JP4423061B2 - Decomposition method of oil in soil - Google Patents

Decomposition method of oil in soil Download PDF

Info

Publication number
JP4423061B2
JP4423061B2 JP2004039771A JP2004039771A JP4423061B2 JP 4423061 B2 JP4423061 B2 JP 4423061B2 JP 2004039771 A JP2004039771 A JP 2004039771A JP 2004039771 A JP2004039771 A JP 2004039771A JP 4423061 B2 JP4423061 B2 JP 4423061B2
Authority
JP
Japan
Prior art keywords
soil
sulfate
oil
pah
oil component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004039771A
Other languages
Japanese (ja)
Other versions
JP2005230606A (en
Inventor
省二郎 大隅
芳久 清水
雄介 桑野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2004039771A priority Critical patent/JP4423061B2/en
Publication of JP2005230606A publication Critical patent/JP2005230606A/en
Application granted granted Critical
Publication of JP4423061B2 publication Critical patent/JP4423061B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Processing Of Solid Wastes (AREA)

Description

本発明は、油成分を含む土壌において菌を増殖させて油成分を分解する土壌中油分の分解方法に関する。   The present invention relates to a method for degrading oil in soil, in which bacteria are grown in soil containing an oil component to decompose the oil component.

従来、油成分である芳香族炭化水素(PAH)を含む土壌において、微生物を増殖させて油成分を分解する場合、例えば、4環式PAH以下(4環以下のPAH)の低分子の油成分は多くの微生物により比較的容易に分解できるが、5環式PAH以上(5環以上のPAH)の油成分は分解が困難で、分解されることなく土壌中に残留するという問題があった(このような問題点に言及した適切な特許文献は見当たらない)。   Conventionally, when a microorganism is grown to decompose an oil component in soil containing an aromatic hydrocarbon (PAH) that is an oil component, for example, a low-molecular oil component of a 4-ring PAH or less (4-ring or less PAH) Can be decomposed relatively easily by many microorganisms, but oil components of 5-cyclic PAH or higher (5-ring or higher PAH) are difficult to decompose and remain in the soil without being decomposed ( There is no appropriate patent document that mentions such problems).

本発明者らは、5環式PAH以上の油成分に関する微生物による分解について研究と実験を繰り返したところ、硫酸塩還元菌が5環式PAH以上の油成分であるレジンあるいはアスファルテンの分解に有効であることを知見するに至った。 The inventors of the present invention have repeatedly studied and experimented on the decomposition of microorganisms with respect to oil components of five-ring PAH or more, and found that sulfate-reducing bacteria are effective in degrading resins or asphaltenes that are oil components of five-ring PAH or more. I came to know that there was.

本発明は、この新知見に基づくもので、その目的は、たとえ5環式PAH以上の油成分であるレジンあるいはアスファルテンを含む土壌であっても、微生物を増殖させて効果的に分解することのできる土壌中油分の分解方法を提供することである。 The present invention is based on this new finding, and its purpose is to grow microorganisms and effectively decompose them even in soil containing resin or asphaltene , which is an oil component higher than pentacyclic PAH. It is to provide a method for decomposing oil in soil.

本発明の第1の特徴構成は、5環以上の芳香族炭化水素の油成分であるレジンあるいはアスファルテンを含む土壌に硫酸または硫酸塩を添加し嫌気性条件下で硫酸塩還元菌をpH4〜pH9の環境下で、かつ、10℃〜38℃の温度下で増殖させて、前記硫酸塩還元菌により前記5環以上の芳香族炭化水素を3環以下の芳香族炭化水素に低分子化し、その後、好気性条件下で好気性菌により前記3環以下の芳香族炭化水素を分解するところにある。 The first characteristic feature of the present invention, by adding sulfuric acid or sulfate to the soil containing the resin or asphaltenes is an oil component of 5 or more rings aromatic hydrocarbons, pH 4 to the sulfate-reducing bacteria in anaerobic conditions In an environment of pH 9 and grown at a temperature of 10 ° C. to 38 ° C. , the sulfate-reducing bacterium reduces the molecular weight of the aromatic hydrocarbons having 5 or more rings to aromatic hydrocarbons having 3 or less rings, Thereafter, the aromatic hydrocarbons having 3 or less rings are decomposed by aerobic bacteria under aerobic conditions.

本発明の第1の特徴構成によれば、5環以上の芳香族炭化水素の油成分であるレジンあるいはアスファルテンを含む土壌に硫酸または硫酸塩を添加して嫌気性条件下で硫酸塩還元菌を増殖させるので、後述する実験結果から明らかなように、その硫酸塩還元菌が高分子量の油成分を分解して低分子化する。より具体的には、レジンやアスファルテンのように、従来微生物による分解が不可能とされていた5環式PAH以上(5環以上のPAH)の油成分を3環式PAH以下(3環以下のPAH)に低分子化する。
そして、その後、好気性条件下で好気性菌によって、3環式PAH以下に低分子化された油成分を更に分解して、最終的に、土壌中に含まれる油成分を分解処理することができる
According to the first characteristic configuration of the present invention, sulfate-reducing bacteria are added under anaerobic conditions by adding sulfuric acid or sulfate to soil containing resin or asphaltene which is an oil component of five or more aromatic hydrocarbons. As it grows, the sulfate-reducing bacteria decompose the high molecular weight oil component to lower the molecular weight, as is apparent from the experimental results described later. More specifically, oil components of 5-cyclic PAH or more (5-ring or more PAH) that have been conventionally impossible to be decomposed by microorganisms, such as resins and asphaltenes, are tricyclic PAH or less (3-ring or less PAH) is reduced in molecular weight.
And after that, the aerobic bacteria under aerobic conditions further decomposes the oil component whose molecular weight has been reduced to less than tricyclic PAH, and finally decomposes the oil component contained in the soil. I can .

その際、本発明の第の特徴構成によれば、硫酸塩還元菌をpH4〜pH9の環境下で増殖させるので、硫酸塩還元菌の増殖が促進されて、比較的短期間のうちに5環式PAH以上の油成分を3環式PAH以下に低分子化することができ、特に、pH5〜pH7の環境下で増殖させるのがより効果的で好ましい。 At that time, according to the first characteristic configuration of the present invention, since the sulfate-reducing bacteria are grown in an environment of pH 4 to pH 9, the growth of the sulfate-reducing bacteria is promoted, and within a relatively short period of time, 5 An oil component of cyclic PAH or higher can be reduced to a molecular weight of tricyclic PAH or lower, and it is particularly effective and preferable to grow in an environment of pH 5 to pH 7.

さらに、本発明の第の特徴構成によれば、硫酸塩還元菌を10℃〜38℃の温度下で増殖させるので、硫酸塩還元菌の増殖が促進されて、比較的短期間のうちに5環式PAH以上の油成分を3環式PAH以下に低分子化することができ、特に、25℃〜38℃の温度下で増殖させるのがより効果的で好ましい。 Further, according to the first characterizing feature of the present invention, since grown at a temperature of 10 ° C. to 38 DEG ° C. The sulfate reducing bacteria, the growth of sulfate-reducing bacteria is promoted, among relatively short period In addition, it is possible to reduce the molecular weight of an oil component of 5 cyclic PAH or higher to 3 cyclic PAH or lower, and it is particularly effective and preferable to grow at a temperature of 25 ° C. to 38 ° C.

本発明の第の特徴構成は、前記硫酸塩還元菌を5mM〜20mMの硫酸イオン濃度下で増殖させるところにある。 A second characteristic configuration of the present invention is that the sulfate-reducing bacteria are grown under a sulfate ion concentration of 5 mM to 20 mM.

本発明の第の特徴構成によれば、硫酸塩還元菌を5mM〜20mMの硫酸イオン濃度下で増殖させるので、濃度的にはあまり毒性もなく、それでいて、硫酸塩還元菌の増殖促進効果を期待することができ、特に、10mM程度の硫酸イオン濃度下で増殖させるのがより効果的で好ましい。 According to the second characteristic configuration of the present invention, since the sulfate-reducing bacteria are grown under a sulfate ion concentration of 5 mM to 20 mM, the concentration is not very toxic, and the growth-promoting effect of the sulfate-reducing bacteria can be achieved. In particular, it is more effective and preferable to grow under a sulfate ion concentration of about 10 mM.

本発明による土壌中油分の分解方法につき、その実施の形態を説明する。
本発明は、特に、油成分としての芳香族炭化水素(PAH)を含む土壌に硫酸または硫酸塩を添加して嫌気性条件下で硫酸塩還元菌を増殖させ、その後、好気性条件下で好気性菌により分解する土壌中油分の分解方法であり、各種の実験を通してその効果を確認したので、主たる実験とその結果について言及する。
An embodiment of the method for decomposing oil in soil according to the present invention will be described.
In particular, the present invention adds sulfuric acid or sulfate to soil containing aromatic hydrocarbons (PAH) as an oil component to grow sulfate-reducing bacteria under anaerobic conditions, and then favors them under aerobic conditions. This is a method of degrading oil in soil, which is degraded by aerobic bacteria, and its effects have been confirmed through various experiments, so the main experiments and the results will be mentioned.

まず、実験に使用した装置について説明すると、図1に示すように、試料としての油成分を含む土壌Sを収容するガラス製のフィルターファンネルを試料容器1とし、培地としての溶液Lを収容する筒型平底のセパラブルフラスコ(容量1L)を溶液タンク2として、ポンプ3により溶液タンク2内の溶液Lを試料容器1へ循環供給するように構成した。
試料容器1は、ウォータージャケット4を装備した二重構造とし、試料土壌Sの空隙率を確保して目詰まりを回避するため、試料土壌Sと直径2mmのガラスビーズを1対1の重量比で混合したものを試料容器1内へ300g入れてシリコン栓で蓋をした。
溶液タンク2内には、溶液Lを攪拌するための攪拌装置5を配置し、光による影響を考慮して、試料容器1の外側をアルミホイルで覆って遮光した。
First, the apparatus used in the experiment will be described. As shown in FIG. 1, a glass filter funnel containing a soil S containing an oil component as a sample is used as a sample container 1 and a cylinder containing a solution L as a medium. A mold-bottom separable flask (capacity 1 L) was used as the solution tank 2, and the solution L in the solution tank 2 was circulated and supplied to the sample container 1 by the pump 3.
The sample container 1 has a double structure equipped with a water jacket 4, and in order to ensure the porosity of the sample soil S and avoid clogging, the sample soil S and glass beads having a diameter of 2 mm are in a weight ratio of 1: 1. 300 g of the mixture was put into the sample container 1 and covered with a silicon stopper.
In the solution tank 2, a stirrer 5 for stirring the solution L is disposed, and the outer side of the sample container 1 is covered with aluminum foil and shielded from light in consideration of the influence of light.

[実験例]
この図1に示す装置を使用して油成分の分解実験を行った。
なお、試料として5環式PAH以上(5環以上のPAH)の油成分であるレジンおよびアスファルテンを含む土壌Sを使用し、溶液Lとして硫酸イオン濃度が5mM〜20mM、より好ましくは、10mM程度の溶液を使用し、かつ、溶液LをpH4〜pH9、より好ましくは、pH5〜pH7に調整し、ウォータージャケット4に温水を供給して試料容器1内を10℃〜38℃、好ましくは、25℃〜38℃、より好ましくは、ほぼ35℃に維持して無酸素の条件下で静置した。そして、分解処理開始から57日、143日、248日後にそれぞれ油成分濃度を測定し、その結果を示したのが図2である。
[Experimental example]
An oil component decomposition experiment was conducted using the apparatus shown in FIG.
In addition, the soil S containing resin and asphaltenes, which are oil components of 5-cyclic PAH or higher (5-ring or higher PAH), is used as a sample, and the sulfate ion concentration is 5 mM to 20 mM, more preferably about 10 mM as the solution L. The solution L is used, and the solution L is adjusted to pH 4 to pH 9, more preferably pH 5 to pH 7, and warm water is supplied to the water jacket 4 so that the inside of the sample container 1 is 10 ° C. to 38 ° C., preferably 25 ° C. It was kept at ˜38 ° C., more preferably at approximately 35 ° C., under anoxic conditions. Then, the oil component concentrations were measured 57 days, 143 days and 248 days after the start of the decomposition treatment, respectively, and the results are shown in FIG.

この図2において、横軸は経過日数、縦軸は土壌1g当たりの炭素濃度(mg)を示し、この実験結果から、248日後には、レジンおよびアスファルテン成分が約50%減少し、その一方で、より低分子のPAHである芳香族成分が増加し、炭素濃度は全体としてほとんど変化しなかったことが解った。
つぎに、その248日後の試料土壌Sをトレー上に広げて、試料土壌Sが乾燥せずかつ水に浸らない程度に水を供給し、1週間に1回の割合で攪拌して試料土壌Sに空気を供給し、56日後に油成分を測定した結果が図2の右端に示されている。これによると、前記芳香族成分が約76%減少し、炭素濃度も全体として約62%減少した。
In FIG. 2, the horizontal axis indicates the number of days elapsed, and the vertical axis indicates the carbon concentration (mg) per gram of soil. From this experimental result, the resin and asphaltene components are reduced by about 50% after 248 days. It was found that the aromatic component, which is a lower molecular weight PAH, increased and the carbon concentration hardly changed as a whole.
Next, the sample soil S after 248 days is spread on a tray, and water is supplied to such an extent that the sample soil S is not dried and soaked in water, and stirred once a week for the sample soil S. The result of measuring the oil component after 56 days after supplying air is shown in the right end of FIG. According to this, the aromatic component was reduced by about 76%, and the carbon concentration was also reduced by about 62% as a whole.

[比較例1]
上記の実験例と比較するため、同じ装置を使用して比較実験を行った。
なお、溶液Lとして水を使用した以外は、全て実験例と同じ条件で比較実験を行った。すなわち、試料としてレジンおよびアスファルテンを含む土壌Sを使用し、ウォータージャケット4に温水を供給して試料容器1内をほぼ35℃に維持し、無酸素の条件下で静置した。比較実験開始から57日、143日、248日後にそれぞれ油成分濃度を測定し、その結果を示したのが図3である。
この図3に示す実験結果から、248日後においても、油成分の濃度はほとんど変化しなかったことが解った。
[Comparative Example 1]
In order to compare with the above experimental example, a comparative experiment was performed using the same apparatus.
In addition, except that water was used as the solution L, all comparative experiments were performed under the same conditions as the experimental examples. That is, the soil S containing resin and asphaltenes was used as a sample, hot water was supplied to the water jacket 4 to maintain the inside of the sample container 1 at approximately 35 ° C., and left under oxygen-free conditions. The oil component concentrations were measured 57 days, 143 days and 248 days after the start of the comparative experiment, respectively, and the results are shown in FIG.
From the experimental results shown in FIG. 3, it was found that the concentration of the oil component hardly changed even after 248 days.

[比較例2]
念のために、好気性条件下での比較実験も行った。
すなわち、試料としてレジンおよびアスファルテンを含む土壌Sを使用し、その試料土壌Sをトレー上に広げて、試料土壌Sが乾燥せずかつ水に浸らない程度に水を供給し、1週間に1回の割合で攪拌して試料土壌Sに空気を供給し、56日後に油成分を測定した。その結果を示したのが図4である。
この図4に示す実験結果から、炭素成分が全体として約42%分解したが、分解したのはほとんどが前記芳香族成分であり、レジンおよびアスファルテン成分はほとんど分解しなかったことが解った。
[Comparative Example 2]
As a precaution, a comparative experiment was also performed under aerobic conditions.
That is, a soil S containing resin and asphaltenes is used as a sample, the sample soil S is spread on a tray, and water is supplied to the extent that the sample soil S is not dried and immersed in water, once a week. The air was supplied to the sample soil S with stirring at a ratio of ≦, and the oil component was measured after 56 days. The result is shown in FIG.
From the experimental results shown in FIG. 4, it was found that the carbon component decomposed by about 42% as a whole, but most of the carbon components were decomposed by the aromatic component, and the resin and asphaltenes component were hardly decomposed.

以上の実験例および比較例1と2から、油成分であるレジンおよびアスファルテンを含む土壌に硫酸イオン(硫酸または硫酸塩)を添加して嫌気性条件下で硫酸塩還元菌を増殖させ、その後、好気性条件下で好気性菌により分解処理することによって、硫酸イオンを添加しない嫌気性条件下のみでの処理、あるいは、好気性条件下のみでの処理では分解しなかったレジンおよびアスファルテン成分が確実に分解されて、土壌中の油成分が効果的に除去されることが明確となった From the above experimental examples and comparative examples 1 and 2, sulfate ions (sulfuric acid or sulfate) are added to the soil containing the resin and asphaltenes as oil components to grow sulfate-reducing bacteria under anaerobic conditions, Decomposition with aerobic bacteria under aerobic conditions ensures that the resin and asphaltene components were not decomposed only under anaerobic conditions without addition of sulfate ions or only under aerobic conditions. It was clarified that the oil component in soil was effectively removed .

実験に使用した装置の概略構成図Schematic diagram of the equipment used for the experiment 実験例の結果を示す図表Chart showing experimental results 比較例1の結果を示す図表Chart showing results of Comparative Example 1 比較例2の結果を示す図表Chart showing results of Comparative Example 2

1 試料容器
2 溶液タンク
3 ポンプ
4 ウォータージャケット
5 攪拌装置
L 溶液(培地)
S 試料土壌
DESCRIPTION OF SYMBOLS 1 Sample container 2 Solution tank 3 Pump 4 Water jacket 5 Stirring apparatus L Solution (medium)
S Sample soil

Claims (2)

5環以上の芳香族炭化水素の油成分であるレジンあるいはアスファルテンを含む土壌に硫酸または硫酸塩を添加し嫌気性条件下で硫酸塩還元菌をpH4〜pH9の環境下で、かつ、10℃〜38℃の温度下で増殖させて、前記硫酸塩還元菌により前記5環以上の芳香族炭化水素を3環以下の芳香族炭化水素に低分子化し、その後、好気性条件下で好気性菌により前記3環以下の芳香族炭化水素を分解する土壌中油分の分解方法。 5 by adding sulfuric acid or sulfate to the soil containing the resin or asphaltenes is an oil component of the ring or aromatic hydrocarbons, the sulfate reducing bacteria in the environment of pH4~pH9 under anaerobic conditions, and, 10 ° C. Growing at a temperature of ˜38 ° C., the sulfate-reducing bacterium reduces the molecular weight of the aromatic hydrocarbons having 5 or more rings to aromatic hydrocarbons having 3 or less rings, and then aerobic bacteria under aerobic conditions The method for decomposing oil in soil for decomposing the aromatic hydrocarbons having 3 or less rings by the above method. 前記硫酸塩還元菌を5mM〜20mMの硫酸イオン濃度下で増殖させる請求項1に記載の土壌中油分の分解方法。 The method for decomposing oil in soil according to claim 1, wherein the sulfate-reducing bacteria are grown under a sulfate ion concentration of 5 mM to 20 mM.
JP2004039771A 2004-02-17 2004-02-17 Decomposition method of oil in soil Expired - Fee Related JP4423061B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004039771A JP4423061B2 (en) 2004-02-17 2004-02-17 Decomposition method of oil in soil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004039771A JP4423061B2 (en) 2004-02-17 2004-02-17 Decomposition method of oil in soil

Publications (2)

Publication Number Publication Date
JP2005230606A JP2005230606A (en) 2005-09-02
JP4423061B2 true JP4423061B2 (en) 2010-03-03

Family

ID=35014112

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004039771A Expired - Fee Related JP4423061B2 (en) 2004-02-17 2004-02-17 Decomposition method of oil in soil

Country Status (1)

Country Link
JP (1) JP4423061B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7120706B2 (en) * 2018-12-13 2022-08-17 株式会社竹中工務店 Soil remediation method
JP2021154258A (en) * 2020-03-30 2021-10-07 株式会社熊谷組 Method for purifying contaminated soil
GB2598382A (en) * 2020-08-28 2022-03-02 Epiq Env Ltd Micro-mechanical augmented bioremediation method for treatment of oil contaminated soil

Also Published As

Publication number Publication date
JP2005230606A (en) 2005-09-02

Similar Documents

Publication Publication Date Title
TWI594957B (en) Method of removing recalcitrant organic pollutants
Grommen et al. An improved nitrifying enrichment to remove ammonium and nitrite from freshwater aquaria systems
CN103508559B (en) Aerobic treatment method applied in antibiotic wastewater treatment
EP2892855B1 (en) Method of reducing residual recalcitrant organic pollutants
JP4423061B2 (en) Decomposition method of oil in soil
CN109879353A (en) A kind of aquiculture waste water treatment process
KR101439728B1 (en) Continuous removal of perchlorate and nitrate using enriched sulfur-oxidizing microorganisms
JP2014024001A (en) Method and apparatus for treating nitrogen in methane fermentation digested liquid
Luo et al. Effects of inoculated bacillus subtilis on geosmin and 2-methylisoborneol removal in suspended growth reactors using aquacultural waste for biofloc production
McAuliffe et al. Nitrate applications to control phosphorus release from sediments of a shallow eutrophic estuary: an experimental evaluation
JP2007196172A (en) Liquid extract of humic substance, solidifying agent, concentrating agent and method for treating organic waste water by using them
JP2016112556A (en) Method for biologically treating water to be treated by using aerobic fluidized bed
CN104193103B (en) A kind of method of immobilization granular biological activated carbon Pharmaceutical Wastewater Treatment
CN106966501A (en) A kind of modified rice husk filling biofilter and denitrification process
JP5782415B2 (en) Method and apparatus for treating water to be treated
JP2013509993A (en) Digestion method of excess sludge by lack of normal time
RU2394779C2 (en) Method for aerobic treatment of sewage sludge and active sludge
JPH04334593A (en) Advanced water treatment system and method for starting up the same
WO2004113237A1 (en) Treatment of sewage sludge
SU1717549A1 (en) Method of biological treatment of sewage
Almira et al. Palm oil mill effluent (POME) treatment using a combined anaerobic-microalgae down-flow hanging sponge (DHS) reactor
KR910004324B1 (en) A treatment composition restraint the filamentous fungus of waist water
TW200831666A (en) Method for screening and immobilizing microorganism and immobilization microorganism particle
JPH09225496A (en) Production of nitration filter medium
JP2004261688A (en) Dyestuff-containing wastewater treatment method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090311

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090319

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090518

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090611

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090911

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090928

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091126

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091207

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121211

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121211

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151211

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees