JP4430979B2 - Dissimilar metal joint structure - Google Patents

Dissimilar metal joint structure Download PDF

Info

Publication number
JP4430979B2
JP4430979B2 JP2004146355A JP2004146355A JP4430979B2 JP 4430979 B2 JP4430979 B2 JP 4430979B2 JP 2004146355 A JP2004146355 A JP 2004146355A JP 2004146355 A JP2004146355 A JP 2004146355A JP 4430979 B2 JP4430979 B2 JP 4430979B2
Authority
JP
Japan
Prior art keywords
metal
strength
carbon fiber
joining
dissimilar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004146355A
Other languages
Japanese (ja)
Other versions
JP2005324241A (en
Inventor
義武 西
義人 松村
靖幸 宮澤
光明 竹内
邦男 山田
まどか 栃澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai University Educational Systems
Original Assignee
Tokai University Educational Systems
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai University Educational Systems filed Critical Tokai University Educational Systems
Priority to JP2004146355A priority Critical patent/JP4430979B2/en
Publication of JP2005324241A publication Critical patent/JP2005324241A/en
Application granted granted Critical
Publication of JP4430979B2 publication Critical patent/JP4430979B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、自動車、機械、医療、スポーツ、宇宙科学、電気通信工学産業分野などで使用される機械、器具、装置、デバイスを構成する異種金属接合構造物に関する。   The present invention relates to a dissimilar metal bonding structure constituting a machine, instrument, apparatus, or device used in the fields of automobiles, machines, medical care, sports, space science, telecommunications engineering industries, and the like.

従来、異種金属の接合方法として、溶接、ろう付け、ハンダ付けなど冶金学的接合手法や、熱膨張率の違いを利用した焼きバメ、冷やしバメ、リベットやカシメを用いた機械的接合方法、室温付近で接合する接着剤を用いたものなどがある。しかし、これらの技術で接合された異種金属接合構造物は、いずれも強度が弱く、破壊強度のばらつきも大きいという欠点がある。また、金属材のもつ耐蝕性、耐熱性、耐酸化性、導電性などを維持した状態で適切に接合することは困難である。   Conventionally, metallurgical joining methods such as welding, brazing, and soldering, as well as dissimilar metal joining methods, mechanical joining methods using shrinking, cooling, rivets and caulking using differences in thermal expansion coefficient, room temperature There are those using adhesives that are joined in the vicinity. However, the dissimilar metal joint structures joined by these techniques have the disadvantages that the strength is low and the variation in fracture strength is large. In addition, it is difficult to appropriately join the metal material while maintaining the corrosion resistance, heat resistance, oxidation resistance, conductivity, and the like of the metal material.

本発明者は、先に、炭素繊維と金属材料とを接合する技術を提案した(特許文献1)。更に発展させ、異種金属の接合に炭素繊維などの高強度繊維を用いることを検討し、鋭意研究した。その結果、異種金属の接合に炭素繊維などの高強度繊維を用いることにより、接合強度が高く、破壊強度のばらつきを抑えることができることを見出した。
特開2004−106045号公報、特許請求の範囲
The present inventor previously proposed a technique for joining carbon fibers and metal materials (Patent Document 1). We further developed and studied the use of high-strength fibers such as carbon fibers for joining dissimilar metals. As a result, it has been found that by using high-strength fibers such as carbon fibers for joining dissimilar metals, the joining strength is high and variation in fracture strength can be suppressed.
Japanese Patent Laid-Open No. 2004-106045, Claims

本発明は、炭素繊維などの高強度繊維を異種金属の接合に用いることにより、接合強度が高く、しかも、破壊強度のばらつきが少なく、更に、耐蝕性、耐熱性、耐酸化性、導電性などを維持した状態で適切に接合した異種金属接合構造物を提供するものである。   The present invention uses high-strength fibers such as carbon fibers for bonding dissimilar metals, so that the bonding strength is high and there is little variation in fracture strength, and furthermore, corrosion resistance, heat resistance, oxidation resistance, conductivity, etc. The dissimilar metal joining structure which joined appropriately in the state where it maintained is provided.

上記課題を解決するために本発明の構成は、
金属又は合金からなる第1金属部材と、第1金属部材とは異なる金属又は合金からなる第2金属部材と、第1金属部材と第2金属部材とに電気溶接法により接合しているシート状高強度繊維とを具備してなる異種金属接合構造物である。異種金属、合金の組み合わせは任意であるが、たとえば、鉄、鉄合金、アルミニウム、アルミニウム合金、タングステン、タングステン合金、チタン、チタン合金、リチウム合金、マグネシウム合金などが挙げられる。
In order to solve the above problems, the configuration of the present invention is as follows.
Sheet metal joined to the first metal member made of metal or alloy, the second metal member made of metal or alloy different from the first metal member, and the first metal member and the second metal member by an electric welding method A dissimilar metal joint structure comprising high-strength fibers. The combination of different metals and alloys is arbitrary, and examples thereof include iron, iron alloy, aluminum, aluminum alloy, tungsten, tungsten alloy, titanium, titanium alloy, lithium alloy, and magnesium alloy.

高強度繊維として、炭素繊維が代表的であるが、他に酸化しない、或いは酸化しにくいセラミックス系のグラスファイバーやチラノ繊維等が挙げられる。更には、低温処理の場合は高強度の高分子系繊維も同様に適用できる。   Carbon fibers are typical examples of high-strength fibers, but other examples include ceramic glass fibers and Tyranno fibers that are not oxidized or hardly oxidized. Furthermore, high-strength polymer fibers can be similarly applied in the case of low-temperature treatment.

炭素繊維などの高強度繊維は、第1、第2金属部材との馴染みを良くするために、その表面に金属コーティングがなされているのがよい。コーティング金属としては、ニッケル、アルミニウム、チタン、貴金属、及びこれら金属の合金が挙げられる。炭素繊維などの高強度繊維の性状は特に限定されない。例えば、束状及び織ないし編んだシート状等が挙げられる。また、シート状高強度繊維は、単層でも複層でもよい。その用途等に応じて適宜選択される。   The high-strength fiber such as carbon fiber is preferably provided with a metal coating on the surface thereof in order to improve the familiarity with the first and second metal members. Examples of the coating metal include nickel, aluminum, titanium, noble metals, and alloys of these metals. The properties of high-strength fibers such as carbon fibers are not particularly limited. For example, a bundle shape, a woven or knitted sheet shape, etc. are mentioned. The sheet-like high-strength fiber may be a single layer or multiple layers. It is appropriately selected according to its use.

異種金属接合構造物の用途が高温で使用される場合、炭素繊維などの高強度繊維の成分と第1、第2金属部材の成分との高温反応により脆い化合物が形成される惧れがある。脆い化合物の形成は高強度繊維の劣化を招き、高温での長時間処理は残留応力が開放されて強度が低下する。このような場合、高強度繊維の熱による金属との反応などに伴う劣化を防ぐため、コーティング金属の種類や高温での熱履歴が重要な技術開発のポイントとなる。コーティング金属の膜厚を数原子層から数ミクロンメートルの範囲、具体的には10nm〜2μm程度とすることにより、たとえ脆い化合物相が形成されても、脆さを防止することができる。   When the use of the dissimilar metal joint structure is used at a high temperature, a brittle compound may be formed by a high temperature reaction between a component of high strength fiber such as carbon fiber and a component of the first and second metal members. Formation of a brittle compound causes deterioration of the high-strength fiber, and long-time treatment at a high temperature releases residual stress and lowers strength. In such a case, the type of coating metal and the thermal history at high temperature are important technical development points in order to prevent deterioration of the high-strength fiber due to the reaction with the metal due to heat. By setting the thickness of the coating metal in the range of several atomic layers to several micrometers, specifically about 10 nm to 2 μm, even if a brittle compound phase is formed, brittleness can be prevented.

炭素繊維などの高強度繊維は、弾性変形したままで、第1、第2金属部材と接合することも可能である。この場合、弾性変形量は材料の種類、用途などによっても異なるが、0.5〜2.0%程度が好ましい。炭素繊維などの高強度繊維を弾性変形させたままとすることにより、その高い圧縮応力を積極的に利用して高温強度を高めることができる。特に、炭素繊維を用いると高温での弾性率の低下抑制効果が顕著である。短時間であれば、母相金属材料の再結晶温度程度でも耐熱性を発揮することができる。   High-strength fibers such as carbon fibers can be joined to the first and second metal members while being elastically deformed. In this case, the amount of elastic deformation varies depending on the type of material, application, etc., but is preferably about 0.5 to 2.0%. By leaving the high-strength fibers such as carbon fibers elastically deformed, the high-temperature strength can be increased by actively utilizing the high compressive stress. In particular, when carbon fiber is used, the effect of suppressing the decrease in elastic modulus at high temperatures is remarkable. In a short time, heat resistance can be exhibited even at the recrystallization temperature of the parent phase metal material.

また、炭素繊維などの高強度繊維は、繊維強化樹脂の形態、例えばCFRP,FRP,FRMで適用することも可能である。   Further, high-strength fibers such as carbon fibers can also be applied in the form of fiber reinforced resin, for example, CFRP, FRP, FRM.

更に炭素繊維として、先に特開2002−371461号公報で提案した、電子線を照射線量40〜200Mradの条件下で照射した超高強度炭素繊維を使用することも可能である。   Furthermore, as the carbon fiber, it is also possible to use an ultra-high-strength carbon fiber that has been previously proposed in Japanese Patent Laid-Open No. 2002-371461 and irradiated with an electron beam under the irradiation dose of 40 to 200 Mrad.

上述した異種金属接合構造物は、第1金属部材と第2金属部材とを炭素繊維などの高強度繊維で接合する方法によって製造することができる。例えば、高強度繊維を弾性変形させたままで、第1金属部材と第2金属部材とに組み込み、第1金属部材と第2金属部材とをこの高強度繊維を用いて接合することにより製造することができる。   The dissimilar metal joint structure described above can be manufactured by a method of joining the first metal member and the second metal member with high-strength fibers such as carbon fibers. For example, the high-strength fiber is produced by being incorporated into the first metal member and the second metal member while being elastically deformed, and joining the first metal member and the second metal member using the high-strength fiber. Can do.

この接合は、電気溶接法によるスポット溶接が好適である。この場合、接合強度を高めるために、スポット電圧を160〜230V、特に180〜190Vとするのがよい。具体的には特開2004−106045号公報に開示された技術を本発明にも適用することができる。スポット溶接以外にも電気接合、パーカッション溶接、いぐるみ、粉末冶金、鍛造、圧延、押出し、引抜き加工などが挙げられる。接合構造としては、第1金属部材と第2金属部材との突合せ面にそれぞれ一又は二以上の溝を形成し、これら溝に高強度繊維を入れて、高強度繊維と第1、第2金属部材とを接合する方法、或いは、第1金属部材と第2金属部材とを突合せ、突合せ面の外周面を高強度繊維で巻回し、高強度繊維と第1、第2金属部材とを接合する方法等がある。   For this joining, spot welding by an electric welding method is suitable. In this case, the spot voltage is preferably set to 160 to 230 V, particularly 180 to 190 V in order to increase the bonding strength. Specifically, the technique disclosed in Japanese Patent Application Laid-Open No. 2004-106045 can be applied to the present invention. In addition to spot welding, electrical joining, percussion welding, stuffed animals, powder metallurgy, forging, rolling, extrusion, drawing, etc. can be mentioned. As the joining structure, one or two or more grooves are formed on the abutting surfaces of the first metal member and the second metal member, respectively, and high strength fibers are inserted into these grooves, and the high strength fibers and the first and second metals are inserted. A method of joining the members, or the first metal member and the second metal member are butted together, the outer peripheral surface of the butted surface is wound with high-strength fibers, and the high-strength fibers and the first and second metal members are joined. There are methods.

本発明によれば、炭素繊維などの高強度繊維を異種金属の接合に用いることにより、接合強度が高く、しかも、破壊強度のばらつきの少ない異種金属接合構造物を提供することができる。   According to the present invention, by using a high-strength fiber such as carbon fiber for joining different kinds of metals, it is possible to provide a dissimilar metal joining structure having high joining strength and little variation in fracture strength.

(接合構造)
図1は、異種金属の薄板同士を炭素繊維シートで接合する方法、及びこの方法で得られた本発明に係る異種金属接合構造物を示す。
異種金属の薄板10,20は、それぞれその対向する面に溝10a,20aを形成している。複数の炭素繊維シートの束30は、異種金属の薄板10,20を突き合わせた時に溝10a,20aにより形成される空間に充填される寸法に裁断されてある。各炭素繊維シートには、薄板10,20と馴染む成分の金属がコーティングされている。異種金属の薄板10,20の溝10a,20a間に炭素繊維シートの束30を挟み、薄板10と炭素繊維シートの束30,及び薄板20と炭素繊維シートの束30とをそれぞれスポット溶接により接合する。このことにより、複合板、すなわち、本発明に係る異種金属接合構造物40を得る。
(Joint structure)
FIG. 1 shows a method of bonding thin plates of different metals with a carbon fiber sheet, and a different metal bonding structure according to the present invention obtained by this method.
The dissimilar metal thin plates 10 and 20 are formed with grooves 10a and 20a on their opposing surfaces, respectively. The bundle 30 of carbon fiber sheets is cut to a size that fills the space formed by the grooves 10a and 20a when the dissimilar metal thin plates 10 and 20 are brought into contact with each other. Each carbon fiber sheet is coated with a metal that is compatible with the thin plates 10 and 20. A bundle 30 of carbon fiber sheets is sandwiched between the grooves 10a and 20a of the thin plates 10 and 20 of different metals, and the thin plate 10 and the bundle 30 of carbon fiber sheets, and the thin plate 20 and the bundle 30 of carbon fiber sheets are joined by spot welding. To do. Thus, the composite plate, that is, the dissimilar metal joint structure 40 according to the present invention is obtained.

図1に示された複合板40を更に複数枚積層して、図2に示す異種金属接合構造物50とすることもできる。
図1では、異種金属の薄板同士を炭素繊維シートで接合する方法を示したが、炭素繊維シート自体に限らず、炭素繊維シートの束の複合ブロック(CFRM)60で異種金属部材を接合することも可能である。図3は、その構造を示す。
図1では、異種金属の薄板の対向面に溝を形成し、ここに炭素繊維シートを入れて接合する方法を示したが、異種金属の薄板の対向面に溝を形成することなく、異種金属の薄板を突合せ、突合せ面及びその近傍の外周面を炭素繊維シートで被覆し、しかる後、炭素繊維シートとこれら異種金属の薄板とを接合することも可能である。これを図4に示す。
A plurality of composite plates 40 shown in FIG. 1 may be further stacked to form the dissimilar metal joint structure 50 shown in FIG.
In FIG. 1, a method of joining thin plates of different kinds of metals with a carbon fiber sheet is shown. However, not only the carbon fiber sheets themselves, but also different kinds of metal members are joined with a composite block (CFRM) 60 of a bundle of carbon fiber sheets. Is also possible. FIG. 3 shows the structure.
FIG. 1 shows a method of forming a groove on the opposing surface of a thin plate made of a different metal and joining the carbon fiber sheet therein, but the different metal is formed without forming a groove on the opposing surface of the thin plate made of a different metal. It is also possible to butt the thin plates, cover the butt surface and the outer peripheral surface in the vicinity thereof with a carbon fiber sheet, and then bond the carbon fiber sheet and the thin plates of these different metals. This is shown in FIG.

(実施例)
例1 図1の異種金属接合構造物において、第1金属部材に鉄合金、第2金属部材にはんだ合金を用い、高強度繊維として炭素繊維断面積率が50%の炭素繊維クロスマットを用いた。炭素繊維シートと第1、第2金属部材の接合は電気スポット溶接(電圧190V)により行なった。第1、第2金属部材の突合せ面の寸法は、縦20mm、横5mmであり、溝の寸法は、縦20mm、横1mm、深さ10mmである。従って炭素繊維クロスマットの寸法は、縦20mm、横1mm、長さ20mmである。炭素繊維自体そのものの引張り破断応力は2〜4GPaである。鉄合金と炭素繊維とを電気スポット溶接した場合には、炭素繊維の引張り破断強度が0.3GPaから3GPaの範囲である。この例に係る異種金属接合構造物では、接合曲げ強度は0.2から0.4GPa程度であった。
すなわち、従来の冶金学的接合手法や機械的接合方法、接着剤を用いた方法などと異なり、例1では炭素繊維を用いているので、耐蝕性、耐熱性、耐酸化性、導電性などを充分保持することができる。
(Example)
Example 1 In the dissimilar metal joint structure of FIG. 1, an iron alloy was used as the first metal member, a solder alloy was used as the second metal member, and a carbon fiber cross mat having a carbon fiber cross-sectional area ratio of 50% was used as the high-strength fiber. . The carbon fiber sheet and the first and second metal members were joined by electric spot welding (voltage 190V). The dimensions of the butting surfaces of the first and second metal members are 20 mm in length and 5 mm in width, and the dimensions of the groove are 20 mm in length, 1 mm in width and 10 mm in depth. Accordingly, the carbon fiber cloth mat has a length of 20 mm, a width of 1 mm, and a length of 20 mm. The tensile breaking stress of the carbon fiber itself is 2 to 4 GPa. When an iron alloy and carbon fiber are subjected to electric spot welding, the tensile breaking strength of the carbon fiber is in the range of 0.3 GPa to 3 GPa. In the dissimilar metal joint structure according to this example, the joint bending strength was about 0.2 to 0.4 GPa.
That is, unlike conventional metallurgical joining methods, mechanical joining methods, methods using adhesives, etc., since carbon fiber is used in Example 1, corrosion resistance, heat resistance, oxidation resistance, conductivity, etc. are improved. It can be retained sufficiently.

例2 図1の異種金属接合構造物において、第1金属部材に鉄合金、第2金属部材にアルミニウム合金を用い、高強度繊維として炭素繊維断面積率が50%の炭素繊維クロスマットを用いた。炭素繊維には鉄合金ともアルミニウム合金とも接合可能な金属であるニッケル又はチタンをコーティングした。他の条件は、例1と同じである。この例に係る異種金属接合構造物では、接合曲げ強度は0.2から0.4GPa程度であった。
すなわち、Fe−Al合金では接合界面で極めて硬く、かつ、脆い化合物相が形成される。このため溶接が難しく、たとえ、接合できても破壊強度が小さく、たまに接合強度が高いものができても、衝撃に弱く、破壊強度や疲労強度破壊回数のばらつきが異常に高い。
Example 2 In the dissimilar metal joint structure of FIG. 1, an iron alloy was used for the first metal member, an aluminum alloy was used for the second metal member, and a carbon fiber cross mat having a carbon fiber cross-sectional area ratio of 50% was used as the high-strength fiber. . The carbon fiber was coated with nickel or titanium, which is a metal that can be bonded to both an iron alloy and an aluminum alloy. Other conditions are the same as in Example 1. In the dissimilar metal joint structure according to this example, the joint bending strength was about 0.2 to 0.4 GPa.
That is, in the Fe—Al alloy, a very hard and brittle compound phase is formed at the bonding interface. For this reason, it is difficult to weld, and even if it can be joined, the fracture strength is small, and even if a joint strength is occasionally high, it is vulnerable to impact and the variation in fracture strength and fatigue strength fracture frequency is abnormally high.

例2の接合方法によれば、接合界面で脆化相が形成されないため、破壊強度が向上し、それらの値のバラツキは小さい。 According to the joining method of Example 2, since the embrittlement phase is not formed at the joining interface, the fracture strength is improved and the variation in the values is small.

例3 図1の異種金属接合構造物において、第1金属部材に鉄合金、第2金属部材に銅合金を用い、高強度繊維として炭素繊維断面積率が50%の炭素繊維クロスマットを用いた。炭素繊維には鉄合金とも銅合金とも接合可能な金属であるニッケル、金、パラジウム又はチタンをコーティングした。他の条件は、例1と同じである。この例に係る異種金属接合構造物では、接合曲げ強度は0.2から0.4GPa程度であった。
すなわち、Fe−Cu合金では、接合界面では合金層が形成されずに二相分離する。このため溶接が難しく、たとえ接合できても破壊強度が小さく、破壊強度や疲労強度破壊回数のばらつきが異常に高い。例3によれば、接合界面で二相分離相が形成されないため、破壊強度が向上し、それらの値も設計強度に近く、バラツキも小さい。
Example 3 In the dissimilar metal joint structure of FIG. 1, an iron alloy was used for the first metal member, a copper alloy was used for the second metal member, and a carbon fiber cross mat having a carbon fiber cross-sectional area ratio of 50% was used as the high-strength fiber. . Carbon fibers were coated with nickel, gold, palladium, or titanium, which is a metal that can be bonded to both iron alloys and copper alloys. Other conditions are the same as in Example 1. In the dissimilar metal joint structure according to this example, the joint bending strength was about 0.2 to 0.4 GPa.
That is, in the Fe—Cu alloy, two-phase separation occurs without forming an alloy layer at the bonding interface. For this reason, welding is difficult, even if it can be joined, the fracture strength is low, and the variation in the fracture strength and the number of fractures of fatigue strength is abnormally high. According to Example 3, since a two-phase separation phase is not formed at the bonding interface, the fracture strength is improved, and these values are close to the design strength and the variation is small.

例4 図1の異種金属接合構造物において、第1金属部材にチタン合金と、第2金属部材にアルミニウム合金を用い、高強度繊維として炭素繊維断面積率が50%の炭素繊維クロスマットを用いた。炭素繊維にはチタン合金ともアルミニウム合金とも接合可能な金属として、ニッケルをコーティングした。他の条件は、例1と同じである。この例に係る異種金属接合構造物では、接合曲げ強度は0.2から0.4GPa程度であった。
すなわち、Ti−炭素繊維接合界面で極めて硬くかつ脆い化合物相が形成される。このため溶接が難しく、たとえ接合できても破壊強度が小さく、まれに接合強度が高いものができても、衝撃に弱く、破壊強度や疲労破壊回数のばらつきが異常に高い。例4によれば、接合界面で脆化相が形成されないのみならず、アルミニウムの強度が炭素繊維で繊維強化されるため、破壊強度は向上し、それらの値のバラツキも小さい。
Example 4 In the dissimilar metal joint structure of FIG. 1, a titanium alloy is used for the first metal member and an aluminum alloy is used for the second metal member, and a carbon fiber cross mat having a carbon fiber cross-sectional area ratio of 50% is used as the high strength fiber. It was. Carbon fiber was coated with nickel as a metal that can be bonded to both titanium and aluminum alloys. Other conditions are the same as in Example 1. In the dissimilar metal joint structure according to this example, the joint bending strength was about 0.2 to 0.4 GPa.
That is, a very hard and brittle compound phase is formed at the Ti-carbon fiber bonding interface. For this reason, it is difficult to weld, even if it can be joined, the fracture strength is low, and even if it can be made with a high joint strength, it is vulnerable to impacts, and the variation in fracture strength and fatigue fracture frequency is abnormally high. According to Example 4, not only the embrittlement phase is not formed at the joint interface, but also the strength of aluminum is fiber-reinforced with carbon fibers, so that the fracture strength is improved and the variation of those values is small.

例5 図1の異種金属接合構造物において、第1金属部材にリチウム合金と、第2金属部材にアルミニウム合金を用い、高強度繊維として炭素繊維断面積率が50%の炭素繊維クロスマットを用いた。炭素繊維にはリチウム合金ともアルミニウム銅合金とも接合可能な金属であるニッケルをコーティングした。他の条件は、例1と同じである。この例に係る異種金属接合構造物では、接合曲げ強度は0.2から0.4GPa程度であった。
すなわち、コーティング金属により複合化時の炭素繊維の劣化を防ぐので、本結合方法では破壊強度は向上し、それらの値のバラツキも小さい。
Example 5 In the dissimilar metal joint structure of FIG. 1, a lithium alloy is used for the first metal member and an aluminum alloy is used for the second metal member, and a carbon fiber cross mat having a carbon fiber cross-sectional area ratio of 50% is used as the high strength fiber. It was. The carbon fiber was coated with nickel, which is a metal that can be bonded to both a lithium alloy and an aluminum copper alloy. Other conditions are the same as in Example 1. In the dissimilar metal joint structure according to this example, the joint bending strength was about 0.2 to 0.4 GPa.
That is, since the coating metal prevents the carbon fiber from deteriorating when it is combined, the present bonding method improves the breaking strength, and the variation in these values is small.

なお、本発明は、タングステン合金やチタン合金と鉄合金、チタン合金、アルミニウム合金、マグネシウム合金の異種金属間接合にも適用することができる。   In addition, this invention is applicable also to the dissimilar metal joining of a tungsten alloy or a titanium alloy, and an iron alloy, a titanium alloy, an aluminum alloy, and a magnesium alloy.

本発明は、自動車、機械、医療、スポーツ、宇宙科学、電気通信工学産業分野などで使用される機械、器具、装置、デバイスの製造に有効に利用することができる。   INDUSTRIAL APPLICABILITY The present invention can be effectively used for manufacturing machines, instruments, apparatuses, and devices used in the fields of automobiles, machines, medicine, sports, space science, telecommunications engineering industries, and the like.

本発明に係る異種金属の薄板同士を炭素繊維シートで接合する方法、及びこの方法で得られた本発明に係る異種金属接合構造物を示す図で、(a)は接合前の状態、(b)は接合後の状態を示す。BRIEF DESCRIPTION OF THE DRAWINGS It is a figure which shows the dissimilar-metal joining structure based on the method which joins the thin plates of the dissimilar metal based on this invention with a carbon fiber sheet, and this method obtained by this method, (a) is the state before joining, (b ) Shows the state after joining. 本発明に係る異種金属の薄板同士を炭素繊維シートで接合して得られた複合板をそれぞれ接合してなる、本発明に係る異種金属接合構造物を示す図。The figure which shows the dissimilar-metal joining structure which concerns on this invention formed by joining the composite board obtained by joining the thin plates of the dissimilar metal which concern on this invention with a carbon fiber sheet, respectively. 本発明に係る異種金属の薄板同士の部品を炭素繊維シートの束の複合ブロック(CFRM)でそれぞれ接合してなる、本発明に係る異種金属接合構造物を示す図。The figure which shows the dissimilar metal joining structure which concerns on this invention formed by joining the components of the thin metal plates of the present invention according to this invention by the composite block (CFRM) of the bundle | flux of a carbon fiber sheet, respectively. 本発明に係る異種金属の接合部の外部表面を炭素繊維シートで包み(巻き)、接合する方法、及びこの方法による得られた本発明に係る異種金属接合構造物を示す図で、(a)は接合前の状態、(b)は接合後の状態を示す。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a diagram showing a method for wrapping (wrapping) and bonding the outer surface of a dissimilar metal joint according to the present invention with a carbon fiber sheet, and a dissimilar metal joint structure according to the present invention obtained by this method. Indicates a state before bonding, and (b) indicates a state after bonding.

符号の説明Explanation of symbols

10…第1の金属部材
20…第2の金属部材
30…炭素繊維(高強度繊維)
40…異種金属接合構造物(複合板)
50…異種金属接合構造物
60…炭素繊維シートの束の複合ブロック(CFRM)
DESCRIPTION OF SYMBOLS 10 ... 1st metal member 20 ... 2nd metal member 30 ... Carbon fiber (high-strength fiber)
40 ... Joint metal structure (composite plate)
50 ... Dissimilar metal joint structure 60 ... Composite block of bundles of carbon fiber sheets (CFRM)

Claims (3)

金属又は合金からなる第1金属部材と、第1金属部材とは異なる金属又は合金からなる第2金属部材と、第1金属部材と第2金属部材とに電気溶接法により接合しているシート状高強度繊維とを具備してなる異種金属接合構造物。 Sheet metal joined to the first metal member made of metal or alloy, the second metal member made of metal or alloy different from the first metal member, and the first metal member and the second metal member by an electric welding method A dissimilar metal joint structure comprising high-strength fibers. 高強度繊維は炭素繊維である、請求項1に記載の異種金属接合構造物。 The dissimilar metal joining structure according to claim 1, wherein the high-strength fibers are carbon fibers. 高強度繊維は、その表面に金属コーティングがなされている請求項1又は2に記載の異種金属接合構造物。 The dissimilar metal joint structure according to claim 1, wherein the high-strength fiber has a metal coating on a surface thereof.
JP2004146355A 2004-05-17 2004-05-17 Dissimilar metal joint structure Expired - Fee Related JP4430979B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004146355A JP4430979B2 (en) 2004-05-17 2004-05-17 Dissimilar metal joint structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004146355A JP4430979B2 (en) 2004-05-17 2004-05-17 Dissimilar metal joint structure

Publications (2)

Publication Number Publication Date
JP2005324241A JP2005324241A (en) 2005-11-24
JP4430979B2 true JP4430979B2 (en) 2010-03-10

Family

ID=35471003

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004146355A Expired - Fee Related JP4430979B2 (en) 2004-05-17 2004-05-17 Dissimilar metal joint structure

Country Status (1)

Country Link
JP (1) JP4430979B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5879771B2 (en) * 2011-06-27 2016-03-08 日産自動車株式会社 Metal bonding method
TWI558550B (en) * 2015-01-16 2016-11-21 川錫科研有限公司 Composite fiber structure

Also Published As

Publication number Publication date
JP2005324241A (en) 2005-11-24

Similar Documents

Publication Publication Date Title
US8186566B2 (en) Method for cohesively bonding metal to a non-metallic substrate
KR100734794B1 (en) Method for making a joint between copper and stainless steel
JP4350753B2 (en) Heat sink member and manufacturing method thereof
WO1992001528A1 (en) Hot diffusion welding
KR20020042108A (en) Corrosion resistance clad metal plate and method for manufacturing thereof
JP4430979B2 (en) Dissimilar metal joint structure
WO2010110476A1 (en) Joint material and method of joining
JPH0335886A (en) Manufacture of titanium clad material
JP7067151B2 (en) Composite material of clad material and metal
JP2006326612A (en) Method of welding different kind of metal by resistance seam welding
JPH0811302B2 (en) Dissimilar metal joining method
JP3555698B2 (en) Resistance welding method for aluminum material and T-shaped aluminum structure
JP6653242B2 (en) Joint structure and manufacturing method thereof
JP6648791B2 (en) Resistance spot welding method
Zou et al. Crossed-wire laser microwelding of Pt-10 Pct Ir to 316 low-carbon vacuum melted stainless steel: part I. Mechanism of joint formation
JPH07232284A (en) Joining of titanium alloy and iron base metal using intermediate member
JP2022000315A (en) Manufacturing method of weld bond joint
JP6428272B2 (en) Resistance spot welding method
JP6333268B2 (en) Layer composite
JP4585230B2 (en) Fiber reinforced composite material
JPH01122677A (en) Manufacture of titanium clad steel plate with copper or copper alloy as intermediate joining medium
JP2017140633A (en) Spot welding method
Mezher et al. Modelling and experimental study of dissimilar arc stud welding of AISI 304L to AISI 316L stainless steel
JP4718343B2 (en) Electromagnetic welding method and joined body of iron-based material and aluminum-based plate
JPH0270390A (en) Gas pressure welding method for dissimilar materials

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070508

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090708

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090811

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090916

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091201

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091218

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121225

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131225

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees