JP4425415B2 - Flow measuring device - Google Patents
Flow measuring device Download PDFInfo
- Publication number
- JP4425415B2 JP4425415B2 JP2000064625A JP2000064625A JP4425415B2 JP 4425415 B2 JP4425415 B2 JP 4425415B2 JP 2000064625 A JP2000064625 A JP 2000064625A JP 2000064625 A JP2000064625 A JP 2000064625A JP 4425415 B2 JP4425415 B2 JP 4425415B2
- Authority
- JP
- Japan
- Prior art keywords
- measurement
- flow rate
- pressure
- signal
- value
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Measuring Volume Flow (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、ガス等の流体の流量を計測する流量計測装置に関するものである。
【0002】
【従来の技術】
従来のこの種の流量計測装置を、図5、図6及び図7に基づいて説明する。この流量計測装置は、流路1の一部に流体の流れ状態を検出する瞬時式あるいはアナログ式の流れ検出手段2を備え、流れ検出手段2の出力信号を信号処理手段3で増幅あるいはデジタル化している。
【0003】
流体の流れ状態に周期的な変動がある場合には、流れ検出手段2による計測のタイミングによって流体の流量測定値にバラツキが生じる。例えば家庭用ガス消費量を計測するガスメータでは、近くでガスエンジンが運転されると圧力変動が発生する。そのことによって流量に変動が生じた場合には、その信号を平均化手段4で平均して流量演算手段5で平均流量を算出している。図6はこのときの流量の波形を示した図で、実際には線Aで示す流量が流れている。
【0004】
瞬時式の計測装置では間欠的に流量計測するので、流量Q1(時間t1)、流量Q2(時間t2)、流量Q3(時間t3)のような値が得られマイコンで平均して流量を算出していた。またアナログ式の場合時間t0からt4まで連続した信号を積分器を介して平均していた。
【0005】
また圧力センサなどを用いて、流体の圧力に同期して流量計測を開始または停止して、図7に示すように時間t1からt2の間すなわち圧力変動波形の1周期(その整数倍の周期の場合もある。)において流れ状態を計測することで平均流量を算出するものもあった。
【0006】
【発明が解決しようとする課題】
しかしながら上記従来の流量計測装置において圧力変動時に正確な流量を計測するためには、デジタル式のものでは間欠的にサンプリングするので、計測回数を増やして計測値を平均する必要があるため計測時間が長くなり、アナログ式のものでは連続して計測しなければならず、何れの場合も消費電力が大きくなるという問題があった。
【0007】
また圧力センサを用いて、流量計測を開始または停止するものにおいては、そのタイミングを正確にとることができない場合があり、計測した流量値に誤差が生じることがあった。すなわち図7において圧力に正確に同期できずに時間t2'で計測を停止した場合には、1周期からはずれるためにその平均流量に誤差が生じる。特に時間t2付近では圧力の変化割合が大きいために変化する流量が大きいところであり、わずかな時間誤差でも大きな流量誤差が生じてしまう。この誤差をなくすために計測回数を増やして精度向上を図ることができるものの、その分、消費電力が増加してしまう。
【0008】
そこで本発明は上記のような問題点を解消し、ガスメータのような電池で長期間使用する流量計測装置において、圧力変動時の流体の流量を正確に低消費電力で計測することができる流量計測装置を提供することを目的とする。
【0009】
【課題を解決するための手段】
本発明は上記目的を達成するために、流路内の流体の流れ状態を検出する流れ検出手段の信号に基づいて流量を計測する流量計測手段と、流体の圧力を検出する圧力検出手段と、前記流量計測手段の流量計測を開始させる計測開始信号と前記流量計測を停止させる計測停止信号を出力する計測発停手段と、この計測発停手段を介して流量計測手段を制御する変動計測制御手段とを備え、この変動計測制御手段は、前記圧力検出手段で検出された圧力変動値と、あらかじめ設定されたLレベル圧力設定値およびこのLレベル圧力設定値より高い値のHレベル圧力設定値とを比較し、前記圧力変動値のピーク値付近が前記Lレベル圧力設定値と前記Hレベル圧力設定値との中間に入るように、圧力変動値の増幅度を可変する可変ゲイン増幅手段と、この可変ゲイン増幅手段から出力された圧力変動値がLレベル圧力設定値を超えたときにその信号を計測発停手段に出力して計測発停手段から計測開始信号を出力させ、次に前記圧力変動値がLレベル圧力設定値を超えたときにその信号を計測発停手段に出力して計測発停手段から計測停止信号を出力させる比較手段とを有していることを特徴とするものである。
【0010】
本発明によれば、変動計測制御手段の可変ゲイン増幅手段で、圧力検出手段の圧力変動値の交流成分を、比較設定値で比較可能なように増幅し、増幅された圧力変動値を比較手段にて比較し、その大きさが所定レベルに変化したタイミングで、計測発停手段を介して流量計測手段の流量計測を開始または停止させている。したがって、圧力の大きさが変化しても圧力波形を自動的に適切な大きさに補正し、圧力波形のピーク値付近すなわち変動する流量が小さい部分で、流量計測を開始または停止でき、そのタイミングに時間誤差が生じても平均流量を高精度に維持できる。そして、計測回数を増やして平均化する必要もなくなるので、消費電力を少なくし、電池で長期間使用するガスメータ等の流量計測装置で、圧力変動時でも流量を正確に低消費電力で計測することができる。
【0011】
また、Lレベル圧力設定値とHレベル圧力設定値との間に圧力変動波形のピーク値付近が位置するように可変ゲイン増幅手段を制御するようにしているので、流量誤差の生じにくい圧力波形におけるピーク値付近で流量計測できるように自動的に補正することができ、簡単な構成で上記作用を具体的に実施することができる。
【0012】
【発明の実施の形態】
以下、本発明の一実施形態について図面を用いて説明する。
【0013】
図1は本発明の第1実施形態の流量計測装置を示したブロック図である。この流量計測装置において、流路7の途中に流れ検出手段8として超音波を送信または受信する第1送受信器8Aと受信または送信する第2送受信器8Bが流れ方向に配置され、切換手段16によって送受信の切換えが可能になっており、ガス等の流体の流れ状態を検出している。9は流れ検出手段8の信号を処理して流量を計測する流量計測手段で、10は送信手段で、トリガ手段11によって第1送受信器8Aを駆動し、第2送受信器8Bに向け、すなわち上流から下流に超音波を送信する。増幅手段12は第2送受信器8Bで受信した信号を増幅し、この増幅された信号は基準信号と比較手段13で比較され、基準信号以上の信号が検出された後、繰り返し手段14で再度トリガ手段11から送信が行われ、上記の送受信を所定の回数を繰り返し、それぞれの時間値をタイマカウンタのような計時手段15で計測する。
【0014】
次に切換手段16で第1送受信器8Aと第2送受信器8Bの送受信を切り換えて、第2送受信器8Bから第1送受信器8Aすなわち下流から上流に向かって超音波信号を送信し、この送信を前述のように繰り返し、それぞれの時間値を計測する。そして、第1送受信器8Aと第2送受信器8Bとの超音波の伝搬時間差から流路7の大きさや流体の流れ状態を考慮して、信号処理手段17で流量値を求める。流路7には流量変動を圧力で検出する圧力検出手段18が設けられ、この圧力検出手段18で検出した圧力信号を変動計測制御手段19で処理し、この変動計測制御手段19の信号に基づいて、計測発停手段20を介して流量計測手段9の計測を開始または停止させる。変動計測制御手段19には圧力検出手段18の信号を増幅する可変ゲイン増幅手段19Aやこの可変ゲイン増幅手段19Aの信号をあらかじめ設定した基準値(比較設定値)と比較する比較手段19Bがあって、計測発停手段20に信号を送出する。可変ゲイン増幅手段19Aは増幅度を設定により変えることができる。21は計測制御手段であり内部にタイマ手段21Aを有し、マイコンで指定されたタイミングで計測の要求指令を計測発停手段20に送出する。
【0015】
次に動作について述べる。流路7内の流体の流れ状態が比較的穏やかで圧力検出手段18の値に変動がない場合には通常の流量計測が行われる。すなわち第1送受信器8Aから第2送受信器8Bに向けて超音波を送信するように切換手段16が設定され、計測発停手段20から第1回の計測開始信号が送出されると、計時手段15をリセットすると同時に送信手段10を介し第1送受信器8Aから超音波信号が発信される。そして第2送受信器8Bで受信された後、増幅手段12、比較手段13で超音波信号の伝搬を検出すると、繰り返し手段14で再度トリガ手段11に信号を送出して2回目の超音波を送信する。繰り返し手段14には繰り返し回数が設定してあり、所定の繰り返し回数になると同時に計時手段15で第1送受信器8Aと第2送受信器8Bとの時間を測定し流量を算出する。
【0016】
流路7内の流体が変動すると圧力検出手段18は流量変動を圧力で検出し、その信号を変動計測制御手段19に送りその大きさの変化のタイミングによって、計測発停手段20を介して流量計測手段9を制御する。流量計測のサンプリングは数秒間に1回行われており流路7内の流れに周期的な変動がある場合には、流量測定値に変動が生じるので判別が可能である。計測制御手段21にはタイマ手段21Aがあって、ある定められた時間になると変動計測制御手段19を起動させて変動信号値を取り込む。この信号は可変ゲイン増幅手段19Aでその交流成分を増幅され、比較手段19Bで比較され所定レベル以上の信号を検出したときに計測発停手段20によって流量計測手段9の計測を開始する。
【0017】
圧力波形に同期して計測を開始する場合には、圧力波形のピーク値付近で計測を開始あるいは停止する方が計測された流量値に誤差が小さい。なぜなら流量波形は圧力波形より90度位相がずれており、ピーク値付近は、流量の中心値(平均値に近い)にあたり、圧力変動が小さく、変動する流量も小さい。すなわち、計測を開始または停止するタイミングがずれて、時間に誤差が生じても、変動する流量が小さいところでは誤差も小さくできるからである。
【0018】
図2は計測制御手段21の出力、流体の圧力変動波形、比較手段19Bの出力、計測発停手段20の出力をそれぞれ示した図である。なお比較手段19Bの出力は、圧力変動値を比較設定値と比較し、それより圧力変動波形が大きいときにONになり、それより小さいときにはOFFになる。圧力変動波形Aはレベルが小さく比較設定値に達しないので計測を開始する信号が得られない。圧力変動波形Bは前記圧力変動波形Aの信号を可変ゲイン増幅手段19Aの増幅度を増加させたときの波形であり、ピーク値付近で前記比較設定値以上になり検出が可能になる。
【0019】
時間t1では計測制御手段21から計測の要求信号が送出されるが変動計測制御手段19の比較手段19Bの信号がOFFであるので計測待ちの状態にあり、時間t2で圧力検出手段18の信号が変化して比較手段19Bの出力がONになると計測発停手段20に信号が送出されてトリガ手段11より、流量計測手段9で流量計測が開始する。そして、比較手段出力がOFFになり再びONになる時間t3で計測発停手段20に信号を送出する。この信号が繰り返し手段14に信号を通過するときに流量計測手段9の計測を停止し、計時手段15で超音波の伝搬時間を算出する。このようにして圧力変動波形のピーク値付近で計測が開始され、1周期間の計測後のピーク値付近で計測が終了する。さらに切換手段16を切換え、送信方向を逆にして前述と同様に計測する。本実施形態では圧力変動波形として正弦波に近いものを示したが、他の波形でも同様の効果を得ることができる。
【0020】
本発明の第2実施形態の変動計測制御手段19を図3に示す。この変動計測制御手段19の比較手段には、Lレベル比較手段19CとHレベル比較手段19Dがある。図4に示すようにLレベル比較手段19Cは比較設定値が低く、Hレベル比較手段19Dは比較設定値が高い。可変ゲイン増幅手段19Aは増幅度を可変することができ、Lレベル比較手段19CがL比較設定値より高くHレベル比較手段19DがH比較設定値より低くなるように自動的に可変ゲイン増幅手段19Aの増幅度を変化させる。図4のタイムチャートに示すように、増幅された圧力信号のピーク値がLレベル比較設定値とHレベル比較設定値の間になるように可変ゲイン増幅手段19Aが増幅させる。計測発停手段20への送信はLレベル比較手段19Cの立ち上がり信号である時間t3とt5で行ない、この結果計測の開始と停止は変動波形のピーク値付近で行われる。
【0021】
【発明の効果】
以上の説明から明らかなように本発明の流量計測装置によれば、圧力の大きさが変化しても、その変動値を自動的に計測の開始または停止のタイミングを図れる大きさに補正し、圧力の変動波形に正確に同期して計測を行うことができ、そのタイミングがずれても流量誤差を小さくでき、正確に平均流量を計測することができる。また、計測回数を増やして平均化する必要もなくなるので、消費電力を少なくし、電池で長期間使用するガスメータ等の流量計測装置で、圧力変動時でも流量を正確に低消費電力で計測することができる。
【図面の簡単な説明】
【図1】 本発明の第1実施形態の流量計測装置を示すブロック図。
【図2】 同実施形態における流量変動時の流量計測を示すタイムチャート図。
【図3】 本発明の第2実施形態の流量計測装置の要部(変動検出制御手段)を示すブロック図。
【図4】 同実施形態における流量変動時の流量計測を示すタイムチャート図。
【図5】 従来例の流量計測装置を示すブロック図。
【図6】 従来例における流量変動時の流量計測を示すタイムチャート図。
【図7】 別な従来例における流量変動時の流量計測を示すタイムチャート図。
【符号の説明】
8 流れ検出手段
9 流量計測手段
18 圧力検出手段
19 変動計測制御手段
19A 可変ゲイン増幅手段
19B 比較手段
19C Lレベル比較手段
19D Hレベル比較手段
20 計測発停手段[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a flow rate measuring device that measures the flow rate of a fluid such as a gas.
[0002]
[Prior art]
A conventional flow measuring device of this type will be described with reference to FIGS. This flow rate measuring device includes an instantaneous or analog flow detection means 2 for detecting a fluid flow state in a part of a
[0003]
When there is a periodic fluctuation in the fluid flow state, the fluid flow rate measurement value varies depending on the timing of measurement by the flow detection means 2. For example, in a gas meter that measures household gas consumption, pressure fluctuation occurs when a gas engine is operated nearby. When the flow rate fluctuates as a result, the signal is averaged by the averaging
[0004]
Since the instantaneous measurement device measures the flow rate intermittently, values such as flow rate Q1 (time t1), flow rate Q2 (time t2), flow rate Q3 (time t3) are obtained, and the flow rate is calculated by the microcomputer. It was. In the case of an analog type, continuous signals from time t0 to t4 are averaged through an integrator.
[0005]
In addition, using a pressure sensor or the like, the flow measurement is started or stopped in synchronization with the pressure of the fluid, and as shown in FIG. 7, between the time t1 and t2, that is, one cycle of the pressure fluctuation waveform (a cycle of an integral multiple of that). In some cases, the average flow rate was calculated by measuring the flow state.
[0006]
[Problems to be solved by the invention]
However, in order to measure the accurate flow rate at the time of pressure fluctuation in the conventional flow rate measuring device, since the digital type intermittently samples, it is necessary to increase the number of times of measurement and average the measured value, so that the measurement time is In the case of an analog type, it has to be continuously measured, and there is a problem that power consumption increases in any case.
[0007]
In addition, in the case where the flow rate measurement is started or stopped using the pressure sensor, the timing may not be accurately obtained, and an error may occur in the measured flow rate value. That is, in FIG. 7, when the measurement is stopped at time t2 ′ without being accurately synchronized with the pressure, an error occurs in the average flow rate because it deviates from one cycle. In particular, in the vicinity of time t2, the rate of change of pressure is large, so the flow rate that changes is large, and even a small time error causes a large flow rate error. Although the accuracy can be improved by increasing the number of measurements in order to eliminate this error, the power consumption increases accordingly.
[0008]
Accordingly, the present invention solves the above-described problems, and in a flow rate measuring device that is used for a long time with a battery such as a gas meter, the flow rate measurement can accurately measure the flow rate of the fluid at the time of pressure fluctuation with low power consumption. An object is to provide an apparatus.
[0009]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides a flow rate measuring means for measuring a flow rate based on a signal of a flow detecting means for detecting a flow state of a fluid in a flow path, a pressure detecting means for detecting a pressure of the fluid, Measurement start / stop means for outputting a measurement start signal for starting the flow rate measurement of the flow rate measurement means and a measurement stop signal for stopping the flow rate measurement, and a variation measurement control means for controlling the flow rate measurement means via the measurement start / stop means The fluctuation measurement control means includes a pressure fluctuation value detected by the pressure detection means, a preset L level pressure set value, and an H level pressure set value higher than the L level pressure set value. comparing, as the vicinity of the peak value of the pressure variation value falls in the middle of the H-level pressure set value and the L level pressure setting value, and the variable gain amplifying means for varying the amplification degree of the pressure variation value When the pressure fluctuation value output from the variable gain amplifying means exceeds the L level pressure set value, the signal is output to the measurement start / stop means to output a measurement start signal from the measurement start / stop means. Comparing means for outputting a signal to the measurement start / stop means and outputting a measurement stop signal from the measurement start / stop means when the fluctuation value exceeds the L level pressure set value is provided. is there.
[0010]
According to the present invention, the variable gain amplifying means of the fluctuation measurement control means amplifies the AC component of the pressure fluctuation value of the pressure detection means so that it can be compared with the comparison set value, and the amplified pressure fluctuation value is compared with the comparison means. The flow rate measurement of the flow rate measuring means is started or stopped via the measurement start / stop means at the timing when the magnitude has changed to a predetermined level. Therefore, even when the pressure changes, the pressure waveform is automatically corrected to an appropriate level, and flow measurement can be started or stopped near the peak value of the pressure waveform, that is, at a portion where the changing flow rate is small. Even if a time error occurs, the average flow rate can be maintained with high accuracy. And since there is no need to increase the number of measurements and averaging, the power consumption can be reduced, and the flow rate can be accurately measured with low power consumption even during pressure fluctuations with a flow meter such as a gas meter that can be used for a long time with batteries. Can do.
[0011]
Moreover, since the vicinity of the peak value of the pressure variation waveform so as to control the variable gain amplifying means so as to be positioned between the L-level pressure setpoint and H-level pressure setting, the flow rate error hardly occurs pressure waveform in the vicinity of the peak value can be automatically corrected to allow flow measurement, Ru can be specifically carried out the action with a simple structure in.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
[0013]
FIG. 1 is a block diagram showing a flow rate measuring apparatus according to a first embodiment of the present invention. In this flow rate measuring device, a first transmitter / receiver 8A that transmits or receives ultrasonic waves and a second transmitter / receiver 8B that receives or transmits ultrasonic waves are arranged in the flow direction in the middle of the flow path 7 and are switched by the
[0014]
Next, the switching means 16 switches between transmission / reception of the first transmitter / receiver 8A and the second transmitter / receiver 8B, and transmits an ultrasonic signal from the second transmitter / receiver 8B to the first transmitter / receiver 8A, that is, from downstream to upstream. Is repeated as described above, and each time value is measured. Then, the flow rate value is obtained by the signal processing means 17 in consideration of the size of the flow path 7 and the flow state of the fluid from the difference in propagation time of the ultrasonic waves between the first transceiver 8A and the second transceiver 8B. The flow path 7 is provided with pressure detection means 18 for detecting flow rate fluctuations by pressure. The pressure signal detected by the pressure detection means 18 is processed by the fluctuation measurement control means 19, and based on the signal of the fluctuation measurement control means 19. Then, the measurement of the flow rate measuring means 9 is started or stopped via the measurement start / stop means 20. The fluctuation measurement control means 19 includes a variable gain amplification means 19A for amplifying the signal of the pressure detection means 18 and a comparison means 19B for comparing the signal of the variable gain amplification means 19A with a preset reference value (comparison set value). Then, a signal is sent to the measurement start / stop means 20. The variable gain amplification means 19A can change the amplification degree by setting.
[0015]
Next, the operation will be described. When the flow state of the fluid in the flow path 7 is relatively gentle and the value of the
[0016]
When the fluid in the flow path 7 fluctuates, the pressure detection means 18 detects the flow fluctuation by pressure, sends a signal to the fluctuation measurement control means 19, and flows through the measurement start / stop means 20 according to the timing of the change in magnitude. The measuring means 9 is controlled. Sampling for flow rate measurement is performed once every few seconds, and if there is a periodic fluctuation in the flow in the flow path 7, the flow rate measurement value fluctuates and can be determined. The measurement control means 21 has a timer means 21A. When a predetermined time is reached, the fluctuation measurement control means 19 is activated to capture the fluctuation signal value. This signal is amplified by the variable gain amplifying means 19A and is compared by the comparing means 19B. When a signal of a predetermined level or higher is detected, the measurement start / stop means 20 starts measuring the flow rate measuring means 9.
[0017]
When the measurement is started in synchronization with the pressure waveform, the error is smaller in the measured flow rate value when the measurement is started or stopped near the peak value of the pressure waveform. This is because the flow rate waveform is 90 degrees out of phase with the pressure waveform, and the vicinity of the peak value is the central value of the flow rate (close to the average value), and the pressure fluctuation is small and the fluctuation flow rate is also small. That is, even if the timing for starting or stopping the measurement shifts and an error occurs in time, the error can be reduced where the flow rate fluctuates is small.
[0018]
FIG. 2 is a diagram showing the output of the measurement control means 21, the fluid pressure fluctuation waveform, the output of the comparison means 19B, and the output of the measurement start / stop means 20. The output of the comparison means 19B is turned on when the pressure fluctuation waveform is larger than the pressure fluctuation value compared with the comparison set value, and turned off when the pressure fluctuation waveform is smaller than that. Since the pressure fluctuation waveform A has a small level and does not reach the comparison set value, a signal for starting measurement cannot be obtained. The pressure fluctuation waveform B is a waveform obtained when the amplification factor of the variable gain amplifying means 19A is increased for the signal of the pressure fluctuation waveform A. The pressure fluctuation waveform B becomes equal to or higher than the comparison set value near the peak value, and can be detected.
[0019]
At time t1, a measurement request signal is sent from the measurement control means 21, but since the signal of the comparison means 19B of the fluctuation measurement control means 19 is OFF, it is in a state of waiting for measurement, and at time t2, the signal of the pressure detection means 18 is When the output of the comparison means 19B is changed to ON, a signal is sent to the measurement start / stop means 20, and the flow rate measurement means 9 starts the flow rate measurement means 9 from the trigger means 11. Then, a signal is sent to the measurement start / stop means 20 at time t3 when the comparison means output is turned off and turned on again. When this signal repeatedly passes the signal to the
[0020]
The fluctuation measurement control means 19 of the second embodiment of the present invention is shown in FIG. The comparison means of the fluctuation measurement control means 19 includes an L level comparison means 19C and an H level comparison means 19D. As shown in FIG. 4, the L level comparison means 19C has a low comparison set value, and the H level comparison means 19D has a high comparison set value. The variable gain amplifying means 19A can vary the degree of amplification, and the variable gain amplifying means 19A is automatically set so that the L level comparing means 19C is higher than the L comparison set value and the H level comparing means 19D is lower than the H comparison set value. Change the degree of amplification. As shown in the time chart of FIG. 4, the variable gain amplification means 19A amplifies the amplified pressure signal so that the peak value of the amplified pressure signal is between the L level comparison set value and the H level comparison set value. Transmission to the measurement start / stop means 20 is performed at times t3 and t5 which are rising signals of the L level comparison means 19C. As a result, the measurement is started and stopped near the peak value of the fluctuation waveform.
[0021]
【The invention's effect】
As is clear from the above description, according to the flow rate measuring device of the present invention, even if the pressure level changes, the fluctuation value is automatically corrected to a size that can be used to start or stop the measurement, Measurement can be performed in synchronization with the pressure fluctuation waveform accurately, and even if the timing is shifted, the flow rate error can be reduced and the average flow rate can be measured accurately. In addition, since there is no need to increase the number of measurements and averaging, the power consumption is reduced, and the flow rate is accurately measured with low power consumption even when the pressure fluctuates with a flow meter such as a gas meter that is used for a long time with batteries. Can do.
[Brief description of the drawings]
FIG. 1 is a block diagram showing a flow rate measuring device according to a first embodiment of the present invention.
FIG. 2 is a time chart showing flow rate measurement when the flow rate is changed in the embodiment.
FIG. 3 is a block diagram showing a main part (variation detection control means) of a flow rate measuring device according to a second embodiment of the present invention.
FIG. 4 is a time chart showing flow rate measurement when the flow rate is changed in the embodiment.
FIG. 5 is a block diagram showing a conventional flow rate measuring apparatus.
FIG. 6 is a time chart showing flow rate measurement when the flow rate is changed in a conventional example.
FIG. 7 is a time chart showing flow rate measurement at the time of flow rate fluctuation in another conventional example.
[Explanation of symbols]
8 Flow detection means 9 Flow measurement means 18 Pressure detection means 19 Fluctuation measurement control means 19A Variable gain amplification means 19B Comparison means 19C L level comparison means 19D H level comparison means 20 Measurement start / stop means
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000064625A JP4425415B2 (en) | 2000-03-09 | 2000-03-09 | Flow measuring device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000064625A JP4425415B2 (en) | 2000-03-09 | 2000-03-09 | Flow measuring device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2001255187A JP2001255187A (en) | 2001-09-21 |
JP4425415B2 true JP4425415B2 (en) | 2010-03-03 |
Family
ID=18584298
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000064625A Expired - Fee Related JP4425415B2 (en) | 2000-03-09 | 2000-03-09 | Flow measuring device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4425415B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1325880C (en) | 2002-08-05 | 2007-07-11 | 松下电器产业株式会社 | Flow metering device |
CN100449276C (en) * | 2002-08-05 | 2009-01-07 | 松下电器产业株式会社 | Flow rate measuring apparatus |
-
2000
- 2000-03-09 JP JP2000064625A patent/JP4425415B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2001255187A (en) | 2001-09-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2011040027A1 (en) | Flow rate measuring device | |
JP4425415B2 (en) | Flow measuring device | |
JP4760115B2 (en) | Fluid flow measuring device | |
JPH1144563A (en) | Apparatus for measuring flow rate | |
JP3695031B2 (en) | Flow measuring device | |
JP4069521B2 (en) | Flow measuring device | |
JP4487552B2 (en) | Gas shut-off device | |
JP3689973B2 (en) | Flow measuring device | |
JP4425414B2 (en) | Flow measuring device | |
JP2006343292A (en) | Ultrasonic flowmeter | |
JPH0921667A (en) | Flow rate measuring apparatus | |
JP4992890B2 (en) | Flow velocity or flow rate measuring device | |
JP2002296085A (en) | Ultrasonic flowmeter | |
JP3838209B2 (en) | Flow measuring device | |
JPH09280917A (en) | Flow rate measuring apparatus | |
JP2004069524A (en) | Flow rate measuring apparatus | |
JP2001255184A (en) | Flow rate measuring system | |
JP4197218B2 (en) | Gas shut-off device | |
JP2003028688A (en) | Flow rate-measuring instrument | |
JP2000131106A (en) | Flow metering apparatus | |
JP2002350202A (en) | Flow measuring device | |
JP4534421B2 (en) | Flow measuring device | |
JP4008266B2 (en) | Flow measuring device | |
JP4013697B2 (en) | Flow measuring device | |
JP3945530B2 (en) | Flow measuring device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060704 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20081215 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090106 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090309 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20090611 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20090612 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20091026 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20091117 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20091209 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4425415 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121218 Year of fee payment: 3 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313117 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121218 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131218 Year of fee payment: 4 |
|
LAPS | Cancellation because of no payment of annual fees |