JP4425570B2 - Construction method of underground impermeable walls - Google Patents

Construction method of underground impermeable walls Download PDF

Info

Publication number
JP4425570B2
JP4425570B2 JP2003164567A JP2003164567A JP4425570B2 JP 4425570 B2 JP4425570 B2 JP 4425570B2 JP 2003164567 A JP2003164567 A JP 2003164567A JP 2003164567 A JP2003164567 A JP 2003164567A JP 4425570 B2 JP4425570 B2 JP 4425570B2
Authority
JP
Japan
Prior art keywords
water
underground
bleeding
cement
test
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003164567A
Other languages
Japanese (ja)
Other versions
JP2005002583A (en
Inventor
吾郎 坂井
康祐 横関
俊雄 船迫
俊夫 大野
昇 坂田
功明 松原
勝広 上本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Original Assignee
Kajima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp filed Critical Kajima Corp
Priority to JP2003164567A priority Critical patent/JP4425570B2/en
Publication of JP2005002583A publication Critical patent/JP2005002583A/en
Application granted granted Critical
Publication of JP4425570B2 publication Critical patent/JP4425570B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Bulkheads Adapted To Foundation Construction (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はモルタルまたはコンクリートからなる地中遮水壁の施工法に関する。
【0002】
【従来の技術】
地盤を掘削して構造物を構築する際には,周辺地盤からの地下水流入防止を目的として,掘削対象範囲の外周部に地中遮水壁を設ける場合がある。こうした場合の地中遮水壁の構築法にはいくつかの方法があるが,現地攪拌工法(代表的なものとしてSMW工法がある)がよく用いられる。
【0003】
現地攪拌工法では,地表に設置した機械から地中に鉛直に掘削すると共にその掘削穴に現地土と遮水機能をもつ材料を充填混合するものであり,機械の水平移動に伴って連続壁を地中に形成してゆくから,遮水壁の構築範囲内にシールドトンネル等や共同溝等の地下構造物が存在する場合には,このような地下構造物の下方の範囲に対しては,遮水壁を造ることはできない。
【0004】
このため,例えば特許文献1に提案されたような機械的な工夫をして,地下構造物の下方にも,スリット状の壁状の空間を掘削し(すかし堀り工法),この空間に何等かの材料を充填することによって,この部分にも遮水壁を構築することになる。その場合の充填材料としては,流動固化処理土(ベントナイトなどの粘土や現地発生土にセメントを配合し固化した粘土モルタル),地中連続壁用水中コンクリート,または水中不分離性コンクリートなどが考えられる。
【0005】
【特許文献1】
特開平2002−332656号公報
【0006】
【発明が解決しようとする課題】
前記の充填材料として,流動固化処理土を用いた場合には,次のような問題が付随する。まずブリーディングを生じる。また,充填された材料は自重により圧密されるが,これらは配合上の水量が多い上に,脱水を抑止する性質の材料は配合されないので,脱水量が多くなる。ブリーディングや圧密により生じた水は地下構造物の下部に溜まるため,構造物下部界面付近の遮水性が確保されない。
【0007】
地下構造物の下方を特許文献1のようにして掘削する場合,一度にすべてを掘削することは構造物の安定上問題がある。したがって,図1に示したように,構造物(図1では共同溝)の直下を境にして,先ずその下方の片側を掘削し(図1では紙面の右側を掘削した状態を示している),この掘削したスリット状の空隙に材料を充填して施工を終え,次いで,反対側を同様に掘削し,材料充填することになる。この場合,遮水性を確保するには,後行の施工の際に,先行して構築した壁の一部を削り取ることによって,後行の壁と一体的に接合することが必要となる。ところが,前記のように地中連続壁用水中コンクリートや水中不分離性コンクリートを充填材料に使用したのでは,強度が高すぎて機械掘削に支障を来すことになる。
【0008】
本発明は,このような問題の解決を課題としたものである。
【0009】
【課題を解決するための手段】
本発明によれば,セメント,微粉末,骨材および混和剤を,水セメント比300〜480%,水/(セメント+微粉末)の体積比70〜200%で配合してなるスランプフローが600〜825mm,かつ下記加圧ブリーディング試験でブリーディングが生じない高流動モルタルまたはコンクリートを練混ぜ,これを地中に打設して圧縮強度0.9〜3.0N/mm2 遮水壁を構築する地中遮水壁の施工法を提供する。
〔加圧ブリーディング試験〕
0.8N/mm 2 の圧力条件を5分間保った状態で排出されたブリーディング水量を試験に供した試料の全体積で除することによりブリーディング(%)を求める試験。
混和剤としては,AE減水剤,高性能減水剤または高性能AE減水剤の少なくとも1種と,材料分離抵抗剤とを使用するのがよい。この施工法によれば,地中の打設箇所が地下構造物の下方位置であっても良好に施工することができる。
【0010】
【発明の実施の形態】
本発明者らは,前記の課題を解決すべく,すなわちブリーディングがなく,材料分離が抑制され,かたも機械掘削できるような低強度の遮水壁用の充填材を得るべく種々の試験を行ってきたが,セメントを結合材としたモルタルまたはコンクリートの配合を適切にコントロールすると,この問題が解決できることがわかった。その要旨は,次のとおりである。
【0011】
▲1▼.極低強度を実現するために,水セメント比(W/C)を300%以上に設定する。
▲2▼.材料の分離を抑制するために,微粉末を加えて水粉体体積比〔水/(セメント体積+微粉末体積)〕の比を70〜200%とする。
▲3▼.流動性と材料分離抵抗性を両立させるために,適正な混和剤を配合する。
【0012】
この条件▲1▼〜▲3▼を満たし,以下の使用材料および製造方法に従うことにより,ブリーディングがなく,材料分離が抑制され,機械掘削可能な遮水壁用コンクリートまたはモルタルを得ることができる。
【0013】
〔使用材料〕
セメント:市販のセメントが全て使用可能である。ただし,地中への六価クロムの溶出を考慮すると,高炉セメントが望ましい。
細骨材:コンクリート材料として適合する一般的な細骨材が使用可能である。
粗骨材:コンクリート材料として適合する一般的な粗骨材が使用可能である(モルタルの場合は不要)。
混和材(微粉末):コンクリート用材料として取り扱うことができ,セメントと同程度の比表面積を有し,且つそれ単体で水硬性を発揮しない微粉末であれば使用可能である。例としては,石灰石微粉末,フライアッシュ,高炉スラグ微粉末などが挙げられる。
混和剤▲1▼:セメントを含む微粉末の分散を実現できる混和剤であれば使用可能である。例としては,高性能AE減水剤,高性能減水剤,AE減水剤などが挙げられる。
混和剤▲2▼:脱水を含む材料分離に対して抵抗する機能を有する混和剤であれば使用可能である。例としては,特殊界面活性剤(A剤およびB剤からなる花王株式会社製の商品名ビスコトップ),セルロースや増粘多糖類を主成分とする増粘剤が挙げられる。
【0014】
〔製造方法〕
製造方法1:生コンプラントにおいて,上述の材料を一括で練り混ぜる。
製造方法2:生コンプラントで,上述の材料のうち,混和剤▲1▼の一部と混和剤▲2▼の一部または全部を除く材料を練混ぜ,アジテータ車が現場に到達した時点でアジテータ車に残りの材料を投入し,1〜5分間高速攪拌を行なう。
製造方法3:生コンプラントで,上述の材料のうち,混和剤▲2▼の一部または全部を除く材料を練混ぜ,アジテータ車が現場に到達した時点でアジテータ車に残りの材料を投入し,1〜5分間高速攪拌を行なう。
【0015】
このようにして,本発明によると,ブリーディング0%で材料分離のない高流動性のモルタルまたはコンクリートが得られ,これを地中に打設することによって機械掘削可能な例えば圧縮強度3.0N/mm2以下の遮水壁を構築することができる。
【0016】
【実施例】
表1に示した材料を使用して,表2に示した配合のコンクリートまたはモルタルを練り混ぜ,各配合のフレッシュ性状と硬化性状を表3に示した。
【0017】
【表1】

Figure 0004425570
【0018】
【表2】
Figure 0004425570
【0019】
【表3】
Figure 0004425570
【0020】
表3の結果に見られるように,コンクリート(No.1,3および5)ではスランプフロー655〜710mmでブリーディング0%の高流動性のものが得られ,モルタル(No.2,4および)ではスランプフロー715〜825mmでブリーディング0%の高流動性のものが得られ,いずれも,地下構造物の下部における遮水の確実性について問題のないものであった。
【0021】
そして,圧縮強度については,材齢7日で0.4〜1.3N/mm 2 ,材齢28日で0.9〜2.5N/mm 2 であり,想定される機械掘削の能力(ほぼ35kgf/cm2 =3.4N/mm2)に対して,十分に小さい強度レベルを実現しており,透水係数も10-6〜10-7のオーダーであり,確実な遮水性能を期待できる。また,地中構造物として問題になると考えられる六価クロムの溶出についても極めて微量であり,法令に定める基準値(0.05mg/L)よりも十分に小さい値を示している。
【0022】
【発明の効果】
以上説明したように,本発明によると,ブリーディングを生ぜず,自重による圧密状況下でも脱水が生じないモルタルまたはコンクリートを使用するので,地下構造物の下方位置でも遮水壁を構築することができる。そして,このモルタルまたはコンクリートは高い流動性と自己充填性を有し且つ高い材料不分離性を有するので均質で高い遮水能を有する遮水壁を構築できると共に,混和剤の組み合わせによっては完全な水中不分離性を付与して水中打設することも可能であり,しかも,形成される遮水壁は機械掘削可能な極低強度を有するので,特に地下構造物の下方位置での遮水壁の施工性の向上に貢献するところが大きい。また市販の材料が使用でき,通常の生コンプラントで製造でき且つポンプ圧送ができるので,コスト面および施工面でも有利である。
【図面の簡単な説明】
【図1】地下構造物(共同溝)の下方に遮水壁を形成するさいに採用されるすかし掘り法の例を示す略断面図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a construction method for underground impermeable walls made of mortar or concrete.
[0002]
[Prior art]
When constructing a structure by excavating the ground, an underground impermeable wall may be provided at the outer periphery of the excavation target area in order to prevent inflow of groundwater from the surrounding ground. There are several methods for constructing underground impermeable walls in such cases, but the local agitation method (typically the SMW method) is often used.
[0003]
In the local agitation method, the machine installed on the surface is excavated vertically into the ground and the excavation hole is filled with the local soil and a material having a water-impervious function. When underground structures such as shield tunnels and joint grooves exist within the construction area of the impermeable walls, the area below such underground structures It is not possible to build a water barrier.
[0004]
For this reason, for example, a mechanical device as proposed in Patent Document 1 is used to excavate a slit-like wall-like space below the underground structure (watermarking method). By filling with some material, a water-impervious wall is also constructed in this part. In that case, fluidized soil (clay such as bentonite and clay mortar solidified with cement from local soil), underwater concrete for underground underground walls, or underwater non-separable concrete can be considered as the filling material. .
[0005]
[Patent Document 1]
Japanese Patent Laid-Open No. 2002-332656 [0006]
[Problems to be solved by the invention]
When fluidized soil is used as the filling material, the following problems are accompanied. First, bleeding occurs. In addition, the filled material is consolidated by its own weight. However, since these materials have a large amount of water in addition to mixing the material having the property of inhibiting dehydration, the amount of dehydration increases. The water generated by bleeding and consolidation accumulates in the lower part of the underground structure, so that the water barrier near the lower interface of the structure is not secured.
[0007]
When excavating the lower part of an underground structure like patent document 1, excavating all at once has a problem on the stability of a structure. Therefore, as shown in FIG. 1, with the boundary immediately below the structure (the common groove in FIG. 1), the lower side is first excavated (FIG. 1 shows the state where the right side of the page is excavated). Then, the excavated slit-shaped gap is filled with material to finish the construction, and then the opposite side is similarly excavated and filled with material. In this case, in order to ensure water shielding, it is necessary to integrally bond with the succeeding wall by scraping off a part of the previously constructed wall during the subsequent construction. However, if underwater concrete for underground continuous walls or underwater non-separable concrete is used as the filling material as described above, the strength is too high, which hinders machine excavation.
[0008]
The present invention aims to solve such a problem.
[0009]
[Means for Solving the Problems]
According to the present invention, the slump flow formed by blending cement, fine powder , aggregate and admixture at a water cement ratio of 300 to 480% and a volume ratio of water / (cement + fine powder) of 70 to 200% is 600. ~ 825mm, and high flow mortar or concrete that does not cause bleeding in the following pressure bleeding test is mixed and placed in the ground to construct a water-impervious wall with a compressive strength of 0.9 to 3.0 N / mm 2 Provide construction methods for underground impermeable walls.
[Pressure bleeding test]
A test for obtaining bleeding (%) by dividing the amount of bleeding water discharged in a state where the pressure condition of 0.8 N / mm 2 is maintained for 5 minutes by the total volume of the sample subjected to the test.
As the admixture, at least one of an AE water reducing agent, a high performance water reducing agent or a high performance AE water reducing agent and a material separation resistance agent are preferably used. According to this construction method, even if the underground placement site is below the underground structure, the construction can be carried out satisfactorily.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
The present inventors have conducted various tests to solve the above-described problems, that is, to obtain a filler material for a low-strength impermeable wall that does not have bleeding, suppresses material separation, and can be mechanically excavated. However, it has been found that this problem can be solved by properly controlling the composition of mortar or concrete with cement as a binder. The summary is as follows.
[0011]
(1). In order to realize extremely low strength, the water cement ratio (W / C) is set to 300% or more.
(2). In order to suppress the separation of the material, fine powder is added so that the ratio of water powder volume ratio [water / (cement volume + fine powder volume)] is 70 to 200%.
(3). In order to achieve both fluidity and material separation resistance, an appropriate admixture is added.
[0012]
By satisfying these conditions (1) to (3) and following the following materials and production methods, there can be obtained concrete or mortar for impermeable walls capable of machine excavation without bleeding and by preventing material separation.
[0013]
[Materials used]
Cement: All commercially available cement can be used. However, considering the elution of hexavalent chromium into the ground, blast furnace cement is desirable.
Fine aggregate: A general fine aggregate suitable as a concrete material can be used.
Coarse aggregate: General coarse aggregate suitable as concrete material can be used (not necessary for mortar).
Admixture (fine powder): Any fine powder that can be handled as a concrete material, has a specific surface area comparable to cement, and does not exhibit hydraulic properties by itself can be used. Examples include fine limestone powder, fly ash, and blast furnace slag fine powder.
Admixture (1): Any admixture that can realize dispersion of fine powder containing cement can be used. Examples include high performance AE water reducing agents, high performance water reducing agents, AE water reducing agents, and the like.
Admixture (2): Any admixture having a function of resisting material separation including dehydration can be used. Examples include special surfactants (trade name Viscotop manufactured by Kao Corporation consisting of agent A and agent B), thickeners mainly composed of cellulose and thickening polysaccharides.
[0014]
〔Production method〕
Manufacturing method 1: The above-mentioned materials are kneaded together in a raw plant.
Manufacturing method 2: In the raw plant, the materials mentioned above except for a part of the admixture (1) and a part or all of the admixture (2) are mixed, and when the agitator vehicle reaches the site, the agitator Put the remaining materials into the car and stir at high speed for 1-5 minutes.
Manufacturing method 3: In the raw plant, the materials except for some or all of the admixture (2) are mixed, and when the agitator vehicle reaches the site, the remaining materials are put into the agitator vehicle. Stir at high speed for 1-5 minutes.
[0015]
In this way, according to the present invention, a mortar or concrete having a high fluidity with 0% bleeding and no material separation can be obtained, and can be excavated by placing it in the ground, for example, a compressive strength of 3.0 N / A water-impervious wall of mm 2 or less can be constructed.
[0016]
【Example】
Using the materials shown in Table 1, concrete or mortar with the composition shown in Table 2 was mixed, and the fresh properties and curing properties of each formulation were shown in Table 3.
[0017]
[Table 1]
Figure 0004425570
[0018]
[Table 2]
Figure 0004425570
[0019]
[Table 3]
Figure 0004425570
[0020]
As can be seen from the results in Table 3, concrete (No. 1, 3 and 5) has a slump flow of 655 to 710 mm and a high fluidity of 0% bleeding and mortar (No. 2, 4 and 6 ). Then, a slump flow of 715 to 825 mm and a high fluidity of bleeding of 0% were obtained, and all of them had no problem with respect to the reliability of water shielding in the lower part of the underground structure.
[0021]
Then, the compressive strength, 0.4~1.3N / mm 2 at an age of 7 days, a 0.9~2.5N / mm 2 at an age of 28 days, the mechanical drilling envisaged capacity (approximately 35kgf / cm 2 = 3.4 N / mm 2 ), a sufficiently low strength level is realized, and the water permeability is on the order of 10 −6 to 10 −7 , and reliable water shielding performance can be expected. . In addition, the elution of hexavalent chromium, which is considered to be a problem as an underground structure, is extremely small and shows a value sufficiently smaller than the standard value (0.05 mg / L) stipulated by law.
[0022]
【The invention's effect】
As described above, according to the present invention, the use of mortar or concrete that does not cause bleeding and does not cause dehydration even under the compaction condition due to its own weight, so that the impermeable wall can be constructed even at the lower position of the underground structure. . And this mortar or concrete has high fluidity, self-filling property and high material inseparability, so it can construct a water-impervious wall with a homogeneous and high water-impervious ability. It is possible to cast underwater with inseparability in the water, and the formed impermeable walls have extremely low strength that can be excavated by machinery, so the impermeable walls especially at the lower position of underground structures There is a great contribution to improving the workability. Moreover, since commercially available materials can be used, they can be manufactured in a normal raw plant and can be pumped, which is advantageous in terms of cost and construction.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view showing an example of a watermark digging method employed when forming a water shielding wall below an underground structure (joint groove).

Claims (3)

セメント,微粉末,骨材および混和剤を,水セメント比300〜480%,水/(セメント+微粉末)の体積比70〜200%で配合してなるスランプフローが600〜825mm,かつ下記加圧ブリーディング試験でブリーディングが生じない高流動モルタルまたはコンクリートを練混ぜ,これを地中に打設して圧縮強度0.9〜3.0N/mm2 遮水壁を構築する地中遮水壁の施工法。
〔加圧ブリーディング試験〕
0.8N/mm 2 の圧力条件を5分間保った状態で排出されたブリーディング水量を試験に供した試料の全体積で除することによりブリーディング(%)を求める試験。
A slump flow consisting of cement, fine powder , aggregate and admixture in a water cement ratio of 300 to 480% and a volume ratio of water / (cement + fine powder) of 70 to 200% is 600 to 825 mm. kneading a high flow mortar or concrete bleeding is not caused by pressure bleeding test, build a impervious wall of compressive strength 0.9 to 3.0 N / mm 2 to Da設it in the ground underground impervious wall Construction method.
[Pressure bleeding test]
A test for obtaining bleeding (%) by dividing the amount of bleeding water discharged in a state where the pressure condition of 0.8 N / mm 2 is maintained for 5 minutes by the total volume of the sample subjected to the test.
混和剤は,AE減水剤,高性能減水剤または高性能AE減水剤の少なくとも1種と,材料分離抵抗剤とからなる請求項1に記載の地中遮水壁の施工法。The method for constructing an underground impermeable wall according to claim 1, wherein the admixture comprises at least one of an AE water reducing agent, a high performance water reducing agent or a high performance AE water reducing agent, and a material separation resistance agent. 地中の打設箇所は,地下構造物の下方位置である請求項1または2に記載の地中遮水壁の施工法。The construction method of the underground impermeable wall according to claim 1 or 2 , wherein the underground placement site is a position below the underground structure.
JP2003164567A 2003-06-10 2003-06-10 Construction method of underground impermeable walls Expired - Fee Related JP4425570B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003164567A JP4425570B2 (en) 2003-06-10 2003-06-10 Construction method of underground impermeable walls

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003164567A JP4425570B2 (en) 2003-06-10 2003-06-10 Construction method of underground impermeable walls

Publications (2)

Publication Number Publication Date
JP2005002583A JP2005002583A (en) 2005-01-06
JP4425570B2 true JP4425570B2 (en) 2010-03-03

Family

ID=34091301

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003164567A Expired - Fee Related JP4425570B2 (en) 2003-06-10 2003-06-10 Construction method of underground impermeable walls

Country Status (1)

Country Link
JP (1) JP4425570B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103244145A (en) * 2013-05-29 2013-08-14 唐山开滦广汇设备制造有限公司 Pressure resistance and pressure relief bricks for coal mine underground seal wall and construction method of seal wall
CN104030619A (en) * 2014-05-21 2014-09-10 甘肃蔚蓝建科新材料股份有限公司 Steel tube concrete
CN104446115A (en) * 2014-11-18 2015-03-25 桂林华越环保科技有限公司 Concrete synergist
CN106517904A (en) * 2016-11-02 2017-03-22 湖南星星中南环保材料有限公司 Organic and inorganic compound cemented water-permeable brick and preparation method thereof
CN107840610A (en) * 2018-01-04 2018-03-27 西南石油大学 A kind of high-strength water-permeable concrete material and preparation method thereof

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4869899B2 (en) * 2006-12-14 2012-02-08 株式会社フジタ Filler and method for producing the same
JP2008162831A (en) * 2006-12-27 2008-07-17 Kajima Corp Hydraulic kneaded material
JP4890360B2 (en) * 2007-06-21 2012-03-07 中部電力株式会社 Filling filler for gap filling and method for producing the same
JP5180353B2 (en) * 2011-08-04 2013-04-10 株式会社フジタ Filler
JP5100868B2 (en) * 2011-08-04 2012-12-19 株式会社フジタ Filler
JP6100205B2 (en) * 2014-05-22 2017-03-22 東京電力ホールディングス株式会社 Cement-based material, cement-based material filling method, and prepacked concrete construction method
JP6716394B2 (en) * 2016-08-30 2020-07-01 五洋建設株式会社 Low strength concrete and method for producing low strength concrete
CN106747642A (en) * 2017-03-06 2017-05-31 龚家红 Environmental protection sound insulation water-proof concrete wall brick and preparation method thereof
JP6958495B2 (en) * 2018-06-26 2021-11-02 信越化学工業株式会社 Method for producing composition for mortar
JP7103893B2 (en) * 2018-08-28 2022-07-20 太平洋マテリアル株式会社 Insoluble mortar composition in water and its mortar
CN115650668A (en) * 2022-10-27 2023-01-31 四川能投建工集团有限公司 Construction method for controlling concrete cracks of building wall

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5915119A (en) * 1982-07-16 1984-01-26 Kajima Corp Construction of wall type underground structure
JPS63284313A (en) * 1987-05-18 1988-11-21 Kajima Corp Construction of underground continuous wall
JP2757241B2 (en) * 1992-03-17 1998-05-25 株式会社クボタ Sinking method for container-shaped steel sheet piles
JP2889096B2 (en) * 1993-09-07 1999-05-10 鹿島建設株式会社 Manufacturing method of concrete underground wall
JP4429479B2 (en) * 2000-05-24 2010-03-10 鹿島建設株式会社 Construction method of impermeable wall

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103244145A (en) * 2013-05-29 2013-08-14 唐山开滦广汇设备制造有限公司 Pressure resistance and pressure relief bricks for coal mine underground seal wall and construction method of seal wall
CN103244145B (en) * 2013-05-29 2016-04-20 唐山开滦广汇设备制造有限公司 Underground coal mine fire dam resistance to compression pressure release brick and building method thereof
CN104030619A (en) * 2014-05-21 2014-09-10 甘肃蔚蓝建科新材料股份有限公司 Steel tube concrete
CN104446115A (en) * 2014-11-18 2015-03-25 桂林华越环保科技有限公司 Concrete synergist
CN106517904A (en) * 2016-11-02 2017-03-22 湖南星星中南环保材料有限公司 Organic and inorganic compound cemented water-permeable brick and preparation method thereof
CN106517904B (en) * 2016-11-02 2018-10-12 湖南星星中南环保材料有限公司 A kind of cementing water-permeable brick of organo-mineral complexing and preparation method thereof
CN107840610A (en) * 2018-01-04 2018-03-27 西南石油大学 A kind of high-strength water-permeable concrete material and preparation method thereof

Also Published As

Publication number Publication date
JP2005002583A (en) 2005-01-06

Similar Documents

Publication Publication Date Title
JP4425570B2 (en) Construction method of underground impermeable walls
JP6276027B2 (en) Fast-curing buried material
WO2005095300A1 (en) Concrete composition, process for producing the same, method of regulating viscosity, and method of constructing cast-in-place concrete pile from the concrete composition
JP5999718B2 (en) Underground impermeable wall construction material
JP6032013B2 (en) Soft soil improvement material, soft soil improvement method using the same, and soft ground improvement method
CN106939165A (en) A kind of soil body curing agent and its preparation method and its gunnite method
JP6755743B2 (en) Manufacturing method of fluidized soil cement
KR20140098416A (en) Solidified soil forming method for improving ground using
JP4109376B2 (en) Method for producing soil mortar using lime-treated soil and embankment method using the same
JP4976073B2 (en) Repair method for underground filler and earth structure
JP2001200537A (en) Soil improving method and support pile for soil improvement
JP4054848B2 (en) Method for producing fluidized soil
JP6508526B2 (en) Weight fluidization treated soil
JP7265691B2 (en) Soil improvement method
JPH07101765A (en) Hydraulic material
JP6749809B2 (en) Weir and construction method of weir
JP7441685B2 (en) Fluidized soil and its manufacturing method
JPH1060470A (en) Composition for one powder type slow-hardening back-filling material
JP3680866B2 (en) Manufacturing method of self-hardening stabilizer and underground wall construction method
JP3116766B2 (en) Fluidization method of fine particle aggregate
JP3721495B2 (en) Method of manufacturing filler for soil cement column wall construction
JP4620824B2 (en) Manufacturing method of backfill soil
NL2017248B1 (en) Water resistant composition and method for deepening or widening a water bed
JP2004183364A (en) Underground continuous cut off wall structure in land
JP2003138551A (en) Fluidization treated soil

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070710

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070910

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071030

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080311

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091209

R150 Certificate of patent or registration of utility model

Ref document number: 4425570

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121218

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151218

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees