JP2013509993A - Digestion method of excess sludge by lack of normal time - Google Patents

Digestion method of excess sludge by lack of normal time Download PDF

Info

Publication number
JP2013509993A
JP2013509993A JP2012537845A JP2012537845A JP2013509993A JP 2013509993 A JP2013509993 A JP 2013509993A JP 2012537845 A JP2012537845 A JP 2012537845A JP 2012537845 A JP2012537845 A JP 2012537845A JP 2013509993 A JP2013509993 A JP 2013509993A
Authority
JP
Japan
Prior art keywords
sludge
ozone
digestion
treatment
cod
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012537845A
Other languages
Japanese (ja)
Other versions
JP5536894B2 (en
Inventor
セラール フェルディ ゴケイ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of JP2013509993A publication Critical patent/JP2013509993A/en
Application granted granted Critical
Publication of JP5536894B2 publication Critical patent/JP5536894B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/78Treatment of water, waste water, or sewage by oxidation with ozone

Abstract

本発明は、処理場において生成される副生成物の余剰汚泥の量を減少させるために行われる標準的な好気性の生物学的な汚泥消化方法に順次間欠的なオゾン処理を含めることにより開発され、その結果、先行技術と比較して短時間かつ低費用で汚泥を安定化することができる。汚泥消化に用いられる順次間欠的なオゾン処理プロセスにおいて、オゾンは、汚泥に、間欠的に、継続的でなく、適用される。オゾンの適用の後、汚泥は、好気性消化槽において、1回の倍加時間の間曝気され、この期間後、再びオゾン処理される。オゾンの適用によるフロック構造の分解に続いて放出されるCODは、微生物によって汚泥の消化および炭素の除去を完了することにより、再び消費される。変化する汚泥の濃度に対して異なる量のオゾンを投入することにより、80%以上の汚泥の量の減少が達成された。通常の好気性の消化は完了までに15−30日を要するが、間欠的なオゾンの投入のプロセスによれば、4日間ほどの非常に短時間で消化が完了する。汚泥が安定化され、かつ、殺菌された状態、および、その高いリン濃度から、消化された汚泥は、土壌の肥料として、用い得る。  The present invention has been developed by including intermittent ozone treatment sequentially in a standard aerobic biological sludge digestion process performed to reduce the amount of surplus sludge of by-products produced in the treatment plant. As a result, sludge can be stabilized in a short time and at a low cost compared to the prior art. In the sequential intermittent ozone treatment process used for sludge digestion, ozone is applied to the sludge intermittently and not continuously. After the application of ozone, the sludge is aerated for one doubling time in the aerobic digester and after this period it is again ozone treated. The COD released following the breakdown of the floc structure by the application of ozone is consumed again by completing sludge digestion and carbon removal by the microorganisms. By introducing different amounts of ozone for varying sludge concentrations, a reduction in the amount of sludge by more than 80% was achieved. Normal aerobic digestion takes 15-30 days to complete, but according to the intermittent ozone input process, digestion is completed in a very short time of about 4 days. Due to the stabilized and sterilized state of the sludge and its high phosphorus concentration, the digested sludge can be used as soil fertilizer.

Description

本発明は、処理場において生成される副生成物の余剰汚泥の量を減少させるために行われる標準的な好気性の生物学的な汚泥消化方法に順次的なオゾンを適用することにより、標準的な方法と比較して短時間かつ低費用で汚泥を安定化することができる汚泥消化方法に関する。   The present invention applies standard ozone by applying sequential ozone to a standard aerobic biological sludge digestion process performed to reduce the amount of by-product surplus sludge produced in the treatment plant. The present invention relates to a sludge digestion method that can stabilize sludge in a short time and at a low cost as compared with conventional methods.

汚泥は汚水処理場において、操業時に、副生成物として生成される。生成された汚泥の除去は、適用困難性および処理時間に関し、処理場における最も困難な技術的課題の一つをもたらす。   Sludge is produced as a by-product during operation in a sewage treatment plant. The removal of the produced sludge presents one of the most difficult technical challenges in the treatment plant with regard to application difficulty and treatment time.

余剰汚泥の除去の間、生物学的安定化と体積の減少との両方が必要である。先行技術によれば、余剰汚泥の安定化および体積の減少は、生物学的、化学的および熱的なプロセスによって、可能である。   During the removal of excess sludge, both biological stabilization and volume reduction are necessary. According to the prior art, excess sludge stabilization and volume reduction are possible by biological, chemical and thermal processes.

先行技術によると、一般的に汚泥は、生物学的な、嫌気性および好気性の消化をうけ、引き続いて脱水される。好気性および嫌気性の消化槽における汚泥の安定化には、例えば、約15日から30日程度の長期間を要する。これは現在の技術水準において未だ解決されておらず、継続的に生成される余剰汚泥は重大な問題となっている。リン処理高度処理施設の場合には、生物学的に吸収されたリンが再放出されるため嫌気性の消化を使用できず、このような処理場は好気性のプロセスに大きく依存する。この技術的課題を解決するには、処理場の設置費用が非常に高価な水準に上昇する。また、自然環境保護のためには処理場が必須であるが、今日までに開発された技術では所望の状況にまで解決策が見出されていない。   According to the prior art, sludge is generally subjected to biological, anaerobic and aerobic digestion and subsequently dehydrated. Stabilization of sludge in an aerobic and anaerobic digester requires, for example, a long period of about 15 to 30 days. This has not yet been solved in the current state of the art, and continuously generated excess sludge is a serious problem. In the case of advanced phosphorus treatment facilities, anaerobic digestion cannot be used because biologically absorbed phosphorus is re-released, and such treatment sites are highly dependent on aerobic processes. To solve this technical problem, the cost of installing the treatment plant is raised to a very expensive level. In addition, a treatment plant is indispensable for protecting the natural environment, but no solution has been found to the desired situation with the technology developed to date.

加えて、余剰汚泥の貯蔵と利用に関する規制が厳格化されるにつれ、汚泥の体積減少について関心が集まっている。この点において、強力な酸化剤であるオゾンが汚泥の処理および体積減少の両面において際立っている。   In addition, as regulations regarding the storage and use of surplus sludge become stricter, there is a growing interest in reducing sludge volume. In this respect, ozone, a powerful oxidant, stands out in both sludge treatment and volume reduction.

オゾンによる消化は2つの機構によって行われる。最初に細菌の細胞壁が破壊され、次に細胞内容物の鉱化(mineralization)が起こる。オゾンによる処理を他の分解プロセスよりも優れたものとする点は、その適当な費用と高い分解能力である。それ故、オゾンによる汚泥の処理は、世界中で普及しつつある。   Digestion with ozone is performed by two mechanisms. First, the bacterial cell wall is destroyed, followed by mineralization of the cell contents. What makes the treatment with ozone superior to other decomposition processes is its reasonable cost and high decomposition ability. Therefore, treatment of sludge with ozone is becoming popular all over the world.

先行技術において、オゾンによる汚泥の消化に関して多くのリサーチが行われている。これらのリサーチにおいては、処理場の様々な部分、例えば生物反応槽、汚泥上清、返送活性汚泥ラインや汚泥処理ユニット、への継続的なオゾンの適用が、その沈降能力、脱水力、余剰汚泥体積の減少、pH、硝化および脱窒化のプロセス、汚泥の微生物フロックのサイズ、水質に関する影響が調査されている。(Yasui and Shibata, 1994; Goel et.al., 2004; Bohler and Siegrist, 2004; Dytczak et.al., 2006; M.Weemeas et.al., 2000; Park et.al., 2002; Paul and Debellefontaine, 2007; Mines et.al., 2009; Song et.al., 2003)   In the prior art, much research has been done on sludge digestion with ozone. In these studies, the continuous application of ozone to various parts of the treatment plant, such as biological reactors, sludge supernatants, return activated sludge lines and sludge treatment units, their sedimentation capacity, dewatering power, excess sludge. Effects on volume reduction, pH, nitrification and denitrification processes, microbial floc size of sludge, and water quality are being investigated. (Yasui and Shibata, 1994; Goel et.al., 2004; Bohler and Siegrist, 2004; Dytczak et.al., 2006; M. Weemeas et.al. Mines et.al., 2009; Song et.al., 2003)

先行技術においては、これら全ての研究に共通する点は、試料の継続的なオゾン処理である。しかし、オゾンは高価であるため、これは、深刻なまでの上昇した設置および運用の費用をもたらした。   In the prior art, what is common to all these studies is the continuous ozonation of the sample. However, because ozone is expensive, this has resulted in severely increased installation and operation costs.

効率を損なわず、より適当な費用によるプロセスの開発に対するニーズは、継続的なオゾン投入よりもはるかに経済的で効率的なプロセスの開発をもたらした。これが本発明の主題である、余剰汚泥消化のための順時(sequential)間欠的な(intermittent)オゾン処理プロセスである。   The need for process development at a more reasonable cost without compromising efficiency has led to the development of processes that are much more economical and efficient than continuous ozone input. This is the subject matter of the present invention, the sequential ozonation process for digesting excess sludge.

(発明の要旨)
本発明によって開発された順次間欠的なオゾン処理によれば、大量に生成される余剰汚泥を、とても短い接触時間において、大量に、最小限のオゾン処理によって、消化および安定化することができる。
(Summary of the Invention)
According to the sequential intermittent ozone treatment developed by the present invention, surplus sludge produced in large quantities can be digested and stabilized in large quantities and with minimal ozone treatment in a very short contact time.

本発明によって開発された方法により、汚水処理場における大きな課題の一つである余剰汚泥を除去することができる。加えて、余剰汚泥の除去に必要な時間の大幅な短縮は、高い資本投資および運営費用に対する解決策をもたらす。   By the method developed by the present invention, it is possible to remove excess sludge, which is one of the major problems in sewage treatment plants. In addition, the significant reduction in the time required to remove excess sludge provides a solution to high capital investment and operating costs.

この目標に到達するため、異なるアプローチを用いた。本アプローチにおいては、汚泥消化槽における細菌培養物の倍加時間を考慮して、順次間欠的な態様でオゾン処理を投与した。本アプローチでは、汚泥を、2分、3分、4分、6分間、オゾン処理し、引き続いて、残存する活性培養物が分解されたバイオマスを消費するために、24時間曝気した。この間、細菌培養物が放出された物質を消費する一方、さらなるバイオマスが産生される。産生されたバイオマスは次回のオゾン処理によって再び酸化される。このプロセスが汚泥が安定化されるまで順次的に4回またはそれ以上繰り返される。   A different approach was used to reach this goal. In this approach, the ozone treatment was sequentially administered in an intermittent manner in consideration of the doubling time of the bacterial culture in the sludge digester. In this approach, sludge was ozonated for 2, 3, 4, and 6 minutes, followed by aeration for 24 hours to consume the degraded biomass of the remaining active culture. During this time, the bacterial culture consumes the released material while more biomass is produced. The produced biomass is oxidized again by the next ozone treatment. This process is sequentially repeated four or more times until the sludge is stabilized.

その上、生成した消化された汚泥は細菌学的に無菌状態であり、リンを豊富に含んでおり、それゆえ、肥料として有用であり得、消化された汚泥から収益がもたらされ得、これにより運営費用を削減することができる。   In addition, the digested sludge produced is bacteriologically sterile and rich in phosphorus, and therefore can be useful as a fertilizer and can generate revenue from the digested sludge. The operating cost can be reduced.

上清に残存するCOD値の比較グラフComparison graph of COD value remaining in supernatant 6分間のオゾン処理の後に上清に残存するCOD値と対照群との比較グラフComparison graph of COD value remaining in supernatant after 6 minutes of ozone treatment and control group 2分、3分、4分間試料におけるMLSS値の比較グラフComparison graph of MLSS values in 2 min, 3 min, 4 min samples MLSSに対する累積オゾン投入量の影響Effect of cumulative ozone input on MLSS 4分、6分間オゾン処理試料の上清に残存するCOD値の比較Comparison of COD values remaining in the supernatant of ozone treated samples for 4 and 6 minutes 4分、6分間オゾン処理試料のMLSS値の比較Comparison of MLSS values of ozone treated samples for 4 and 6 minutes 4分、6分間オゾン処理試料のMLVSS値の比較Comparison of MLVSS values of ozone treated samples for 4 and 6 minutes

本発明によって開発された、順時間欠的なオゾン投入による汚泥消化方法によれば、汚水処理場において継続的に大量に生成される余剰汚泥を、短時間の間欠的オゾン処理技術によって、極めて短時間に最小限のオゾンを用いて、大部分を消化することにより、安定化する。   According to the sludge digestion method developed by the present invention using ozone input that lacks time, surplus sludge that is continuously produced in large quantities in a sewage treatment plant can be reduced extremely quickly by a short-term intermittent ozone treatment technique. Stabilize by digesting most with minimal ozone in time.

本発明の主題である、本プロセスの適用における最も高い効率を得るために、2セットの実験を行った。本プロセスの最も高い効率の適用を決定するためのこれらの実験の詳細を下記に説明する。   In order to obtain the highest efficiency in the application of the process, the subject of the present invention, two sets of experiments were performed. Details of these experiments to determine the highest efficiency application of the process are described below.

本実験で用いた汚泥の日齢は2−4日であり、MLSS(活性汚泥浮遊物質)値は、これを希釈することにより2.3g/Lに調整された。この汚泥のMLVSS(活性汚泥有機性浮遊物質)値は、1.9g/Lで一定となるようにした。   The age of the sludge used in this experiment was 2-4 days, and the MLSS (activated sludge suspended solids) value was adjusted to 2.3 g / L by diluting it. The MLVSS (activated sludge organic suspended solids) value of this sludge was made constant at 1.9 g / L.

培養液中に存在する溶解性COD(化学的酸素要求量)による干渉を阻止するため、汚泥をpH7のリン酸緩衝溶液(0.013M KHPO/KHPO)を用いて遠心により洗浄し、洗浄した汚泥の上清を除き、緩衝溶液を用いてペレットを300mLに希釈した。この方法は、溶解性CODが、バイオマスのみに由来することを目的とした。この手順は、対照および並行群についても同様に適用された。 In order to prevent interference with soluble COD (chemical oxygen demand) present in the culture solution, the sludge is centrifuged by using pH 7 phosphate buffer solution (0.013M KH 2 PO 4 / K 2 HPO 4 ). After washing, the washed sludge supernatant was removed, and the pellet was diluted to 300 mL with a buffer solution. This method aimed at the soluble COD being derived only from biomass. This procedure was applied to the control and parallel groups as well.

本実験においては、作動圧力5 bars、ガス流量10−140 l/hのオゾン発生装置を用いた。汚泥中のオゾンガスの分布を向上させるため、オゾン放出ユニットの末端にスパージャを設置した。時間を通じて溶液に加えられたオゾンガスの量を、(25mlの試料に関して、)分光光度的に引かれた検量線に基づく標準測定法8021(DPD塩素インジケーター)法によって測定した。   In this experiment, an ozone generator with an operating pressure of 5 bars and a gas flow rate of 10-140 l / h was used. A sparger was installed at the end of the ozone release unit to improve the distribution of ozone gas in the sludge. The amount of ozone gas added to the solution over time was measured by standard method 8021 (DPD chlorine indicator) method based on a calibration curve drawn spectrophotometrically (for a 25 ml sample).

本実験の分析においては、蒸発残留物(TS−MLSS)は、標準測定法(2540B)(APHA,1998)を用いて、化学的酸素要求量(COD)は、HACH 8000(US EPA 認可)法に基づいて、Hach Lange kitを用いて決定し、浮遊物質強熱減量(VSS−MLVSS)は、EPA 2540 solids methods に基づいて決定した。総リンは、EPA Method 365.4によって分析し、オルトリンは、EPA 365.3 methodによって分析した。水に溶解したオゾンは、標準測定法8021(DPD塩素インジケーター)によって分析した。   In the analysis of this experiment, the evaporation residue (TS-MLSS) was measured using the standard measurement method (2540B) (APHA, 1998), and the chemical oxygen demand (COD) was determined using the HACH 8000 (US EPA approved) method. Based on the above, it was determined using the Hach Range kit, and suspended matter ignition loss (VSS-MLVSS) was determined based on the EPA 2540 solids methods. Total phosphorus was analyzed by EPA Method 365.4, and ortholine was analyzed by EPA 365.3 method. Ozone dissolved in water was analyzed by standard measurement method 8021 (DPD chlorine indicator).

第1セットの実験においては、汚泥の消化の後、MLSS値およびMLVSS値を測定し、フラスコ中の固体を濾過して除いた後のろ液においてCODを測定した。第2セットでは、これらに加えて、酸素消費速度(OCR)をも測定した。4分、6分間試験フラスコにおいて得られたオゾン濃度を表1に示す。また、g オゾン/ g バイオマスの形式については、投入したオゾンの量を、各フラスコに存在するバイオマスで除することによって、値を計算した。   In the first set of experiments, after digestion of sludge, the MLSS value and the MLVSS value were measured, and the COD was measured in the filtrate after removing the solid in the flask by filtration. In the second set, in addition to these, the oxygen consumption rate (OCR) was also measured. Table 1 shows the ozone concentrations obtained in the test flasks for 4 minutes and 6 minutes. Moreover, about the format of g ozone / g biomass, the value was calculated by dividing the amount of ozone input by the biomass present in each flask.

Figure 2013509993
Figure 2013509993

実験の間、0日目以降、TSおよびVS(蒸発残留物および強熱減量)を、オゾン処理前とオゾン処理直後に測定し、CODのみろ液において測定した。その後、汚泥をオービタルシェーカーにおいて75回転/分で24時間振とうし、25℃で培養した。4日間の間の各日に、1日の同じ時刻に、あらかじめ決められた時間、試料をオゾン処理し、同様の分析をオゾン処理の前後において行った。   During the experiment, after day 0, TS and VS (evaporation residue and loss on ignition) were measured before and immediately after ozone treatment, and only COD was measured in the filtrate. Thereafter, the sludge was shaken for 24 hours at 75 rpm in an orbital shaker and cultured at 25 ° C. Each day for 4 days, the sample was ozonated at the same time of day for a predetermined time, and the same analysis was performed before and after the ozone treatment.

第1セットの実験
第1セットの実験において、2分、3分、4分、6分間、試料をオゾン処理した後に得られた結果を図1に示す。これらの実験の終了後、2分および3分間のオゾン処理では不十分であることが観察された。これに加えて、図2より、6分間オゾン処理後の試料の分注では、後続の日において、ほとんどCODがないことが理解される。これは、初日のオゾン処理により全てのバイオマスが死滅し、それに伴って微生物活性が失われ、その後のCODの放出がほぼ0になったことを示唆した。第1セットの実験で得られた結果の数値を表2に示す。
First Set Experiment FIG. 1 shows the results obtained after the sample was subjected to ozone treatment for 2 minutes, 3 minutes, 4 minutes, and 6 minutes in the first set of experiments. After the end of these experiments, it was observed that ozone treatment for 2 minutes and 3 minutes was insufficient. In addition to this, it can be seen from FIG. 2 that the sample dispensed after 6 minutes of ozone treatment has little COD on the following day. This suggested that all of the biomass was killed by the first day of ozone treatment, resulting in a loss of microbial activity and subsequent release of COD to nearly zero. The numerical values of the results obtained in the first set of experiments are shown in Table 2.

Figure 2013509993
Figure 2013509993

第1セットの実験で得られた結果は、オゾンが培養液に加えられると、細胞壁が破壊されて細胞内容物が培養液中に放出され、溶解性CODが増加することを示唆した。その後、後続の24時間培養の間、存在するバイオマスによってCODが消費されて培養液から除去され、後続のオゾン処理によってCODが再び放出されることが観察された。MLSSの測定値を表した図3から、MLSSの減少は、2分、3分、4分間のオゾン処理を受けるフラスコにおいて、適用されたオゾンに直接に比例していることが看取できる。オゾン処理の後に残存するバイオマスは、振とう期間において、放出されたCODを消費する。時間とともに培養液に残存するバイオマスが減少するにつれ、バイオマスによって消費されるCODもまた減少し、各オゾン処理の後にろ液中に放出されるCODは次第に減少する。6分間の適用では、バイオマスの分解によるCODの放出が非常に大きいが、その後、そのような大量のCODの放出はみられなかった。この挙動は2つの可能性を示す。初日のオゾン処理によって完全にバイオマスが分解され、ろ液中にCODが放出され、これを理由として、その後のオゾン処理では、さらなる放出がされなかったか、または、高いオゾン投入量によってバイオマスが完全に死滅し、その後のCODの取り込みが阻害されたか、である。   The results obtained in the first set of experiments suggested that when ozone was added to the culture, the cell wall was destroyed and the cell contents were released into the culture, increasing the soluble COD. It was then observed that during the subsequent 24 hour culture, COD was consumed and removed from the culture by the biomass present and COD was released again by subsequent ozone treatment. It can be seen from FIG. 3 which shows the measured value of MLSS that the decrease in MLSS is directly proportional to the ozone applied in the flasks subjected to ozone treatment for 2, 3, 4 minutes. The biomass remaining after the ozone treatment consumes the released COD during the shaking period. As the biomass remaining in the culture decreases with time, the COD consumed by the biomass also decreases, and the COD released into the filtrate after each ozone treatment gradually decreases. In the 6 minute application, the COD release due to biomass degradation was very large, but no such large amount of COD release was subsequently seen. This behavior shows two possibilities. The first day of ozone treatment completely decomposes the biomass and releases COD into the filtrate, which is why there was no further release in the subsequent ozone treatment or the biomass was completely consumed by the high ozone input. Whether it was killed and subsequent COD uptake was inhibited.

2分、3分、4分間適用における4日目終了時での適用された総オゾン投入量および得られたMLSSの減少を図4に示す。ここにおいて、4分間適用におけるMLSSの減少は適用された総オゾン投与量が6 mg/lにおいて止まったことが看取できる。これは、2.65 g オゾン/g 除去された総バイオマスに相当する。   FIG. 4 shows the total ozone input applied and the resulting reduction in MLSS at the end of day 4 for 2 min, 3 min and 4 min applications. Here it can be seen that the reduction of MLSS in the 4 minute application stopped at the total ozone dose applied at 6 mg / l. This corresponds to 2.65 g ozone / g total biomass removed.

第2セットの実験
これらの実験は、第1セットの実験を裏付けるため、および、4分、5分間適用についての不足するデータを完全にするために行われた。図5にみられるように、4分、6分間適用において、1日目のCODの放出にはそれほどの差はない。しかし、6分間適用では、時間とともにCODの放出の増加がみられた。この状況は、6分間適用は、より多くの生きたバイオマスを破壊したことを示唆している。4分間適用における残存するより多くの活性バイオマスにより、曝気の間より多くのCOD消費がみられた。
Second set of experiments These experiments were performed to support the first set of experiments and to complete the missing data for the 4 min, 5 min application. As can be seen in FIG. 5, there is not much difference in the release of COD on day 1 in 4 and 6 minute applications. However, the 6 minute application showed an increase in COD release over time. This situation suggests that the 6 minute application destroyed more live biomass. More COD consumption during aeration was seen due to more active biomass remaining in the 4 minute application.

この挙動は図7に示されたMLVSS測定値から理解される。4分間適用の場合、MLVSSの減少は3日目終了時において止まったが、一方で、6分間適用においてはまだ続いていた。図6に示されたMLSSの挙動もまた、この観察を裏付ける。4分間適用においては、3日目終了時においてMLSSは変化がなかったが、6分間適用においてはMLSSの減少がまだ続いていた。   This behavior is understood from the MLVSS measurements shown in FIG. In the 4 minute application, the reduction in MLVSS stopped at the end of the third day, while still continuing in the 6 minute application. The MLSS behavior shown in FIG. 6 also confirms this observation. In the 4 minute application, the MLSS did not change at the end of the third day, but in the 6 minute application, the MLSS still continued to decrease.

酸素消費速度(OCR)
4分、6分間適用後の残存するバイオマスの安定化状態は、OCRデータを見ることによって評価した。これらのデータを表3に示す。この表にみられるように、すべてのフラスコにおける酸素消費速度は実験期間とともに減少していた。試験フラスコにおけるOCRは、対照フラスコと比較してはるかに遅い速度で進行した。特に、6分間適用のフラスコでは、実験後にはフラスコにバイオマスがほとんど残存していなかったため、最大の下落がここで観測された。フラスコ内に放出されたCODが生物学的に分解可能かどうかを決定するため、酸素の取り込みの速度が既知のバイオマス・シードを、4日間の各日において6分間のオゾン処理を行った試料の上清に加え、OCRを測定した。当該シードのdO/dt値は−0.0004 mg/hであり、当該シードが加えられた試料のdO/dt値は−0.0006 mg/hであったことから、6分間適用において放出されたCODは生物学的に分解可能であることが結論づけられた。
Oxygen consumption rate (OCR)
The stabilization state of the remaining biomass after application for 4 or 6 minutes was evaluated by looking at the OCR data. These data are shown in Table 3. As can be seen in this table, the oxygen consumption rate in all flasks decreased with the duration of the experiment. OCR in the test flask proceeded at a much slower rate compared to the control flask. In particular, in the flask applied for 6 minutes, the biomass was not left in the flask after the experiment, and the maximum decline was observed here. To determine if the COD released into the flask is biologically degradable, a biomass seed with a known oxygen uptake rate was taken from a sample that had been subjected to 6 minutes of ozone treatment on each day for 4 days. In addition to the supernatant, OCR was measured. Since the dO / dt value of the seed was -0.0004 mg / h and the dO / dt value of the sample to which the seed was added was -0.0006 mg / h, it was released in the application for 6 minutes. It was concluded that COD is biologically degradable.

Figure 2013509993
Figure 2013509993

結果
好気性消化は、とりわけリン処理プロセスに適用される、汚泥除去技術である。生物学的に吸収されたリンが再放出されないように、そのような汚泥は嫌気状態に晒すべきではない。本実験の結果、リンが豊富な汚泥が得られる場合、これは、副次的な目的に利用し得ることが結論づけられた。実験後において、CODだけでなく、リンもまた、培養液中に放出され得ることを考慮して、6分間オゾン処理された試料における総リンおよびオルトリンを実験後に分析した。1日目において、汚泥中の総リンは11,36 mg/Lと記録され、オゾン処理の後、オルトリンは3.6 mg/Lと測定された。初期には0.006 gのリンが単位グラムのバイオマスに存在しており、その後、この数値は、0.0082に増加した。このことから、オゾン処理の試験の間、それほどの量のリンは培養液中に放出されないことが理解される。
Results Aerobic digestion is a sludge removal technique that is applied inter alia to the phosphorus treatment process. Such sludge should not be exposed to anaerobic conditions so that biologically absorbed phosphorus is not re-released. As a result of this experiment, it was concluded that if a sludge rich in phosphorus is obtained, it can be used for secondary purposes. After the experiment, total phosphorus and ortholine in the 6 minute ozonated sample were analyzed after the experiment, considering that not only COD but also phosphorus could be released into the culture medium. On the first day, total phosphorus in the sludge was recorded as 11,36 mg / L, and after ozonation, orthorin was measured at 3.6 mg / L. Initially 0.006 g of phosphorus was present in a unit gram of biomass, after which this number increased to 0.0082. From this it is understood that not much phosphorus is released into the culture during the ozone treatment test.

汚泥処理の重要な目的のひとつは、汚泥の殺菌であることが知られている。これについての考えを持つため、汚泥中の大腸菌の数を測定した。初期には、水中で汚泥を均質化して得られた液体において、800コロニー/100mLの大腸菌が記録されたが、オゾン処理後にはコロニーはまったく記録されなかった。   One of the important purposes of sludge treatment is known to be sterilization of sludge. In order to have an idea about this, the number of E. coli in the sludge was measured. Initially, 800 colonies / 100 mL of E. coli were recorded in the liquid obtained by homogenizing sludge in water, but no colonies were recorded after ozone treatment.

本実験の結果、間欠的なオゾン処理技術によって、4日間という短い期間で、消化されていない汚泥の安定化および消化が達成できた。これに伴い、生成された汚泥は、大腸菌に関して殺菌されており、また、リンが富化されていることがわかった。さらに、実験から、培養液中に放出されたCODは、生物学的に分解可能であり、系に戻して再循環させることができ得ることがわかった。   As a result of this experiment, stabilization and digestion of undigested sludge could be achieved in a short period of 4 days by intermittent ozone treatment technology. Along with this, it was found that the produced sludge was sterilized with respect to E. coli and was enriched with phosphorus. Furthermore, experiments have shown that COD released into the culture medium is biologically degradable and can be recycled back into the system.

得られた実験の結果に基づき、最初の3日間において、4分間と6分間のオゾン処理は、MLSS、MLVSS、および、CODについて、同様の結果を与えたことがわかった。しかし、6分間のオゾン処理は安定化においてより効果的であることから、最初の3日間は4分間のオゾン処理を行い、続いて、4日目において6分間のオゾン処理を行うことがより効果的であるに違いない、と結論づけられた。文献的な数値によると、好気性消化における余剰汚泥の水理学的滞留時間は、10−15日(20℃)である(Metcalf Eddy 1991)。この期間後において、期待されるMLVSSの減少は約40−50%である。本発明において開発された、順次間欠的なオゾン投入方法によると、MLVSSは84%減少し(6分間のオゾン処理)、必要な接触時間は4日間であると決定された。   Based on the results of the experiments obtained, it was found that for the first 3 days, ozone treatment for 4 and 6 minutes gave similar results for MLSS, MLVSS, and COD. However, because the 6 minute ozone treatment is more effective in stabilization, it is more effective to perform the ozone treatment for 4 minutes for the first 3 days and then the ozone treatment for 6 minutes on the 4th day. It was concluded that it must be. According to literature figures, the hydraulic residence time of excess sludge in aerobic digestion is 10-15 days (20 ° C.) (Metcalf Eddy 1991). After this period, the expected reduction in MLVSS is about 40-50%. According to the sequential intermittent ozone charging method developed in the present invention, MLVSS was reduced by 84% (6 minutes of ozone treatment) and the required contact time was determined to be 4 days.

参考文献References

Figure 2013509993
Figure 2013509993
Figure 2013509993
Figure 2013509993
Figure 2013509993
Figure 2013509993

Claims (1)

汚水処理場に適用される、順時間欠的なオゾン投入による、好気性の汚泥消化方法であって、
単位グラムあたりの汚泥に対応するオゾンの必要量、および、汚泥の倍加時間を考慮しつつ、
好気性消化の間の曝気を停止することにより、継続的でなく間欠的に、かつ、順時的に、オゾンを余剰汚泥に投入する
ことを特徴とする、
好気性の汚泥消化方法。
An aerobic sludge digestion method applied to a sewage treatment plant by ozone input that is lacking in time,
While considering the required amount of ozone corresponding to sludge per gram and the doubling time of sludge,
By stopping aeration during aerobic digestion, ozone is introduced into surplus sludge not intermittently but intermittently and in a timely manner.
Aerobic sludge digestion method.
JP2012537845A 2009-11-04 2010-10-26 Digestion method of excess sludge by lack of normal time Expired - Fee Related JP5536894B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
TR2009/08245A TR200908245A2 (en) 2009-11-04 2009-11-04 Aerobic waste sludge digestion process with sequential, batch ozone dosing
TR2009/08245 2009-11-04
PCT/TR2010/000213 WO2011056159A1 (en) 2009-11-04 2010-10-26 Waste sludge digestion process by sequential intermittent ozone dosing

Publications (2)

Publication Number Publication Date
JP2013509993A true JP2013509993A (en) 2013-03-21
JP5536894B2 JP5536894B2 (en) 2014-07-02

Family

ID=43799435

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012537845A Expired - Fee Related JP5536894B2 (en) 2009-11-04 2010-10-26 Digestion method of excess sludge by lack of normal time

Country Status (5)

Country Link
US (1) US20120223012A1 (en)
EP (1) EP2496527B1 (en)
JP (1) JP5536894B2 (en)
TR (3) TR200908245A2 (en)
WO (1) WO2011056159A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9126855B2 (en) 2012-06-14 2015-09-08 Air Products And Chemicals, Inc. Methods for using ozone to enhance anaerobic digestion
CN106103361A (en) * 2014-04-29 2016-11-09 三菱电机株式会社 Sludge treatment equipment and method for sludge treatment
CN110898824B (en) * 2019-10-18 2021-04-16 中山大学 Sludge carbon-based nanocluster magnesium oxide catalyst and preparation method and application thereof

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0751691A (en) * 1993-08-13 1995-02-28 Kawasakishi Treatment of sewage
JPH09108699A (en) * 1995-10-20 1997-04-28 Kurita Water Ind Ltd Treatment of organic sludge
JPH09150185A (en) * 1995-11-30 1997-06-10 Ebara Corp Treatment of organic sewage
JPH09174071A (en) * 1995-12-27 1997-07-08 Ebara Corp Method for treating organic sewage and apparatus therefor
JPH09206782A (en) * 1996-02-01 1997-08-12 Ebara Corp Activated sludge treatment of organic sewage and apparatus therefor
JPH1142494A (en) * 1997-05-30 1999-02-16 Shokuhin Sangyo Kankyo Hozen Gijutsu Kenkyu Kumiai Treatment of waste water by ozone and ozone treating device
JPH11277095A (en) * 1998-03-27 1999-10-12 Kurita Water Ind Ltd Biological treatment of organic waste solution
JP2001191097A (en) * 1999-10-25 2001-07-17 Sumitomo Precision Prod Co Ltd Waste water treating method
JP2002224699A (en) * 2001-02-05 2002-08-13 Kurita Water Ind Ltd Treatment equipment for excess sludge
JP2003260497A (en) * 2002-03-12 2003-09-16 Kubota Corp Sludge treatment method and sludge treatment equipment
US20070119763A1 (en) * 2005-07-07 2007-05-31 Probst Thomas H Floating sequencing batch reactor and method for wastewater treatment

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0751691A (en) * 1993-08-13 1995-02-28 Kawasakishi Treatment of sewage
JPH09108699A (en) * 1995-10-20 1997-04-28 Kurita Water Ind Ltd Treatment of organic sludge
JPH09150185A (en) * 1995-11-30 1997-06-10 Ebara Corp Treatment of organic sewage
JPH09174071A (en) * 1995-12-27 1997-07-08 Ebara Corp Method for treating organic sewage and apparatus therefor
JPH09206782A (en) * 1996-02-01 1997-08-12 Ebara Corp Activated sludge treatment of organic sewage and apparatus therefor
JPH1142494A (en) * 1997-05-30 1999-02-16 Shokuhin Sangyo Kankyo Hozen Gijutsu Kenkyu Kumiai Treatment of waste water by ozone and ozone treating device
JPH11277095A (en) * 1998-03-27 1999-10-12 Kurita Water Ind Ltd Biological treatment of organic waste solution
JP2001191097A (en) * 1999-10-25 2001-07-17 Sumitomo Precision Prod Co Ltd Waste water treating method
JP2002224699A (en) * 2001-02-05 2002-08-13 Kurita Water Ind Ltd Treatment equipment for excess sludge
JP2003260497A (en) * 2002-03-12 2003-09-16 Kubota Corp Sludge treatment method and sludge treatment equipment
US20070119763A1 (en) * 2005-07-07 2007-05-31 Probst Thomas H Floating sequencing batch reactor and method for wastewater treatment

Also Published As

Publication number Publication date
TR200908245A2 (en) 2011-05-23
JP5536894B2 (en) 2014-07-02
EP2496527A1 (en) 2012-09-12
US20120223012A1 (en) 2012-09-06
TR201205151T2 (en) 2012-07-23
TR201910524T4 (en) 2019-08-21
EP2496527B1 (en) 2019-04-17
WO2011056159A1 (en) 2011-05-12

Similar Documents

Publication Publication Date Title
Zhang et al. Efficient step-feed partial nitrification, simultaneous Anammox and denitrification (SPNAD) equipped with real-time control parameters treating raw mature landfill leachate
Cui et al. Advanced nitrogen removal from low C/N municipal wastewater by combining partial nitrification-anammox and endogenous partial denitrification-anammox (PN/A-EPD/A) process in a single-stage reactor
Du et al. Simultaneous domestic wastewater and nitrate sewage treatment by DEnitrifying AMmonium OXidation (DEAMOX) in sequencing batch reactor
Molinuevo et al. Anammox for ammonia removal from pig manure effluents: effect of organic matter content on process performance
Wei et al. Aerobic granules formation and simultaneous nitrogen and phosphorus removal treating high strength ammonia wastewater in sequencing batch reactor
Chu et al. Nitrogen removal using biodegradable polymers as carbon source and biofilm carriers in a moving bed biofilm reactor
Wang et al. Enhanced nitrogen removal from nitrate-rich mature leachate via partial denitrification (PD)-anammox under real-time control
Cheng et al. Correlation of microbial community structure with pollutants removal, sludge reduction and sludge characteristics in micro-aerobic side-stream reactor coupled membrane bioreactors under different hydraulic retention times
Ma et al. Free nitrous acid pretreatment of wasted activated sludge to exploit internal carbon source for enhanced denitrification
Hongwei et al. Nitrite accumulation during the denitrification process in SBR for the treatment of pre-treated landfill leachate
Chen et al. Tertiary nitrogen removal using simultaneous partial nitrification, anammox and denitrification (SNAD) process in packed bed reactor
Hasan et al. On–off control of aeration time in the simultaneous removal of ammonia and manganese using a biological aerated filter system
JP4729718B2 (en) Organic waste treatment methods
He et al. Enhanced performance of tetracycline treatment in wastewater using aerobic granular sludge with in-situ generated biogenic manganese oxides
Huynh et al. Application of CANON process for nitrogen removal from anaerobically pretreated husbandry wastewater
Heidari et al. Evaluation and start-up of an electro-Fenton-sequencing batch reactor for dairy wastewater treatment
JP4835536B2 (en) Removal of organic substances and nitrogen from liquid to be treated
Zhang et al. Start-up of mainstream anammox process through inoculating nitrification sludge and anammox biofilm: Shift in nitrogen transformation and microorganisms
Huang et al. Identifying the mechanisms of sludge reduction in the sulfidogenic oxic-settling anaerobic (SOSA) process: Side-stream sulfidogenesis-intensified sludge decay and mainstream extended aeration
Guo et al. Optimization of high-rate TN removal in a novel constructed wetland integrated with microelectrolysis system treating high-strength digestate supernatant
Zhang et al. Food waste hydrolysate as a carbon source to improve nitrogen removal performance of high ammonium and high salt wastewater in a sequencing batch reactor
Ma et al. Efficient pollutant removal from deodorization wastewater during sludge composting using MBR-CANON process
JP5536894B2 (en) Digestion method of excess sludge by lack of normal time
Hu et al. Start-up and maintenance of indigenous microalgae-bacteria consortium treating toilet wastewater through partial nitrification and nitrite-type denitrification
JP2008155085A (en) Waste water treatment method and apparatus

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130716

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130723

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140422

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140424

R150 Certificate of patent or registration of utility model

Ref document number: 5536894

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees