JP4428185B2 - High strength and high ductility wire having ultrafine grain structure and method for producing the same - Google Patents

High strength and high ductility wire having ultrafine grain structure and method for producing the same Download PDF

Info

Publication number
JP4428185B2
JP4428185B2 JP2004296172A JP2004296172A JP4428185B2 JP 4428185 B2 JP4428185 B2 JP 4428185B2 JP 2004296172 A JP2004296172 A JP 2004296172A JP 2004296172 A JP2004296172 A JP 2004296172A JP 4428185 B2 JP4428185 B2 JP 4428185B2
Authority
JP
Japan
Prior art keywords
less
strength
ultrafine
wire
annealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004296172A
Other languages
Japanese (ja)
Other versions
JP2006104556A (en
Inventor
邦和 冨田
高明 豊岡
好弘 齋藤
智資 平野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2004296172A priority Critical patent/JP4428185B2/en
Publication of JP2006104556A publication Critical patent/JP2006104556A/en
Application granted granted Critical
Publication of JP4428185B2 publication Critical patent/JP4428185B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

本発明は、超微細粒組織を有する高強度高延性線材およびその製造方法に関し、特に普通低炭素鋼またはBを少量含有する普通低炭素鋼を素材として、線材の強度と延性の有利な向上を図ったものである。   The present invention relates to a high-strength and highly ductile wire having an ultrafine grain structure and a method for producing the same. It is what we planned.

近年、自動車をはじめとする輸送機械の省エネルギー化や建築物の高層化あるいは各種産業機器の小型化のために、ボルトやネジ、ばね、またそれらの素材となる線材により一層の高強度化が要求されている。よく知られているように、鉄鋼材料を高強度化すると延性が低下する。延性が低下すると、冷間鍛造性や冷間転造性等の加工性が低下し、部品製造の歩留りや能率の低下を来たすため、線材の高強度化に際しては、延性の低下を可能な限り抑制した高強度高延性線材とする必要がある。
また、資源のリサイクル性の観点からは、高強度高延性は合金元素の添加によることなく、普通低炭素鋼を用いて達成することが望まれる。
In recent years, bolts, screws, springs, and wires used as their materials have been required to have higher strength in order to save energy in transportation equipment such as automobiles, increase the height of buildings, and reduce the size of various industrial equipment. Has been. As is well known, ductility decreases when the strength of steel materials is increased. When ductility decreases, workability such as cold forgeability and cold rollability deteriorates, resulting in a decrease in yield and efficiency of component manufacturing. It is necessary to use a suppressed high strength and high ductility wire.
Further, from the viewpoint of resource recyclability, it is desirable to achieve high strength and high ductility by using ordinary low carbon steel without adding alloying elements.

線材に限らず、合金元素をなるべく使用しないで鉄鋼材料の高強度化を図ることに関し、これまでにも幾つかのプロジェクトや検討がなされている。
例えば、スーパーメタル(または超鉄鋼)プロジェクトでは、現在の400MPa級の組成鋼を用い、結晶粒径を1μm以下に超微細化することで、約2倍の強度800MPaを有し、延性もそなえ、かつ溶接し易いフェライト組織鋼が検討されている。
この検討において、フェライトの結晶粒径の微細化による高強度化では、ホール−ぺッチ(Hall−Petch)の関係が成り立つこと、すなわちフェライトの結晶粒径を微細にすると降伏強度と引張強度が上昇すること、またこれと同時に靱性が向上することが明らかにされている。
しかしながら、この技術では、鋼板の延性の主要な指標である引張試験における伸びが大幅に低下するという問題があった。
Several projects and studies have been made so far to increase the strength of steel materials without using alloy elements as much as possible.
For example, in the super metal (or super steel) project, the current 400 MPa class steel is used, and the crystal grain size is reduced to 1 μm or less, so it has a strength of about 800 MPa and has ductility. Ferritic steels that are easy to weld are being studied.
In this study, when the strength of the ferrite is increased by reducing the grain size of the ferrite, the Hall-Petch relationship is established, that is, if the crystal grain size of the ferrite is reduced, the yield strength and the tensile strength are increased. It has been shown that it rises and at the same time the toughness improves.
However, this technique has a problem that the elongation in the tensile test, which is a main index of the ductility of the steel sheet, is significantly reduced.

また、非特許文献1では、溶接容易な400MPa級の組成鋼を用い、フェライト+炭化物組織の結晶粒径を1μm以下とすることで、強度を800MPa級に上昇させる検討がなされている。その結果、厚さ:8mmの試料を、オーステナイト化処理(1100℃加熱、60秒保持)後、水冷してマルテンサイト組織とし、これに640℃で全圧下率:90%の熱間圧延を施すと、フェライト組織が公称粒径で0.77μmまで等軸微細化されて、引張強度:760MPaに相当するビッカース硬度Hv:245が得られたことが報告されている。
しかしながら、引張試験用の試験片を作製し、直接引張強度と延性を測定したとの報告はない。また、試料として用いられた鋼は、焼入性確保のためMn量が2.03%と高く、リサイクル性の点から好ましくない。
Further, in Non-Patent Document 1, studies have been made to increase the strength to 800 MPa class by using 400 MPa class composition steel that is easy to weld and setting the crystal grain size of ferrite + carbide structure to 1 μm or less. As a result, a sample with a thickness of 8 mm was austenitized (heated at 1100 ° C., held for 60 seconds), then cooled with water to obtain a martensite structure, and subjected to hot rolling at 640 ° C. with a total reduction ratio of 90%. It was reported that the ferrite structure was refined equiaxially to a nominal grain size of 0.77 μm, and a Vickers hardness Hv: 245 corresponding to a tensile strength of 760 MPa was obtained.
However, there is no report that a specimen for a tensile test was prepared and the tensile strength and ductility were directly measured. Further, the steel used as a sample has a high Mn content of 2.03% in order to ensure hardenability, which is not preferable from the viewpoint of recyclability.

その外にも、合金元素の添加によらない結晶粒微細化による高強度化に関する報告は多数あるが、これらは何れも大歪加工によるものであり、特殊な加工設備を必要とするため、実際の商業生産には適さない。
発明者らも、フェライト+パーライト組織鋼に、大歪加工である室温ARB(繰り返し重ね接合圧延:Accumulative Roll-Bonding)と焼鈍を施し、得られた組織と機械試験値の変化について検討したが、大歪加工後もセメンタイトが存在する領域と存在しない領域が混在する不均一な組織となるため、焼鈍後はフェライト粒径が場所によって大きく異なる不均一な混粒組織となりし、所望の高強度高延性の鋼材を得ることはできなかった。
In addition, there are many reports on increasing the strength by refining crystal grains without adding alloying elements, but these are all due to large strain processing and require special processing equipment. It is not suitable for commercial production.
The inventors also performed annealing at room temperature ARB (Accumulative Roll-Bonding), which is large strain processing, and annealing on ferrite + pearlite structure steel, and examined changes in the resulting structure and mechanical test values. Even after large strain processing, it becomes a non-uniform structure in which regions containing cementite and non-existing regions coexist. Ductile steel could not be obtained.

そこで、発明者らは、普通低炭素鋼を素材とし、従来の製造工程をあまり変えることなく、実際の商業生産に適用可能な方法で高強度高延性の鋼材を得るための検討を行った。
その結果、粗大オーステナイト組織とした後水冷することによって得られるマルテンサイトを低歪加工後焼鈍するとフェライト組織が超微細化することを見出し、これに基づき所望の高強度高延性の鋼材を得る技術を開発した(特許文献1参照のこと)。
Therefore, the inventors have studied to obtain a high strength and high ductility steel material by a method applicable to actual commercial production, using ordinary low carbon steel as a raw material, without changing much of the conventional manufacturing process.
As a result, we found that when martensite obtained by forming a coarse austenite structure and then water-cooling is annealed after low strain processing, the ferrite structure becomes ultrafine, and based on this, a technology for obtaining a desired high strength and high ductility steel material is obtained. Developed (see Patent Document 1).

ここで、普通低炭素鋼のフェライト組織を超微細化するために、マルテンサイト組織を出発材とする発想は、超鉄鋼の開発を推進するSTX−21プロジェクトやスーパーメタルプロジェクトでも用いられているが、これらは何れも大歪加工を指向するものであり、上述したように高強度化は達成されるものの、高延性は得られない。
これに対して、特許文献1は、マルテンサイトの低歪加工によって高強度高延性の鋼材を得ることを特徴とするものである。
Here, in order to make the ferrite structure of ordinary low-carbon steel ultrafine, the idea of using the martensite structure as a starting material is used in the STX-21 project and the super metal project that promote the development of super steel. These are all directed to large strain processing, and as described above, high strength is achieved, but high ductility cannot be obtained.
On the other hand, Patent Document 1 is characterized in that a steel material having high strength and high ductility is obtained by low strain processing of martensite.

しかしながら、特許文献1に開示の技術は、鋼板を対象とするもので、マルテンサイトの加工を冷間圧延で行うため、冷間圧延ではなく伸線加工を行う線材には適用できない。実際、冷間圧延を伸線加工に変えて実験を行ったところ、引張強度は780MPa程度が得られたが、線材の延性の主要な指標である絞りは50%程度と低い値しか得られなかった。   However, the technique disclosed in Patent Document 1 is intended for steel sheets, and since martensite is processed by cold rolling, it cannot be applied to a wire that performs wire drawing instead of cold rolling. Actually, when the experiment was conducted by changing the cold rolling to wire drawing, the tensile strength was about 780 MPa, but the drawing, which is the main index of ductility of the wire, was only about 50%. It was.

CAMP−ISIJ,Vol 11(1998)P.1031−1034CAMP-ISIJ, Vol 11 (1998) P.1031-1034 特開2002−285278号公報JP 2002-285278 A

上述したとおり、従来技術では、普通低炭素鋼を用いて高強度高延性を有する線材を製造することができなかった。
本発明は、上記特許文献1に開示した技術をさらに改良したもので、リサイクル性に富んだ普通低炭素鋼を用いて、従来の工程をあまり変えることなく、実際の商用生産に適用可能な方法で、高強度高延性線材を提供することを目的とする。
ここで、従来の普通低炭素鋼線材が400MPa程度の引張強度と73%程度の絞りを有するため、本発明では、引張強度については700MPa以上、絞りについては73%以上を得ることを目標とする。これにより、従来材に比べて十分な高強度化が図れると共に、高強度化に伴う延性低下とそれに起因した加工性の劣化に配慮する必要がなくなる。
As described above, in the prior art, a wire having high strength and high ductility cannot be produced using ordinary low carbon steel.
The present invention is a further improvement of the technique disclosed in Patent Document 1, and is a method applicable to actual commercial production using ordinary low-carbon steel rich in recyclability, without changing much of the conventional process. Then, it aims at providing a high intensity | strength highly ductile wire.
Here, since the conventional ordinary low carbon steel wire has a tensile strength of about 400 MPa and a drawing of about 73%, the present invention aims to obtain a tensile strength of 700 MPa or more and a drawing of 73% or more. . As a result, the strength can be sufficiently increased as compared with the conventional material, and it is not necessary to consider the ductility reduction and the workability deterioration caused by the increase in strength.

前述したように、マルテンサイトの低歪加工によって高強度高延性普通低炭素鋼板を得る技術は、特許文献1に開示されているが、この技術をそのまま線材に適用することはできなかった。
そこで、発明者らは、マルテンサイトの低歪加工を線材に適用する際の製造条件の適正化について鋭意検討を重ねた結果、従来マルテンサイト組織を得るためには、一旦オーステナイト粒を粗大化させる必要があると考えられていたのであるが、オーステナイト粒を特に粗大化させなくて、微細なオーステナイト粒のまま冷却しても、ある程度のマルテンサイトが確保できれば、その後の低歪加工と焼鈍によって、フェライト組織を超微細化することができ、しかもこの場合には、高強度のみならず高延性も得られることを究明したのである。
As described above, a technique for obtaining a high strength and high ductility ordinary low carbon steel sheet by low strain processing of martensite is disclosed in Patent Document 1, but this technique cannot be applied to a wire as it is.
Therefore, as a result of intensive studies on optimization of manufacturing conditions when applying low strain processing of martensite to a wire rod, the inventors once coarsen austenite grains in order to obtain a conventional martensite structure. Although it was thought that it was necessary, even if the austenite grains were not coarsened and cooled as they were fine austenite grains, if some martensite could be secured, by subsequent low strain processing and annealing, It has been found that the ferrite structure can be made ultrafine, and in this case, not only high strength but also high ductility can be obtained.

すなわち、従来は、普通低炭素鋼は焼入性に劣るため、焼入性を確保してマルテンサイト組織を得るためには、特許文献1記載のように、オーステナイトを粗大化させる必要があると考えられていた。
これに対し、本発明は、焼入性に劣る普通低炭素鋼で、微細なオーステナイトを焼き入れて微細なマルテンサイト+フェライト組織を得ることを技術骨子の一つにしており、かような発想は従来なかったものである。
That is, conventionally, since ordinary low carbon steel is inferior in hardenability, it is necessary to coarsen austenite as described in Patent Document 1 in order to secure hardenability and obtain a martensite structure. It was thought.
On the other hand, the present invention is an ordinary low carbon steel inferior in hardenability, and it is one of the technical outlines to obtain fine martensite + ferrite structure by quenching fine austenite. Is something that did not exist before.

なお、微細なオーステナイトを焼き入れた場合には、全面的にマルテンサイトとすることは困難であるが、全面的にマルテンサイト組織としなくても、所定量のマルテンサイトを確保できれば、これに低歪加工と適当な焼鈍を施すことによって、高強度と高延性を達成することができる。
本発明は、上記の知見に立脚するものである。
When fine austenite is quenched, it is difficult to make martensite entirely. However, if a predetermined amount of martensite can be secured even if the martensite structure is not entirely made, this is low. High strength and high ductility can be achieved by applying strain processing and appropriate annealing.
The present invention is based on the above findings.

すなわち、本発明の要旨構成は次のとおりである。
(1)平均結晶粒径が1μm 以下の超微細粒フェライト組織を有し、700 MPa以上の引張強度と73%以上の絞りを併せ持つ高強度高延性線材であって、該超微細粒フェライト組織は、普通低炭素鋼または0.01mass%以下のBを含有する普通低炭素鋼を微細オーステナイト組織とした後水冷することによって得られる微細なマルテンサイトを80%以上含む鋼材を、全減面率:20%以上、60%未満の冷間伸線と焼鈍を行うことによって得たことを特徴とする超微細粒組織を有する高強度高延性線材。
That is, the gist configuration of the present invention is as follows.
(1) A high-strength, high-ductility wire having an ultrafine-grained ferrite structure with an average crystal grain size of 1 μm or less and a tensile strength of 700 MPa or more and a drawing of 73% or more. A steel material containing 80% or more of fine martensite obtained by making ordinary low carbon steel or ordinary low carbon steel containing B of 0.01 mass% or less into a fine austenite structure and then water-cooling the total area reduction ratio: 20 A high-strength, high-ductility wire having an ultrafine grain structure obtained by performing cold drawing and annealing at a rate of not less than 60% and less than 60% .

)前記焼鈍における焼鈍温度が、400℃以上、550℃以下であることを特徴とする上記()記載の超微細粒組織を有する高強度高延性線材。 ( 2 ) An annealing temperature in the annealing is 400 ° C. or higher and 550 ° C. or lower. The high strength and high ductility wire having an ultrafine grain structure as described in ( 1 ) above.

)普通低炭素鋼または0.01mass%以下のBを含有する普通低炭素鋼を、加工熱処理して、平均オーステナイト粒径を50μm以下に微細化した後、水冷し、得られた微細なマルテンサイトを80%以上含む鋼材を、全減面率:20%以上、60%未満の条件で冷間伸線した後、焼鈍することにより、平均結晶粒径が1μm以下の超微細粒フェライト組織とすることを特徴とする超微細粒組織を有する高強度高延性線材の製造方法。 ( 3 ) Ordinary low carbon steel or ordinary low carbon steel containing 0.01 mass% or less B is processed and heat-treated to reduce the average austenite grain size to 50 μm or less, and then water-cooled to obtain the obtained fine martensite. A steel material containing 80% or more of the site is cold-drawn under the conditions of a total area reduction of 20% or more and less than 60%, and then annealed to obtain an ultrafine-grained ferrite structure with an average grain size of 1 μm or less. A method for producing a high-strength, high-ductility wire having an ultrafine grain structure.

)前記焼鈍を、400℃以上、550℃以下の温度域で行うことを特徴とする上記()記載の超微細粒組織を有する高強度高延性線材の製造方法。 ( 4 ) The method for producing a high-strength and high-ductility wire having an ultrafine grain structure according to ( 3 ), wherein the annealing is performed in a temperature range of 400 ° C. or higher and 550 ° C. or lower.

本発明によれば、リサイクル性に富む普通低炭素鋼を用いて、従来の製造工程をあまり変えることなく、実際の商業生産に適用可能な方法で、700MPa以上の引張強度と73%以上の絞りを有する高強度高延性線材を安定して得ることができ、産業上極めて有用である。   According to the present invention, using ordinary low carbon steel that is highly recyclable, it can be applied to actual commercial production without changing much of the conventional manufacturing process, and has a tensile strength of 700 MPa or more and a drawing of 73% or more. It is possible to stably obtain a high-strength and high-ductility wire having a diameter, which is extremely useful industrially.

本発明の好適成分組成範囲、ミクロ組織および製造条件について以下に詳述する。
本発明では、資源のリサイクル性の観点から鋼の成分組成は普通低炭素鋼とする。
本発明における普通低炭素鋼とは、質量%で、C≦0.2%、Si≦0.5%、Mn≦1.6%、P≦0.05%、S≦0.05%、Al≦0.08%およびN≦0.01%の鋼材を指す。また、焼入性を向上させマルテンサイト変態を促進する作用を有するBを0.01%以下の範囲で含有していてもよい。
The preferred component composition range, microstructure and production conditions of the present invention are described in detail below.
In the present invention, the component composition of steel is usually low carbon steel from the viewpoint of resource recyclability.
The ordinary low carbon steel in the present invention is a steel material having a mass% of C ≦ 0.2%, Si ≦ 0.5%, Mn ≦ 1.6%, P ≦ 0.05%, S ≦ 0.05%, Al ≦ 0.08% and N ≦ 0.01%. Point to. Moreover, B which has the effect | action which improves hardenability and accelerates | stimulates a martensitic transformation may be contained in 0.01% or less of range.

本発明では、上記の成分組成になる鋼を、まず、オーステナイト域に加熱した後水冷してマルテンサイト組織とするのであるが、冷却前のオーステナイト粒を平均粒径で50μm以下に制限することが重要である。
というのは、冷却前のオーステナイトの平均粒径が50μmを超えていると、高強度は得られるものの、高延性を得ることができないからである。
In the present invention, the steel having the above component composition is first heated to an austenite region and then water-cooled to obtain a martensite structure, but the austenite grains before cooling may be limited to an average particle size of 50 μm or less. is important.
This is because, if the average particle size of austenite before cooling exceeds 50 μm, high strength can be obtained but high ductility cannot be obtained.

ここに、オーステナイトの平均粒径を50μm以下に抑制するためには、加熱温度を850〜980℃、加熱時間を1〜30分とすることが重要である。というのは、加熱温度が850℃未満であったり、加熱時間が1分に満たないと、加熱時に組織がフェライト+オーステナイトになり、水冷後に80%以上のマルテンサイトが得られず、一方加熱温度が980℃超であったり、加熱時間が30分を超えると、オーステナイトの平均粒径が50μmを上回って、良好な絞り値すなわち高延性が得られないからである。   Here, in order to suppress the average particle size of austenite to 50 μm or less, it is important to set the heating temperature to 850 to 980 ° C. and the heating time to 1 to 30 minutes. This is because if the heating temperature is less than 850 ° C or the heating time is less than 1 minute, the structure becomes ferrite + austenite during heating, and 80% or more of martensite cannot be obtained after water cooling. If the temperature exceeds 980 ° C. or the heating time exceeds 30 minutes, the average particle size of austenite exceeds 50 μm, and a good drawing value, that is, high ductility cannot be obtained.

上記したオーステナイト化処理の後、水冷して、組織をマルテンサイトとするが、本発明では、マルテンサイトの体積分率が80%以上あれば、後述するの低歪加工により超微細粒フェライト組織として、所望の特性を得ることができるので、マルテンサイトの量は体積分率で80%以上とすれば良い。
なお、残部組織は、ウィドマンステッテン状の初析フェライトなど、マルテンサイト以外の組織であっても差し支えない。
After the above-described austenitizing treatment, the structure is martensite by water cooling. However, in the present invention, if the volume fraction of martensite is 80% or more, an ultrafine-grained ferrite structure is formed by low strain processing described later. Since desired characteristics can be obtained, the amount of martensite may be 80% or more in terms of volume fraction.
The remaining structure may be a structure other than martensite, such as Widmanstatten-like pro-eutectoid ferrite.

ついで、低歪加工を施して超微細粒フェライト組織とする。
本発明でいう低歪加工とは、適度な加工率での冷間伸線とそれに続く低温焼鈍を意味し、この処理により、組織を平均結晶粒径が1μm以下の超微細フェライトとする。
ここに、冷間伸線加工については、全減面率(=(伸線前断面積−伸線後断面積)/伸線前断面積×100%)が20%以上であれば、粒径:1μm以下の超微細フェライトが得られ一方、全減面率が60%以上になると、焼鈍後の延性が低下するだけでなく、伸線中に断線を起こすおそれがあるので、全減面率は20%以上、60%未満の範囲とする。
Next, low strain processing is performed to obtain an ultrafine ferrite structure.
The low strain processing referred to in the present invention means cold drawing at an appropriate processing rate and subsequent low-temperature annealing. By this treatment, the microstructure is made into ultrafine ferrite having an average crystal grain size of 1 μm or less.
Here, for cold wire drawing, if the total area reduction ratio (= (cross-sectional area before drawing−cross-sectional area after drawing) / cross-sectional area before drawing × 100%) is 20% or more, the particle size : 1μm or less ultra-fine ferrite is obtained . On the other hand, if the total area reduction ratio is 60% or more , not only the ductility after annealing is lowered, but also there is a risk of disconnection during wire drawing. The area ratio should be 20% or more and less than 60%.

また、冷間伸線処理後の焼鈍については、焼鈍温度が400℃以上であれば連続再結晶により超微細フェライト組織となって73%以上の絞りを得易く、また焼鈍温度が550℃以下であれば不連続再結晶が起こらず700 MPa以上の引張強度が得易いため、焼鈍温度は400〜550℃程度とすることが好ましい。   Also, for annealing after cold drawing, if the annealing temperature is 400 ° C or higher, it becomes easy to obtain a drawing of 73% or more with an ultrafine ferrite structure by continuous recrystallization, and the annealing temperature is 550 ° C or lower. If there is, discontinuous recrystallization does not occur and a tensile strength of 700 MPa or more can be easily obtained, so the annealing temperature is preferably about 400 to 550 ° C.

本発明に従えば、普通低炭素鋼からでも、700MPa以上の引張強度と73%以上の絞りを兼ね備える高強度高延性線材が得られる理由は、フェライトが効果的に微細化したことによると考えられる。
そして、フェライトが超微細化するのは、微細オーステナイトを水冷して得られる微細マルテンサイトを低歪加工したためと考えられる。すなわち、微細オーステナイトから変態したマルテンサイトは微細であり、これを低歪加工すると不均一変形を生じ、結晶粒界(旧オーステナイト粒界)やパケット境界、ブロック境界等に代表されるフェライトの核生成サイトが増加するため、フェライトが超微細化すると考えられる。加えて、フェライトの粒成長を炭化物がピン止め効果により抑制することも、フェライトの超微細化に寄与しているものと推察される。
このように、本発明に従ってフェライトを微細化すると、高強度化すると共に、亀裂の伝播が結晶粒界で頻繁に抑制されるため局部延性が増大するため、絞りも向上するものと考えられる。
According to the present invention, the reason why a high-strength and high-ductility wire having both a tensile strength of 700 MPa or more and a drawing of 73% or more can be obtained from ordinary low carbon steel is considered to be due to the effective refinement of ferrite. .
The reason why the ferrite becomes ultrafine is thought to be because fine martensite obtained by water-cooling fine austenite is processed with low strain. In other words, martensite transformed from fine austenite is fine, and when it is processed with low strain, non-uniform deformation occurs and ferrite nucleation represented by grain boundaries (former austenite grain boundaries), packet boundaries, block boundaries, etc. Since the number of sites increases, it is considered that the ferrite becomes ultrafine. In addition, the suppression of ferrite grain growth by the pinning effect of the carbide is presumed to contribute to the ultrafine ferrite.
Thus, when the ferrite is refined according to the present invention, it is considered that the strength is increased, and crack propagation is frequently suppressed at the grain boundary, so that the local ductility is increased and the drawing is also improved.

次に実施例にて本発明の効果等を説明する。
表1に示すJIS SWRCH12A相当の組成を有する直径:5.5mmの線材を、酸洗後、オーステナイト域に5min間加熱後、直ちに水冷して、マルテンサイト組織を得た。その際、オーステナイト化温度を950℃および1100℃の2水準とすることで、オーステナイト粒径を変化させた。この時点で得られたマルテンサイトの組織観察を行ったところ、焼入れ前のオーステナイトの平均粒径は、950℃加熱材では40μm、1100℃加熱材では120μmであった。また、マルテンサイトの体積分率はそれぞれ85%と96%であり、残部は針状のフェライトであった。
ついで、得られた線材を、酸洗後、リン酸塩皮膜処理および金属石鹸潤滑処理を施した後、3パスで全減面率:50%の冷間伸線を行った。その後、線材を300、400、450、500、550、575、600℃ でそれぞれ30min間焼鈍し、焼鈍後、室温まで空冷した。
かくして得られた線材からJIS 2 号引張試験片を作製し、引張試験を行った。
図1に、引張試験結果を、引張強度(TS)−絞り(RA)バランスとして整理して示す。
Next, effects and the like of the present invention will be described with reference to examples.
A wire rod having a diameter corresponding to JIS SWRCH12A shown in Table 1 and having a diameter of 5.5 mm was pickled, heated in the austenite region for 5 minutes, and then immediately water-cooled to obtain a martensite structure. At that time, the austenite grain size was changed by setting the austenitizing temperature to two levels of 950 ° C. and 1100 ° C. When the structure of the martensite obtained at this point was observed, the average particle size of the austenite before quenching was 40 μm for the 950 ° C. heating material and 120 μm for the 1100 ° C. heating material. The martensite volume fractions were 85% and 96%, respectively, and the balance was acicular ferrite.
Subsequently, the obtained wire was pickled, subjected to a phosphate film treatment and a metal soap lubrication treatment, and then cold-drawn with a total area reduction ratio of 50% in three passes. Thereafter, the wire was annealed at 300, 400, 450, 500, 550, 575, and 600 ° C. for 30 minutes, and after annealing, it was air-cooled to room temperature.
A JIS No. 2 tensile test piece was prepared from the wire thus obtained and subjected to a tensile test.
FIG. 1 shows the tensile test results as a balance of tensile strength (TS) -drawing (RA).

Figure 0004428185
Figure 0004428185

同図に示したとおり、オーステナイト粒径を40μmと微細にし、冷間伸線後、400〜550℃の温度で焼鈍を施して得られたものはいずれも、700MPa以上の引張強度と73%以上の絞りが同時に得られている。
これに対し、オーステナイト粒径が120μmと本発明の適正範囲を外れたものでは、何れの焼鈍温度であっても700 MPa以上の引張強度と73%以上の絞りを同時に満たすものは存在しない。
なお、透過型電子顕微鏡を用いて950℃加熱材の組織を薄膜観察したところ、700MPa以上の引張強度と73%以上の絞りを同時に満たす400〜550℃焼鈍を施した場合、組織は炭化物とポリゴナルフェライトやラス状フェライト或いはサブグレイン状フェライトで構成されており、これらフェライトの平均粒径が1μm以下の超微細粒となっていた 。
As shown in the figure, the austenite grain size was refined to 40μm, and after cold drawing, annealing was performed at a temperature of 400-550 ° C. The aperture is obtained at the same time.
On the other hand, when the austenite grain size is 120 μm, which is outside the proper range of the present invention, there is no material that satisfies the tensile strength of 700 MPa or more and the drawing of 73% or more at any annealing temperature.
When the structure of the 950 ° C heating material was observed in a thin film using a transmission electron microscope, when subjected to 400-550 ° C annealing that simultaneously satisfies a tensile strength of 700 MPa or more and a drawing of 73% or more, the structure is composed of carbides and polygones. The ferrite was composed of null ferrite, lath ferrite, or subgrain ferrite, and the ferrite had ultrafine grains with an average grain size of 1 μm or less.

線材の引張強度(TS)一絞り(RA)バランスと焼入れ前のオーステナイト粒径および焼鈍温度との関係を示す図である。It is a figure which shows the relationship between the tensile strength (TS) single drawing (RA) balance of a wire, the austenite grain size before quenching, and annealing temperature.

Claims (4)

平均結晶粒径が1μm 以下の超微細粒フェライト組織を有し、700 MPa以上の引張強度と73%以上の絞りを併せ持つ高強度高延性線材であって、該超微細粒フェライト組織は、普通低炭素鋼または0.01mass%以下のBを含有する普通低炭素鋼を微細オーステナイト組織とした後水冷することによって得られる微細なマルテンサイトを80%以上含む鋼材を、全減面率:20%以上、60%未満の冷間伸線と焼鈍を行うことによって得たことを特徴とする超微細粒組織を有する高強度高延性線材。 A high-strength, high-ductility wire with an ultrafine-grained ferrite structure with an average grain size of 1 μm or less and a tensile strength of 700 MPa or more and a drawing of 73% or more. A steel material containing 80% or more of fine martensite obtained by making carbon steel or ordinary low carbon steel containing B of 0.01 mass% or less into a fine austenite structure and then water-cooling , total area reduction ratio: 20% or more, A high strength and high ductility wire having an ultrafine grain structure obtained by performing cold drawing and annealing of less than 60% . 前記焼鈍における焼鈍温度が、400℃以上、550℃以下であることを特徴とする請求項記載の超微細粒組織を有する高強度高延性線材。 The annealing temperature in the annealing, 400 ° C. or higher, high strength and high ductility wire having an ultrafine grain structure of claim 1, wherein a is 550 ° C. or less. 普通低炭素鋼または0.01mass%以下のBを含有する普通低炭素鋼を、加工熱処理して、平均オーステナイト粒径を50μm以下に微細化した後、水冷し、得られた微細なマルテンサイトを80%以上含む鋼材を、全減面率:20%以上、60%未満の条件で冷間伸線した後、焼鈍することにより、平均結晶粒径が1μm以下の超微細粒フェライト組織とすることを特徴とする超微細粒組織を有する高強度高延性線材の製造方法。   Ordinary low carbon steel or ordinary low carbon steel containing 0.01 mass% or less B is processed and heat-treated to reduce the average austenite grain size to 50 μm or less, then water-cooled, and the resulting fine martensite is 80 % Of the steel material containing at least 20% is cold drawn under conditions of 20% or more and less than 60%, and then annealed to obtain an ultrafine-grained ferrite structure with an average crystal grain size of 1 μm or less. A method for producing a high-strength, high-ductility wire having an ultrafine grain structure. 前記焼鈍を、400℃以上、550℃以下の温度域で行うことを特徴とする請求項記載の超微細粒組織を有する高強度高延性線材の製造方法。 The method for producing a high strength and high ductility wire having an ultrafine grain structure according to claim 3 , wherein the annealing is performed in a temperature range of 400 ° C or higher and 550 ° C or lower.
JP2004296172A 2004-10-08 2004-10-08 High strength and high ductility wire having ultrafine grain structure and method for producing the same Expired - Fee Related JP4428185B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004296172A JP4428185B2 (en) 2004-10-08 2004-10-08 High strength and high ductility wire having ultrafine grain structure and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004296172A JP4428185B2 (en) 2004-10-08 2004-10-08 High strength and high ductility wire having ultrafine grain structure and method for producing the same

Publications (2)

Publication Number Publication Date
JP2006104556A JP2006104556A (en) 2006-04-20
JP4428185B2 true JP4428185B2 (en) 2010-03-10

Family

ID=36374628

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004296172A Expired - Fee Related JP4428185B2 (en) 2004-10-08 2004-10-08 High strength and high ductility wire having ultrafine grain structure and method for producing the same

Country Status (1)

Country Link
JP (1) JP4428185B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2013205082B2 (en) * 2013-04-13 2017-04-27 Infrabuild Construction Solutions Pty Ltd Steel product and method of producing the product

Also Published As

Publication number Publication date
JP2006104556A (en) 2006-04-20

Similar Documents

Publication Publication Date Title
US11466337B2 (en) High-strength steel sheet and method for producing same
JP6465266B1 (en) Hot rolled steel sheet and manufacturing method thereof
JP6252713B1 (en) High strength steel plate and manufacturing method thereof
RU2502820C1 (en) Plate steel characterised by low ratio between yield point and ultimate strength, high strength and high uniform relative elongation, and method for its manufacture
JP4324225B1 (en) High strength cold-rolled steel sheet with excellent stretch flangeability
JP6875916B2 (en) High-strength steel plate and its manufacturing method
JP5739669B2 (en) Method for producing high-strength cold-rolled steel sheet with excellent ductility
JP4712838B2 (en) High strength cold-rolled steel sheet with excellent hydrogen embrittlement resistance and workability
JP5521444B2 (en) High-strength cold-rolled steel sheet with excellent workability and method for producing the same
JP5862591B2 (en) High strength steel plate and manufacturing method thereof
JP2011202195A (en) Ultrahigh strength cold rolled steel sheet and method for producing same
WO2017138503A1 (en) High-strength steel sheet and method for manufacturing same
JP4189133B2 (en) High strength and high ductility steel sheet with ultrafine grain structure obtained by low strain processing and annealing of ordinary low carbon steel and method for producing the same
JP2005336526A (en) High strength steel sheet having excellent workability and its production method
JP4109619B2 (en) High strength steel plate with excellent elongation and stretch flangeability
JP2012153957A (en) High-strength cold-rolled steel sheet with excellent ductility, and method for producing the same
JP5862052B2 (en) High-strength cold-rolled steel sheet excellent in elongation and stretch flangeability and method for producing the same
JP4910898B2 (en) High strength steel plate and manufacturing method thereof
JP2013060657A (en) High-strength cold rolled steel sheet excellent in elongation and stretch-flange formability, and method for producing the same
JP5302840B2 (en) High-strength cold-rolled steel sheet with an excellent balance between elongation and stretch flangeability
JP2007291464A (en) High-strength steel material and its production method
JP2013249502A (en) High-strength cold-rolled steel plate with excellent bendability and method for manufacturing the same
JP2009215572A (en) High strength cold rolled steel sheet having excellent yield stress, elongation and stretch-flange formability
US20190218640A1 (en) High-strength steel plate and manufacturing method thereof
JP5080215B2 (en) High-strength cold-rolled steel sheet with excellent isotropy, elongation and stretch flangeability

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060606

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070731

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070731

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090901

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091030

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091124

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121225

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091207

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121225

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131225

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees