JP4430779B2 - Anisotropic heat transfer body - Google Patents

Anisotropic heat transfer body Download PDF

Info

Publication number
JP4430779B2
JP4430779B2 JP2000078062A JP2000078062A JP4430779B2 JP 4430779 B2 JP4430779 B2 JP 4430779B2 JP 2000078062 A JP2000078062 A JP 2000078062A JP 2000078062 A JP2000078062 A JP 2000078062A JP 4430779 B2 JP4430779 B2 JP 4430779B2
Authority
JP
Japan
Prior art keywords
heat transfer
heat
transfer body
organic polymer
polymer layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000078062A
Other languages
Japanese (ja)
Other versions
JP2001261851A (en
Inventor
直之 下山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Polymatech Co Ltd
Original Assignee
Polymatech Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Polymatech Co Ltd filed Critical Polymatech Co Ltd
Priority to JP2000078062A priority Critical patent/JP4430779B2/en
Publication of JP2001261851A publication Critical patent/JP2001261851A/en
Application granted granted Critical
Publication of JP4430779B2 publication Critical patent/JP4430779B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing

Description

【0001】
【発明の属する技術分野】
本発明は、電子機器内部に用いられる電子部品等の発熱体が発する熱を離れた位置の放熱体まで伝える異方性伝熱体に関するものである。
【0002】
【従来の技術】
従来、ノートパソコンなどの小型化の進む電子機器においては、集積回路等の発熱体から発生した熱を放熱させるために、ヒートパイプ等の伝熱体と、ヒートシンク、ファン等の放熱体とが、組み合わされて利用されている。これは、小型の電子機器は、発熱体である集積回路の上に放熱体を設けるための十分なスペースが確保できないため、電子部品の配置や残り少ないスペースを考慮して、発熱体から離れた位置に放熱体を設け、発熱体から放熱体まで熱を伝える伝熱体を設置する方法が用いられている。
【0003】
一方、炭素繊維は、その高い熱伝導率と熱伝導異方性から伝熱体の材料としての利用が検討されてきている。例えば、特開平9−262917号公報では、熱伝導率の高い炭素繊維の両端のみを炭素や金属で固定した可撓型伝熱体が提案されている。これは、炭素繊維の固定材料に熱伝導の高い炭素や金属を用いることで、発熱体および放熱体と炭素繊維の接触熱抵抗を下げた高い熱伝導性のある伝熱体を得るものであり、さらに末端以外の炭素繊維は特に固定されていないため自在に曲げることができる可撓型伝熱体である。
【0004】
【発明が解決しようとする課題】
しかし、この可撓型伝熱体は自在に曲げることができるが、炭素繊維の周囲を保護していないため、曲げた時に破損し易く、組付け作業性が悪いという問題や、さらに導電性のある炭素繊維が、周囲の電子部品と接触して電子機器に悪影響を与える可能性があるという問題点等があった。また別に、複数の炭素繊維が硬質樹脂で被覆保護された伝熱体もあったが、炭素繊維の柔軟性を拘束してしまうために伝導体の可撓性はなく、剛直なものであった。
【0005】
【課題を解決するための手段】
本発明は、上記のような問題を解決するものであり、発熱体から発生する熱を離れた位置にある放熱体まで効率よく伝える伝熱体であって、電子機器内部のスペース形状および方向に合わせて任意に伝熱体を配置することができ、且つ耐久性、電気絶縁性を有する異方性伝熱体を提供するものである。
すなわち、発熱体から発生する熱を離れた放熱体へ伝える炭素繊維が、可撓性の有機高分子層で覆われていることを特徴とする異方性伝熱体である。
【0006】
さらに、可撓性の有機高分子層が、炭素繊維を覆うゲル状の有機高分子層と、さらにその外側を覆うゴム状弾性体の有機高分子層との複層構造である異方性伝熱体である。
さらに、ゲル状の有機高分子層とゴム状弾性体の有機高分子層との少なくとも一方に熱伝導性充填剤が配合されている異方性伝熱体である。
さらに、ゲル状の有機高分子層が、シリコーンゲル層で、かつゴム状弾性体の有機高分子層が、シリコーンゴム層である異方性伝熱体である。
さらに、上記記載の異方性伝熱体の両端に、マトリックス中に炭素繊維が一方向に配列し埋設された接合部を有する伝熱体である。
【0007】
【発明の実施の形態】
以下に、本発明の詳細な説明をする。
本発明の異方性伝熱体の代表的な形態は、図1に示すように、異方性伝熱体1は、炭素繊維2が可撓性の有機高分子層3内に配列されて埋設されているものである。異方性伝熱体1は、一方の末端から入った熱を反対側の末端に伝える。
【0008】
本発明の伝熱体の代表的な形態は、図3に示すように、異方性伝熱体1の両端に、発熱体8方向に伝熱方向を向けるために、炭素繊維が埋設されている接合体6、6が固着している伝熱体1である。異方性伝熱体1および接合体6、6には、炭素繊維が一方向に配列して伝熱経路を形成している。
【0009】
異方性伝熱体と接合体は、公知の熱伝導性接着剤や熱伝導性ゲルからなる固着層10にて固着されている。接合部は、二つで構成される。一つの接合体6は、マトリックス中に炭素繊維が同一方向に配向しており、炭素繊維の一端は発熱体と接触する底面側に、もう一端は異方性伝熱体と接触する側面側に向かっているため、発熱体から発生する熱を異方性伝熱体の末端に伝えるのに効果的である。
もう一つの接合体6は、マトリックス中に炭素繊維が同一方向に配向しており、炭素繊維の一端は放熱体と接触する底面側に、もう一端は異方性伝熱体と接触する側面側に向かっているため、異方性伝熱体の末端から伝わってくる熱を放熱体に伝えるのに効果的である。
【0010】
本発明の炭素繊維は、高熱伝導性を有する長繊維状の炭素繊維であれば、繊維径、繊維の表面状態、および繊維を作る原料の種類は特定しないが、繊維方向において400W/m・K以上の熱伝導率を持つ炭素繊維が好ましい。
本発明の可撓性の有機高分子層は、電気絶縁性、柔軟性を有する素材からなる有機高分子層であればよいが、ポリエチレン、ポリエチレンテレフタレート等のポリオレフィン系、ポリ塩化ビニル系、シリコーン系、フッ素系等が挙げられる。これらの素材の樹脂シート、熱収縮チューブ、ゴム状弾性体等を用いると容易に層を形成することができる。
【0011】
また、本発明の可撓性の有機高分子層を、炭素繊維の間隙をゲル状の有機高分子で充填し、その外側をゴム状弾性体で覆う複層構造にすることで、異方性伝熱体を曲げた際に炭素繊維の切断を防ぐことができる。これらの素材は、耐熱性、電気絶縁性、柔軟性、加工性等からゲルはシリコーンゲル、ゴム状弾性体はシリコーンゴムが好適である。さらに、柔軟に曲がるために、有機高分子層はなるべく薄厚であることがより好ましい。
【0012】
本発明の可撓性の有機高分子層は、熱伝導性を上げるために熱伝導性充填剤を配合してもよい。熱伝導性充填剤には、公知の高熱伝導性である金属やセラミックス、有機繊維などが挙げられる。例えば、金属としては銀、銅、アルミニウム等、セラミックスとしては窒化ケイ素、窒化ホウ素、酸化アルミニウム等、有機繊維としてはポリベンゾイミダゾール等があり、またそのほかにもグラファイト等の配合が可能である。
【0013】
このような熱伝導性充填剤を可撓性の有機高分子層中に分散配合することにより、熱伝導性をさらに向上させることができる。ただし、異方性伝熱体は周囲の電子部品に対して電気絶縁性である必要があるため、有機高分子層中に熱伝導性充填剤を配合する場合、その少なくとも最外層には、導電性がある金属やグラファイト等の配合を避けることが好ましい。
【0014】
本発明の接合体は、炭素繊維が一方向に配向し埋設されていることで高い熱伝導性と熱伝導異方性を有する。接合部のマトリックスは、エポキシ樹脂、フェノール樹脂、シリコーンゴムなど液状の状態を経て任意のブロック状に硬化することができ、100℃程度の熱に耐えうる耐熱性高分子材料であれば限定するものではない。
【0015】
また、接合部には上記の耐熱性高分子材料以外に、熱伝導性のあるセラミックスを用いて硬化させたものでもよい。さらに熱伝導性を上げるために上記のマトリックスに前述の熱伝導性充填剤を混ぜたものを用いてもよい。
以下、図に示す実施例を具体的に説明する。しかしこれによって発明が限定されるものではない。
【0016】
【実施例1】
図2に実施例1の異方性伝熱体を示す。一方向に配列した炭素繊維2を覆う可撓性の有機高分子層3が、炭素繊維2を覆うシリコーンゲルからなる有機高分子層4と、さらにその外側を覆うシリコーンゴムからなる有機高分子層5との2層からなる複層構造である異方性伝熱体1である。この異方性伝熱体1をを用いると、図5に示したように、ノート型パソコンにおける集積回路の発熱体8から発生した熱を液晶モニターの裏面の放熱体9に効率よく伝えることができた。
【0017】
【実施例2】
図3に実施例2の伝熱体を示す。実施例1で得た異方性伝熱体1の両端に、エポキシ樹脂中に炭素繊維1を一方向に配列し埋設させた接合体6を、それぞれ別体に形成して、熱伝導性接着剤による固着層10で繋いだ伝熱体である。図3に示すような接合体を繋ぐことによって、伝熱体端部の炭素繊維の向きを任意に設定でき、発熱体および放熱体との接触面に対して平面平行方向に異方性伝熱体端部を延ばして熱を伝えることができた。
【0018】
【実施例3】
図4に実施例3の伝熱体を示す。異方性伝熱体1の炭素繊維2を接合体6にも埋設させ、同一の炭素繊維2で異方性伝熱体1と接合体6とを繋いだ伝熱体である。本実施例は、炭素繊維よりも熱伝導率が低い熱伝導性接着剤や熱伝導性ゲル等の固着層を用いていないので、固着層による熱の伝達のロスが無くなり、より多くの熱を効率良く放熱体に伝えることができた。この異方性伝熱体1を用いると、図5に示したように、ノート型パソコンにおける集積回路の発熱体8から発生した熱を液晶モニターの裏面の放熱体9に効率よく伝えることができた。
【0019】
なお、接合体は、図6(イ)に示すように、接合体7の発熱体8との接触面を発熱体8の形状あるいは面積に合わせた形状とし、他方を伝熱体1の接合面の大きさとするようにして、それぞれの接合面の大きさを変えても良い。また、図6(ロ)に示すように、接合体6と伝熱体1との間に補助接合体11を介在させて連結させるようにしても良い。このような構成とすることにより、より伝熱効果をあげることが可能である。
【0020】
【発明の効果】
本発明の異方性伝熱体は、炭素繊維の束をシリコーンゴムなどの有機高分子層で覆い保護することにより、炭素繊維が周囲の電子部品と接触することが無く、さらに組付け作業性が非常に向上する。また、炭素繊維間の間隙をシリコーンゲルなどのゲル状の有機高分子で充填することで、炭素繊維が切断され難くしかも高い柔軟性をもつ効果がある。
これにより、集積回路などから発生した熱をモニターの裏面等の放熱体に伝えることが可能となる。さらに、熱伝導率が400W/m・K以上の炭素繊維の束を使用することで、より高い熱伝達能力を発揮する。
【0021】
本発明の伝熱体は、炭素繊維が配列して伝熱経路を形成しているため、全面が熱くなる金属などに比べて効率よく熱を運ぶことができ、高い熱輸送効果が得られる。
以上から、本発明の伝熱体および接合体は、発熱体から放熱体に向かって大量の熱を運ぶことが可能であり、さらに周辺の回路基板や電子部品に影響を与えることなく、また柔軟に曲がるため発熱体から放熱体まで小スペースでも自在に設置することができる。
【図面の簡単な説明】
【図1】本発明の異方性伝熱体の代表的な形態の斜視図
【図2】本発明の異方性伝熱体の実施例の斜視図
【図3】本発明の接合体を接着した伝熱体の代表的な形態の縦断面図
【図4】本発明の接合体を付けた伝熱体の実施例の縦断面図
【図5】本発明の実装例
【図6】本発明の接合体を付けた伝熱体の別の実施例の縦断面図
【符号の説明】
1 異方性伝熱体
2 炭素繊維
3 可撓性の有機高分子層
4 ゲル状の有機高分子層
5 ゴム状弾性体の有機高分子層
,6, 7 接合体
8 発熱体
9 放熱体
10 固着層
11 補助接合体
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an anisotropic heat transfer body that transfers heat generated by a heating element such as an electronic component used in an electronic device to a heat radiating body at a remote position.
[0002]
[Prior art]
Conventionally, in electronic devices that are increasingly downsized, such as notebook computers, in order to dissipate heat generated from heating elements such as integrated circuits, heat transfer bodies such as heat pipes and heat sinks such as heat sinks and fans, Used in combination. This is because a small electronic device cannot secure a sufficient space for providing a heat dissipation element on an integrated circuit that is a heat generation element. A method is used in which a heat radiating body is provided, and a heat transfer body that transfers heat from the heat generating body to the heat radiating body is installed.
[0003]
On the other hand, the use of carbon fiber as a heat transfer material has been studied because of its high thermal conductivity and thermal conductivity anisotropy. For example, Japanese Patent Laid-Open No. 9-262917 proposes a flexible heat transfer body in which only both ends of a carbon fiber having high thermal conductivity are fixed with carbon or metal. This is because carbon or metal with high thermal conductivity is used as the carbon fiber fixing material to obtain a heat transfer body with high thermal conductivity with reduced contact thermal resistance between the heating element and the heat radiating body and the carbon fiber. Further, since the carbon fibers other than the terminal are not particularly fixed, they are flexible heat transfer bodies that can be bent freely.
[0004]
[Problems to be solved by the invention]
However, this flexible heat transfer body can be bent freely, but because it does not protect the surroundings of the carbon fiber, it is easily damaged when bent, and the assembly workability is poor. There was a problem that a certain carbon fiber may adversely affect an electronic device by contacting with surrounding electronic components. In addition, there was a heat transfer body in which a plurality of carbon fibers were covered and protected with a hard resin, but because the flexibility of the carbon fiber was constrained, the conductor was not flexible and was rigid. .
[0005]
[Means for Solving the Problems]
The present invention solves the above-described problems, and is a heat transfer body that efficiently transfers heat generated from the heat generation body to a heat dissipating body at a distant position, in a space shape and direction inside the electronic device. In addition, the present invention provides an anisotropic heat transfer body in which a heat transfer body can be arbitrarily arranged and has durability and electrical insulation.
That is, the anisotropic heat transfer body is characterized in that the carbon fiber that transfers heat generated from the heat generation body to the dissipated heat release body is covered with a flexible organic polymer layer.
[0006]
Furthermore, the flexible organic polymer layer is an anisotropic transmission layer having a multilayer structure of a gel-like organic polymer layer covering carbon fibers and a rubber-like elastic organic polymer layer covering the outside. It is a hot body.
Furthermore, it is an anisotropic heat transfer body in which a thermally conductive filler is blended in at least one of the gel-like organic polymer layer and the rubber-like elastic organic polymer layer.
Further, the gel-like organic polymer layer is a silicone gel layer, and the rubber-like elastic organic polymer layer is an anisotropic heat transfer body which is a silicone rubber layer.
Furthermore, it is a heat transfer body which has the junction part in which the carbon fiber arranged in one direction and was embed | buried under the both ends of the said anisotropic heat transfer body.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
The present invention will be described in detail below.
As shown in FIG. 1, a typical form of the anisotropic heat transfer body of the present invention includes an anisotropic heat transfer body 1 in which carbon fibers 2 are arranged in a flexible organic polymer layer 3. It is buried. The anisotropic heat transfer body 1 transfers heat that has entered from one end to the opposite end.
[0008]
As shown in FIG. 3, a typical form of the heat transfer body of the present invention has carbon fibers embedded in both ends of the anisotropic heat transfer body 1 in order to direct the heat transfer direction toward the heating element 8. a heat transfer body 1 assembly 6 1, 6 2 are fixed to have. In the anisotropic heat transfer body 1 and the joined bodies 6 1 and 6 2 , carbon fibers are arranged in one direction to form a heat transfer path.
[0009]
The anisotropic heat transfer body and the bonded body are fixed by a fixing layer 10 made of a known heat conductive adhesive or heat conductive gel. A junction part is comprised by two. One of the conjugate 6 1, the carbon fibers in the matrix are oriented in the same direction, on the bottom side end of the carbon fibers in contact with the heating element, the other end side face in contact with the anisotropic heat transfer Therefore, the heat generated from the heating element is effectively transmitted to the end of the anisotropic heat transfer body.
Another assembly 6 2, carbon fibers in the matrix are oriented in the same direction, on the bottom side end of the carbon fibers in contact with the heat radiator, the side the other end in contact with the anisotropic heat transfer Since it is directed to the side, it is effective for transferring heat transferred from the end of the anisotropic heat transfer body to the heat radiating body.
[0010]
If the carbon fiber of the present invention is a long-fiber carbon fiber having high thermal conductivity, the fiber diameter, the surface state of the fiber, and the type of raw material for producing the fiber are not specified, but 400 W / m · K in the fiber direction. Carbon fibers having the above thermal conductivity are preferred.
The flexible organic polymer layer of the present invention may be an organic polymer layer made of a material having electrical insulating properties and flexibility, but polyolefins such as polyethylene and polyethylene terephthalate, polyvinyl chlorides, and silicones. And fluorine-based compounds. A layer can be easily formed by using a resin sheet, a heat shrinkable tube, a rubber-like elastic body, or the like of these materials.
[0011]
In addition, the flexible organic polymer layer of the present invention is anisotropic by filling a gap between carbon fibers with a gel-like organic polymer and covering the outside with a rubber-like elastic body. When the heat transfer body is bent, cutting of the carbon fiber can be prevented. Of these materials, silicone gel is suitable for the heat resistance, electrical insulation, flexibility, processability, etc., and silicone rubber is suitable for the rubbery elastic body. In order to bend flexibly, the organic polymer layer is more preferably as thin as possible.
[0012]
The flexible organic polymer layer of the present invention may contain a heat conductive filler in order to increase the heat conductivity. Examples of the thermally conductive filler include known high thermal conductivity metals, ceramics, and organic fibers. For example, silver, copper, aluminum or the like as the metal, silicon nitride, boron nitride, aluminum oxide or the like as the ceramic, polybenzimidazole or the like as the organic fiber, and graphite or the like can also be added.
[0013]
Thermal conductivity can be further improved by dispersing and blending such a thermally conductive filler in the flexible organic polymer layer. However, since an anisotropic heat transfer body needs to be electrically insulative with respect to surrounding electronic components, when a thermally conductive filler is blended in the organic polymer layer, at least the outermost layer has a conductive layer. It is preferable to avoid blending of metals, graphite, etc.
[0014]
The joined body of the present invention has high thermal conductivity and thermal conductivity anisotropy because the carbon fibers are oriented and embedded in one direction. The matrix of the joint is limited as long as it is a heat-resistant polymer material that can be cured in an arbitrary block shape through a liquid state such as epoxy resin, phenol resin, silicone rubber, and can withstand heat of about 100 ° C. is not.
[0015]
In addition to the heat-resistant polymer material, the joint may be hardened using a thermally conductive ceramic. In order to further increase the thermal conductivity, the above-mentioned matrix mixed with the above-mentioned thermally conductive filler may be used.
Hereinafter, the embodiment shown in the figure will be described in detail. However, this does not limit the invention.
[0016]
[Example 1]
FIG. 2 shows the anisotropic heat transfer body of Example 1. A flexible organic polymer layer 3 covering the carbon fibers 2 arranged in one direction is composed of an organic polymer layer 4 made of silicone gel covering the carbon fibers 2, and an organic polymer layer made of silicone rubber covering the outside. 5 is an anisotropic heat transfer body 1 having a multilayer structure consisting of two layers. If this anisotropic heat transfer body 1 is used, as shown in FIG. 5, the heat generated from the heating element 8 of the integrated circuit in the notebook personal computer can be efficiently transferred to the heat dissipation body 9 on the back surface of the liquid crystal monitor. did it.
[0017]
[Example 2]
FIG. 3 shows a heat transfer body of Example 2. Joined bodies 6 in which carbon fibers 1 are arranged in one direction in an epoxy resin and embedded in both ends of the anisotropic heat transfer body 1 obtained in Example 1 are formed separately and thermally conductively bonded. It is a heat transfer body connected by a fixing layer 10 made of an agent. By connecting the joined body as shown in FIG. 3, the direction of the carbon fiber at the end of the heat transfer body can be arbitrarily set, and the anisotropic heat transfer in the plane parallel direction to the contact surface with the heat generating body and the heat dissipating body. The body edge was extended and the heat could be transferred.
[0018]
[Example 3]
FIG. 4 shows a heat transfer body of Example 3. The carbon fiber 2 of the anisotropic heat transfer body 1 is also embedded in the bonded body 6, and the anisotropic heat transfer body 1 and the bonded body 6 are connected by the same carbon fiber 2. Since this example does not use a fixing layer such as a heat conductive adhesive or a heat conductive gel having a lower thermal conductivity than that of carbon fiber, there is no loss of heat transfer by the fixing layer, and more heat can be generated. We were able to transmit to heat radiator efficiently. If this anisotropic heat transfer body 1 is used, as shown in FIG. 5, the heat generated from the heating element 8 of the integrated circuit in the notebook personal computer can be efficiently transferred to the heat dissipation body 9 on the back surface of the liquid crystal monitor. It was.
[0019]
The bonding body, as shown in FIG. 6 (b), the bonding surface of the contact surface with the mating to the shape or area of the heating elements 8, and the other heat conductor 1 and the heating element 8 of the joint body 7 The size of each joint surface may be changed so that Further, as shown in FIG. 6 (b), may be to couple with the auxiliary assembly 11 is interposed between the assembly 6 and the heat conductor 1. By adopting such a configuration, it is possible to further increase the heat transfer effect.
[0020]
【The invention's effect】
The anisotropic heat transfer body of the present invention covers and protects a bundle of carbon fibers with an organic polymer layer such as silicone rubber, so that the carbon fibers do not come into contact with surrounding electronic components, and the assembly workability is further improved. Will be greatly improved. Further, by filling the gaps between the carbon fibers with a gel-like organic polymer such as silicone gel, the carbon fibers are hardly cut and have an effect of having high flexibility.
As a result, heat generated from the integrated circuit or the like can be transmitted to a heat radiating body such as the back surface of the monitor. Furthermore, by using a bundle of carbon fibers having a thermal conductivity of 400 W / m · K or more, a higher heat transfer capability is exhibited.
[0021]
In the heat transfer body of the present invention, the carbon fibers are arranged to form a heat transfer path. Therefore, the heat transfer body can efficiently carry heat as compared with a metal that heats up the entire surface, and a high heat transport effect is obtained.
As described above, the heat transfer body and the joined body of the present invention can carry a large amount of heat from the heat generating body to the heat radiating body, and further, without affecting the peripheral circuit boards and electronic components and flexibly. Because it bends, it can be installed freely in a small space from the heating element to the radiator.
[Brief description of the drawings]
FIG. 1 is a perspective view of a representative form of an anisotropic heat transfer body of the present invention. FIG. 2 is a perspective view of an embodiment of the anisotropic heat transfer body of the present invention. Fig. 4 is a vertical cross-sectional view of a typical form of a bonded heat transfer body. Fig. 4 is a vertical cross-sectional view of an embodiment of a heat transfer body with a joined body of the present invention. Fig. 5 is a mounting example of the present invention. Longitudinal sectional view of another embodiment of the heat transfer body with the joined body of the invention [Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Anisotropic heat transfer body 2 Carbon fiber 3 Flexible organic polymer layer 4 Gel-like organic polymer layer 5 Organic polymer layer 6 1 , 6 2 , 7 joined body 8 Heating body 9 Radiator 10 Adhering layer 11 Auxiliary joined body

Claims (4)

発熱体から発生する熱を離れた放熱体へ伝える炭素繊維が、炭素繊維を覆うゲル状の有機高分子層と、さらにその外側を覆うゴム状弾性体の有機高分子層との複層構造の可撓性の有機高分子層内に一方向に配列されて埋設されていることを特徴とする異方性伝熱体。 The carbon fiber that conducts heat generated from the heating element to the dissipating heat dissipating element has a multilayer structure consisting of a gel-like organic polymer layer covering the carbon fiber and a rubber-like elastic organic polymer layer covering the outside . An anisotropic heat transfer body, wherein the anisotropic heat transfer body is embedded in a flexible organic polymer layer arranged in one direction . ゲル状の有機高分子層とゴム状弾性体の有機高分子層との少なくとも一方に熱伝導性充填剤が配合されていることを特徴とする請求項1に記載の異方性伝熱体。The anisotropic heat transfer body according to claim 1 , wherein a heat conductive filler is blended in at least one of the gel-like organic polymer layer and the rubber-like elastic organic polymer layer. ゲル状の有機高分子層が、シリコーンゲル層であり、かつゴム状弾性体の有機高分子層が、シリコーンゴム層であることを特徴とする請求項1あるいは2に記載の異方性伝熱体。The anisotropic heat transfer according to claim 1 or 2 , wherein the gel-like organic polymer layer is a silicone gel layer, and the organic polymer layer of the rubber-like elastic body is a silicone rubber layer. body. 請求項1、2、あるいは3に記載の異方性伝熱体の両端に、発熱体あるいは放熱体方向に伝熱方向を向けるための、マトリックス中に炭素繊維が一方向に配列し埋設された接合体を有することを特徴とする異方性伝熱体。Carbon fibers are arranged and embedded in one direction in a matrix for directing the heat transfer direction in the direction of the heat generating body or the heat radiating body at both ends of the anisotropic heat transfer body according to claim 1, 2, or 3 . An anisotropic heat transfer body comprising a joined body.
JP2000078062A 2000-03-21 2000-03-21 Anisotropic heat transfer body Expired - Fee Related JP4430779B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000078062A JP4430779B2 (en) 2000-03-21 2000-03-21 Anisotropic heat transfer body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000078062A JP4430779B2 (en) 2000-03-21 2000-03-21 Anisotropic heat transfer body

Publications (2)

Publication Number Publication Date
JP2001261851A JP2001261851A (en) 2001-09-26
JP4430779B2 true JP4430779B2 (en) 2010-03-10

Family

ID=18595523

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000078062A Expired - Fee Related JP4430779B2 (en) 2000-03-21 2000-03-21 Anisotropic heat transfer body

Country Status (1)

Country Link
JP (1) JP4430779B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109413938A (en) * 2018-10-24 2019-03-01 航天材料及工艺研究所 A kind of efficient cooling means of composite material light and device

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100767184B1 (en) * 2005-08-10 2007-10-15 재단법인서울대학교산학협력재단 Cooling device for electronic device and method of forming the same
JP5061566B2 (en) * 2006-10-04 2012-10-31 株式会社ニコン Electronic camera with projector, electronic device and electronic camera
WO2008041753A1 (en) * 2006-10-04 2008-04-10 Nikon Corporation Electronic device, electronic camera, light source device, illuminating device and projector device
JP5145750B2 (en) * 2007-04-02 2013-02-20 株式会社ニコン Electronic device, camera and projector device
JP2011200428A (en) * 2010-03-25 2011-10-13 Olympus Medical Systems Corp Endoscope
EP2562807A1 (en) * 2011-08-22 2013-02-27 ABB Research Ltd Heat transfer in an electronic device
JP6079221B2 (en) * 2012-12-26 2017-02-15 ブラザー工業株式会社 Development device
US10299407B2 (en) 2015-06-29 2019-05-21 Microsoft Technology Licensing, Llc Differently oriented layered thermal conduit
KR101914953B1 (en) * 2016-12-06 2018-11-06 광주과학기술원 Anisotropy polymer composite and method for manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109413938A (en) * 2018-10-24 2019-03-01 航天材料及工艺研究所 A kind of efficient cooling means of composite material light and device

Also Published As

Publication number Publication date
JP2001261851A (en) 2001-09-26

Similar Documents

Publication Publication Date Title
US6257328B1 (en) Thermal conductive unit and thermal connection structure using the same
US5995370A (en) Heat-sinking arrangement for circuit elements
EP1632998A1 (en) High power electronic package with enhanced cooling characteristics
JP4430779B2 (en) Anisotropic heat transfer body
JP2003168882A (en) Heat conductive sheet
US20090008770A1 (en) Heat dissipation plate and semiconductor device
TWM377062U (en) Electronic device with a heat insulating structure
US9915780B2 (en) Optical module with a dual layer PCBA structure
CN110494018B (en) Optical module
JP2000106495A (en) Inner structure of electric/electronic apparatus
KR20000057790A (en) Cable and heat sink
JP2006196593A (en) Semiconductor device and heat sink
JPH1158591A (en) Heat-conductive sheet
JP2008028283A (en) Heat conductor
US10480833B2 (en) Heat-transferring and electrically connecting device and electronic device
JP6178981B2 (en) Cooling system
JP4075481B2 (en) Metal-graphite sheet composite and electronic device
US20080137287A1 (en) Thermally integrated electronic enclosures
JP5100165B2 (en) Cooling board
JPH1168263A (en) Electronic circuit board
JP2000022366A (en) Heat conduction member and cooling structure using the same
EP3560308B1 (en) A computer circuit board cooling arrangement
JPH07147467A (en) Heat radiating method for electronic component
JP2002076217A (en) Heat radiating device
JP2008244365A (en) Thermal connection structure and electronic appliance comprising the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090811

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091011

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091119

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091218

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121225

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees