JP4426191B2 - 定電流回路 - Google Patents

定電流回路 Download PDF

Info

Publication number
JP4426191B2
JP4426191B2 JP2003018516A JP2003018516A JP4426191B2 JP 4426191 B2 JP4426191 B2 JP 4426191B2 JP 2003018516 A JP2003018516 A JP 2003018516A JP 2003018516 A JP2003018516 A JP 2003018516A JP 4426191 B2 JP4426191 B2 JP 4426191B2
Authority
JP
Japan
Prior art keywords
transistor
current
circuit
constant current
base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003018516A
Other languages
English (en)
Other versions
JP2004234064A (ja
Inventor
宏 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyosemi Corp
Original Assignee
Kyosemi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyosemi Corp filed Critical Kyosemi Corp
Priority to JP2003018516A priority Critical patent/JP4426191B2/ja
Publication of JP2004234064A publication Critical patent/JP2004234064A/ja
Application granted granted Critical
Publication of JP4426191B2 publication Critical patent/JP4426191B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Led Devices (AREA)
  • Secondary Cells (AREA)
  • Continuous-Control Power Sources That Use Transistors (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、定電流を供給するための定電流回路に関し、特に、周囲の温度が変化しても安定的に定電流を供給するのに好適な定電流回路に関するものである。
【0002】
【従来の技術】
従来より、定電流回路は、キャパシタや二次電池の充電用の電源や発光ダイオードを駆動するための電源、あるいは太陽電池にキャパシタや二次電池を組み合わせたソーラー電池を充電するための電源として用いられている。このような定電流回路は、一般にトランジスタや定電流ダイオード等の半導体素子を組み合わせて定電流特性を発揮するように構成されている。
【0003】
図5に、そのような従来の定電流回路の一例を示す。従来の定電流回路11は、直流電圧が印加される第1入力端子2にエミッタが接続されていると共にコレクタが出力端子8に接続した第1トランジスタTr1と、この第1トランジスタTr1のベースにコレクタが接続されていると共にエミッタが定電圧素子4を介して回路グランドGに接続されている第2トランジスタTr2と、前記第1トランジスタTr1のコレクタ電流IC1を検知して前記第2トランジスタTr2のベース電位を制御して当該第1トランジスタTr1のコレクタ電流IC1を定電流に制御する電圧制御部7とを有している。
【0004】
前記第1トランジスタTr1のエミッタとベースとの間には、電界効果トランジスタ3が接続されており、第1トランジスタTr1のコレクタ電流IC1のリップルを低減するようになっている。
【0005】
また、前記第2トランジスタTr2は、第1トランジスタTr1のベース電流IB1を制御するものである。このため、前記第1トランジスタTr1のベースと前記第2トランジスタTr2のコレクタとの間には、第1抵抗体R1が挿入されており、前記ベース電流IB1の最大値を規定することで第1トランジスタTr1のコレクタ電流IC1、すなわち、出力電流の最大値を規定するようになっている。そして、前記第1抵抗体R1の抵抗値は、前記第1トランジスタTr1が過電流で破損しないように選択される。
【0006】
前記第2トランジスタTr2のエミッタと回路グランドG間に挿入された定電圧素子4は、ツェナ・ダイオード等により構成されており、前記エミッタに基準電位を与えるようになっている。これにより、周囲温度の変化に対してベースとエミッタ間の電圧VBEを一定に保つことができる。
【0007】
また、第2トランジスタTr2のベースは、直列接続された第2抵抗体R2および第3抵抗体R3の間の接続点と連結されている。これらの第2抵抗体R2および第3抵抗体R3は、第2入力端子5と回路グランドG間に挿入されて第2入力端子5に印加される直流電圧を分圧している。これにより、ツェナ・ダイオード4のツェナ電圧Vzにベース・エミッタ電圧VBEを加えた電圧が決定されて、ベース電圧VB2が所定の電圧値に設定される。
【0008】
一方、電圧制御部7には、第1トランジスタTr1のコレクタ電流IC1を検知する電流検知部6が接続されている。この電流検知部6は、第1トランジスタTr1のコレクタと出力端子8との間に配置されて、検出結果を前記電圧制御部7に出力するようになっている。そして、電圧制御部7は、電流検知部6からコレクタ電流IC1の検出結果を受けて、仮に、その電流値が所定の設定値と比較して低下あるいは上昇している場合、第2トランジスタTr2のベース電位VB2を上下動するようになっている。このフィードバック制御により、第2トランジスタTr2のコレクタ電流IC2が制御されて第1トランジスタTr1のベース電流IB1が制御されるため、最終的に出力電流であるコレクタ電流IC1が微調整されるようになっている。
【0009】
次に、従来の定電流回路11の動作を説明する。
【0010】
この定電流回路11は、第1トランジスタTr1のエミッタに直流電圧が印加されると、コレクタおよびベースからそれぞれコレクタ電流IC1およびベース電流IB1が出力される。前記コレクタ電流IC1は、出力端子8から出力電流として出力される。前記コレクタ電流IC1は、トランジスタの静特性に従って前記ベース電流IB1に比例して定まり、このベース電流IB1は、第2トランジスタTr2のコレクタ電流IC2に比例して定まる。また、その第2トランジスタTr2のコレクタ電流IC2は、トランジスタの静特性に従って第2トランジスタTr2のベース電流IB2に比例して定まる。したがって、定電流回路11では、第2トランジスタTr2のベース電圧VB2を制御することにより、第2トランジスタTr2のベース電流IB2が定まり、これにより、コレクタ電流IC2が規定されて第1トランジスタTr1のベース電流IB1が制御される結果、最終的に出力電流であるコレクタ電流IC1が規定される。
【0011】
そして、例えば、第1トランジスタTr1のコレクタ電流IC1が減少すると、これを電流検知部6が検知して電圧制御部7に出力する。電圧制御部7では、電流検知部6により検知された電流値IC1に応じてその減少分を補償するように第2トランジスタTr2のベース電位VB2を増加する。これにより、第2トランジスタTr2のベース電流IB2、コレクタ電流IC2、および第1トランジスタTr1のベース電流IB1がそれぞれ増加し、最終的に第1トランジスタTr1におけるコレクタ電流IC1の低下分を補って出力端子から定電流が出力される。また、同様にして、仮に第1トランジスタTr1のコレクタ電流IC1が増加した場合、これを電流検知部6が検知して電圧制御部7に出力する。電圧制御部7は、コレクタ電流IC1の増加分を補償するように第2トランジスタTr2のベース電位VB2を減少する。これにより、第2トランジスタTr2のベース電流IB2、コレクタ電流IC2、および第1トランジスタTr1のベース電流IB1がそれぞれ減少し、最終的に第1トランジスタTr1におけるコレクタ電流IC1の増加分を打ち消して出力端子から定電流が出力される。
【0012】
しかしながら、定電流回路11に使用されるトランジスタ等の半導体素子は、温度依存性を有しており、周囲温度の影響を受けやすい。例えば、トランジスタの場合、ベースとエミッタ間の電圧VBEは、温度に対して負の相関を有しており、温度変化1℃あたり約−2mV変動する。したがって、このような半導体素子から構成される定電流回路11は、周囲温度の影響を受けやすく、その温度変化に伴って出力電流が安定しなくなる。このため、従来の定電流回路11では、使用可能な温度範囲が限定されてしまい、寒冷地で使用したり、直射日光のあたる密閉された環境で使用することができない。
【0013】
このような問題を解決するために、従来、温度補償回路を備えた定電流回路がいくつか提案されている。例えば、特開平6−45674号公報には、温度変化に対して光出力を一定にするための温度補償回路つきレーザーダイオード駆動回路が提案されている(特許文献1参照)。この温度補償回路つきレーザーダイオード駆動回路は、第1の可変抵抗と、FET(Field Effect Transistor:電界効果トランジスタ)と、第2の可変抵抗とを直列に接続し、これをレーザーダイオードおよびトランジスタに対して並列に接続している。そして、FETと第2の可変抵抗により定電流回路を構成して温度変化に対応する回路電流を設定し、第1の可変抵抗によりトランジスタのベース電圧に変換し、レーザーダイオードの光出力を一定にする順方向電流をトランジスタから供給するようになっている。これにより、温度が変化しても各可変抵抗を制御してレーザーダイオードから一定の光出力を取り出すことができるとされている。
【0014】
また、特開2000−201073号公報には、温度の変化によって生じるパフォーマンスの変化を補償して安定した電流を供給するための定電流源回路が提案されている(特許文献2参照)。この定電流源回路は、負の温度係数を有する第1の電流源と、正の温度係数を有する第2の電流源とがミキサーに接続されている。そして、このミキサーが各電流源からの電流を所望の割合で混合するようになっている。これにより、温度の変化に伴って各電流源の電流量が互いに増加および減少しても、それを一定の値となるように混合することにより安定した電流を供給することができるとされる。
【0015】
【特許文献1】
特開平6−45674号公報
【特許文献2】
特開2000−201073号公報
【0016】
【発明が解決しようとする課題】
しかしながら、前述した各公報に記載された温度補償技術では、製造コストが増し、装置全体が大きくなってしまうし、消費電力が増加するという欠点がある。さらに、回路定数の許容範囲が狭く、調整が簡便ではないという問題もある。
【0017】
本発明は、このような問題点を解決するためになされたものであって、特別な温度補償回路を別途設けることなく、低コストで製造でき、装置の大型化や消費電力の増加を抑制しつつ、広い周囲温度範囲で安定的に一定電流を供給することが可能な定電流回路を提供することを目的としている。
【0018】
【課題を解決するための手段】
本発明に係る定電流回路の特徴は、エミッタが入力端子に接続されると共にコレクタが出力端子に接続された第1トランジスタと、この第1トランジスタのベースにコレクタが接続されると共にエミッタが定電圧素子を介して回路グランドに接続された第2トランジスタと、前記第1トランジスタのコレクタ電流を検知して前記第2トランジスタのベース電位を制御して当該第1トランジスタのコレクタ電流を定電流に制御する電圧制御手段とを備えた定電流回路であって、前記第2トランジスタのベースと回路グランドとの間に接続されたキャパシタが1.5μF以上の静電容量を備えているか、あるいは、そのキャパシタに並列接続された5Ω以上の抵抗体を備え、前記キャパシタは、1.5μF以上470μF以下の静電容量を有する点にある。
【0019】
このようにバイアス回路に接続させたキャパシタを所定の静電容量に設定し、あるいは抵抗体とキャパシタとを並列接続させた容量性インピーダンスを所定の抵抗値及び静電容量に設定することにより、第2トランジスタのベース電位の温度依存性が低減され、−50℃〜80℃という広い温度範囲で第1トランジスタから一定の電流を安定的に出力させられる。なお、キャパシタの静電容量が1.5μF以上470μFを越えると電圧制御手段が発振してしまい定電流制御回路として機能しない。また、前記キャパシタに並列接続する抵抗体の抵抗値が5kΩ未満では、前記キャパシタの効果が低減されて出力電流の温度依存性が増大してしまう。
【0020】
【発明の実施の形態】
以下、本発明に係る定電流回路の一実施形態を図面を用いて説明する。図1は本実施形態の定電流回路1を示す回路図である。なお、本実施形態の各構成のうち、前述した従来の定電流回路11の構成と同一若しくは相当する構成については同一の符号を付して再度の詳しい説明を省略する。
【0021】
本実施形態の定電流回路1は、エミッタが第1入力端子2に接続されると共にコレクタが出力端子8に接続された第1トランジスタTr1と、この第1トランジスタTr1のベースにコレクタが接続されると共にエミッタがツェナ・ダイオード等で構成される定電圧素子4を介して回路グランドGに接続された第2トランジスタTr2と、前記第1トランジスタTr1のコレクタ電流IC1を検知して前記第2トランジスタTr2のベース電位を制御して当該第1トランジスタTr1のコレクタ電流IC1を定電流に制御する電圧制御部7とを有している。また、前記第1トランジスタTr1のエミッタとベースとの間には、リップルを低減するための電界効果トランジスタ3が接続されている。さらに、前記第1トランジスタTr1のベースと前記第2トランジスタTr2のコレクタとの間には、前記第1トランジスタTr1の最大ベース電流を決めて過電流が流れないようにするための第1抵抗体R1が挿入されている。なお、前記電界効果トランジスタ3の代わりに抵抗体を接続するようにしてもよい。
【0022】
そして、本実施形態の定電流回路1では、前記第2トランジスタTr2のベースと回路グランドGとの間に、所定の静電容量を有するキャパシタCxと所定の抵抗値を有する抵抗体Rxとを並列接続させた容量性インピーダンス9が接続されている。また、この容量性インピーダンス9は、第2入力端子5と回路グランドGとの間において、第2抵抗体R2に直列接続されており、その接続点に第2トランジスタTr2のベースが連結されている。前記容量性インピーダンス9は、抵抗体Rxにより第2トランジスタTr2のベース電位を規定しているとともに、キャパシタCxを所定の静電容量に設定することにより、前記ベース電位の温度依存性を低減するようになっている。なお、前記キャパシタCxは、例えば、セラミックコンデンサ、電解コンデンサ、マイカコンデンサ、ポリエステル・フィルムコンデンサをはじめ種々のキャパシタを使用することができる。また、前記抵抗体Rxは、炭素体抵抗器、炭素皮膜抵抗器、金属酸化物皮膜抵抗器、金属薄膜抵抗器をはじめ種々の抵抗体を用いることができる。
【0023】
また、第2トランジスタTr2のベースには、このベース電位を制御するためのOPアンプ等で構成された電圧制御部7が接続されており、さらに、その電圧制御部7には、第1トランジスタTr1のコレクタ電流IC1の電流値を検出するためのカレントトランスや差動増幅器等で構成された電流検知部6が接続されている。
【0024】
そして、本実施形態の定電流回路1では、第2トランジスタTr2のベース電位を規定することにより、第1トランジスタTr1のコレクタ電流IC1を規定しており、もし、このコレクタ電流IC1が設定値よりも増加または減少した場合、電流検知部6によって検知され、電圧制御部7が前記第2トランジスタTr2のベース電位を減少または増加して出力電流を一定に制御する。
【0025】
つぎに、前述した本実施形態における容量性インピーダンスについて、第2トランジスタの温度依存性の影響を回避し得る抵抗体Rxの抵抗値とキャパシタCxの静電容量との組み合わせを求める実験を行った。実験では、抵抗値の異なる抵抗体Rxと静電容量の異なるキャパシタCxとを各種用意し、それらの組み合わせを変えて周囲温度の変化に対する出力電流を検出した。
【0026】
ここで、抵抗体Rxの種類は、抵抗値が1kΩ、5kΩ、10kΩ、100kΩ、1000kΩのものを使用し、キャパシタの種類は、静電容量が0.1μF、1.5μF、10μF、470μF、1000μFのものを使用した。そして、定電流回路1を発泡スチロールで断熱させた筐体に入れて周囲温度を−50℃〜80℃へと変化させた。そして、図2に示すように、抵抗体Rxの抵抗値とキャパシタCxの静電容量を各種組み合わせて結果を求めた。なお、試験番号1は、比較試験として従来の定電流回路11による結果である。
【0027】
図2の実験結果によれば、試験番号1は、10kΩの抵抗体Rxのみを単独で接続させたものであるが、温度依存性が強く現れてしまい、−10℃の段階で出力電流値は半分に低下し、−50℃および80℃では出力電流値が検出できなかった。
【0028】
つぎに、試験番号2から試験番号6では、好適な静電容量を決定するために、抵抗体Rxの抵抗値を5kΩに固定し、静電容量を0.1μF〜1000μFへと変動させた。この結果、静電容量が0.1μF(試験番号2)および1000μF(試験番号6)の場合、電圧制御部7が発振して定電流制御を行わなくなってしまった。一方、静電容量が1.5μF(試験番号3)、10μF(試験番号4)および470μF(試験番号5)の場合、−50℃〜80℃の広い温度範囲で出力電流値はほぼ一定値を示した。図3に試験番号1と試験番号3のときの出力電流値と周囲温度の関係を示す。このように従来の定電流回路11に比べて顕著な改善が認められた。なお、使用したデジタル温度計の性能上、−50℃以下は温度を測定できなかったが、筐体内をそのまま温度低下させて出力電流値を測定したところ、急激な降下は認められず、おそらく−70℃程度までは実用可能であると予測される。
【0029】
つぎに、試験番号2から試験番号6の結果を踏まえ、キャパシタCxの静電容量を1.5μFに固定し、抵抗値を1kΩ〜1000kΩへと変動させた。この結果、抵抗値が1kΩ(試験番号7)の場合、温度依存性が強く現れてしまい、−10℃の段階で出力電流値はほぼ半分に低下し、−50℃および80℃では出力電流値が検出できなかった。一方、抵抗値が5kΩ(試験番号8)、100kΩ(試験番号9)および1000kΩ(試験番号10)の場合、いずれの試験においても−50℃〜80℃の広い温度範囲において出力電流値がほぼ一定値を示した。さらに、抵抗体を開放させて、図4に示すように、1.5μFのキャパシタCxを単独で接続したところ(試験番号11)、同様に、−50℃〜80℃の温度範囲において出力電流値は一定であった。なお、試験番号3と試験番号8は、同じ抵抗値および静電容量であるが、使用する抵抗体RxとキャパシタCxが異なるため、出力電流値に差異が生じている。このように個々の製品によって出力電流値に誤差が存在する。
【0030】
以上の試験結果より、少なくとも、第2トランジスタTr2のベースと回路グランドGとの間に接続されたキャパシタCxの静電容量を1.5μF以上に設定するか、あるいは、前記キャパシタCxと抵抗体Rxとを並列接続させて、当該抵抗体Rxの抵抗値を5kΩ以上に設定すると共に当該キャパシタCxの静電容量を1.5μF以上470μF以下に設定した場合、第2トランジスタTr2のベース電位の温度依存性を著しく低減させることができ、−50℃〜80℃という広い温度範囲において安定した電流を供給できることが明らかになった。
【0031】
したがって、本実施形態の定電流回路1によれば、特別な温度補償回路を別途設けなくても、第2トランジスタTr2のベースと回路グランドGとの間に、所定のキャパシタCxを接続させるか、若しくは並列接続させたキャパシタCxと抵抗体Rxとから構成される容量性インピーダンス9を備えるだけで、広い温度範囲で安定した電流を出力できる。また、容量性インピーダンス9は、キャパシタCxおよび抵抗体Rxのみによって構成されるので、極めて低コストで製造でき、装置全体の大型化や消費電力の増加を抑制することができる。
【0032】
なお、本発明に係る定電流回路1は、前述した実施形態に限定されるものではなく、適宜変更することができる。
【0033】
例えば、本実施形態におけるツェナ・ダイオード4を1つ接続して構成することもできるし、複数本を直列接続して構成することもできる。さらに、ツェナ・ダイオード4にコンデンサを並列接続させてノイズを除去するようにしてもよい。
【0034】
【発明の効果】
以上、説明したように本発明によれば、特別な温度補償回路を別途設けずに低コストで製造でき、装置の大型化や消費電力の増加を抑制しつつ、広い周囲温度範囲で安定的に一定電流を供給することができる等の効果を奏する。
【図面の簡単な説明】
【図1】 本発明に係る定電流回路の一実施形態を示す回路図である。
【図2】 本実施形態において、キャパシタの静電容量および抵抗体の抵抗値を変化させて周囲温度に対する出力電流値を測定した結果を示す図である。
【図3】 図2中の試験番号1および試験番号3をプロットしたグラフである。
【図4】 本発明に係る定電流回路の他の実施形態を示す回路図である。
【図5】 従来の定電流回路を示す回路図である。
【符号の説明】
1 定電流回路
2 第1入力端子
3 電界効果トランジスタ
4 定電圧素子(ツェナ・ダイオード)
5 第2入力端子
6 電流検知部
7 電圧制御部
8 出力端子
9 容量性インピーダンス
Cx キャパシタ
G 回路グランド
C1,IC2 コレクタ電流
B1,IB2 ベース電流
R1 第1抵抗体
R2 第2抵抗体
R3 第3抵抗体
Rx 抵抗体
Tr1 第1トランジスタ
Tr2 第2トランジスタ

Claims (2)

  1. エミッタが入力端子に接続されると共にコレクタが出力端子に接続された第1トランジスタと、この第1トランジスタのベースにコレクタが接続されると共にエミッタが定電圧素子を介して回路グランドに接続された第2トランジスタと、前記第1トランジスタのコレクタ電流を検知して前記第2トランジスタのベース電位を制御して当該第1トランジスタのコレクタ電流を定電流に制御する電圧制御手段とを備えた定電流回路であって、
    前記第2トランジスタのベースと回路グランドとの間に接続されたキャパシタが1.5μF以上470μF以下の静電容量を備えていることを特徴とする定電流回路。
  2. 前記キャパシタに並列接続された5Ω以上の抵抗体を備えことを特徴とする請求項1記載の定電流回路。
JP2003018516A 2003-01-28 2003-01-28 定電流回路 Expired - Fee Related JP4426191B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003018516A JP4426191B2 (ja) 2003-01-28 2003-01-28 定電流回路

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003018516A JP4426191B2 (ja) 2003-01-28 2003-01-28 定電流回路

Publications (2)

Publication Number Publication Date
JP2004234064A JP2004234064A (ja) 2004-08-19
JP4426191B2 true JP4426191B2 (ja) 2010-03-03

Family

ID=32948625

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003018516A Expired - Fee Related JP4426191B2 (ja) 2003-01-28 2003-01-28 定電流回路

Country Status (1)

Country Link
JP (1) JP4426191B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7859196B2 (en) * 2007-04-25 2010-12-28 American Bright Lighting, Inc. Solid state lighting apparatus
CN116795165B (zh) * 2023-07-25 2024-04-05 南京米乐为微电子科技股份有限公司 一种ptat电流源的输出调节电路

Also Published As

Publication number Publication date
JP2004234064A (ja) 2004-08-19

Similar Documents

Publication Publication Date Title
EP1302832B1 (en) Semiconductor device with temperature compensation circuit
JP3322685B2 (ja) 定電圧回路および定電流回路
JPH1049243A (ja) 内部電源回路
US20080018482A1 (en) Temperature sensing apparatus utilizing bipolar junction transistor, and related method
CN111404484B (zh) Rc振荡器及电设备
JP2005011067A (ja) 定電圧発生器
KR960011540B1 (ko) 온도계수를 갖는 전원장치
US9710007B2 (en) Integrated circuit capable of providing a stable reference current and an electronic device with the same
US20120133353A1 (en) Power-supply-voltage detecting circuit
JP2002351556A (ja) 直流安定化電源回路
JPH07141039A (ja) 温度補償電圧発生回路
CN113721687A (zh) 电源装置以及电源控制用半导体装置
US7253677B1 (en) Bias circuit for compensating fluctuation of supply voltage
JP4426191B2 (ja) 定電流回路
US6710586B2 (en) Band gap reference voltage circuit for outputting constant output voltage
JP2005122277A (ja) バンドギャップ定電圧回路
JP3136012U (ja) 発振器
US7382179B2 (en) Voltage reference with enhanced stability
US11418159B2 (en) Differential signal offset adjustment circuit and differential system
US6175265B1 (en) Current supply circuit and bias voltage circuit
JP2003007837A (ja) 基準電圧回路
US20090160562A1 (en) Oscillating device
JP3239052B2 (ja) 半導体集積回路
JP2721286B2 (ja) 半導体装置の温度補償型基準電圧発生回路
JP4029757B2 (ja) ヒステリシス付コンパレータ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090722

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090709

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090918

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091111

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091210

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121218

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees