (0.45 μm) to remove the soil. Removed (second step). To 10 mL of the filtrate obtained in the second step, add a few drops of nitric acid (nitric acid content: 61%, for measuring harmful metals, Wako, stock solution) to acidify the filtrate, and then use a measuring flask. The volume was adjusted to 50 mL. This was used as a sample for measuring the arsenic As elution concentration, and analyzed by ICP.

また実施例2と同じ要領で調製した供試土壌、実施例2と同じ要領で調製した供試土壌に薬剤を添加することなくアルゴンガス雰囲気下、マグネット乳鉢スターラー150rpmで10min間撹拌したものを比較例6、7とし、それぞれ溶出試験を行った。各条件で各々2回実施した。 In addition, the test soil prepared in the same manner as in Example 2 and the test soil prepared in the same manner as in Example 2 were agitated for 10 minutes with a magnetic mortar stirrer at 150 rpm in an argon gas atmosphere without adding a drug. Dissolution tests were carried out for Examples 6 and 7, respectively. Each condition was performed twice.

結果を表2に示した。表2に示すように供試土壌に金属カルシウム分散体とリン酸三カルシウムCa(POとを添加、混合した場合、ヒ素As溶出濃度は、定量検出下限以下であった。このときの模擬汚染土壌に対する薬剤添加量は、3.6重量%、金属カルシウムCa含有量及びリン含有量はそれぞれ0.500mmolである。一方、供試土壌を処理することなく溶出試験を行った場合(比較例6)、ヒ素As溶出濃度は、0.308〜1.05ppm、平均値で0.680ppm、供試土壌に薬剤を添加することなく撹拌し溶出試験を行った場合(比較例7)、ヒ素As溶出濃度は、平均値で0.179ppmであった。 The results are shown in Table 2. As shown in Table 2, when the metallic calcium dispersion and tricalcium phosphate Ca 3 (PO 4 ) 2 were added to and mixed with the test soil, the arsenic As elution concentration was below the quantitative detection lower limit. At this time, the chemical addition amount to the simulated contaminated soil was 3.6% by weight, and the metallic calcium Ca content and the phosphorus content were 0.500 mmol, respectively. On the other hand, when the dissolution test was performed without treating the test soil (Comparative Example 6), the arsenic As dissolution concentration was 0.308 to 1.05 ppm, the average value was 0.680 ppm, and the drug was added to the test soil. When the dissolution test was carried out without stirring (Comparative Example 7), the arsenic As dissolution concentration was 0.179 ppm on average.

実施例3
模擬汚染土壌の調製
土壌(粘土)50gに二酸化セレン70mgを含むセレン水溶液50mLを加え、撹拌した後、数日間風乾させセレンSe濃度1000ppmの模擬汚染土壌を得た。
Example 3
Preparation of Simulated Contaminated Soil To 50 g of soil (clay), 50 mL of an aqueous selenium solution containing 70 mg of selenium dioxide was added, stirred, and air-dried for several days to obtain a simulated contaminated soil having a selenium Se concentration of 1000 ppm.

不溶化試験及び溶出試験
模擬汚染土壌(セレンSe濃度1000ppm)5gに表3に示す各種薬剤を添加し、窒素雰囲気下、マグネット乳鉢スターラー150rpmで1時間撹拌した後、1日間室内で放置した(第1ステップ)。第1ステップで得られた模擬汚染土壌1gに純水10mLを加え、振とう機(200往復/min,6h)で振とう後、メンブレンフィルター(0.45μm)で吸引ろ過し土壌を取り除いた(第2ステップ)。第2ステップで得られたろ液に0.1Mの硝酸を加え、20mLに定容し、ICP発光分光分析装置(波長:196.026nm)で分析した。金属カルシウム分散体は、実施例1と同じ要領で調製したものを使用した。各条件で各々2回実施した。
Insolubilization test and elution test Various chemicals shown in Table 3 were added to 5 g of simulated contaminated soil (selenium Se concentration of 1000 ppm), and the mixture was stirred for 1 hour at 150 rpm in a magnet mortar stirrer under a nitrogen atmosphere, and then left indoors for 1 day (first Step). To 1 g of the simulated contaminated soil obtained in the first step, 10 mL of pure water was added, shaken with a shaker (200 reciprocations/min, 6 h), and suction-filtered with a membrane filter (0.45 μm) to remove the soil ( Second step). 0.1 M nitric acid was added to the filtrate obtained in the second step, the volume was adjusted to 20 mL, and the mixture was analyzed by an ICP emission spectrophotometer (wavelength: 196.026 nm). The metallic calcium dispersion used was prepared in the same manner as in Example 1. Each condition was performed twice.

結果を表3に示した。表3に示す薬剤無添加の場合(比較例8)も窒素雰囲気下でマグネット乳鉢スターラー150rpmで1時間撹拌操作を実施した。模擬汚染土壌の含水率は4重量%である。リン酸三カルシウムCa(POは、850℃で2時間焼成したものを使用した。 The results are shown in Table 3. In the case of no addition of chemicals shown in Table 3 (Comparative Example 8), the stirring operation was carried out at 150 rpm in a magnet mortar stirrer for 1 hour in a nitrogen atmosphere. The water content of the simulated polluted soil is 4% by weight. Tricalcium phosphate Ca 3 (PO 4 ) 2 used was calcined at 850° C. for 2 hours.

表3に示すように模擬汚染土壌に金属カルシウム分散体とリン酸三カルシウムCa(POとを添加、混合した場合、セレンSe溶出濃度は、定量検出下限以下であった(実施例3)。このときの模擬汚染土壌に対する薬剤添加量は、0.72重量%、金属カルシウムCa含有量及びリン含有量はそれぞれ0.100mmolである。薬剤無添加の場合、セレンSe溶出濃度は0.003〜0.036(ppm)であった(比較例8)。金属カルシウム分散体のみを添加、混合した場合、セレンSe溶出濃度は0.471〜0.529ppmであった(比較例9)。 As shown in Table 3, when the metallic calcium dispersion and tricalcium phosphate Ca 3 (PO 4 ) 2 were added to and mixed with the simulated contaminated soil, the selenium Se elution concentration was below the quantitative detection lower limit (Examples). 3). The amount of chemicals added to the simulated contaminated soil at this time was 0.72% by weight, and the metallic calcium Ca content and phosphorus content were each 0.100 mmol. When no chemical was added, the selenium Se elution concentration was 0.003 to 0.036 (ppm) (Comparative Example 8). When only the calcium metal dispersion was added and mixed, the selenium Se elution concentration was 0.471 to 0.529 ppm (Comparative Example 9).

Claims (4)

汚染物質を含有する土壌に薬剤を添加、混合し、前記汚染物質を不溶化させる汚染物質不溶化方法であって、
前記薬剤が、少なくとも一部がナノサイズの大きさの金属カルシウムが酸化カルシウム中に分散した金属カルシウム分散体と、リン酸カルシウムとを含み、
前記汚染物質が、ヒ素、フッ素、セレン、重金属のいずれか一種以上であることを特徴とする汚染物質不溶化方法。
A method for insolubilizing a pollutant, which comprises adding and mixing a drug to soil containing a pollutant to insolubilize the pollutant,
The drug comprises a calcium metal phosphate dispersion in which at least a part of nano-sized metal calcium is dispersed in calcium oxide, and calcium phosphate,
The contaminant insolubilizing method, wherein the contaminant is one or more of arsenic, fluorine, selenium, and heavy metal.
前記金属カルシウム分散体は、金属カルシウムと酸化カルシウムとの混合物を、金属カルシウムの少なくとも一部がナノサイズとなるまで粉砕し得られたものであることを特徴とする請求項1に記載の汚染物質不溶化方法。 The pollutant according to claim 1, wherein the metal calcium dispersion is obtained by pulverizing a mixture of metal calcium and calcium oxide until at least a part of the metal calcium has a nano size. Insolubilization method. 前記リン酸カルシウムが、リン酸三カルシウムCa(POであることを特徴とする請求項1又は2に記載の汚染物質不溶化方法。 The calcium phosphate, contaminants insolubilizing method according to claim 1 or 2, characterized in that the tricalcium phosphate Ca 3 (PO 4) 2. ヒ素、フッ素、セレン、重金属のいずれか一種以上を汚染物質とする汚染物質含有土壌に添加、混合し、前記汚染物質を不溶化させる不溶化剤であって、
少なくとも一部がナノサイズの大きさの金属カルシウムが酸化カルシウム中に分散した金属カルシウム分散体と、リン酸カルシウムとを含む汚染物質不溶化剤。
Arsenic, fluorine, selenium, an insolubilizing agent for insolubilizing the pollutant by adding and mixing it to the pollutant-containing soil containing any one or more of heavy metals as a pollutant,
A contaminant insolubilizing agent comprising a calcium metal phosphate dispersion, in which at least a part of nano-sized metal calcium is dispersed in calcium oxide, and calcium phosphate.
JP2019235442A 2018-12-27 2019-12-26 Contaminant insolubilization method and contaminant insolubilizer Active JP7311862B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018244561 2018-12-27
JP2018244561 2018-12-27

Publications (2)

Publication Number Publication Date
JP2020104109A true JP2020104109A (en) 2020-07-09
JP7311862B2 JP7311862B2 (en) 2023-07-20

Family

ID=71447688

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019235442A Active JP7311862B2 (en) 2018-12-27 2019-12-26 Contaminant insolubilization method and contaminant insolubilizer

Country Status (1)

Country Link
JP (1) JP7311862B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080125616A1 (en) * 2006-11-27 2008-05-29 Keith Edward Forrester Method for stabilization of Pb and Cd from incinerator ash
JP2012081442A (en) * 2010-10-14 2012-04-26 Prefectural Univ Of Hiroshima Heavy metal-contaminated soil treatment method
US20130098269A1 (en) * 2011-10-24 2013-04-25 Keith E. Forrester Method for treatment of hazardous paint residue with non-separating, non-embedding, non-toxic, compatable, dry stabilizer and blast media pre-blend
JP2016150317A (en) * 2015-02-18 2016-08-22 石坂産業株式会社 Recycling treatment method for selected soil extracted from earth and sand-based mixed waste, and recycling treatment material
JPWO2015064522A1 (en) * 2013-10-28 2017-03-09 吉野石膏株式会社 Insolubilizing material for specified hazardous substances and method for insolubilizing specified hazardous substances using the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6464550B2 (en) 2013-09-26 2019-02-06 株式会社ニコン Camera body and imaging device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080125616A1 (en) * 2006-11-27 2008-05-29 Keith Edward Forrester Method for stabilization of Pb and Cd from incinerator ash
JP2012081442A (en) * 2010-10-14 2012-04-26 Prefectural Univ Of Hiroshima Heavy metal-contaminated soil treatment method
US20130098269A1 (en) * 2011-10-24 2013-04-25 Keith E. Forrester Method for treatment of hazardous paint residue with non-separating, non-embedding, non-toxic, compatable, dry stabilizer and blast media pre-blend
JPWO2015064522A1 (en) * 2013-10-28 2017-03-09 吉野石膏株式会社 Insolubilizing material for specified hazardous substances and method for insolubilizing specified hazardous substances using the same
JP2016150317A (en) * 2015-02-18 2016-08-22 石坂産業株式会社 Recycling treatment method for selected soil extracted from earth and sand-based mixed waste, and recycling treatment material

Also Published As

Publication number Publication date
JP7311862B2 (en) 2023-07-20

Similar Documents

Publication Publication Date Title
Wu et al. Effect of sulfur-iron modified biochar on the available cadmium and bacterial community structure in contaminated soils
Wan et al. Rhamnolipid stabilized nano-chlorapatite: synthesis and enhancement effect on Pb-and Cd-immobilization in polluted sediment
Liu et al. Reducing leachability and bioaccessibility of lead in soils using a new class of stabilized iron phosphate nanoparticles
Shao-feng et al. Removal of hexavalent chromium from aqueous solution by iron nanoparticles
JP5244368B2 (en) Heavy metal insolubilizer and heavy metal contaminated soil treatment agent
US8748331B2 (en) Biogenic template for enhanced sorption of contaminants
JP4434156B2 (en) Treatment method of fluorine-contaminated soil
Mele et al. In situ fixation of metal (loid) s in contaminated soils: a comparison of conventional, opportunistic, and engineered soil amendments
JP5158462B2 (en) Reduced solidification of toxic metals
JP4664663B2 (en) Treatment method of arsenic contaminated soil
TWI646994B (en) Hazardous substance treatment agent
Zhong et al. Oxidation of Cr (III) on birnessite surfaces: the effect of goethite and kaolinite
JP5752387B2 (en) Contaminated soil treatment method
Souza et al. Reduction of bioaccessibility and leachability of Pb and Cd in soils using sludge from water treatment plant
JP7311862B2 (en) Contaminant insolubilization method and contaminant insolubilizer
JP2003290759A (en) Heavy metal fixing agent and method for fixing heavy metal
JP2014227457A (en) Insolubilizing agent of heavy metal or the like and insolubilizing method
Shan et al. Simultaneous and continuous stabilization of As and Cd in contaminated soil by a half wrapping-structured amendment
JP2006224025A (en) Method for immobilizing fluorine and/or boron
JP2007222695A (en) Harmful metal elution reduction material and elution reduction method for harmful metal using it
Williams et al. Speciation and bioavailability of zinc in amended sediments
JP5938784B2 (en) Heavy metal contaminated water treatment method, solid heavy metal contaminated treatment method, and heavy metal removal composition
JP2001121109A (en) Detoxicating method for construction waste containing soluble 6-valent chromium
JP5789789B2 (en) Treatment method for fluorine-contaminated soil
JP2003320365A (en) Method for treating object to be treated containing contaminant and treating agent for contaminated object to be treated

Legal Events

Date Code Title Description
AA64 Notification of invalidation of claim of internal priority (with term)

Free format text: JAPANESE INTERMEDIATE CODE: A241764

Effective date: 20200204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200217

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221011

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230531

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230623

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230629

R150 Certificate of patent or registration of utility model

Ref document number: 7311862

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150