JP4429740B2 - Compound insulation switchgear - Google Patents

Compound insulation switchgear Download PDF

Info

Publication number
JP4429740B2
JP4429740B2 JP2004003321A JP2004003321A JP4429740B2 JP 4429740 B2 JP4429740 B2 JP 4429740B2 JP 2004003321 A JP2004003321 A JP 2004003321A JP 2004003321 A JP2004003321 A JP 2004003321A JP 4429740 B2 JP4429740 B2 JP 4429740B2
Authority
JP
Japan
Prior art keywords
ground
main circuit
grounding
movable
movable shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004003321A
Other languages
Japanese (ja)
Other versions
JP2005197127A (en
Inventor
孝行 糸谷
聖一 宮本
稔 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2004003321A priority Critical patent/JP4429740B2/en
Publication of JP2005197127A publication Critical patent/JP2005197127A/en
Application granted granted Critical
Publication of JP4429740B2 publication Critical patent/JP4429740B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

この発明は、一体注型された複合絶縁スイッチギヤに関するものである。   The present invention relates to an integrally cast composite insulating switchgear.

従来の複合絶縁スイッチギヤにおいては、可動軸に電気的に接続されるとともに接地可動軸(接地接点用可動導体)に支持された接地可動電極が、モールドされた真空容器内に接地固定電極と対向配置されている。さらに、接地可動軸は絶縁ロッドを介して接地操作機構の操作ロッドに連結されている。そして、操作機構で接地可動軸が駆動されることにより接地可動電極と接地固定電極との開閉動作が行われる。一方、真空容器から露出した接地可動軸を取り囲むように絶縁バリヤが形成されている。さらに、可とう性導体で接地可動軸と接続された試験端子は真空容器と一体モールドされている(例えば、特許文献1参照)。   In the conventional composite insulated switchgear, the grounding movable electrode that is electrically connected to the movable shaft and supported by the grounding movable shaft (grounding contact movable conductor) is opposed to the ground fixed electrode in the molded vacuum vessel. Is arranged. Further, the grounding movable shaft is connected to the operation rod of the grounding operation mechanism via an insulating rod. Then, when the grounding movable shaft is driven by the operation mechanism, the grounding movable electrode and the grounding fixed electrode are opened and closed. On the other hand, an insulating barrier is formed so as to surround the grounding movable shaft exposed from the vacuum vessel. Further, the test terminal connected to the grounding movable shaft by a flexible conductor is integrally molded with the vacuum vessel (for example, see Patent Document 1).

特開2001−135207号広報(第4頁、図1)Japanese Laid-Open Patent Publication No. 2001-135207 (Page 4, Figure 1)

従来の複合絶縁スイッチギヤにおいては、真空容器を貫通して露出した接地可動軸と操作ロッドとの間に絶縁ロッドを配置して、試験端子が真空容器と一体モールドされている。さらに、接地可動軸と試験端子とが絶縁バリヤ内で可とう性導体により接続されているので、可とう性導体の移動に対応したスペース及び絶縁距離が必要となるため小形化を図るのが困難であるという問題点があった。   In the conventional composite insulation switchgear, an insulation rod is arranged between the grounding movable shaft exposed through the vacuum vessel and the operation rod, and the test terminal is integrally molded with the vacuum vessel. Furthermore, since the grounding movable shaft and the test terminal are connected by a flexible conductor in the insulation barrier, it is difficult to reduce the size because a space and an insulation distance corresponding to the movement of the flexible conductor are required. There was a problem that.

この発明は、上述のような課題を解決するためになされたもので、試験端子を接地可動軸と直接接続して絶縁ロッドと一体構造にすることにより小形化を図ることができる複合絶縁スイッチギヤを提供するものである。   The present invention has been made to solve the above-described problems, and is a composite insulation switchgear that can be miniaturized by connecting the test terminal directly to the grounding movable shaft to form an integral structure with the insulation rod. Is to provide.

この発明に係る複合絶縁スイッチギヤにおいては、主回路固定電極と主回路可動電極とからなり主回路操作機構により開閉される主回路開閉手段を第1の真空容器内に配置し、接地固定電極と接地可動電極とからなり接地操作機構により開閉される接地開閉手段を第2の真空容器内に配置して、第2の真空容器の軸方向に移動可能な接地可動軸と接地可動電極とを電気的及び機械的に接続すると共に接地固定軸と主回路可動軸との間を電気的に接続した複合絶縁スイッチギヤにおいて、接地可動軸と同軸上で電気的に接続され、試験電圧を印加可能な試験端子と、試験端子と接地可動軸とを樹脂で一体注型して形成され、接地操作機構に連結されるとともにばね受け部を有する絶縁ロッドと、絶縁ロッドに挿通されてばね受け部で受け止められ、接地可動電極を接地固定電極に押圧するばねと、絶縁ロッド内に試験端子を囲むように配置された電界緩和シールドと、電界緩和シールドと対向する絶縁ロッドの表面に配置された導電部材とを備えたものである。
また、主回路固定電極と主回路可動電極とからなり主回路操作機構により開閉される主回路開閉手段を第1の真空容器内に配置し、接地固定電極と接地可動電極とからなり接地操作機構により開閉される接地開閉手段を第2の真空容器内に配置して、第2の真空容器の軸方向に移動可能な接地可動軸と接地可動電極とを電気的及び機械的に接続すると共に接地固定軸と主回路可動軸との間を電気的に接続した複合絶縁スイッチギヤにおいて、接地可動軸と同軸上で電気的に接続された接続導体と、接続導体を樹脂で一体注型して形成され、ばね受け部を有する絶縁ロッドと、絶縁ロッドに挿通されてばね受け部で受け止められ、接地可動電極を接地固定電極に押圧するばねと、接地可動軸と同軸上で接続導体と電気的に接続され、試験電圧を印加可能な試験端子とを備えたものである。
In the composite insulated switchgear according to the present invention, the main circuit opening / closing means comprising the main circuit fixed electrode and the main circuit movable electrode, which is opened and closed by the main circuit operating mechanism, is disposed in the first vacuum vessel, and the ground fixed electrode and A ground opening / closing means comprising a ground movable electrode and opened / closed by a ground operating mechanism is disposed in the second vacuum vessel, and the ground movable shaft movable in the axial direction of the second vacuum vessel and the ground movable electrode are electrically connected. In composite insulated switchgear that is electrically and mechanically connected and electrically connected between the ground fixed shaft and the main circuit movable shaft, it is electrically connected on the same axis as the ground movable shaft and can apply a test voltage. A test terminal, a test terminal, and a grounding movable shaft are integrally cast with resin, and are connected to a grounding operation mechanism and have an insulating rod having a spring receiving portion, and are inserted into the insulating rod and received by the spring receiving portion. Et A spring that presses the ground movable electrode against the ground fixed electrode, an electric field relaxation shield disposed in the insulating rod so as to surround the test terminal, and a conductive member disposed on the surface of the insulating rod facing the electric field relaxation shield. It is provided.
A main circuit opening / closing means comprising a main circuit fixed electrode and a main circuit movable electrode, which is opened and closed by a main circuit operation mechanism, is disposed in the first vacuum vessel, and comprises a ground fixed electrode and a ground movable electrode. A ground opening / closing means that is opened / closed by the first vacuum vessel is disposed in the second vacuum vessel, and a ground movable shaft that can move in the axial direction of the second vacuum vessel and a ground movable electrode are electrically and mechanically connected and grounded. In a composite insulated switchgear that is electrically connected between the fixed shaft and the main circuit movable shaft, formed by integrally casting the connecting conductor coaxially with the grounded movable shaft and the connecting conductor with resin. An insulating rod having a spring receiving portion, a spring inserted into the insulating rod and received by the spring receiving portion, pressing the grounding movable electrode against the grounding fixed electrode, and electrically connected to the connecting conductor coaxially with the grounding movable shaft Connected and test voltage It is obtained by a pressurized possible test terminal.

この発明は、試験電圧を印加可能な試験端子を接地可動軸と電気的に接続すると共に試験端子と接地可動軸とを樹脂で一体注型して絶縁ロッドを形成し、絶縁ロッドと接地操作機構の接地操作棒とを連結したことにより、電気的絶縁距離の短縮化により小形化を図ることができる。   The present invention electrically connects a test terminal to which a test voltage can be applied to a grounding movable shaft and forms an insulating rod by integrally casting the test terminal and the grounding movable shaft with a resin. By connecting to the grounding operation rod, it is possible to reduce the size by shortening the electrical insulation distance.

実施の形態1.
図1は、この発明を実施するための実施の形態1における電気回路図、図2は実施の形態1の構成を示す断面図、及び図3は図2のIII−III線の断面図である。
図1から図3において、金属製で筒状の金属容器1の一端に配置された筒状の例えば、セラミック製である第1の主回路絶縁容器2の一端が金属容器1と密封状態で接続されている。また、金属容器1の他端に配置された筒状の例えば、セラミック製である第2の主回路絶縁容器3の一端が金属容器1と密封状態で接続されている。そして、各絶縁容器2,3の各他端に封着部材4,5が接続されている。なお、セラミック製の各絶縁容器2,3と各封着部材4,5とは、セラミックと熱膨張率の近い鉄・ニッケル合金、鉄・ニッケル・コバルト合金等を介して接続が行われる。金属容器1,各絶縁容器2,3及び各封着部材4,5で第1の真空容器6が構成されている。なお、電力系統で使用される場合は、主回路操作棒15aが接地される。
Embodiment 1 FIG.
1 is an electric circuit diagram according to Embodiment 1 for carrying out the present invention, FIG. 2 is a sectional view showing the configuration of Embodiment 1, and FIG. 3 is a sectional view taken along line III-III in FIG. .
1 to 3, one end of a first main circuit insulating container 2 made of, for example, ceramic, which is disposed at one end of a metal-made cylindrical metal container 1 is connected to the metal container 1 in a sealed state. Has been. Further, one end of a second main circuit insulating container 3 made of, for example, ceramic, disposed at the other end of the metal container 1 is connected to the metal container 1 in a sealed state. And the sealing members 4 and 5 are connected to each other end of each insulation container 2 and 3. The insulating containers 2 and 3 made of ceramic and the sealing members 4 and 5 are connected via an iron / nickel alloy, iron / nickel / cobalt alloy or the like having a thermal expansion coefficient close to that of the ceramic. The metal container 1, the insulating containers 2 and 3, and the sealing members 4 and 5 constitute a first vacuum container 6. When used in a power system, the main circuit operation bar 15a is grounded.

第1の主回路絶縁容器2内に主回路固定電極7及び主回路可動電極8が対向配置されている。なお、主回路固定電極7と主回路可動電極8とで主回路開閉手段9が構成されている。主回路固定電極7は第1の真空容器6の一端側で封着部材5を密封状態で貫通した第1の主回路外部端子10に電気的に接続されると共に、第1の主回路外部端子10に支持されている。主回路可動電極8は第1の真空容器6内に配置された導電性を有する主回路可動軸11の一端に電気的に接続されると共に、主回路可動軸11に支持されて第1の真空容器6の軸方向に移動可能である。金属容器1に銅等の導電率の高い金属で作成された第2の外部端子12が配置されている。そして、第2の主回路外部端子12と主回路可動軸11とは可とう性導体13で電気的に接続されている。
第2の主回路絶縁容器3内に配置された絶縁部材14の一端が主回路可動軸11の他端に連結されている。絶縁部材14の他端は主回路操作機構15の主回路操作棒15aに連結されている。そして、主回路操作棒15aと第1の真空容器6との間にベローズ16を配置して、主回路操作棒15aと第1の真空容器6との間を密封すると共に、主回路操作棒15aが第1の真空容器6の軸方向に移動自在に構成されている。
例えばセラミック製の第2の真空容器17は軸方向が第1の真空容器6の軸方向と平行になるように配置されている。第2の真空容器17内に接地固定電極18と接地可動電極19とが対向配置されている。なお、接地固定電極18と接地可動電極19とで接地開閉手段20が構成されている。接地固定電極18は第2の真空容器17の一端側において封着部材21を密封状態で貫通した第1の接地外部端子22に電気的に接続されるとともに、第1の接地外部端子22に支持されている。接地可動軸23は第2の真空容器17の他端側において封着部材24を密封状態で、ベローズ25を介して第2の真空容器17の軸方向に移動自在に貫通している。そして、接地可動電極19が接地可動軸23に電気的に接続されると共に、接地可動軸23に支持されている。また、第2の主回路外部端子12と第1の接地外部端子22とは接続部材26で電気的に接続されている。
A main circuit fixed electrode 7 and a main circuit movable electrode 8 are disposed to face each other in the first main circuit insulating container 2. The main circuit opening / closing means 9 is composed of the main circuit fixed electrode 7 and the main circuit movable electrode 8. The main circuit fixed electrode 7 is electrically connected to the first main circuit external terminal 10 penetrating the sealing member 5 in a sealed state on one end side of the first vacuum vessel 6, and the first main circuit external terminal 10 is supported. The main circuit movable electrode 8 is electrically connected to one end of a conductive main circuit movable shaft 11 disposed in the first vacuum vessel 6 and supported by the main circuit movable shaft 11 so as to be in a first vacuum. The container 6 is movable in the axial direction. A second external terminal 12 made of a metal having high conductivity such as copper is disposed on the metal container 1. The second main circuit external terminal 12 and the main circuit movable shaft 11 are electrically connected by a flexible conductor 13.
One end of the insulating member 14 disposed in the second main circuit insulating container 3 is connected to the other end of the main circuit movable shaft 11. The other end of the insulating member 14 is connected to a main circuit operation rod 15 a of the main circuit operation mechanism 15. A bellows 16 is disposed between the main circuit operating rod 15a and the first vacuum vessel 6 to seal between the main circuit operating rod 15a and the first vacuum vessel 6, and the main circuit operating rod 15a. Is configured to be movable in the axial direction of the first vacuum vessel 6.
For example, the second vacuum vessel 17 made of ceramic is arranged so that the axial direction is parallel to the axial direction of the first vacuum vessel 6. A ground fixed electrode 18 and a ground movable electrode 19 are disposed opposite to each other in the second vacuum container 17. The ground fixed electrode 18 and the ground movable electrode 19 constitute a ground opening / closing means 20. The ground fixed electrode 18 is electrically connected to the first ground external terminal 22 penetrating the sealing member 21 in a sealed state on one end side of the second vacuum vessel 17 and supported by the first ground external terminal 22. Has been. The grounding movable shaft 23 passes through the bellows 25 so as to be movable in the axial direction of the second vacuum container 17 with the sealing member 24 sealed in the other end side of the second vacuum container 17. The ground movable electrode 19 is electrically connected to the ground movable shaft 23 and supported by the ground movable shaft 23. The second main circuit external terminal 12 and the first ground external terminal 22 are electrically connected by a connecting member 26.

試験端子27と接地可動軸23とを電気的に直接接続すると共に、試験端子27と接地可動軸23とを一体注型(モールド)して絶縁ロッド28を形成する。なお、絶縁ロッド28の接地可動軸23側には鍔部28aが形成されている。そして、絶縁ロッド28と接地操作機構29の接地操作棒29aとがボルト締め等により連結されている。
各真空容器6,17の外面は第1の主回路外部端子10及び第1の接地外部端子22の少なくとも先端部10a、22aと主回路操作棒15aが第1の真空容器6を貫通した部分および接地可動軸23が第2の真空容器17を貫通した部分を除いてエポキシ樹脂等により注型されたモールド絶縁体30が形成されている。そして、接地可動軸23が第2の真空容器17から露出した部分を取り囲むようにモールド絶縁体30と一体成形された絶縁バリヤ30aが形成されている。なお、絶縁バリヤ30aは絶縁ロッド28の鍔部28aと対向した側が開口している。さらに、第1の主回路外部端子10及び第1の接地外部端子22はモールド絶縁体30によりブッシング構造が形成されている。そして、各外部端子10,22の各先端部10a、22aから界面絶縁に必要な所定の距離、及び各真空容器6,17の各操作機構15,29側から所定の距離までモールド絶縁体30の表面に導電処理された導電部材31が配置されている。導電部材31は例えばアルミニウム、亜鉛等の金属溶射又は導電性塗料の塗布により形成されている。
The test terminal 27 and the ground movable shaft 23 are electrically connected directly, and the test terminal 27 and the ground movable shaft 23 are integrally cast (molded) to form the insulating rod 28. A flange portion 28 a is formed on the grounding movable shaft 23 side of the insulating rod 28. The insulating rod 28 and the grounding operation rod 29a of the grounding operation mechanism 29 are connected by bolting or the like.
The outer surface of each vacuum vessel 6, 17 is a portion in which at least the tip portions 10 a, 22 a of the first main circuit external terminal 10 and the first ground external terminal 22 and the main circuit operation rod 15 a penetrate the first vacuum vessel 6 and A mold insulator 30 is formed by casting with an epoxy resin or the like except for a portion where the grounding movable shaft 23 penetrates the second vacuum vessel 17. An insulating barrier 30 a integrally formed with the mold insulator 30 is formed so that the ground movable shaft 23 surrounds a portion exposed from the second vacuum container 17. The insulating barrier 30a is open on the side of the insulating rod 28 facing the flange portion 28a. Further, the first main circuit external terminal 10 and the first ground external terminal 22 have a bushing structure formed of a mold insulator 30. Then, the mold insulator 30 has a predetermined distance necessary for interface insulation from the respective distal end portions 10a and 22a of the external terminals 10 and 22 and a predetermined distance from the operation mechanisms 15 and 29 side of the vacuum containers 6 and 17. A conductive member 31 subjected to conductive treatment is disposed on the surface. The conductive member 31 is formed, for example, by metal spraying such as aluminum or zinc or application of a conductive paint.

このように構成された複合絶縁スイッチギヤにおいては、電力系統で通電状態のときは試験端子27が接地され、主回路操作機構15により主回路開閉手段9を「閉」とし、接地操作機構29により接地開閉手段20を「開」とする。この状態で第1の主回路外部端子10及び第1の接地外部端子22の経路を通して通電が行われる。
また、第1の接地外部端子22に接続されたケーブル(図示せず)の耐電圧試験を行う場合は試験端子27の接地を解除して、試験端子27から耐電圧試験に必要な所定の電圧をケーブルに印加する。
以上のように、試験端子27と接地可動軸23とを一体注型して絶縁ロッド28を形成し、絶縁ロッド28と接地操作機構29の接地操作棒29aとを連結したことにより、接地可動軸23が第2の真空容器17を貫通した部分の電気的な絶縁距離の短縮化により装置全体の小形化を図ることができる。
In the composite insulated switchgear configured as described above, when the power system is energized, the test terminal 27 is grounded, the main circuit opening / closing means 9 is closed by the main circuit operating mechanism 15, and the ground operating mechanism 29 The ground opening / closing means 20 is set to “open”. In this state, energization is performed through the path of the first main circuit external terminal 10 and the first ground external terminal 22.
When a withstand voltage test is performed on a cable (not shown) connected to the first ground external terminal 22, the test terminal 27 is released from the ground and a predetermined voltage required for the withstand voltage test is released from the test terminal 27. Is applied to the cable.
As described above, the test terminal 27 and the grounding movable shaft 23 are integrally cast to form the insulating rod 28, and the insulating rod 28 and the grounding operation rod 29 a of the grounding operation mechanism 29 are connected to each other. The entire apparatus can be reduced in size by shortening the electrical insulation distance of the portion where 23 penetrates through the second vacuum vessel 17.

実施の形態2.
図4は、実施の形態2の構成を示す断面図である。図4において、1〜26,30,31は実施の形態1のものと同様のものである。試験端子32は接地可動軸23と同軸上に直結されている。そして、試験端子32と可動軸23とを一体注型(モールド)して絶縁ロッド33が形成されて、接地操作機構34の接地操作棒(図示せず)に連結されている。絶縁ロッド33の接地可動軸23側に鍔状のばね受け部33aが形成されている。さらに、絶縁ロッド33のばね受け部33aの反対側に平面状の摺動部33b,33cが形成されている。そして、絶縁ロッド33が接地操作機構34で駆動されることにより接地開閉手段20の開閉が行われる。この場合、絶縁ロッド33の摺動部33b,33cが接地操作機構34に設けられた案内部材35a,35bにより接地可動軸23の軸方向に案内されると共に、接地可動軸23が軸中心に回転するのを防止する。さらに、絶縁ロッド33のばね受け部33aと接地操作機構34に設けられたばね受け体35との間に接地可動軸23と同軸でコイル状のばね36が配置されている。ばね36は接地開閉手段20が「閉」のときに両電極18,19間を加圧して接触圧力が高くなるように作用する。
このように、試験端子32を接地可動軸23と同軸上で接地操作機構34の上方になるように配置したことにより、接地可動軸23の軸方向に対する直角方向の奥行きの短縮化を図ることができる。
Embodiment 2. FIG.
FIG. 4 is a cross-sectional view showing the configuration of the second embodiment. In FIG. 4, 1 to 26, 30, and 31 are the same as those in the first embodiment. The test terminal 32 is directly connected to the ground movable shaft 23 on the same axis. The test terminal 32 and the movable shaft 23 are integrally cast (molded) to form an insulating rod 33, which is connected to a grounding operation rod (not shown) of the grounding operation mechanism 34. A hook-shaped spring receiving portion 33 a is formed on the grounding movable shaft 23 side of the insulating rod 33. Further, planar sliding portions 33b and 33c are formed on the side of the insulating rod 33 opposite to the spring receiving portion 33a. Then, when the insulating rod 33 is driven by the ground operation mechanism 34, the ground opening / closing means 20 is opened and closed. In this case, the sliding portions 33b and 33c of the insulating rod 33 are guided in the axial direction of the grounding movable shaft 23 by the guide members 35a and 35b provided in the grounding operation mechanism 34, and the grounding movable shaft 23 rotates around the axis. To prevent it. Further, a coiled spring 36 coaxial with the grounding movable shaft 23 is disposed between the spring receiving portion 33 a of the insulating rod 33 and the spring receiving body 35 provided in the grounding operation mechanism 34. The spring 36 acts to pressurize the electrodes 18 and 19 to increase the contact pressure when the ground opening / closing means 20 is “closed”.
Thus, by arranging the test terminal 32 so as to be coaxial with the grounding movable shaft 23 and above the grounding operation mechanism 34, the depth in the direction perpendicular to the axial direction of the grounding movable shaft 23 can be shortened. it can.

実施の形態3.
図5は、実施の形態3の要部を示す断面図である。図5において、17,23〜25,30,31は実施の形態1のものと同様のものである。ばね受け部33a及び摺動部33b、33cの近傍の絶縁ロッド33内に試験端子32を囲むように配置された電界緩和シールド37,38が配置されている。さらに、電界緩和シールド37,38と対向する絶縁ロッド33の表面間に導電部材39が配置されている。なお、複合絶縁スイッチギヤとして電力系統に接続して使用する場合は、各電界緩和シールド37,38及び導電部材39は接地される。
このように、ばね受け部33及び摺動部33b、33cの近傍の絶縁ロッド33内に試験端子32を囲むように電界緩和シールド37,38を配置すると共に、電界緩和シールド37,38と対向する絶縁ロッド33の表面間に導電部材39を配置することにより、試験端子32から受電ケーブル(図2の第1の接地外部端子22に接続される)に試験電圧を印加する耐電圧試験時に発生するコロナを抑制することができる。
Embodiment 3 FIG.
FIG. 5 is a cross-sectional view showing a main part of the third embodiment. 5, reference numerals 17, 23 to 25, 30, 31 are the same as those in the first embodiment. Electric field relaxation shields 37 and 38 disposed so as to surround the test terminal 32 are disposed in the insulating rod 33 in the vicinity of the spring receiving portion 33a and the sliding portions 33b and 33c. Further, a conductive member 39 is disposed between the surfaces of the insulating rod 33 facing the electric field relaxation shields 37 and 38. When used as a composite insulation switchgear connected to the power system, the electric field relaxation shields 37 and 38 and the conductive member 39 are grounded.
As described above, the electric field relaxation shields 37 and 38 are disposed so as to surround the test terminal 32 in the insulating rod 33 in the vicinity of the spring receiving portion 33 and the sliding portions 33b and 33c, and are opposed to the electric field relaxation shields 37 and 38. Occurs during a withstand voltage test in which a test voltage is applied from the test terminal 32 to the power receiving cable (connected to the first ground external terminal 22 in FIG. 2) by disposing the conductive member 39 between the surfaces of the insulating rod 33 . Corona can be suppressed.

実施の形態4.
図6は、実施の形態4の要部を示す断面図である。図6において、17,23〜25,30,31,34は実施の形態2のものと同様のものである。接続導体40は接地可動軸23と同軸上で接地可動軸23に直結されている。そして、接続導体40を樹脂でモールドして接続導体40の外面に絶縁ロッド41が形成されている。絶縁ロッド41にはばね受け部41aが構成されている。また、接地可動軸23と同軸上に接続導体40と所定の距離をあけて試験端子42が配置されている。試験端子42は樹脂注型によりブッシング形状のモールド絶縁体43が形成されて接地操作機構34に固定されている。さらに、モールド絶縁体43から延在した絶縁バリヤ44が絶縁ロッド41と所定の長さだけ対向するように形成されている。接続導体40と試験端子42との間はU字状に形成された可とう性導体45で電気的に接続されている。
そして、絶縁ロッド41のばね受け部41aと接地操作機構34に設けられたばね受け体46との間に接地可動軸23と同軸でコイル状のばね47が配置されている。ばね47は接地開閉手段(接地可動軸23の同軸上に配置されている)が「閉」のときに両電極(図示せず)間を加圧して接触圧力が高くなるように作用する。
このように、接続導体40と試験端子42との間を可とう性導体45で接続したことにより、試験端子42と接続導体40との間に大電流が短時間通電されたときに、可とう性導体45に発生する電磁反発力が接地開閉手段の両電極(図示せず)間に作用して接触圧力を高める方向に働く。従って、ばね47の荷重を小さくできるので、接地操作機構34の小形化を図ることができる。
Embodiment 4 FIG.
FIG. 6 is a cross-sectional view showing a main part of the fourth embodiment. In FIG. 6, reference numerals 17, 23 to 25, 30, 31, and 34 are the same as those in the second embodiment. The connection conductor 40 is directly connected to the ground movable shaft 23 coaxially with the ground movable shaft 23. The connecting conductor 40 is molded with resin, and an insulating rod 41 is formed on the outer surface of the connecting conductor 40. The insulating rod 41 has a spring receiving portion 41a. Further, a test terminal 42 is arranged on the same axis as the ground movable shaft 23 with a predetermined distance from the connection conductor 40. The test terminal 42 is fixed to the ground operating mechanism 34 by forming a bushing-shaped mold insulator 43 by resin casting. Further, an insulating barrier 44 extending from the mold insulator 43 is formed to face the insulating rod 41 by a predetermined length. The connection conductor 40 and the test terminal 42 are electrically connected by a flexible conductor 45 formed in a U shape.
A coiled spring 47 is arranged coaxially with the grounding movable shaft 23 between the spring receiving part 41a of the insulating rod 41 and the spring receiving body 46 provided in the grounding operation mechanism 34. The spring 47 acts to pressurize both electrodes (not shown) to increase the contact pressure when the ground opening / closing means (arranged coaxially with the ground movable shaft 23) is “closed”.
As described above, the connection conductor 40 and the test terminal 42 are connected by the flexible conductor 45, so that a large current is passed between the test terminal 42 and the connection conductor 40 for a short time. The electromagnetic repulsive force generated in the conductive conductor 45 acts between both electrodes (not shown) of the ground switching means to increase the contact pressure. Therefore, since the load of the spring 47 can be reduced, the size of the grounding operation mechanism 34 can be reduced.

図7は、この発明を適用した実施例1の電気回路図、図8は実施例1の要部を示す断面図、図9は図8のIX−IX線の断面図、及び図10は図8のX−X線の断面図である。
図7から図10において、1〜21,23〜25,27〜29は実施の形態1のものと同様のものである。主回路真空バルブ48〜50はそれぞれ1〜16で構成され、接地真空バルブ51,52はそれぞれ17〜21,23〜25,27〜29及び後述の53で構成されている。
主回路真空バルブ48〜50の各主回路可動電極8が並列接続されている。各主回路真空バルブ49,50の主回路固定電極7にはそれぞれ接地真空バルブ51,52の各接地固定電極18がそれぞれ接続されている。各接地真空バルブ51,52の接地可動電極19は接地される。
このように構成された複合絶縁スイッチギヤにおいては、例えば、主回路真空バルブ48の主回路固定電極7側から1回線受電して、各主回路真空バルブ49,50の各主回路固定電極7から2回線として負荷へ電力供給が行われる。なお、3相回路に使用する場合は各相毎に1組で合計3組となる。接地固定電極18は接地固定電極保持部材53に電気的に接続されると共に、接地固定電極保持部材53に支持されている。第1の主回路外部端子10と接地固定電極保持部材53とは接続部材54で接続されている。
7 is an electric circuit diagram of the first embodiment to which the present invention is applied, FIG. 8 is a cross-sectional view showing a main part of the first embodiment, FIG. 9 is a cross-sectional view taken along line IX-IX in FIG. 8, and FIG. FIG. 8 is a sectional view taken along line XX.
7 to 10, 1 to 21, 23 to 25, and 27 to 29 are the same as those in the first embodiment. The main circuit vacuum valves 48 to 50 are respectively composed of 1 to 16, and the ground vacuum valves 51 and 52 are respectively composed of 17 to 21, 23 to 25, 27 to 29 and 53 to be described later.
The main circuit movable electrodes 8 of the main circuit vacuum valves 48 to 50 are connected in parallel. The ground fixed electrodes 18 of the ground vacuum valves 51 and 52 are connected to the main circuit fixed electrodes 7 of the main circuit vacuum valves 49 and 50, respectively. The ground movable electrode 19 of each ground vacuum valve 51, 52 is grounded.
In the composite insulated switchgear configured as described above, for example, one line is received from the main circuit fixed electrode 7 side of the main circuit vacuum valve 48, and from each main circuit fixed electrode 7 of each main circuit vacuum valve 49, 50. Power is supplied to the load as two lines. In addition, when using it for a three-phase circuit, it becomes three sets in total, one set for each phase. The ground fixed electrode 18 is electrically connected to the ground fixed electrode holding member 53 and supported by the ground fixed electrode holding member 53. The first main circuit external terminal 10 and the ground fixed electrode holding member 53 are connected by a connection member 54.

さらに、主回路真空バルブ48の第2の主回路外部端子12と主回路真空バルブ49の第2の主回路端子12とが接続部材55で電気的に接続され、主回路真空バルブ49の第2の主回路外部端子12と主回路真空バルブ50の第2の主回路外部端子12とが接続部材56で接続されている。各真空バルブ48〜52の外面は第1の主回路外部端子10の少なくとも先端部10aと主回路操作棒15aが第1の真空容器6を貫通した部分及び接地可動軸23が第2の真空容器17を貫通した部分とを除いてエポキシ樹脂等により注型されたモールド絶縁体57が形成されている。そして、接地可動軸23が第2の真空容器17から露出した部分を取り囲むようにモールド絶縁体57と一体成形された絶縁バリヤ57aが形成されている。なお、絶縁バリヤ57aは絶縁ロッド28の鍔部28aと対向した側が開口している。さらに、第1の主回路接地端子10はモールド絶縁体57によりブッシング構造が形成されている。そして、第1の主回路外部端子10の先端部10aから界面絶縁に必要な距離、及び各真空容器6,17の各操作機構15,29側から所定の距離までモールド絶縁体57の表面に導電処理された導電部材58が配置されている。   Further, the second main circuit external terminal 12 of the main circuit vacuum valve 48 and the second main circuit terminal 12 of the main circuit vacuum valve 49 are electrically connected by the connecting member 55, and the second main circuit vacuum valve 49 is connected to the second main circuit vacuum valve 49. The main circuit external terminal 12 and the second main circuit external terminal 12 of the main circuit vacuum valve 50 are connected by a connecting member 56. The outer surface of each of the vacuum valves 48 to 52 is a portion where at least the tip portion 10a of the first main circuit external terminal 10 and the main circuit operating rod 15a penetrate the first vacuum vessel 6, and the grounding movable shaft 23 is the second vacuum vessel. A mold insulator 57 cast by an epoxy resin or the like is formed except for a portion penetrating 17. An insulating barrier 57 a integrally formed with the mold insulator 57 is formed so that the ground movable shaft 23 surrounds the portion exposed from the second vacuum container 17. The insulating barrier 57a is open on the side of the insulating rod 28 facing the flange portion 28a. Further, the first main circuit ground terminal 10 has a bushing structure formed of a mold insulator 57. Then, the surface of the mold insulator 57 is electrically conductive from the front end portion 10a of the first main circuit external terminal 10 to the distance necessary for interface insulation and to a predetermined distance from the operation mechanisms 15 and 29 side of the vacuum vessels 6 and 17. A treated conductive member 58 is disposed.

このように構成された複合絶縁スイッチギヤにおいて、各接地真空バルブ51,52の両電極18,19間が「開」で、例えば主回路真空バルブ48,49の両電極7,8間がそれぞれ「閉」状態の場合、電流は主回路真空バルブ48の第1の主回路外部端子10−主回路真空バルブ48の主回路開閉手段9−主回路真空バルブ48の第2の主回路外部端子12−接続部材55−主回路真空バルブ49の第2の主回路外部端子12−主回路真空バルブ49の主回路開閉手段9−主回路真空バルブ49の第1の主回路外部端子10の経路で通電が行われる。
このように、各真空バルブ48〜52及び各真空バルブ48〜52間の接続部材55,56をモールド絶縁体57で一体注型することにより各真空バルブ48〜52の相互間を短縮できるので、装置全体の小形化を図ることができる。
In the composite insulated switchgear thus configured, the electrodes 18 and 19 of the ground vacuum valves 51 and 52 are “open”, for example, the electrodes 7 and 8 of the main circuit vacuum valves 48 and 49 are “open”. In the "closed" state, the current flows from the first main circuit external terminal 10 of the main circuit vacuum valve 48-the main circuit opening / closing means 9 of the main circuit vacuum valve 48-the second main circuit external terminal 12 of the main circuit vacuum valve 48- The connection member 55 -the second main circuit external terminal 12 of the main circuit vacuum valve 49 -the main circuit opening / closing means 9 of the main circuit vacuum valve 49 -the first main circuit external terminal 10 of the main circuit vacuum valve 49 is energized. Done.
Thus, since the vacuum valves 48 to 52 and the connection members 55 and 56 between the vacuum valves 48 to 52 are integrally cast with the mold insulator 57, the space between the vacuum valves 48 to 52 can be shortened. The entire apparatus can be reduced in size.

この発明を実施するための実施の形態1における電気回路図である。BRIEF DESCRIPTION OF THE DRAWINGS It is an electric circuit diagram in Embodiment 1 for implementing this invention. この発明の実施の形態1の構成を示す断面図である。It is sectional drawing which shows the structure of Embodiment 1 of this invention. 図2のIII−III線の断面図である。It is sectional drawing of the III-III line of FIG. この発明の実施の形態2の構成を示す断面図である。It is sectional drawing which shows the structure of Embodiment 2 of this invention. この発明の実施の形態3の要部を示す断面図である。It is sectional drawing which shows the principal part of Embodiment 3 of this invention. この発明の実施の形態4の要部を示す断面図である。It is sectional drawing which shows the principal part of Embodiment 4 of this invention. この発明を適用した実施例1における電気回路図である。It is an electric circuit diagram in Example 1 to which this invention is applied. 実施例1の要部を示す断面図である。1 is a cross-sectional view showing a main part of Example 1. FIG. 図8のIX−IX線の断面図である。It is sectional drawing of the IX-IX line of FIG. 図8のX−X線の断面図である。It is sectional drawing of the XX line of FIG.

符号の説明Explanation of symbols

6 第1の真空容器、9 主回路開閉手段、15 主回路操作機構、
17 第2の真空容器、20 接地開閉手段、23 接地可動軸、27 試験端子、
28,33 絶縁ロッド、29 接地操作機構、29a 接地操作ロッド、
30 モールド絶縁体、36 ばね。
6 first vacuum vessel, 9 main circuit opening / closing means, 15 main circuit operating mechanism,
17 Second vacuum container, 20 Ground opening / closing means, 23 Ground movable shaft, 27 Test terminal,
28, 33 Insulating rod, 29 Grounding operation mechanism, 29a Grounding operation rod,
30 Mold insulator, 36 spring.

Claims (3)

主回路固定電極と主回路可動電極とからなり主回路操作機構により開閉される主回路開閉手段を第1の真空容器内に配置し、接地固定電極と接地可動電極とからなり接地操作機構により開閉される接地開閉手段を第2の真空容器内に配置して、上記第2の真空容器の軸方向に移動可能な接地可動軸と上記接地可動電極とを電気的及び機械的に接続すると共に上記接地固定軸と上記主回路可動軸との間を電気的に接続した複合絶縁スイッチギヤにおいて、上記接地可動軸と同軸上で電気的に接続され、試験電圧を印加可能な試験端子と、上記試験端子と上記接地可動軸とを樹脂で一体注型して形成され、上記接地操作機構に連結されるとともにばね受け部を有する絶縁ロッドと、上記絶縁ロッドに挿通されて上記ばね受け部で受け止められ、上記接地可動電極を上記接地固定電極に押圧するばねと、上記絶縁ロッド内に上記試験端子を囲むように配置された電界緩和シールドと、上記電界緩和シールドと対向する上記絶縁ロッドの表面に配置された導電部材とを備えたことを特徴とする複合絶縁スイッチギヤ。A main circuit opening / closing means comprising a main circuit fixed electrode and a main circuit movable electrode, which is opened and closed by a main circuit operation mechanism, is disposed in the first vacuum vessel, and is composed of a ground fixed electrode and a ground movable electrode and is opened and closed by a ground operation mechanism The ground opening / closing means is disposed in the second vacuum vessel to electrically and mechanically connect the grounding movable shaft movable in the axial direction of the second vacuum vessel and the grounding movable electrode, and In a composite insulated switchgear that is electrically connected between the ground fixed shaft and the main circuit movable shaft, a test terminal that is electrically connected coaxially with the ground movable shaft and to which a test voltage can be applied, and the test A terminal and the grounding movable shaft are integrally cast with resin, and are connected to the grounding operation mechanism and have an insulating rod having a spring receiving portion, and are inserted into the insulating rod and received by the spring receiving portion. ,Up A spring that presses the ground movable electrode against the ground fixed electrode, an electric field relaxation shield that is disposed in the insulating rod so as to surround the test terminal, and a surface of the insulating rod that faces the electric field relaxation shield. A composite insulation switchgear comprising a conductive member. 主回路固定電極と主回路可動電極とからなり主回路操作機構により開閉される主回路開閉手段を第1の真空容器内に配置し、接地固定電極と接地可動電極とからなり接地操作機構により開閉される接地開閉手段を第2の真空容器内に配置して、上記第2の真空容器の軸方向に移動可能な接地可動軸と上記接地可動電極とを電気的及び機械的に接続すると共に上記接地固定軸と上記主回路可動軸との間を電気的に接続した複合絶縁スイッチギヤにおいて、上記接地可動軸と同軸上で電気的に接続された接続導体と、上記接続導体を樹脂で一体注型して形成され、ばね受け部を有する絶縁ロッドと、上記絶縁ロッドに挿通されて上記ばね受け部で受け止められ、上記接地可動電極を上記接地固定電極に押圧するばねと、上記接地可動軸と同軸上で上記接続導体と電気的に接続され、試験電圧を印加可能な試験端子とを備えたことを特徴とする複合絶縁スイッチギヤ。   A main circuit opening / closing means comprising a main circuit fixed electrode and a main circuit movable electrode, which is opened and closed by a main circuit operation mechanism, is disposed in the first vacuum vessel, and is composed of a ground fixed electrode and a ground movable electrode and is opened and closed by a ground operation mechanism. The ground opening / closing means is disposed in the second vacuum vessel to electrically and mechanically connect the grounding movable shaft movable in the axial direction of the second vacuum vessel and the grounding movable electrode, and In the composite insulated switchgear in which the ground fixed shaft and the main circuit movable shaft are electrically connected, the connection conductor electrically connected coaxially with the ground movable shaft and the connection conductor are integrally made of resin. An insulating rod having a spring receiving portion, a spring inserted through the insulating rod and received by the spring receiving portion, and pressing the grounding movable electrode against the grounding fixed electrode; and the grounding movable shaft; On the same axis Serial connection conductor and is electrically connected, composite insulated switchgear, characterized in that a capable of applying test terminals test voltage. 上記試験端子と上記接続導体との間に配置された可とう性導体を備えたことを特徴とする請求項記載の複合絶縁スイッチギヤ。 The composite insulated switchgear according to claim 2, further comprising a flexible conductor disposed between the test terminal and the connection conductor.
JP2004003321A 2004-01-08 2004-01-08 Compound insulation switchgear Expired - Fee Related JP4429740B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004003321A JP4429740B2 (en) 2004-01-08 2004-01-08 Compound insulation switchgear

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004003321A JP4429740B2 (en) 2004-01-08 2004-01-08 Compound insulation switchgear

Publications (2)

Publication Number Publication Date
JP2005197127A JP2005197127A (en) 2005-07-21
JP4429740B2 true JP4429740B2 (en) 2010-03-10

Family

ID=34818270

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004003321A Expired - Fee Related JP4429740B2 (en) 2004-01-08 2004-01-08 Compound insulation switchgear

Country Status (1)

Country Link
JP (1) JP4429740B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4764906B2 (en) 2008-08-12 2011-09-07 株式会社日立製作所 Vacuum switch and vacuum switch gear
KR101079791B1 (en) 2011-06-02 2011-11-03 주식회사 델코코 Operating mechanism for epoxy insulated load break switch
CN103219191B (en) * 2013-04-22 2015-04-01 许昌永新电气股份有限公司 High-voltage electric appliance switch novel separate-combined transmission device

Also Published As

Publication number Publication date
JP2005197127A (en) 2005-07-21

Similar Documents

Publication Publication Date Title
TWI375247B (en)
CN107112729B (en) Switching mechanism
KR101488797B1 (en) Vacuum switch gear
KR101704807B1 (en) operation device using electromagnetic repulsion force for circuit breaker
TW201029036A (en) Vacuum switchgear
KR20100003222A (en) Vacuum switches and vacuum switching gear
US20060124599A1 (en) Grounding switch having a moveable contact piece
KR101581764B1 (en) Withstand voltage test device for switchgear
JP2009022115A (en) Solid insulated switchgear, and test method therefor
JP4429740B2 (en) Compound insulation switchgear
JP4660303B2 (en) Solid insulation switchgear
KR100972266B1 (en) Vacuum swich gear
JP4190320B2 (en) Switchgear
JP2007188661A (en) Vacuum valve
JP2008311036A (en) Vacuum switchgear
JP2011055567A (en) Switchgear and method for manufacturing the same
RU2660130C2 (en) High-temperature high-pressure vacuum relay
JP2016208809A (en) Switch gear
JP4004681B2 (en) Switchgear
EP2682974A1 (en) Pushrod assembly for a medium voltage vacuum circuit breaker
JP2005197128A (en) Complex insulation switchgear
CN109844893B (en) High-voltage switching device, switching installation with a high-voltage switching device, and method for producing a high-voltage switching device
WO2016171047A1 (en) Switchgear
WO2023119453A1 (en) Switch
WO2017022510A1 (en) Switching device and switch gear

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060809

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090210

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090804

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091021

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20091111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091208

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091216

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121225

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4429740

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121225

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131225

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees