JP4426411B2 - Super high pressure discharge lamp - Google Patents

Super high pressure discharge lamp Download PDF

Info

Publication number
JP4426411B2
JP4426411B2 JP2004264226A JP2004264226A JP4426411B2 JP 4426411 B2 JP4426411 B2 JP 4426411B2 JP 2004264226 A JP2004264226 A JP 2004264226A JP 2004264226 A JP2004264226 A JP 2004264226A JP 4426411 B2 JP4426411 B2 JP 4426411B2
Authority
JP
Japan
Prior art keywords
electrode
tungsten
discharge lamp
pressure discharge
μmol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004264226A
Other languages
Japanese (ja)
Other versions
JP2006079998A (en
Inventor
敦二 中川
浩 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Phoenix Electric Co Ltd
Original Assignee
Phoenix Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Phoenix Electric Co Ltd filed Critical Phoenix Electric Co Ltd
Priority to JP2004264226A priority Critical patent/JP4426411B2/en
Publication of JP2006079998A publication Critical patent/JP2006079998A/en
Application granted granted Critical
Publication of JP4426411B2 publication Critical patent/JP4426411B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Discharge Lamp (AREA)
  • Discharge Lamps And Accessories Thereof (AREA)

Description

本発明は、超高圧放電灯に関するものである。 The present invention relates to an ultra high pressure discharge lamp.

液晶プロジェクタ等の光学機器の光源として用いられる高圧放電灯は、高輝度化、短アーク化により、タングステン電極にかかる熱負荷はますます過酷なものとなっている。このような高圧放電灯の電極には高融点金属のタングステン、しかも純度の高い純タングステンが使用されるのが一般的となっている。しかし、純タングステンといっても、実際には数〜数十ppmの不純物を含んでおり、タングステン本来、換言すれば純タングステンの融点を持つ電極とは成り得ていない。さらに、電極の金属組織状態に目を向ければ、不均一な大きさのタングステン結晶粒が不規則に並んでいる(図2)。   High-pressure discharge lamps used as light sources for optical equipment such as liquid crystal projectors are becoming more severe due to higher brightness and shorter arcs. For the electrodes of such a high-pressure discharge lamp, refractory metal tungsten and pure tungsten with high purity are generally used. However, even if it is pure tungsten, it actually contains several to several tens of ppm of impurities, and tungsten itself, in other words, cannot be an electrode having the melting point of pure tungsten. Furthermore, when looking at the metallographic state of the electrode, tungsten crystal grains of irregular size are irregularly arranged (FIG. 2).

タングステンは、原料となる鉱石より精製工程を経て、酸化タングステンを精製・還元し、得られたタングステン粉末を棒状に固めてこれを焼結する。そして、焼結インゴットを引き抜き、線引き等で棒更には線状に加工し、電極の原線とするのが大まかな流れである。   Tungsten is refined and reduced from raw ore through a refining process, and the resulting tungsten powder is solidified into a rod shape and sintered. A rough flow is to draw the sintered ingot, process it into a rod or wire by drawing or the like, and use it as the original wire of the electrode.

加工は再結晶温度以下で行なわれるため原線段階では再結晶状態にはなっていない。その原線を高圧放電灯に適した設計形状に切削加工などを施し、続いて熱処理などを行い、再結晶したタングステン電極を得られる。   Since the processing is performed at a temperature lower than the recrystallization temperature, it is not in a recrystallized state at the primary line stage. A recrystallized tungsten electrode can be obtained by cutting the original wire into a design shape suitable for a high-pressure discharge lamp, followed by heat treatment.

そして、完成したタングステン電極は高圧放電灯に放電電極として組み立てられ、プロジェクタなどに搭載され、使用されるわけであるが、高圧放電灯内のタングステン電極は時間とともに消耗・変形を起こし、アークの起点が定まらず、フリッカー現象を起こす原因となる。   The completed tungsten electrode is assembled as a discharge electrode in a high-pressure discharge lamp and mounted and used in a projector. The tungsten electrode in the high-pressure discharge lamp wears and deforms over time, and the starting point of the arc Will not be determined, causing a flicker phenomenon.

また、消耗の進行が激しければ、たとえ黒化防止のための最適ハロゲン量を封入したとしても、ランプは黒化してしまい、照度低下や管壁温度上昇により破裂へと至ってしまう。このような問題の根本である電極の消耗のメカニズムは、先に述べた電極のタングステン結晶組織状態(結晶粒界)が影響していることが判明した。   In addition, if the consumption progresses severely, even if the optimum halogen amount for preventing blackening is enclosed, the lamp will be blackened, resulting in explosion due to a decrease in illuminance and a rise in the tube wall temperature. It has been found that the electrode consumption mechanism, which is the root of such a problem, is influenced by the tungsten crystal structure state (crystal grain boundary) of the electrode described above.

即ちこの点を詳細に説明すると、タングステン電極のアーク発生部位に図2に示すように結晶粒界が存在することにより、低融点化の原因となる不純物(即ち、不純物はタングステンと合金を形成し或いはタングステンに固溶して、タングステンを低融点化させる)、特に吸蔵ガス成分などは粒界に集中して残留する(換言すれば、結晶粒界は不純物濃度が高くそれ故融点が低い)。また、粒界の存在、即ち、粒界は結晶間の結合が弱いことにより、点灯時の高温により結晶粒界で滑りが生じ、甚だしい場合には結晶粒の脱落により形状崩れを生じたり、それ程でない場合でも、融点のより低い結晶粒界からのタングステン蒸発量の増加を引き起こす。蒸発したタングステンは発光管部の壁に付着、若しくは対向する電極に引き寄せられ析出現象を生じ、電極先端の変形に拍車をかけることになる。   In other words, this point will be explained in detail. Impurities that cause a low melting point (that is, impurities form an alloy with tungsten) due to the presence of crystal grain boundaries at the arc generation site of the tungsten electrode as shown in FIG. Alternatively, the solid solution dissolves in tungsten to lower the melting point of tungsten. In particular, the occluded gas component remains concentrated at the grain boundary (in other words, the grain boundary has a high impurity concentration and hence a low melting point). In addition, the existence of grain boundaries, that is, the grain boundaries are weakly bonded between crystals, causing slipping at the grain boundaries due to high temperatures during lighting. Even if not, it causes an increase in the amount of tungsten evaporated from the grain boundary having a lower melting point. The evaporated tungsten adheres to the wall of the arc tube portion or is attracted to the opposing electrode to cause a precipitation phenomenon, which spurs deformation of the electrode tip.

一方、タングステン電極の先端部分の溶融・変形・蒸発の原因をタングステン原線の真密度に原因を求めるものもある(特開2001‐226735)。
特開2001‐226735
On the other hand, there is also a technique for obtaining the cause of melting, deformation, and evaporation of the tip portion of the tungsten electrode from the true density of the tungsten original wire (Japanese Patent Laid-Open No. 2001-226735).
JP 2001-226735 A

本発明の課題は、黒化防止の目的で充填されるハロゲン量を低減すること、更に言えば、ハロゲン量を低減することにより点灯中における発光管部内での対流を減少させ、アークの揺らぎをなくすこと、及び長時間にわたる高照度維持率の実現にある。
An object of the present invention is to reduce the amount of halogen charged for the purpose of preventing blackening, more specifically, by reducing the amount of halogen, convection in the arc tube during lighting is reduced, and arc fluctuations are reduced. And to achieve a high illuminance maintenance rate for a long time .

請求項1は、
(a) 発光管部内に一対のタングステン電極が配置され、水銀と、稀ガスと、ハロゲンが封入されたプロジェクタ用の超高圧放電灯において、
(b) タングステン電極の、少なくともアークを生成する電極頭部の先端部分が単結晶であり、
(c) 封入されたハロゲン量が1×10 -7 〜1×10 -4 μmol/mm3であることを特徴とする。
Claim 1
(a) In an ultra-high pressure discharge lamp for a projector in which a pair of tungsten electrodes are arranged in an arc tube portion and mercury, rare gas, and halogen are enclosed,
(b) At least the tip of the electrode head that generates the arc of the tungsten electrode is a single crystal,
(c) The amount of encapsulated halogen is 1 × 10 −7 to 1 × 10 −4 μmol / mm 3 .

電極は少なくともアークを生成する電極頭部の先端部分、換言すれば、電極頭部の先端から少なくとも0.5mmの範囲が単結晶となっておればアークによる直接的影響を避けることができる。換言すれば、電極は全体が単結晶である必要は必ずしもなく、前記部分が単結晶であれば足る。本発明の電極は少なくとも前記部分が単結晶であり、結晶粒界が存在しないのでタングステンの純度に対応する高い融点を示し、長時間にわたる電極頭部の変形や先端部分の蒸発損耗が抑制される。   If the electrode is a single crystal at least at the tip of the electrode head that generates an arc, in other words, at least 0.5 mm from the tip of the electrode head, the direct influence of the arc can be avoided. In other words, the electrode does not necessarily have to be a single crystal as a whole, and the portion need only be a single crystal. In the electrode of the present invention, at least the portion is a single crystal and there is no grain boundary, so that it exhibits a high melting point corresponding to the purity of tungsten, and the deformation of the electrode head and the evaporation wear at the tip are suppressed for a long time. .

その結果、このような蒸発損耗や形状変形の少ない単結晶電極を使用することにより、ハロゲンサイクルを最小限に抑制することができ、充填ハロゲン量を1×10 -7 〜1×10 -4 μmol/mm3と最小限に抑えむことができ、実用上(或いは全く)黒化現象を生じることなくフリッカーの発生を抑制することができる。
As a result, by using such a single crystal electrode with little evaporation wear and shape deformation, the halogen cycle can be suppressed to the minimum, and the amount of filled halogen is 1 × 10 −7 to 1 × 10 −4 μmol. / mm 3 and Ki out minimally suppressed write Mukoto, on a real (or at all) it is possible to suppress the occurrence of flicker without causing blackening.

また、ハロゲン量が1×10 -7 〜1×10 -4 μmol/mm3の場合、点灯時に実用上 (或いは全く)黒化現象を生じることなく、且つハロゲンサイクルに起因する発光管部内の対流を抑制することができ、アークのゆらぎも解消することができた。なお、ハロゲン量が1×10-8μmol/mm3以下の場合は1500時間点灯で薄い黒化が発生し、3000時間点灯で発光管部全体が黒化し、1×10-7μmol/mm3で黒化が完全に解消される。従って、黒化に関し、より好ましくは1×10-7μmol/mm3以上ということになる。しかも3000時間の照度維持率は88%以上を保つ(表1の試料7,8)。
In addition, when the halogen content is 1 × 10 −7 to 1 × 10 −4 μmol / mm 3 , there is no practical (or no) blackening phenomenon during lighting, and there is convection in the arc tube due to the halogen cycle. It was possible to suppress the arc fluctuations. In the case halogen content is less than 1 × 10- 8 μmol / mm 3 occurred thin blackening at the lighting for 1,500 hours, the entire arc tube is blackened in 3000 hours of light, 1 × 10- 7 μmol / mm 3 This completely eliminates blackening. Accordingly relates blackening, more preferably it comes to 1 × 10- 7 μmol / mm 3 or more. Moreover, the illuminance maintenance rate for 3000 hours is kept at 88% or more (Samples 7 and 8 in Table 1).

本発明を図示実施例に従って詳述する。本発明に掛かるプロジェクタ用の超高圧放電灯に用いられる単結晶電極は、少なくとも99.99%以上の純度を有するタングステン粉末を原料として製造されたもので、従来例で述べたように高純度タングステン粉末を棒状に固めてこれを焼結し、続いて焼結インゴットを引き抜き、線引き加工等で細棒更には線状に加工し、電極の原線とする。焼結インゴットの引き抜き或いは線引き加工は、被加工材全体に均一に内部ひずみが残留するように加工することになる。 The present invention will be described in detail according to illustrated embodiments. The single crystal electrode used in the ultra high pressure discharge lamp for projectors according to the present invention is manufactured using tungsten powder having a purity of at least 99.99% as a raw material. As described in the prior art, high purity tungsten powder is used. It is hardened into a rod shape and sintered, and then the sintered ingot is drawn out and processed into a thin rod and further into a wire shape by drawing or the like, and used as the original wire of the electrode. Drawing or drawing of the sintered ingot is performed so that the internal strain remains uniformly throughout the workpiece.

然る後、その原線を高圧放電灯に適した設計形状に切削加工などを施し、続いて結晶粒粗大化(極端には単結晶化)のための熱処理、更にはこれに加えて電極の先端部(更に正確にはアークが発生する先端領域)の溶融加熱処理などを行い、少なくとも先端部分、換言すれば先端からアークが発生する領域(先端から0.5mm程度)が単結晶であるタングステン電極を得る。勿論、全体が単結晶であっても構わないこと言うまでもない(なお、切削加工は結晶粒粗大化(極端には単結晶化)のための熱処理後に行ってもよい。)。
前工程である焼結インゴットの引き抜き或いは線引き加工による被加工材の内部ひずみが均一であれば、前記再結晶温度以上で行われる結晶粒粗大化熱処理工程で成長する結晶粒は電極全体でほぼ均一なものとなる。
After that, the original wire is cut into a design suitable for a high-pressure discharge lamp, followed by heat treatment for grain coarsening (extremely single crystallization), and in addition to this, A tungsten electrode in which the tip portion (more precisely, the tip region where the arc is generated) is melted and heated, and at least the tip portion, in other words, the region where the arc is generated from the tip (about 0.5 mm from the tip) is a single crystal. Get. Of course, it goes without saying that the whole may be a single crystal (the cutting may be performed after heat treatment for crystal grain coarsening (extremely single crystallization)).
If the internal strain of the workpiece is uniform by drawing or drawing the sintered ingot, which is the previous step, the crystal grains grown in the grain coarsening heat treatment step performed at the recrystallization temperature or higher are almost uniform throughout the electrode. It will be something.

続いて、結晶粒界を無くし単結晶化させるために、2000℃以上の高温で加熱して結晶粒の成長を促し、単結晶電極を完成させた。粗大化熱処理の後、全体が単結晶になっていない場合には、必要に応じて少なくともその前記先端部分を単結晶化させるために部分的加熱溶融処理を行った。   Subsequently, in order to eliminate the grain boundary and to make a single crystal, heating was performed at a high temperature of 2000 ° C. or more to promote the growth of the crystal grain, and the single crystal electrode was completed. After the coarsening heat treatment, when the whole was not a single crystal, a partial heating and melting treatment was performed as necessary to at least single the tip portion.

電極を放電灯に組み込んで使用した場合、通常、アーク発生は電極頭部の先端から0.5mmの範囲内で発生するため、単結晶領域は少なくとも先端から軸方向に沿って基部側に向かって0.5mmの範囲内に於いて形成すれば足る。   When the electrode is incorporated in a discharge lamp and used, arc generation usually occurs within a range of 0.5 mm from the tip of the electrode head, so the single crystal region is at least 0.5 mm from the tip to the base side along the axial direction. It is sufficient to form it within the range of mm.

「実験1」
単結晶電極と、従来の結晶粒界のある電極で高圧放電灯を製作し、長時間点灯における電極の形状変化とフリッカー、照度維持率、黒化を確認した。
"Experiment 1"
A high-pressure discharge lamp was fabricated using a single crystal electrode and a conventional electrode having a grain boundary, and the shape change of the electrode, flicker, illuminance maintenance rate, and blackening after long-time lighting were confirmed.

高圧放電灯構成
消費電力 200W
封入水銀量 0.2mg/mm 3
電極間距離 1.1mm
封入ハロゲン量 1.0×10-8μmol/mm 3
1.0×10-7μmol/mm 3
1.0×10-4μmol/mm 3
1.0×10-2μmol/mm 3
1.0×10-1μmol/mm 3
の5種類の量
High pressure discharge lamp configuration power consumption 200W
Mercury content 0.2mg / m m 3
Distance between electrodes 1.1mm
Encapsulated halogen content 1.0 × 10 -8 μmol / mm 3
1.0 × 10 -7 μmol / m m 3
1.0 × 10 -4 μmol / m m 3
1.0 × 10 -2 μmol / m m 3
1.0 × 10 -1 μmol / m m 3
5 kinds of quantity

試験データ(図3及び表1)からわかるように、結晶粒界を持つ従来電極を組み込んだ高圧放電灯は、電極形状についてはいずれも変形を起こしており、これがフリッカーの原因となっている。なおかつ、ハロゲン量の少ない試料1と試料2については、電極蒸発量に見合うハロゲン量ではないために、つまりハロゲンサイクル不足のために1500時間以内で、発光管部全体に黒化し、破裂に至るものがあった。逆に、ハロゲン量の多い試料4、5では、電極を過剰に侵食するために、電極の変形と、ハロゲン化タングステンが最冷部に堆積することによる電極根元黒化が進行し、これについてもフリッカーと照度維持率の低下を引き起こしている。   As can be seen from the test data (FIG. 3 and Table 1), the high pressure discharge lamps incorporating the conventional electrodes having crystal grain boundaries are deformed with respect to the electrode shape, which causes flicker. In addition, sample 1 and sample 2 with a small amount of halogen are not suitable for the amount of electrode evaporation, that is, due to insufficient halogen cycle, the entire arc tube section is blackened and bursts within 1500 hours. was there. On the other hand, in Samples 4 and 5 with a large amount of halogen, in order to erode the electrode excessively, the deformation of the electrode and the blackening of the electrode base due to the tungsten halide being deposited in the coldest part proceed. This causes a decrease in flicker and illuminance maintenance rate.

一方、上述した単結晶電極を組み込んだ高圧放電灯(試料7〜9)は、ハロゲン量の多寡に拘らず、電極変形を最小限に食い止め、たとえばプロジェクタ用など精密光学機器用高圧放電灯としての性能を維持していることが分かる。しかし、単結晶電極といえども、試料6のハロゲン量1.0×10-8μmol/mm 3 以下では、過少のため黒化が発生してしまい、1.0×10-7μmol/mm 3 以上のハロゲン量が好ましいことがわかる。(換言すれば、1.0×10-8μmol/mm 3 でも前述のように1500時間点灯で薄く黒化し、3000時間点灯で発光管部全体が黒化するので、1500時間点灯の場合、実用範囲では使用可能であるが、それ以上の場合は1.0×10-7μmol/mm 3 以上であることが好ましい。)逆に、試料10のように、ハロゲン量が過剰に多い場合には、単結晶電極といえども電極侵食が発生し、照度維持率の低下となっている。 On the other hand, the high-pressure discharge lamp (samples 7 to 9) incorporating the above-described single crystal electrode prevents electrode deformation to a minimum regardless of the amount of halogen, and is used as a high-pressure discharge lamp for precision optical instruments such as projectors. It can be seen that the performance is maintained. However, even in the case of a single crystal electrode, when the halogen content of sample 6 is 1.0 × 10 −8 μmol / m m 3 or less, blackening occurs due to the insufficient amount, and 1.0 × 10 −7 μmol / m m 3 or more. It can be seen that the halogen content is preferred. (In other words, even at 1.0 × 10 -8 μmol / m m 3, as mentioned above, it turns black when it is lit for 1500 hours, and when it is lit for 1500 hours, the entire arc tube section turns black. In the case of more than that, it is preferable to be 1.0 × 10 −7 μmol / m m 3 or more.) On the contrary, as in the case of Sample 10, when the amount of halogen is excessively large, Even in the case of a crystal electrode, electrode erosion has occurred and the illuminance maintenance rate has been reduced.

表2は従来電極と本発明にかかる高圧放電灯の点灯時間−照度維持率・耐フリッカー性の実験結果を示す表で、本発明にかかる高圧放電灯の場合は、7000時間を超えてもフリッカー発生は0であり、照度の低下も従来電極を組み込んだ高圧放電灯に比べて大幅に小さいことがわかる。 Table 2 shows the experimental results of the lighting time of the conventional electrode and the high-pressure discharge lamp according to the present invention, the illuminance maintenance rate, and the flicker resistance. In the case of the high-pressure discharge lamp according to the present invention, the flicker is exceeded even after 7000 hours. The occurrence is zero, and it can be seen that the decrease in illuminance is significantly smaller than that of a high-pressure discharge lamp incorporating a conventional electrode.

以上の結果から、単結晶電極は、ハロゲン量が1×10-8(好ましくは1×10-7)〜1×10-2 (好ましくは1×10- 4 )μmol/mm3の範囲において、プロジェクタ用高圧放電灯に要求されるフリッカー防止と高照度維持率を満たす。 From the above result, the single crystal electrodes, the halogen content is 1 × 10- 8 (preferably 1 × 10- 7) ~1 × 10- 2 ( preferably 1 × 10- 4) μmol / mm 3 range, Meets flicker prevention and high illuminance maintenance rate required for high-pressure discharge lamps for projectors.

表3は単結晶電極を組み込んだ高圧放電灯のハロゲン量とアークの揺らぎ及び黒化発生との関係を示す表である。従来のタングステン電極であれば、ハロゲン量が5×10-5μmol/mm 3 以下であれば黒化が生じる。これは、タングステンの蒸発量に対してハロゲン不足となっているためであるが、単結晶電極では、前述のように低融点化を防止できているので、実用上1×10-8μmol/mm 3 (好ましくは1×10-7μmol/mm 3 )までは黒化せずに使用することができる。一方、ハロゲン濃度が3×10-4μmol/mm 3 を越えた場合、過剰な量のためにハロゲンサイクルが激しくなり、発光管部内の対流が激しくなる。これによりアーク周辺では揺らぎとなって見えるようになり、光学系を介してスクリーンで確認できるものとして現れる。揺らぎはいずれアークを動かす原因となり、チラツキとなってさらにスクリーンではっきりと確認できるものとなる。換言すれば、ハロゲン量が1×10-8(好ましくは1×10-7μmol/mm 3 )〜3×10-4μmol/mm 3 の場合に黒化発生まで7000時間〜6200時間掛かり、5×10-9μmol/mm 3 では黒化が僅か300時間で発生する。一方、アークの揺らぎに関しては3×10-4μmol/mm 3 で初期から微小に発生し、これを超えて3×10-2μmol/mm 3 で初期から激しく発生し、これ以下の2×10-4μmol/mm 3 でアークの揺らぎは発生しない。従って、ハロゲン量が1×10-8〜3×10-4μmol/mm 3 (好ましくは1×10-7〜2×10-4μmol/mm 3 )の範囲で黒化抑制と実用上、問題がない程度(或いは全く)のアークの揺らぎのない状態が得られる。 Table 3 is a table showing the relationship between the halogen amount of the high pressure discharge lamp incorporating the single crystal electrode, the fluctuation of the arc, and the occurrence of blackening. With a conventional tungsten electrode, blackening occurs when the halogen content is 5 × 10 −5 μmol / mm 3 or less. This is because the halogen is insufficient with respect to the evaporation amount of tungsten. However, as described above, since the low melting point can be prevented in the single crystal electrode, practically 1 × 10 −8 μmol / m. Up to m 3 (preferably 1 × 10 −7 μmol / m m 3 ) can be used without blackening. On the other hand, when the halogen concentration exceeds 3 × 10 −4 μmol / m m 3 , the halogen cycle becomes intense due to the excessive amount, and the convection in the arc tube section becomes intense. As a result, it appears as a fluctuation around the arc, and appears as something that can be confirmed on the screen via the optical system. The fluctuation will eventually cause the arc to move, flickering and become clearer on the screen. In other words, when the halogen content is 1 × 10 −8 (preferably 1 × 10 −7 μmol / m m 3 ) to 3 × 10 −4 μmol / m m 3 , it takes 7000 hours to 6200 hours until blackening occurs. , 5 × 10 -9 μmol / m m 3 in the blackening occurs in just 300 hours. On the other hand, the fluctuation of the arc is generated minutely from the beginning at 3 × 10 −4 μmol / m m 3 , and it is generated vigorously from the beginning at 3 × 10 −2 μmol / m m 3 , which is less than 2 Arc fluctuation does not occur at × 10 -4 μmol / m m 3 . Thus, the halogen amount is 1 × 10 -8 ~3 × 10 -4 μmol / m m 3 ( preferably 1 × 10 -7 ~2 × 10 -4 μmol / m m 3) in the range of blackening inhibition practically Thus, there can be obtained a state where there is no problem (or no) arc fluctuation.

本発明は、タングステン電極を単結晶とすることにより、長時間経過後でも電極の消耗、変形を抑制することができ、しかも黒化による照度低下やフリッカーを防止するものであり、加えて黒化防止の目的で充填されるハロゲン量を低減することにより点灯中で発光管部内での対流を減少させ、アークの揺らぎをなくすことができ、特に、プロジェクタ用の光源やリアプロジェクションテレビの光源に最適である。   In the present invention, the tungsten electrode is made of a single crystal, so that consumption and deformation of the electrode can be suppressed even after a long period of time, and also the illuminance decrease and flicker due to blackening are prevented. By reducing the amount of halogen that is filled for prevention, the convection in the arc tube can be reduced during lighting, eliminating arc fluctuations. Especially suitable for light sources for projectors and rear projection televisions. It is.

粒界をはっきりさせた本願発明にかかる放電灯に用いられている単結晶電極の面図 Positive elevational view of a single crystal electrode used in the discharge lamp according to the present invention was clearly intergranular 粒界をはっきりさせた従来の放電灯に用いられている電極の正面図Front view of electrodes used in conventional discharge lamps with clear grain boundaries 従来の放電灯に用いられている電極と本願発明にかかる放電灯に用いられている単結晶電極との比較図面Comparison drawing of electrodes used in conventional discharge lamps and single crystal electrodes used in discharge lamps according to the present invention

Claims (1)

(a) 発光管部内に一対のタングステン電極が配置され、水銀と、稀ガスと、ハロゲンが封入されたプロジェクタ用の超高圧放電灯において、
(b) タングステン電極の、少なくともアークを生成する電極頭部の先端部分が単結晶であり、
(c) 封入されたハロゲン量が1×10 -7 〜1×10 -4 μmol/mm3であることを特徴とする超高圧放電灯。
(a) In an ultra-high pressure discharge lamp for a projector in which a pair of tungsten electrodes are arranged in an arc tube portion and mercury, rare gas, and halogen are enclosed,
(b) At least the tip of the electrode head that generates the arc of the tungsten electrode is a single crystal,
(c) An ultrahigh pressure discharge lamp characterized in that the amount of enclosed halogen is 1 × 10 −7 to 1 × 10 −4 μmol / mm 3 .
JP2004264226A 2004-09-10 2004-09-10 Super high pressure discharge lamp Expired - Lifetime JP4426411B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004264226A JP4426411B2 (en) 2004-09-10 2004-09-10 Super high pressure discharge lamp

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004264226A JP4426411B2 (en) 2004-09-10 2004-09-10 Super high pressure discharge lamp

Publications (2)

Publication Number Publication Date
JP2006079998A JP2006079998A (en) 2006-03-23
JP4426411B2 true JP4426411B2 (en) 2010-03-03

Family

ID=36159265

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004264226A Expired - Lifetime JP4426411B2 (en) 2004-09-10 2004-09-10 Super high pressure discharge lamp

Country Status (1)

Country Link
JP (1) JP4426411B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4799132B2 (en) * 2005-11-08 2011-10-26 株式会社小糸製作所 Arc tube for discharge lamp equipment
JP5568192B1 (en) * 2014-04-10 2014-08-06 フェニックス電機株式会社 High pressure discharge lamp and its lighting method

Also Published As

Publication number Publication date
JP2006079998A (en) 2006-03-23

Similar Documents

Publication Publication Date Title
JP2009105056A (en) Cold negative electrode discharge lamp and backlighting device using the same
JP2009510676A (en) Bismuth / indium amalgam, fluorescent lamp and manufacturing method
JP4426411B2 (en) Super high pressure discharge lamp
CN1314073C (en) High-pressure discharge lamp
US7994692B2 (en) Wire and frame, in particular niobium-based, for single-side socket lamps and a method for the production and use thereof
JP5050816B2 (en) Super high pressure discharge lamp
JP2007134051A (en) Arc tube for discharge lamp device
JP2003234083A (en) Electrode of short arc electric discharge lamp and method of manufacturing the same, and short arc electric discharge lamp
JP2002110091A (en) Electrode material, high pressure discharge lamp and lighting system
JP5823770B2 (en) Short arc high pressure discharge lamp
WO2002097858A1 (en) Materials and methods for mercury vapor pressure control in discharge devices
JP4167199B2 (en) Tungsten electrode
JPS6229863B2 (en)
JP2009503771A (en) Low pressure gas discharge lamp with novel gas filling
JP2010040437A (en) Cold-cathode fluorescent lamp and manufacturing method therefor
CN101840824A (en) Preparation method of high strength gas discharge electrode
JP2019067527A (en) Discharge lamp, electrode for discharge lamp, method of manufacturing discharge lamp, and method of manufacturing electrode for discharge lamp
JP2020033586A (en) MANUFACTURING METHOD OF Mg-CONTAINING HIGH Ni ALLOY
JP2004235072A (en) Electrode alloy for fluorescent discharge tube, electrode for the fluorescent discharge tube and the fluorescent discharge tube provided with the electrode
JP2003203602A (en) High pressure discharge lamp and manufacturing method of high pressure discharge lamp
JP4792863B2 (en) High pressure discharge lamp
JPH0574416A (en) Low pressure mercury vapor discharge lamp
JP2006114323A (en) Extra high pressure mercury lamp
JP2008050690A (en) Alloy for cold cathode discharge tube electrode
JPS6366842A (en) Low-pressure mercury vapor discharge lamp

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070406

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080624

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090317

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090518

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091210

R150 Certificate of patent or registration of utility model

Ref document number: 4426411

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121218

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131218

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250