JP4422363B2 - Toner and image forming method - Google Patents

Toner and image forming method Download PDF

Info

Publication number
JP4422363B2
JP4422363B2 JP2001130244A JP2001130244A JP4422363B2 JP 4422363 B2 JP4422363 B2 JP 4422363B2 JP 2001130244 A JP2001130244 A JP 2001130244A JP 2001130244 A JP2001130244 A JP 2001130244A JP 4422363 B2 JP4422363 B2 JP 4422363B2
Authority
JP
Japan
Prior art keywords
toner
silicone oil
image
fine particles
image forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001130244A
Other languages
Japanese (ja)
Other versions
JP2002174926A (en
Inventor
富美雄 近藤
裕士 山下
英樹 杉浦
八郎 登坂
理 内野倉
仁士 上田
嘉博 勝呂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2001130244A priority Critical patent/JP4422363B2/en
Publication of JP2002174926A publication Critical patent/JP2002174926A/en
Application granted granted Critical
Publication of JP4422363B2 publication Critical patent/JP4422363B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Fixing For Electrophotography (AREA)
  • Discharging, Photosensitive Material Shape In Electrophotography (AREA)
  • Dry Development In Electrophotography (AREA)
  • Developing Agents For Electrophotography (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、主に、電子写真、静電記録、静電印刷等に於ける静電荷像を現像する為の現像剤に使用されるトナー、それに用いられる外添剤及び該トナーを使用する電子写真画像形成方法に関する。
【0002】
【従来の技術】
電子写真、静電記録、静電印刷等に於いて使用される現像剤としては、キャリアとトナーから成る二成分系現像剤及び、キャリアを必要としない一成分系現像剤(磁性トナー、非磁性トナー)があり、静電潜像やプロセスに応じて正帯電トナーと負帯電トナーとがあることが知られている。
さらに、トナーの流動特性、帯電特性等を改善する目的でトナー粒子と各種金属酸化物等の無機粉末等を混合して使用する方法が提案されており、このような機能を持たせた添加剤は通常外添剤と呼ばれている。該無機粉末としては、例えば、二酸化珪素(シリカ)、二酸化チタン(チタニア)、酸化アルミニウム、酸化亜鉛、酸化マグネシウム、酸化セリウム、酸化鉄、酸化銅、酸化錫等が知られている。
さらに、これらの無機粉末表面の疎水性、帯電特性等を改質する方法が種々提案されているが、特にシリカや酸化チタン微粒子とジメチルジクロロシラン、ヘキサメチルジシラザン、シリコーンオイル等の有機珪素化合物とを反応させシリカ微粒子表面のシラノール基を有機基で置換し疎水化したシリカ微粒子が用いられている。
【0003】
これらのうちシリコーンオイルが、十分な疎水性を示し、かつ表面エネルギーが低いために、含有させるとトナーに優れた転写性を付与するので、好ましい疎水化処理剤として知られ、種々の提案がなされている。たとえば、特開平7−271087号公報や特開平8−29598号公報には、シリコーンオイルの添加量あるいは添加剤中の炭素含有率を規定することによって、高湿度下における現像剤の帯電性の安定性を確保することが開示されている。
しかしながら、シリコーンオイル含ませた添加剤は、このような利点があるものの、この添加剤を含有する現像剤を用いて得られる画像には、地肌汚れ、文字部やライン部、ドット部のエッジ部や中央部における転写後のぬけ(現像剤の転写されない部分)あるいは凹凸の激しい転写部材への転写時における凹部へ転写できないことによる白抜けが発生してしまい、その対策として例えば特開平11−212299号公報にはシリコーンオイルを液体成分として特定量含有させた無機微粒子を用いることが提案されているが、満足できる成果は得られないのが実情である。
【0004】
一方、昨今の電子写真プロセスを用いた複写、印刷分野では、オフセット印刷並みの高画質化はもちろんのこと、複写速度や印刷速度についてもオフセット印刷並みの高速化の要求が近年高まっている。この要求に対して、紙などの転写材の片面のみへの画像形成、いわゆる片面コピーにおける高速化については、最近ではかなりの程度の成果が得られているが、両面コピーにおける高速化については、未だ十分な技術的解決策が見出されていない。両面コピーの場合、特に転写材の片面にトナー画像を定着固定した後、片方の面にトナー画像を転写定着する方式を用いると、片面コピーの印刷時間に比べて約2倍の時間を要してしまい問題であった。
【0005】
そこで、定着前に両面にトナー画像を転写し、その後そのトナー画像を定着する方式の検討が行われ、その結果、転写材の両表面側に2つの静電荷像担持体を段違い的に設置し、片面上のトナー画像の転写が完了直後に、他方の面上のトナー画像を転写する方式が提案されている。
【0006】
この方式は静電荷像担持体を駆動させる手段の違いで二つに大別され、一つは静電荷像担持体自体にモーターやベルトなどの回転機構を設けて駆動させる方式であり、もう一方は回転機構を設けずに転写材を密着させて駆動させる方式である。
【0007】
前者は回転機構をもつ性格上、両面の印刷タイミングを制御することが難しく、より精密に制御するには、装置の精密化、複雑化が避けられず、コストアップや装置が大きくなるという欠点を抱えている。特に、多色画像が得られる装置においては、両面の印刷タイミングのズレだけでなく、多色画像特有の色ズレが発生し易く、これらを制御する為の装置への負担は、単色画像のみが得られる装置より増大している。
【0008】
後者の方式について図1にその代表例を示して説明する。この方式は、少なくとも転写材1をトナー画像5aが形成された静電荷像坦持体2aに密着させて、静電荷像坦持体2aを駆動させると同時に、トナー画像5aが転写部片面3aに転写され、更にトナー画像5bが形成された静電荷像坦持体2bに密着させて、静電荷像坦持体2bを駆動させると同時に、トナー画像5bが転写部のもう一方の面3bに転写される。
この方式では、静電荷像担持体を転写材の密着や静電気力などで駆動させ、即ち転写材による連れ回りで駆動させる為、現像、転写のタイミングは、前者に比べて容易にとりやすく、その結果両面の印刷タイミング及び色ズレが起きにくく、装置の簡素化が図れるといった利点がある。
【0009】
しかしながら、転写材を静電荷像担持体に密着させる為、転写材と静電荷像担持体間に存在するトナーは転写材から大きな圧力を受けて、トナーの静電荷像担持体への付着力が増大し、画像における文字部やライン部、ドット部のエッジ部や中央部における転写後の抜け(トナーの転写されない部分:虫食い)が発生している。
【0010】
この転写不良を解決する為には、従来より、シリカ等の無機微粒子をトナーの添加剤として用いることが検討されてきたが、未だ満足のいく品質のものが得られていない。なぜなら、いたずらに添加剤を増加させるだけでは、副作用として定着不良が発生する為、転写品質と定着品質の両立を高水準で確保するのが困難だからである。
【0011】
【発明が解決しようとする課題】
本発明は、シリコーンオイルで処理された無機微粒子を含有するトナーの利点を活かしながら、シリコーンオイルで処理された無機微粒子を改良して上記の各種問題を解決することをその課題とするものである。
すなわち、本発明の第一の課題は、転写抜けのない安定した画像を形成できる現像剤及びそれに用いられる外添剤を提供し、これを用いた電子写真画像形成方法及び画像形成装置を提供し、さらに前記現像剤を収納した容器を提供することにある。
本発明の第二の課題は、静電荷像担持体を少なくとも転写材の密着で駆動させる画像形成方法において高速な複写及び印刷要求に対しても、転写抜けのない安定した画像を形成できる現像剤及びそれに用いられる外添剤を提供し、これを用いた電子写真画像形成方法を提供することである。
本発明の第三の課題は、転写品質と定着品質の両立を高水準で確保可能な現像剤及びそれに用いられる外添剤を提供し、これを用いた電子写真画像形成方法を提供することにある。
本発明の第四の課題は、前記現像剤を用いた画像形成装置を提供し、さらに前記現像剤を収納した容器を提供することにある。
なお、明細書で言う転写材とは、静電荷像担持体から、直接、トナー像を転写し、転写材自体が定着媒体となる物を指す。具体的には紙、OHPシート等を指す。
【0012】
【課題を解決するための手段】
本発明者らは、シリコーンオイルの表面エネルギーが低いことに注目し、この物性を活かして前記課題を解決すべく検討した結果、無機微粒子に含ませたシリコンオイルの遊離率が、得られる画像特性、特に転写抜け発生の有無に深く関係していることを見出し、本発明を完成するに至った。即ち、本発明によれば、以下に電子写真トナー用外添剤及びその製造方法、電子写真用トナー、二成分現像剤、画像形成方法、トナーを収納した容器及び二成分現像剤を収納した容器が提供される。
<1> 少なくとも結着樹脂と着色剤と外添剤からなる電子写真用トナーであって、該外添剤がシリコーンオイルを含む無機微粒子(シリコーンオイル処理の前に予めシランカップリング剤による処理を行って得られるものを除く)からなり、該シリコーンオイルの遊離率が30〜70%である電子写真用トナーを使用し、静電荷像担持体を少なくとも転写材の密着で駆動させる方式を用いることを特徴とする画像形成方法。
<2> 該シリコーンオイルの遊離率が30〜50%であることを特徴とする、<1>に記載の画像形成方法
<3> 該無機微粒子がシリカと酸化チタンのいずれか一方又は双方であることを特徴とする、<1>又は<2>に記載の画像形成方法
<4> 該電子写真用トナーの重量平均粒径が15μm以下である、<1>〜<3>のいずれかに記載の画像形成方法。
<5> 該外添剤よりも一次粒子の平均粒径が小さい無機微粒子を含むことを特徴とする、請求項<1>〜<4>のいずれかに記載の画像形成方法。
<6> 該外添剤よりも平均粒径の大きな樹脂微粒子を含むことを特徴とする、<1>〜<3>のいずれか又は<5>に記載の画像形成方法。
<7> 該電子写真用トナーの円形度が0.93以上であることを特徴とする、<1>〜<5>のいずれかに記載の画像形成方法。
<8> 画像の定着方法として少なくとも非接触加熱定着方式を用いることを特徴とする、<1>〜<7>のいずれかに記載の画像形成方法。
【0013】
【発明の実施の形態】
本発明による電子写真トナー用外添剤は、シリコーンオイルを含む無機微粒子からなり、該シリコーンオイルの遊離率が10〜70%、好ましくは30〜50%であることを特徴とする。
本発明者らは、シリコーンオイルを含む無機微粒子からなる外添剤において、シリコーンオイル遊離率が特定範囲のものを用いると、どのような転写材に対しても、転写抜けがなく、定着品質の優れた画像を形成できるトナー及びこれを用いた画像形成方法を提供できることを見出した。これらの効果は以下に述べる理由によるものと考えられる。
【0014】
外添剤中に無機微粒子から適度に遊離できるシリコーンオイルが存在すると、その遊離したシリコーンオイルは、静電荷像担持体に対して極微量常に供給されつづけ、またその表面エネルギーが低いために極めて短時間で静電荷像担持体表面に広がり、潜像担持体の摩擦係数を下げることができる。
更に、遊離したシリコーンオイルは、同種シリコーンオイルで処理された添加剤(無機微粒子)で囲まれているトナー間の付着力を上げ、逆に静電荷像担持体との付着力を低下させることができる。通常、文字部、ライン部やドットのエッジや中央などのトナーが多く付着した部分が転写材により圧縮され、静電荷像担持体との付着性が高まり転写電界では移動できなくなると、転写抜けが起こる。しかし、適度に遊離したシリコーンオイルが存在すると潜像担持体との付着力が下がり、転写材により強く圧縮されても転写時の抜けが起こらなくなると考えられる。
ところが、遊離シリコーンオイルが多すぎると、トナー同士の凝集性が大きすぎるために現像時にトナー粒子単独で移動しないため、高精細な画像を表現できなかったり、適正な画像濃度が実現できないといった問題が生ずる。そして、その問題は、シリコーンオイルの遊離量の規定により解決される。
【0015】
本明細書で言うシリコーンオイルの遊離率とは、無機微粒子の処理に用いられているシリコーンオイル総量に占める遊離シリコーンオイルの割合(重量百分率)を意味する。したがって微粒子単位重量当たりの遊離シリコーンオイル量が等しくても、微粒子の粒子径や表面積により遊離率は異なる。
【0016】
更に、本発明者らは、前述の外添剤を含むトナーと非接触加熱方式を組合せることによって、ドット再現性を高水準で確保できることを見出した。非接触加熱方式は、定着ロールやベルトを用いた接触方式と比べて、未定着画像に接触しない為、定着工程でのドット再現性のロスはほとんど発生しない。しかし、その一方でロール等で得られる圧延効果がない分、画像光沢については、接触方式に比べて劣る所があった。
【0017】
しかしながら、本発明のトナーを用いると、転写品質を損なわなくとも、添加剤量を極力減らすことが可能となった為、従来より、トナー中の樹脂面が露出し、トナー間の溶融が進みやすくなった。これにより、虫食いに代表される転写品質、定着性と画像光沢に代表される定着品質及びドット再現性の両立を高水準で確保することが可能となった。また、非接触溶融法で定着され、本発明によるトナーによって作られる画像で光沢を制御するためには、さらに像を均一にするために加熱された圧力ローラーで定着像(即ち融着されたトナー粒子)の後処理を加えることが有益である。所望により、融着された像と後処理ローラーの間の良好な不粘着性のために必要な場合、後処理ローラーの表面上に不粘着性化合物(例えばシリコンオイル、液体ワックスなど)をもたらすことができる。この後処理は、先述の定着ローラーなどの接触方式とは異なり、既に非接触加熱方式で定着された後に用いる為、必要以上に加熱圧力することはなく、ドット再現性のロスは最小限で済む。
【0018】
次に、高速型画像形成について説明する。
普及型の複写速度及び印刷速度が得られる装置では、前述のトナー構成で問題ないが、より高速が求められる場合には、普及型に比べて、以下の2点が転写品質と定着品質の両立を阻むことが判った。
▲1▼高速化する為には、静電荷像担持体の回転速度を増す必要があるが、本機構では転写材の連れ回りで高速化する化する為、転写材からの圧力は増大し、その結果、転写不良が発生する。
▲2▼高速化する為には、定着時間を短縮化する為、定着部からの時間当たりの熱供給は減少し、その結果、定着不良が発生する。また、上記▲1▼の対策で、添加剤の量を増加させる手段を用いると定着品質は更に悪化する。
【0019】
また、複写物や印刷物の広幅対応を静電荷像担持体の幅で対応する場合や静電荷像担持体の寿命を静電荷像担持体の面積で対応する場合においても、より高速化する場合と同様な現象が発生した。これは、いずれも静電荷像担持体自体が重量化し、そして、重量化された静電荷像担持体を少なくとも転写材の密着で駆動させる為には、より転写材からの圧力が得られないと、駆動させることが出来ないからである。
【0020】
本発明者らは、このような静電荷像担持体を少なくとも転写材の密着で駆動させる方式に対しても、本発明の外添材を含むトナーを用いると、静電荷像担持体をより高速で駆動させても、或いは重量化させても、転写品質と定着品質が高水準で両立できることを見出した。これは、シリコーオイルの重要な特異性である低表面エネルギーの効果により、紙等の転写材からの圧力が加わっても、静電荷像担持体とトナー間の付着力が低減できるものと考えられる。これにより、無機微粒子からなる添加剤の量を定着品質に影響の無い、或いはむしろ定着品質が向上出来うる範囲まで調整することが可能となった。
【0021】
(トナーの円形度)
本発明によるトナーは、特定の形状を持たせるとより有効であり、トナーの形状がキャリアとの接触による帯電や、現像ロールとトナー層規制部材や供給ローラとの間に挟まれるトナーの帯電性や均一薄層性をほぼ決定する。
球形からあまりに離れた不定形の形状では、トナーの薄層が薄すぎ、十分な現像量が得られない。またあまりに球形に近いと層規制部材や、供給ローラを通過しやすく、現像過多になり易く、その結果画像品質に影響を及ぼし、濃度の上がりすぎ、細線つぶれ、画像ボケの発生、過剰な光沢等をもたらすことがある。
従って本発明において、特に適正な濃度の再現性のある高精細な画像を形成するのにはトナーが特定の形状を有することが好ましい。本発明の場合、その円形度は0.93以上、特に0.95以上に規程することが好ましい。
【0022】
なお、形状の計測方法としては、粒子を含む懸濁液を平板上の撮像部検知帯に通過させ、CCDカメラで光学的に粒子画像を検知し、解析する光学的検知帯の手法が適当である。この手法で得られる投影面積の等しい相当円の周囲長を実在粒子の周囲長で除した値である円形度が0.95から0.99の範囲のトナーが適正な濃度の再現性のある高精細な画像を形成するのに有効であることが判明した。
この値はフロー式粒子像分析装置FPIA−1000(東亜医用電子株式会社製)により平均円形度として計測できる。具体的な測定方法としては、容器中の予め不純固形物を除去した水100〜150ml中に分散剤として界面活性剤、好ましくはアルキルベンゼンスフォン酸塩を0.1〜0.5ml加え、更に測定試料を0.1〜0.5g程度加える。試料を分散した懸濁液は超音波分散器で約1〜3分間分散処理を行ない、分散液濃度を3000〜1万個/μlとして前記装置によりトナーの形状を測定する。
【0023】
(無機微粒子の疎水化処理)
本発明に用いられる無機微粒子の疎水化方法としては、無機微粒子と反応或いは物理吸着する有機ケイ素化合物で化学的に処理する方法が用いられる。好ましい方法は、金属ハロゲン化合物の蒸気相酸化により生成された無機微粒子を有機ケイ素化合物で処理する方法である。
【0024】
疎水化処理に用いる有機ケイ素化合物の例としては、ヘキサメチルジシラザン、トリメチルシラン、トリメチルクロルシラン、トリメチルエトキシシラン、ジメチルジクロルシラン、メトルトリクロルシラン、アリルジメチルクロルシラン、アリルフェニルジクロルシラン、ベンジルジメチルクロルシラン、ブロムメチルジメチルクロルシラン、α−クロルエチルトリクロルシラン、ρ−クロルエチルトリクロルシラン、クロルメチルジメチルクロルシラン、トリオルガノシリルメルカプタン、トリメチルシリルメルカプタン、トリオルガノシリルアクリレート、ビニルジメチルアセトキシシラン、ジメチルエトキシシラン、ジメチルジメトキシシラン、ジフェニルジエトキシシラン、ヘキサメチルジシロキサン、1,3−ジビニルテトラメチルジシロキサン、1,3−ジフェニルテトラメチルジシロキサンおよび1分子当り2から12個のシロキサン単位を有し末端に位置する単位にそれぞれ1個宛のSiに結合した水酸基を含有するジメチルポリシロキサン等がある。
【0025】
未処理のシリカ微粒子の疎水化には、含窒素シランカップリング剤を用いることができる。
そのような処理剤の例としては、アミノプロピルトリメトキシシラン、アミノプロピルトリエトキシシラン、ジメチルアミノプロピルトリメトキシシラン、ジエチルアミノプロピルトリメトキシシラン、ジプロピルアミノプロピルトリメトキシシラン、ジブチルアミノプロピルトリメトキシシラン、モノブチルアミノプロピルトリメトキシシラン、ジオクチルアミノプロピルトリメトキシシラン、ジブチルアミノプロピルジメトキシシラン、ジブチルアミノプロピルモノメトキシシラン、ジメチルアミノフェニルトリエトキシシラン、トリメトキシシリル−γ−プロピルフェニルアミン、トリメトキシシリル−γ−プロピルベンジンアミン、トリメトキシシリル−γ−プロピルピペリジン、トリメトキシシリル−γ−プロピルモルホリン、トリメトキシシリル−γ−プロピルイミダゾール等がある。これらの処理剤は1種あるいは2種以上の混合物で用いられる。
【0026】
本発明では、疎水化処理された又は疎水化処理されていない無機微粒子をシリコーンオイル処理する。この場合のシリコーンオイルとしては、ジメチルシリコーンオイル、メチルフェニルシリコーンオイル、クロルフェニルシリコーンオイル、メチルハイドロジェンシリコーンオイル、アルキル変性シリコーンオイル、フッ素変性シリコーンオイル、ポリエーテル変性シリコーンオイル、アルコール変性シリコーンオイル、アミノ変性シリコーンオイル、エポキシ変性シリコーンオイル、エポキシ・ポリエーテル変性シリコーンオイル、フェノール変性シリコーンオイル、カルボキシル変性シリコーンオイル、メルカプト変性シリコーンオイル、アクリル、メタクリル変性シリコーンオイル、αメチルスチレン変性シリコーンオイル等が使用できる。これらのシリコーンオイルは1種あるいは2種以上の混合物で用いられる。
【0027】
本発明においては、これらのシリコーンオイルで処理された無機微粒子において、そのシリコーンオイル遊離率が10〜70%に規定するが、さらに該遊離率が30〜50%のものは、特に画像抜け防止のために好ましい。
また、シリコーンオイルで処理された無機微粒子の疎水化度は、30〜100の範囲であることが特に好ましい。この疎水化度は、以下に示すメタノール滴定試験によって測定されるものである。
【0028】
(メタノール滴定試験)
疎水化処理された無機微粒子0.2gをビーカー中の水50mlに添加する。この混合物をマグネティックスターラーで撹拌しながら、メタノールを滴下し、疎水化処理された無機微粒子の全量が湿潤されるまで滴下する。全量が湿潤した時点を終点とする。疎水化度は終点に達した際のメタノールと水との液状混合物中のメタノールの百分率として表される。
【0029】
(無機微粒子)
本発明で外添剤として用いる無機微粒子としては、例えばシリカ、アルミナ、酸化チタン、チタン酸バリウム、チタン酸マグネシウム、チタン酸カルシウム、チタン酸ストロンチウム、酸化鉄、酸化銅、酸化亜鉛、酸化スズ、ケイ砂、クレー、雲母、ケイ灰石、ケイソウ土、酸化クロム、酸化セリウム、ベンガラ、三酸化アンチモン、酸化マグネシウム、酸化ジルコニウム、硫酸バリウム、炭酸バリウム、炭酸カルシウム、炭化ケイ素、窒化ケイ素などを挙げることができる。その中でも特にシリカと酸化チタンが好ましい。その添加量は、トナーに対し0.1から5重量%、好ましくは0.3から3重量%である。
【0030】
本発明に好ましく用いられる無機微粒子としては、日本アエロジル社製のMOX80(平均粒子径、約30nm)、OX50(平均粒子径、約40nm)及びTT600(平均粒子径、約40nm)、出光興産社製のIT−PB(平均粒子径、約40nm)及びIT−PC(平均粒子径、約60nm)、富士チタン工業社製のTAF110A(平均粒子径、約40〜50nm)及びTAF510(平均粒子径、約40〜50nm)等を示すことができる。
また、これらの微粒子は、電子写真用トナーとして用いる際には、単独で用いても2種以上混合して用いても良い。
【0031】
(無機微粒子粒子径)
シリコーンオイルで処理された無機微粒子の一次粒子の平均粒径は、特に限定されるものでないが、大きくてもせいぜい100nmであり、70nm以下が好ましい。平均粒径が100nmより大きいと、無機微粒子の表面積が少なくなり、担持できるシリコンオイルの全体量も少量になり、遊離率を前記範囲に設定してもその効果は発揮しにくくなる。また、ここでの平均粒径は、数平均の粒子径である。
【0032】
本発明に使用される無機微粒子の粒子径は、動的光散乱を利用する粒径分布測定装置、例えば大塚電子社製のDLS−700やコールターエレクトロニクス社製のコールターN4により測定可能である、しかし、シリコーンオイル処理後の粒子の二次凝集を解離することは困難であるため、走査型電子顕微鏡もしくは透過型電子顕微鏡により得られる写真より直接粒径を求めることが好ましい。より好ましくはトナー表面の外添剤をFE−SEM(電界放出型走査電子顕微鏡)により10万倍の倍率で観察することが好ましい。この場合少なくとも100個以上の無機微粒子を観察しその長径の平均値を求める。トナー表面で外添剤が凝集構造をとっている場合は凝集体を構成する単独の一次粒子の長径を求める。
【0033】
(シリコーンオイル処理方法)
無機微粒子をシリコーンオイル処理するには、あらかじめ数百℃のオーブンで充分脱水乾燥した無機微粒子とシリコーンオイルを均一に接触させ、シリコーンオイルを無機微粒子表面に付着させる。シリコーンオイルを付着させるには、無機微粒子粉体とシリコーンオイルを回転羽根等の混合機により充分粉体のまま混合させたり、シリコーンオイルが希釈できる比較的低沸点の溶剤によりシリコーンオイルを溶解させ、無機微粒子粉体を液中に含浸させ溶剤を除去乾燥させればよい。シリコーンオイルの粘度が高い場合には液中で処理するのが好ましい。
【0034】
その後シリコーンオイルが付着した無機微粒子粉体を100℃から数百度(通常400℃程度)のオーブン中で熱処理を施すことにより、無機微粒子粉体表面の水酸基を用いて金属とシリコーンオイルとのシロキサン結合を形成させたり、シリコーンオイル自身をさらに高分子化、架橋することができる。あらかじめシリコーンオイル中に酸やアルカリ、金属塩、オクチル酸亜鉛、オクチル酸錫、ジブチル錫ジラウレート等の触媒を含ませて反応を促進させても良い。
【0035】
本発明で用いる無機微粒子は、シリコーンオイル処理の前にあらかじめシランカップリング剤等の疎水化剤による処理を行っておいても良い。あらかじめ疎水化されている無機粉体の方がシリコーンオイルの吸着量は多くなる。
【0036】
遊離シリコーンオイル量及び遊離していないシリコーンオイル量は、加熱処理によりほぼ決定される。本明細書で言う遊離していないシリコーンオイルとは、必ずしも無機微粒子表面と化学結合している必要はなく、微粒子表面の細孔等に物理吸着しているものも含まれる。
【0037】
(シリコーンオイル遊離率の測定)
シリコーンオイル遊離率は、以下の定量方法によって測定することができる。
【0038】
(1)遊離シリコーンオイルの抽出
試料をクロロホルムに浸漬、攪拌、放置する。遠心分離により上澄み液を除去した後の固形分に、新たにクロロホルムを加え、攪拌、放置する。この操作を繰り返し、遊離シリコーンオイルを取り除く。
(2)炭素量の定量
炭素量の定量は、CHN元素分析装置(CHNコーダー MT−5型(ヤナコ製))により測定した。
(3)シリコーンオイル遊離率の測定
シリコーンオイル遊離率は、下記の式により求めた。
シリコーンオイル遊離率=(C0−C1)/C0×100(%)
0:抽出操作前の試料中炭素量
1:抽出操作後の試料中炭素量
【0039】
(その他の無機微粒子)
本発明においては、本発明の外添剤とともに、表面処理を施さない公知の無機微粒子及び/又はシリコーンオイル以外の疎水化処理剤により表面処理された公知の無機微粒子を1種類以上合わせて使用しても良い。疎水化処理剤としては、例えばシランカップリング剤、シリル化剤、フッ化アルキル基を有するシランカップリング剤、有機チタネート系カップリング剤、アルミニウム系のカップリング剤などが好ましい表面処理剤として挙げられる。
併用する無機微粒子は、シリコーンオイルによって処理された無機微粒子よりも平均粒子径が小さいものである。この小さな無機微粒子によってトナー表面の被覆率が上がり適切な流動性を現像剤に与えることができ、現像時における潜像に対する忠実再現性や現像量を確保することができる。また現像剤保存時のトナーの凝集、固化を防止することができる。その添加量は、トナーに対し0.01から5重量%、好ましくは0.1から2重量%である。
【0040】
(トナーの構成材料)
トナー用のバインダー樹脂としては、ポリスチレン、ポリp−クロロスチレン、ポリビニルトルエンなどのスチレン及びその置換体の重合体;スチレン−p−クロロスチレン共重合体、スチレン−プロピレン共重合体、スチレン−ビニルトルエン共重合体、スチレン−ビニルナフタリン共重合体、スチレン−アクリル酸メチル共重合体、スチレン−アクリル酸エチル共重合体、スチレン−アクリル酸ブチル共重合体、スチレン−アクリル酸オクチル共重合体、スチレン−メタクリル酸メチル共重合体、スチレン−メタクリル酸エチル共重合体、スチレン−メタクリル酸ブチル共重合体、スチレン−α−クロルメタクリル酸メチル共重合体、スチレン−アクリロニトリル共重合体、スチレン−ビニルメチルケトン共重合体、スチレン−ブタジエン共重合体、スチレン−イソプレン共重合体、スチレン−アクリロニトリル−インデン共重合体、スチレン−マレイン酸共重合体、スチレン−マレイン酸エステル共重合体などのスチレン系共重合体;ポリメチルメタクリレート、ポリブチルメタクリレート、ポリ塩化ビニル、ポリ酢酸ビニル、ポリエチレン、ポリプロピレン、ポリエステル、エポキシ樹脂、エポキシポリオール樹脂、ポリウレタン、ポリアミド、ポリビニルブチラール、ポリアクリル酸樹脂、ロジン、変性ロジン、テルペン樹脂、脂肪族叉は脂環族炭化水素樹脂、芳香族系石油樹脂、塩素化パラフィン、パラフィンワックスなどが挙げられ、単独であるいは混合して使用できる。
【0041】
着色剤としては、公知の染料及び顔料が全て使用でき、例えば、カーボンブラック、ニグロシン染料、黒色酸化鉄(マグネタイト)、ナフトールイエローS、ハンザイエロー(10G、5G、G)、カドミュウムイエロー、黄色酸化鉄、黄土、黄鉛、チタン黄、ポリアゾイエロー、オイルイエロー、ハンザイエロー(GR、A、RN、R)、ピグメントイエローL、ベンジジンイエロー(G、GR)、パーマネントイエロー(NCG)、バルカンファストイエロー(5G、R)、タートラジンレーキ、キノリンイエローレーキ、アンスラザンイエローBGL、イソインドリノンイエロー、ベンガラ、鉛丹、鉛朱、カドミュウムレッド、カドミュウムマーキュリレッド、アンチモン朱、パーマネントレッド4R、パラレッド、ファイセーレッド、パラクロルオルトニトロアニリンレッド、リソールファストスカーレットG、ブリリアントファストスカーレット、ブリリアントカーンミンBS、パーマネントレッド(F2R、F4R、FRL、FRLL、F4RH)、ファストスカーレトVD、ベルカンファストルビンB、ブリリアントスカーレットG、リソールルビンGX、パーマネントレッドF5R、ブリリアントカーミン6B、ピグメントスカーレット3B、ボルドー5B、トルイジンマルーン、パーマネントボルドーF2K、ヘリオボルドーBL、ボルドー10B、ボンマルーンライト、ボンマルーンメジアム、エオシンレーキ、ローダミンレーキB、ローダミンレーキY、アリザリンレーキ、チオインジゴレッドB、チオインジゴマルーン、オイルレッド、キナクリドンレッド、ピラゾロンレッド、ポリアゾレッド、クロームバーミリオン、ベンジジンオレンジ、ペリノンオレンジ、オイルオレンジ、コバルトブルー、セルリアンブルー、アルカリブルーレーキ、ピーコックブルーレーキ、ビクトリアブルーレーキ、無金属フタロシアニンブルー、フタロシアニンブルー、ファストスカイブルー、インダンスレンブルー(RS、BC)、インジゴ、群青、紺青、アントラキノンブルー、ファストバイオレットB、メチルバイオレットレーキ、コバルト紫、マンガン紫、ジオキサンバイオレット、アントラキノンバイオレット、クロムグリーン、ジンクグリーン、酸化クロム、ピリジアン、エメラルドグリーン、ピグメントグリーンB、ナフトールグリーンB、グリーンゴールド、アシッドグリーンレーキ、マラカイトグリーンレーキ、フタロシアニングリーン、アントラキノングリーン、酸化チタン、亜鉛華、リトボン及びそれらの混合物が使用できる。
【0042】
着色剤の使用量は、一般にバインダー樹脂100重量部に対し0.1〜50重量部である。
【0043】
本発明の一成分系及び二成分系現像剤は、前記外添剤を含むが、必要に応じて帯電制御剤を含有してもよい。帯電制御剤としては公知のものが全て使用でき、例えばニグロシン系染料、トリフェニルメタン系染料、クロム含有金属錯体染料、モリブデン酸キレート顔料、ローダミン系染料、アルコキシ系アミン、4級アンモニウム塩(フッ素変性4級アンモニウム塩を含む)、アルキルアミド、燐の単体または化合物、タングステンの単体または化合物、フッ素系活性剤、サリチル酸金属塩及び、サリチル酸誘導体の金属塩等である。
【0044】
具体的には、ニグロシン系染料のボントロン03、第四級アンモニウム塩のボントロンP−51、含金属アゾ染料のボントロンS−34、オキシナフトエ酸系金属錯体のE−82、サリチル酸系金属錯体のE−84、フェノール系縮合物のE−89(以上、オリエント化学工業社製)、第四級アンモニウム塩モリブデン錯体のTP−302、TP−415(以上、保土谷化学工業社製)、第四級アンモニウム塩のコピーチャージPSY VP2038、トリフェニルメタン誘導体のコピーブルーPR、第四級アンモニウム塩のコピーチャージ NEG VP2036、コピーチャージ NX VP434(以上、ヘキスト社製)、LRA−901、ホウ素錯体であるLR−147(日本カーリット社製)、銅フタロシアニン、ペリレン、キナクリドン、アゾ系顔料、その他スルホン酸基、カルボキシル基、四級アンモニウム塩等の官能基を有する高分子系の化合物が挙げられる。
【0045】
本発明における帯電制御剤の使用量は、バインダー樹脂の種類、必要に応じて使用される添加剤の有無、分散方法を含めたトナー製造方法によって決定されるもので、一義的に限定されるものではないが、好ましくはバインダー樹脂100重量部に対して、0.1〜10重量部の範囲で用いられる。好ましくは、2〜5重量部の範囲がよい。10重量部を越える場合にはトナーの帯電性が大きすぎ、主帯電制御剤の効果を減退させ、現像ローラとの静電的吸引力が増大し、現像剤の流動性低下や、画像濃度の低下を招く。
【0046】
製造される現像剤に離型性を持たせる為に、製造される現像剤の中にワックスを含有させることが好ましい。前記ワックスは、その融点が40〜120℃のものであり、特に50〜110℃のものであることが好ましい。ワックスの融点が過大のときには低温での定着性が不足する場合があり、一方融点が過小のときには耐オフセツト性、耐久性が低下する場合がある。
【0047】
なお、ワックスの融点は、示差走査熱量測定法(DSC)によって求めることができる。すなわち、数mgの試料を一定の昇温速度、例えば(10℃/min)で加熟したときの融解ピーク値を融点とする。
【0048】
本発明に用いることができるワックスとしては、例えば、固形のパラフィンワックス、マイクロクリスタリンワックス、ライスワックス、脂肪酸アミド系ワックス、脂肪酸系ワックス、脂肪族モノケトン類、脂肪酸金属塩系ワックス、脂肪酸エステル系ワックス、部分ケン化脂肪酸エステル系ワックス、シリコーンワニス、高級アルコール、カルナウバワックスなどを挙げることができる。また低分子量ポリエチレン、ポリプロピレン等のポリオレフィンなども用いることができる。特に、環球法による軟化点が70〜150℃のポリオレフィンが好ましく、さらには当該軟化点が120〜150℃のポリオレフィンが好ましい。
【0049】
静電荷像担持体に残存する転写後の現像剤を除去するために、クリーニング性向上剤をトナーと併用することが好ましい。該クリーニング性向上剤としては、例えばステアリン酸亜鉛、ステアリン酸カルシウム、ステアリン酸などのような脂肪酸金属塩が挙げられる。クリーニング性向上剤の添加量は、トナーに対し0.01から5重量%が好ましく、さらに0.1から2重量%であることがより好ましい。
【0050】
また、本発明の外添剤は、樹脂微粒子と併用することによって現像剤の帯電性が強化でき、逆帯電のトナー粒子を減少させ、地肌汚れを低減することができる。樹脂微粒子の添加量は、トナーに対し0.01から5重量%が好ましく、さらに0.1から2重量%がより好ましい。
該樹脂微粒子としては、例えばソープフリー乳化重合や懸濁重合、分散重合によって得られるポリスチレン、メタクリル酸エステルやアクリル酸エステル共重合体やシリコーン、ベンゾグアナミン、ナイロンなどの重縮合系、熱硬化性樹脂による重合体粒子が挙げられ、比較的粒度分布が狭く、体積平均粒径が0.01から1μmのものが好ましい。
【0051】
本発明においては、疎水化処理された無機微粒子、シリコーンオイル処理された無機微粒子とともに、表面処理を施さない公知の無機微粒子を1種類以上合わせて使用しても良い。
【0052】
(トナーの製造方法)
本発明のトナーの製造には、少なくとも結着剤樹脂、主帯電制御剤および顔料を含むトナー成分を機械的に混合する工程と、溶融混練する工程と、粉砕する工程と、分級する工程とを有するトナーの製造方法が適用できる。また、機械的に混合する工程や溶融混練する工程において、粉砕または分級する工程で得られる製品となる粒子以外の粉末を戻して再利用する製造方法も含まれる。
【0053】
ここで言う“製品となる粒子以外の粉末”(副製品)とは、溶融混練する工程後、粉砕工程で得られる所望の粒径の製品となる成分以外の微粒子や粗粒子や引き続いて行われる分級工程で発生する所望の粒径の製品となる成分以外の微粒子や粗粒子を意味する。このような副製品を混合工程や溶融混練する工程で原料と好ましくは副製品1に対しその他原材料99から副製品50に対し、その他原材料50の重量比率で混合するのが好ましい。
【0054】
少なくとも結着剤樹脂、主帯電制御剤および顔料、副製品を含むトナー成分を機械的に混合する混合工程は、回転させる羽による通常の混合機などを用いて通常の条件で行えばよく、特に制限はない。
【0055】
以上の混合工程が終了したら、次いで混合物を混練機に仕込んで溶融混練する。溶融混練機としては、一軸、二軸の連続混練機や、ロールミルによるバッチ式混練機を用いることができる。例えば、神戸製鋼所社製のKTK型2軸押出機、東芝機械社製のTEM型押出機、ケイ・シー・ケイ社製の2軸押出機、池貝鉄工所社製のPCM型2軸押出機、ブス社製のコニーダー等が好適に用いられる。
この溶融混練は、バインダー樹脂の分子鎖の切断を招来しないような適正な条件で行うことが重要である。具体的には、溶融混練温度は、結着剤樹脂の軟化点を参考に行うべきであり、軟化点より低温過ぎると切断が激しく、高温過ぎると分散が進まない。
【0056】
以上の溶融混練工程が終了したら、次いで混練物を粉砕する。この粉砕工程においては、まず粗粉砕し、次いで微粉砕することが好ましい。この際ジェット気流中で衝突板に衝突させて粉砕したり、機械的に回転するローターとステーターの狭いギャップで粉砕する方式が好ましく用いられる。
【0057】
この粉砕工程が終了した後、或いは粉砕工程中に、粉砕物を遠心力などで気流中で分級し、所望の円形度と粒度をもつトナーを得る。円形度については、0.93以上であることが良く、好ましくは0.94以上である事が望ましい。また、粒度については、重量平均径が4〜20μmであることが望ましい。好ましくは、6〜10μmである。
【0058】
本発明で使用するトナーの重量平均径は、種々の方法によって測定できるが、本発明においてはマルチサイザーを用いて行った。すなわち、測定装置としてはマルチサイザーII(コールター社製)を用い、個数分布、体積分布を出力するインターフェース(日科機社製)及びパーソナルコンピューターを接続し、電解液は特級あるいは1級塩化ナトリウムを用いて1%NaCl水溶液を調製する。
【0059】
測定法としては、前記電解水溶液100〜150ml中に分散剤として界面活性剤、好ましくはアルキルベンゼンスルホン酸塩を0.1〜5ml加え、さらに測定試料を2〜20mg加える。試料を懸濁した電解液は超音波分散器で約1〜3分間分散処理を行い、前記マルチサイザーII型により、アパーチャーとして、トナー粒径を測定するときは、100μmアパーチャーを用いて測定した。トナーの体積、個数を測定して、体積分布と個数分布とを算出した。それから本発明に係わるところの体積分布から求めた重量基準の重量平均径を体積分布から求めた。
【0060】
本発明の外添剤は、前記トナーに対して添加混合して用いられる。外添剤の混合には、一般の粉体の混合機が用いられるが、ジャケット等を装備して、内部の温度を調節できるものが好ましい。外添剤に与える負荷の履歴を変えるには、途中または漸次外添剤を加えていけば良い。もちろん混合機の回転数、転動速度、時間、温度などを変化させてもよい。はじめに強い負荷を、次に比較的弱い負荷を与えても良いし、その逆でも良い。
使用できる混合設備の例としては、V型混合機、ロッキングミキサー、レーディゲミキサー、ナウターミキサー、ヘンシェルミキサーなどが挙げられる。
【0061】
また、本発明においては、前述の無機微粒子をトナー中に内添して用いても構わない。内添方法としては、溶融混練前の混合工程や溶融混練工程で他のトナー成分と同様に行われる。
【0062】
また、本発明においては、外添と内添を同時に行っても構わない。また、本発明で用いられる無機微粒子以外に前述した様なトナーの流動性や保存性、現像性、転写性を高めるために、他の添加剤を添加混合してもよい。
【0063】
本発明のトナーを2成分系現像剤に用いる場合には、磁性キャリアと混合して用いれば良く、現像剤中のキャリアとトナーの含有比は、キャリア100重量部に対してトナー1〜10重量部が好ましい。
【0064】
磁性キャリアとしては、粒子径20〜200μm程度の鉄粉、フェライト粉、マグネタイト粉、磁性樹脂キャリアなど従来から公知のものが使用できる。また、被覆材料としては、アミノ系樹脂、例えば尿素−ホルムアルデヒド樹脂、メラミン樹脂、ベンゾグアナミン樹脂、ユリア樹脂、ポリアミド樹脂、エポキシ樹脂等があげられる。またポリビニルおよびポリビニリデン系樹脂、例えばアクリル樹脂、ポリメチルメタクリレート樹脂、ポリアクリロニトリル樹脂、ポリ酢酸ビニル樹脂、ポリビニルアルコール樹脂、ポリビニルブチラール樹脂、ポリスチレン樹脂およびスチレンアクリル共重合樹脂等のポリスチレン系樹脂、ポリ塩化ビニル等のハロゲン化オレフィン樹脂、ポリエチレンテレフタレート樹脂およびポリブチレンテレフタレート樹脂等のポリエステル系樹脂、ポリカーボネート系樹脂、ポリエチレン樹脂、ポリ弗化ビニル樹脂、ポリ弗化ビニリデン樹脂、ポリトリフルオロエチレン樹脂、ポリヘキサフルオロプロピレン樹脂、弗化ビニリデンとアクリル単量体との共重合体、弗化ビニリデンと弗化ビニルとの共重合体、テトラフルオロエチレンと弗化ビニリデンと非弗化単量体とのターポリマー等のフルオロターポリマー、およびシリコーン樹脂等が使用できる。
【0065】
また、必要に応じて、導電粉等を被覆樹脂中に含有させてもよい。導電粉としては、金属粉、カーボンブラック、酸化チタン、酸化錫、酸化亜鉛等が使用できる。これらの導電粉は、平均粒子径1μm以下のものが好ましい。平均粒子径が1μmよりも大きくなると、電気抵抗の制御が困難になる。
【0066】
本発明のトナーはキャリアを使用しない1成分系の磁性トナー或いは、非磁性トナーとしても用いることができる。
本発明のトナーあるいは二成分現像剤は、ボトル型、カートリッジ型等の従来公知の容器に収納され、その容器の多くは画像形成装置とは別個に販売されて、ユーザーが画像形成装置に搭載し、使用されるのが一般的である。
【0067】
(フルカラー画像現像方法)
本発明における導電性ブラシを用いた非磁性一成分現像方式において特定の円形度を持つフルカラー用トナーを用いて多数回の現像を順次行い、転写媒体上に順次重ねて転写していく非磁性一成分フルカラープロセスにおいて特にハーフトーンの均一再現性にその効果を有効に利用できる。
本発明のフルカラー非磁性一成分画像形成方法とは、現像ローラおよび該現像ローラ上に供給する現像剤の層厚を均一に規制する現像ブレードを備えた複数の多色現像装置によって、導電性ブラシ帯電器及び露光装置によって感光体上に形成された各色に分割された静電潜像をそれぞれの色に対応する現像剤により順次現像し、転写媒体に転写する方法である。
この場合、感光体上の静電潜像の極性と非磁性一成分現像剤の極性とが同一である反転現像方式により現像することが好ましい。
また、感光体上の静電潜像と現像ローラを直接接触させて感光体よりも高速で現像ローラを回転させて現像することが好ましい。
本発明のトナーは、従来より公知であるコロトロン転写装置を備えた電子写真現像装置を用いてもその転写性は改善できるが、静電荷像担持体表面に転写材を介し転写手段を当接させトナー像を転写材に静電転写する電子写真現像装置に用いた場合、その効果はとりわけ有効なものとなる。
さらに、先述の図1に示されるような、静電荷像担持体自体に回転機構を設けずに転写材を密着させて駆動させて、トナー像を転写材に静電転写する電子写真現像装置に用いた場合にも、顕著な効果は得ることが出来る。
【0068】
【実施例】
以下に実施例および比較例を挙げて本発明について具体的に説明するが、本発明は、これらの実施例のみに限定されるものではない。また、以下の例おいて、部および%は、特に断りのない限り重量基準である。
【0069】
(外添剤の製造例)
300mlの三角フラスコに攪拌子を入れ、300csのポリジメチルシロキサンKF−96(300)(信越化学工業社製)2.73g(無機粉体100重量部に対し9.1重量部の処理量の場合)、トルエン100gを加え、マグネチックスターラーを用いて室温下で30分攪拌し、シリコーンオイルのトルエン溶液を得た。この溶液に処理用シリカOX−50(日本アエロジル社製)30gを1時間かけて徐々に添加していき、完全にシリカ粉体がシリコーンオイルのトルエン溶液に濡れた分散液を作成した。
【0070】
その後フラスコ内の分散液に超音波照射用プローブを差込み、UH−2C型超音波分散機(超音波工業社製)によってフラスコ外から水冷して冷却しながら1時間超音波分散した。フラスコの壁面を観察した結果、凝集物がないきわめて均一な分散液が生成していることを目視で確認した。
得られた分散液を500mlのナス型フラスコに移し、ロータリーエバポレーター(東京理科器械社製)を用いてフラスコのバス温40℃、10mmHgの減圧下で5時間処理してトルエンを溜去した。得られた固形物をステンレス製のバットに移し、減圧乾燥機(Yamato科学社製)にて設定温度50℃で恒量になるまで1mmHg以下の減圧下で乾燥し、表1に示す外添剤Aを得た。外添剤Aは、シリコーンオイル遊離率が78%で、本発明外のものである。
【0071】
シリコーンオイル遊離率を10〜70%にして本発明の外添剤を得るためには、シリコーンオイルの量を調整することが必要であり、シリコーンオイルの量を調整する以外の点は同様にして外添剤Bを作成した。
【0072】
シリコーンオイル遊離率が10〜70%範囲であってより有用な外添剤を生成するには、前述したように、加熱処理法を用いることが有効である。その一例を挙げて加熱処理法を説明する。
電気炉 OPERUSER(ADVANTEC社製)にて窒素気流下で酸素濃度を0.1%以下に保ちながら、所定の処置温度に達したら、前記の乾燥した外添剤Aを入れたステンレス製のバットを電気炉に入れ2時間その所定温度下に放置した後、シリカゲルによって乾燥されたデシケータにすぐに移して冷却した。得られた粉体が強い凝集状態の場合には、IDS型 ジェットミル(日本ニューマチック社製)により6kg/cm2の圧縮空気を供給して解砕することが必要である。
バグフィルターによって捕集し、シリコーンオイル遊離率が10〜70%の本発明の外添剤を得る。加熱処理する場合、遊離率を10〜70%にするためには、特に加熱温度を調整することが好ましい。このようにして、表1に示す外添剤C〜Hを生成した。
加熱処理は、このようにシリコーンオイルを無機微粒子に付着させた後に行うばかりでなく、シリコーンオイルを無機微粒子に付着させながら行うことも可能である。
【0073】
以上述べた本発明の外添剤の製法は、母体無機微粒子としてシリカに限らず、アルミナ、酸化チタン等のような他のものを用いる場合にも適用可能である。
この様な方法で製造した外添剤A〜Hを表1に示す。
(入れ替え.後にあった内容を前に持ってきた)
【0074】
【表1】
【0075】
実施例1〜11、参考例1、比較例1〜2
先ず次のようにして4色のトナー用母剤着色粒子を準備した。
(1)ブラック色の着色粒子の製造
水 1200部
フタロシアニングリーン含水ケーキ(固形分30%) 200部
カーボンブラック(MA60 三菱化学社製) 540部
上記材料をフラッシャーでよく撹拌する。ここに、ポリエステル樹脂(酸価;3、水酸基価;25、Mn;45000、Mw/Mn;4.0、Tg;60℃)1200部を加え、150℃で30分混練後、キシレン1000部を加えさらに1時間混練、水とキシレンを除去後、圧延冷却しパルペライザーで粉砕、マスターバッチ顔料を得た。
ポリエステル樹脂 100部
(酸価:3、水酸基価:25、Mn:45000、Mw/Mn4.0、Tg:60℃)
上記マスターバッチ 5部
帯電制御剤(オリエント化学社製 ボントロンE−84) 4部
上記材料をミキサーで混合後、2本ロールミルで溶融混練し、混練物を圧延冷却した。その後ジェットミルによる衝突板方式の粉砕機(I式ミル;日本ニューマチック工業社製)と旋回流による風力分級(DS分級機;日本ニューマチック工業社製)を行い、体積平均径13.5μmのブラック色の着色粒子を得た。
【0076】
(2)イエロー色の着色粒子の製造
水 600部
Pigment Yellow 17 含水ケーキ(固形分50%) 1200部
上記材料をフラッシャーでよく撹拌する。ここに、 ポリエステル樹脂(酸価;3、水酸基価;25、Mn;45000、Mw/Mn;4.0、Tg;60℃)1200部を加え、150℃で30分混練後、キシレン1000部を加えさらに1時間混練、水とキシレンを除去後、圧延冷却しパルペライザーで粉砕、さらに3本ロールで2パスし、マスターバッチ顔料を得た。
ポリエステル樹脂 100部
(酸価:3、水酸基価:25、Mn:45000、
Mw/Mn:4.0、Tg:60℃)
上記マスターバッチ 5部
帯電制御剤(オリエント化学社製、ボントロン E−84) 4部
上記材料をミキサーで混合後、2本ロールミルで溶融混練し、混練物を圧延冷却した。その後、ブラック色の着色粒子製造例と同様に粉砕分級を行い、体積平均径13.2μmのイエロー色の着色粒子を得た。
【0077】
(3)マゼンタ色の着色粒子の製造
水 600部
Pigment Red 57 含水ケーキ(固形分50%) 1200部
上記材料をフラッシャーでよく撹拌する。ここに、ポリエステル樹脂(酸価;3、水酸基価;25、Mn;45000、Mw/Mn;4.0、Tg;60℃)1200部を加え、150℃で30分混練後、キシレン1000部を加えさらに1時間混練、水とキシレンを除去後、圧延冷却しパルペライザーで粉砕、さらに3本ロールミルで2パスしマスターバッチ顔料を得た。
ポリエステル樹脂 100部
(酸価:3、水酸基価:25、Mn:45000、
Mw/Mn:4.0、Tg:60℃)
上記マスターバッチ 5部
帯電制御剤(オリエント化学社製、ボントロン E−84) 4部
上記材料をミキサーで混合後、2本ロールミルで溶融混練し、混練物を圧延冷却した。その後、ブラック色の着色粒子製造例と同様に粉砕分級を行い体積平均径13.5μmマゼンタ色の着色粒子を得た。
【0078】
(4)シアン色の着色粒子の製造
水 600部
Pigment Blue 15:3 含水ケーキ(固形分50%) 1200部
上記材料をフラッシャーでよく撹拌する。ここに、ポリエステル樹脂(酸価;3、水酸基価;25、Mn;45000、Mw/Mn;4.0、Tg;60℃)1200部を加え、150℃で30分混練後、キシレン1000部を加えさらに1時間混練、水とキシレンを除去後、圧延冷却しパルペライザーで粉砕、さらに3本ロールミルで2パスしマスターバッチ顔料を得た。
ポリエステル樹脂 100部
(酸価:3、水酸基価:25、Mn:45000、
Mw/Mn:4.0、Tg:60℃)
上記マスターバッチ 3部
帯電制御剤(オリエント化学社製、ボントロン E−84) 4部
上記材料をミキサーで混合後、2本ロールミルで溶融混練し、混練物を圧延冷却した。その後、ブラック色の着色粒子製造例と同様に粉砕分級を行い、体積平均径13.4μmのシアン色の着色粒子を得た。
【0079】
(外添剤との混合と得られたトナーの評価)
前記のようにして得られた4色の着色粒子100重量部と外添剤製造例で得られた外添剤1.0重量部をヘンシェルミキサーにより混合し、目開き50μmの篩を通過させることにより粗大粒子や凝集物を取り除くことにより電子写真用トナーを得た。表2にその組み合わせと得られたトナーの各種画像評価機での評価結果を示す。但し、実施例7は疎水性シリカR972(一次粒子径16nm、日本アエロジル社製)0.5重量部を併用し、実施例8はアクリル樹脂微粒子MP−1000(平均粒径400nm、総研化学社製)を0.5重量部併用し、実施例9はR972を0.5重量部とMP−1000を0.5重量部両者を併用してトナーを製造した。
2成分系現像剤で画像評価する場合は、シリコーン樹脂により0.3μmの平均厚さでコーティングされた平均粒径50μmのフェライトキャリアを用い、キャリア100重量部に対し各色トナー5重量部を容器が転動して攪拌される型式のターブラーミキサーを用いて均一混合し帯電させて、現像剤を作成した。
このようにして得られた現像剤を、静電荷像坦持体表面に転写材を介して転写手段を当接させトナー像を転写材に静電転写する電子写真現像装置で、下記の基準に従って評価を行い、その結果を表2に示す。
【0080】
【表2】
* D+、D++は他の外添剤を併用したことを意味する
【0081】
(カラートナー評価機)
得られたトナーは、(i)4色の現像部が非磁性一成分系現像剤を1つのベルト感光体に各色順次現像し、中間転写体に順次転写し、紙等に4色を一括転写する方式のフルカラーレーザープリンター イプシオ 5000(リコー社製、その概略図を図3に示す)(評価機A)、(ii)4色用の非磁性一成分系の現像部と4色用の感光体を有し、転写紙等に順次転写するタンデム方式のフルカラーLEDプリンター GL8300(富士通社製)(評価機B)、(iii)2成分系現像剤を有する4色の現像部によって1つのドラム状感光体に各色現像し、中間転写体に順次転写し、転写紙等に4色のトナーを一括転写する方式のフルカラーレーザー複写機 イマジオカラー 2800(リコー社製、概略図を図3で示す)(評価機C)により評価した。評価機AとBの現像部は弾性体からなる現像ローラーと層厚規制のステンレスブレードからなる非磁性一成分現像ユニットを搭載している。また、3種のすべての評価機は感光体上の静電潜像の極性と非磁性一成分現像剤の極性とが同一である反転現像方式である。
【0082】
(評価項目)
いずれの項目も7%画像面積の画像チャートを10000枚ランニング出力した後に以下に述べる評価を行った。
1)画像濃度
ベタ画像をリコー社製6000ペーパーに画像出力後、画像濃度をX−Rite(X−Rite社製)により測定。これを4色単独に行い平均を求めた。
2)細線再現性
600dpiの細線画像をリコー社製タイプ6000ペーパーに出力させ、細線のにじみ度合いを段階見本と比較した。ランク1が最低、ランク5が最高である。これを4色重ねて行った。
3)地肌汚れ
白紙画像を現像中に停止させ、現像後の感光体上の現像剤をテープ転写し、未転写のテープの画像濃度との差を938スペクトロデンシトメーター(X−Rite社製)により測定。
4)ハーフトーン再現性
1ドット(フルドット)書き込みと1ドットの空白からなる連続したハーフトーン画像を比較的ラフな表面を有す普通紙( ゼロックス社製 X4024ペーパー)に4色重ねて出力させ、ドットの再現度合いを段階見本と比較した。ランク1が最低、ランク5が最高である。
5)文字画像内部の白抜け(虫食い)
文字部画像をリコー社製タイプDXのOHPシートに4色重ねて出力させ、文字部の線画像内部が抜けるトナー未転写頻度を段階見本と比較した。ランク1が最低、ランク5が最高である。
【0083】
実施例12〜18、参考例2、比較例3〜4
図1に示されるような、静電荷像担持体自体に回転機構を設けずに転写材を密着させて駆動させて、トナー画像を転写材に転写させる方式に、本発明のトナーを適用した場合を確認した。この場合の定着方式としては、加熱された空気を供給して定着させるオーブン定着法を用いを用いた。図2に該実施例に用いた代表的なオーブン定着法の概念図を示す。この場合、転写材1とトナー5が加熱されたオーブン4を通過することによって、トナー5が転写材1上に定着される。
【0084】
次のようにして4色のトナー用母剤着色粒子を準備した。
(ブラック着色粒子)
水 1200部
フタロシアニングリーン含水ケーキ(固形分30%) 200部
カーボンブラック(MA60 三菱化学社製) 540部
上記材料をフラッシャーでよく撹拌する。ここに、エポキシポリオール樹脂(Mn;3800、Mw/Mn;3.9、Tg;59℃)1200部を加え、150℃で30分混練後、キシレン1000部を加えさらに1時間混練、水とキシレンを除去後、圧延冷却しパルペライザーで粉砕、マスターバッチ顔料を得た。
上記エポキシポリオール樹脂 100部
上記マスターバッチ 8部
サリチル酸亜鉛誘導体
(ボントロンE84、オリエント化学社製) 2部
上記材料をミキサーで混合後、2本ロールミルで溶融混練し、混練物を圧延冷却した。その後、粉砕分級を行い、重量平均粒径8.5μm、円形度0.92と0.94のブラック着色粒子2種を得た。
【0085】
(イエロー着色粒子)
水 600部
Pigment Yellow 17 含水ケーキ(固形分50%) 1200部
上記材料をフラッシャーでよく撹拌する。ここに、エポキシポリオール樹脂(Mn;3800、Mw/Mn;3.9、Tg;59℃)1200部を加え、150℃で30分混練後、キシレン1000部を加えさらに1時間混練、水とキシレンを除去後、圧延冷却しパルペライザーで粉砕、さらに3本ロールで2パスし、マスターバッチ顔料を得た。
上記エポキシポリオール樹脂 100部
上記マスターバッチ 8部
サリチル酸亜鉛誘導体
(ボントロンE84、オリエント化学社製) 2部
上記材料をミキサーで混合後、2本ロールミルで溶融混練し、混練物を圧延冷却した。その後、粉砕分級を行い、重量平均粒径8.5μm、円形度0.92と0.94のイエロー着色粒子2種を得た。
【0086】
(マゼンタ着色粒子)
水 600部
Pigment Red 57 含水ケーキ(固形分50%) 1200部
上記材料をフラッシャーでよく撹拌する。ここに、エポキシポリオール樹脂(Mn;3800、Mw/Mn;3.9、Tg;59℃)1200部を加え、150℃で30分混練後、キシレン1000部を加えさらに1時間混練、水とキシレンを除去後、圧延冷却しパルペライザーで粉砕、さらに3本ロールミルで2パスしマスターバッチ顔料を得た。
上記エポキシポリオール樹脂 100部
上記マスターバッチ 8部
サリチル酸亜鉛誘導体
(ボントロンE84、オリエント化学社製) 2部
上記材料をミキサーで混合後、2本ロールミルで溶融混練し、混練物を圧延冷却した。その後、粉砕分級を行い、重量平均粒径8.5μm、円形度0.92と0.94のマゼンタ着色粒子2種を得た。
【0087】
(シアン着色粒子)
水 600部
Pigment Blue 15:3 含水ケーキ(固形分50%) 1200部
上記材料をフラッシャーでよく撹拌する。ここに、エポキシポリオール樹脂(Mn;3800、Mw/Mn;3.9、Tg;59℃)1200部を加え、150℃で30分混練後、キシレン1000部を加えさらに1時間混練、水とキシレンを除去後、圧延冷却しパルペライザーで粉砕、さらに3本ロールミルで2パスしマスターバッチ顔料を得た。
上記エポキシポリオール樹脂 100部
上記マスターバッチ 8部
サリチル酸亜鉛誘導体
(ボントロンE84、オリエント化学社製) 2部
上記材料をミキサーで混合後、2本ロールミルで溶融混練し、混練物を圧延冷却した。その後、粉砕分級を行い、重量平均粒径8.5μm、円形度0.92と0.94のシアン着色粒子2種を得た。
【0088】
(添加剤との混合と得られたトナーの評価)
得られた4色×2種の着色粒子100重量部と、前述した外添剤を表3記載の添加量で、ヘンシェルミキサーにより混合した後、目開き50μmの篩を通過させることにより凝集物を取り除いて、トナーを得た。更に、これらのトナー5部とシリコーン樹脂により0.3μmの平均厚さでコーティングされた平均粒径50μmのフェライトキャリア100部をターブラーミキサーにて混合させて、現像剤を作成した。
【0089】
上記のトナーと現像剤をオーブン定着温度140℃に設定したXEIKON社製画像形成装置DCP32Dを用いて、虫食いと光沢について画像評価した。
虫食いについては前述の基準に従い、光沢については目視により、画像として優れている〜許容できないの間を5段階評価した。その結果を表3に示す。
これらの実施例で用いた画像プロセスは、通常のプロセスより画像抜けしやすい、高速でしかも特殊な転写方式を用いているにも拘らず、満足な結果を得ることができた。
また、必要に応じて、印刷速度を15ppm/A4、35ppm/A4に設定して、画像評価した。実施例12〜18のドット再現性評価については、いずれもランク4以上の高品質となった。
【0090】
【表3】
* Xは外添材Aで用いたのと同じシリカをヘキサメチルジシラザンで処理して得られたものを示す。
【0091】
【発明の効果】
本発明によれば、シリコーンオイルで処理された特定の遊離率の無機微粒子を外添剤として用いることにより、帯電装置、現像装置、感光体、中間転写体が現像剤によって汚染されることなく、高品位な画像を長期間、多数枚繰り返し使用しても適正な画像濃度で地肌汚れが極めて少なく、さらに、どのような転写媒体に対しても、再現性のある画像ぼけ、チリがなく転写抜けのない安定した画像を形成できる現像剤及びこれを用いた電子写真現像装置を提供することができる。
また、本発明によれば、静電荷像担持体を少なくとも転写材の密着で駆動させる画像形成方法においても、転写品質と定着品質の両立を高水準で確保可能なトナー及び画像形成方法の提供が可能となる。
さらに、より高速な複写及び印刷要求に対しても、転写品質と定着品質の両立を高水準で確保可能なトナー及び画像形成方法の提供が可能となる。
さらにまた、従来のものよりもドット再現性が良好なトナー及び画像形成方法の提供が可能となる。
【図面の簡単な説明】
【図1】静電荷像担持体自体に回転機構を設けずに転写材を密着させて駆動させる方式の概略図である。
【図2】オーブン定着法の概略図である。
【図3】4色のトナー画像を中間転写体に順次転写し、転写紙等に4色のトナーを一括転写する方式のフルカラー画像形成装置の概略図である。
【符号の簡単な説明】
1 転写材
2 静電荷像担持体
3 転写部
4 オーブン
5 トナー
41 電子写真感光体
42 露光器
43 電子写真感光体
44 4色トナー用各現像部
45 転写ベルト
46 転写材
47 転写ローラ
48 転写ベルトクリーニング部材
49 感光体クリーニング部材
50 帯電器
[0001]
BACKGROUND OF THE INVENTION
The present invention mainly relates to a toner used as a developer for developing an electrostatic charge image in electrophotography, electrostatic recording, electrostatic printing, and the like, an external additive used therefor, and an electronic using the toner. The present invention relates to a photographic image forming method.
[0002]
[Prior art]
Developers used in electrophotography, electrostatic recording, electrostatic printing, and the like include two-component developers composed of a carrier and a toner, and one-component developers that do not require a carrier (magnetic toner, nonmagnetic). It is known that there are positively charged toner and negatively charged toner depending on the electrostatic latent image and the process.
Furthermore, for the purpose of improving the flow characteristics and charging characteristics of the toner, a method of mixing toner particles and inorganic powders such as various metal oxides has been proposed. Additives having such functions Is usually called an external additive. As the inorganic powder, for example, silicon dioxide (silica), titanium dioxide (titania), aluminum oxide, zinc oxide, magnesium oxide, cerium oxide, iron oxide, copper oxide, tin oxide and the like are known.
Furthermore, various methods for modifying the hydrophobicity, charging characteristics, etc. of the surface of these inorganic powders have been proposed. In particular, organosilicon compounds such as silica and titanium oxide fine particles and dimethyldichlorosilane, hexamethyldisilazane, and silicone oil. Is used to make the silanol groups on the surface of the silica fine particles substituted with organic groups to make them hydrophobic.
[0003]
Among these, silicone oil is known as a preferred hydrophobizing agent and various proposals have been made since it imparts excellent transferability to the toner when it is contained because it exhibits sufficient hydrophobicity and low surface energy. ing. For example, in JP-A-7-271087 and JP-A-8-29598, the chargeability of a developer under high humidity is stabilized by defining the amount of silicone oil added or the carbon content in the additive. It is disclosed to ensure the sex.
However, although the additive containing the silicone oil has such advantages, the image obtained using the developer containing the additive has a background stain, a character portion, a line portion, and an edge portion of the dot portion. As a countermeasure, for example, Japanese Patent Application Laid-Open No. 11-212299 may cause a blank after transfer at a central portion (a portion where the developer is not transferred) or transfer to a concave portion at the time of transfer to a transfer member having severe irregularities. In the publication, it is proposed to use inorganic fine particles containing a specific amount of silicone oil as a liquid component, but the actual situation is that satisfactory results cannot be obtained.
[0004]
On the other hand, in the field of copying and printing using an electrophotographic process in recent years, there has been a growing demand for speeding up to the same level as offset printing, as well as high image quality that is equivalent to offset printing. In response to this requirement, image formation on only one side of a transfer material such as paper, that is, speedup in so-called single-sided copying, has recently achieved a considerable degree of results. Not enough technical solutions have been found yet. In the case of double-sided copying, especially when a toner image is fixed and fixed on one side of a transfer material and then the toner image is transferred and fixed on one side, it takes about twice as long as the printing time for single-sided copying. It was a problem.
[0005]
Therefore, a method for transferring toner images on both sides before fixing and then fixing the toner images has been studied. As a result, two electrostatic charge image carriers were installed in stages on both surfaces of the transfer material. A method has been proposed in which the toner image on the other side is transferred immediately after the transfer of the toner image on one side is completed.
[0006]
This method is roughly divided into two types according to the means for driving the electrostatic charge image carrier, and one is a method in which the electrostatic charge image carrier itself is provided with a rotation mechanism such as a motor or a belt, and the other is driven. Is a system in which the transfer material is driven in close contact without providing a rotation mechanism.
[0007]
Due to the nature of the former, it is difficult to control the printing timing on both sides due to the nature of the rotation mechanism. To achieve more precise control, the precision and complexity of the equipment is inevitable, increasing costs and making the equipment larger. I have it. In particular, in an apparatus capable of obtaining a multicolor image, not only the misalignment of the printing timing on both sides but also the color misalignment peculiar to the multicolor image is likely to occur, and the burden on the apparatus for controlling these is only the monochromatic image. More than the resulting device.
[0008]
The latter method will be described with reference to FIG. In this method, at least the transfer material 1 is brought into close contact with the electrostatic image carrier 2a on which the toner image 5a is formed, and the electrostatic image carrier 2a is driven, and at the same time, the toner image 5a is applied to the transfer portion one side 3a. The toner image 5b is transferred to the other surface 3b of the transfer portion at the same time as the electrostatic image carrier 2b is driven by being in close contact with the electrostatic image carrier 2b on which the toner image 5b is formed. Is done.
In this method, the electrostatic charge image carrier is driven by the adhesion of the transfer material or electrostatic force, that is, driven by the transfer material, so that the development and transfer timing is easier than the former, and as a result. There is an advantage that the printing timing and color misregistration on both sides hardly occur and the apparatus can be simplified.
[0009]
However, since the transfer material is brought into close contact with the electrostatic image carrier, the toner existing between the transfer material and the electrostatic image carrier is subjected to a large pressure from the transfer material, and the adhesion force of the toner to the electrostatic image carrier is increased. As a result, there is a post-transfer omission (a portion where toner is not transferred: worm-eaten) in a character portion, a line portion, or an edge portion or center portion of a dot portion in an image.
[0010]
In order to solve this transfer defect, it has hitherto been studied to use inorganic fine particles such as silica as an additive for toner, but satisfactory quality has not been obtained yet. This is because it is difficult to ensure both the transfer quality and the fixing quality at a high level because a fixing defect occurs as a side effect if the additive is unnecessarily increased.
[0011]
[Problems to be solved by the invention]
An object of the present invention is to solve the above-mentioned various problems by improving inorganic fine particles treated with silicone oil while taking advantage of toner containing inorganic fine particles treated with silicone oil. .
That is, a first object of the present invention is to provide a developer capable of forming a stable image without transfer omission and an external additive used therefor, and an electrophotographic image forming method and an image forming apparatus using the same. Another object is to provide a container containing the developer.
A second object of the present invention is to provide a developer capable of forming a stable image with no transfer omission even for high-speed copying and printing requirements in an image forming method in which an electrostatic charge image carrier is driven by at least adhesion of a transfer material. And an external additive used therefor, and an electrophotographic image forming method using the same.
A third object of the present invention is to provide a developer capable of ensuring a high level of both transfer quality and fixing quality and an external additive used therefor, and to provide an electrophotographic image forming method using the same. is there.
A fourth object of the present invention is to provide an image forming apparatus using the developer, and further to provide a container containing the developer.
Note that the transfer material referred to in the specification refers to a material in which a toner image is directly transferred from an electrostatic charge image carrier and the transfer material itself becomes a fixing medium. Specifically, it refers to paper, an OHP sheet, and the like.
[0012]
[Means for Solving the Problems]
  The present inventors paid attention to the fact that the surface energy of silicone oil is low, and as a result of studying to solve the above problems by utilizing this physical property, the liberation rate of silicone oil contained in inorganic fine particles is obtained. In particular, the present inventors have found that it is deeply related to the presence or absence of occurrence of transfer omission and has completed the present invention. That is, according to the present invention, an external additive for electrophotographic toner and a manufacturing method thereof, an electrophotographic toner, a two-component developer, an image forming method, a container containing toner, and a container containing two-component developer are described below. Is provided.
  <1>An electrophotographic toner comprising at least a binder resin, a colorant, and an external additive, wherein the external additive contains inorganic fine particles containing silicone oil (obtained by a pretreatment with a silane coupling agent before the silicone oil treatment). Using a toner for electrophotography in which the liberation rate of the silicone oil is 30 to 70%, and using a method of driving the electrostatic charge image carrier with at least adhesion of the transfer material. Image forming method.
  <2> The release rate of the silicone oil is 30 to 50%, as described in <1>Image forming method.
  <3> The inorganic fine particles according to <1> or <2>, wherein the inorganic fine particles are one or both of silica and titanium oxide.Image forming method.
  <4>The image forming method according to any one of <1> to <3>, wherein the weight average particle diameter of the electrophotographic toner is 15 μm or less.
  <5>The image forming method according to any one of claims <1> to <4>, comprising inorganic fine particles having an average primary particle size smaller than that of the external additive.
  <6>The image forming method according to any one of <1> to <3> or <5>, comprising resin fine particles having an average particle size larger than that of the external additive.
  <7>The image forming method according to any one of <1> to <5>, wherein the electrophotographic toner has a circularity of 0.93 or more.
  <8>The image forming method according to any one of <1> to <7>, wherein at least a non-contact heat fixing method is used as an image fixing method.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
The external additive for electrophotographic toner according to the present invention comprises inorganic fine particles containing silicone oil, and the release rate of the silicone oil is 10 to 70%, preferably 30 to 50%.
The inventors of the present invention have used an external additive composed of inorganic fine particles containing silicone oil, and when a silicone oil release rate within a specific range is used, there is no transfer omission with respect to any transfer material, and fixing quality is improved. It has been found that a toner capable of forming an excellent image and an image forming method using the toner can be provided. These effects are considered to be due to the following reasons.
[0014]
If silicone oil that can be released moderately from inorganic fine particles is present in the external additive, the released silicone oil continues to be supplied to the electrostatic charge image carrier at a very small amount, and the surface energy is low, so it is extremely short. It spreads over the surface of the electrostatic image carrier over time, and the friction coefficient of the latent image carrier can be lowered.
Furthermore, the released silicone oil increases the adhesion between the toners surrounded by the additive (inorganic fine particles) treated with the same kind of silicone oil, and conversely reduces the adhesion with the electrostatic charge image carrier. it can. Normally, a portion where a lot of toner adheres, such as a character portion, line portion, dot edge or center, is compressed by the transfer material, and the adhesion with the electrostatic charge image carrier increases and cannot be moved by the transfer electric field. Occur. However, when moderately free silicone oil is present, the adhesion to the latent image carrier is reduced, and it is considered that no loss occurs at the time of transfer even when the transfer material is strongly compressed.
However, if there is too much free silicone oil, the cohesiveness between the toners is too great, and the toner particles do not move alone during development, so that a high-definition image cannot be expressed or an appropriate image density cannot be realized. Arise. And the problem is solved by regulation of the free amount of silicone oil.
[0015]
The release rate of silicone oil as used in the present specification means the ratio (weight percentage) of free silicone oil in the total amount of silicone oil used for the treatment of inorganic fine particles. Therefore, even if the amount of free silicone oil per unit weight of the fine particles is equal, the liberation rate varies depending on the particle diameter and surface area of the fine particles.
[0016]
Furthermore, the present inventors have found that dot reproducibility can be secured at a high level by combining the toner containing the external additive described above and a non-contact heating method. The non-contact heating method does not come into contact with an unfixed image as compared with a contact method using a fixing roll or a belt, so that there is almost no loss of dot reproducibility in the fixing process. On the other hand, however, the image gloss is inferior to that of the contact method because of the lack of rolling effect obtained with a roll or the like.
[0017]
However, when the toner of the present invention is used, the amount of the additive can be reduced as much as possible without impairing the transfer quality. Therefore, conventionally, the resin surface in the toner is exposed and the melting between the toners is more likely to proceed. became. As a result, it has become possible to ensure a high level of both transfer quality and fixability typified by worm-eating, and fixing quality and dot reproducibility typified by image gloss. Also, in order to control gloss in an image fixed by a non-contact melting method and made with the toner according to the present invention, a fixed image (that is, fused toner) is heated with a pressure roller heated to make the image uniform. It is beneficial to add a post-treatment of the particles). Optionally, provide a non-stick compound (eg silicone oil, liquid wax, etc.) on the surface of the post-processing roller if necessary for good non-stick properties between the fused image and the post-processing roller Can do. Unlike the above-described contact method such as the fixing roller, this post-processing is used after being fixed by the non-contact heating method, so that the heating pressure is not increased more than necessary, and the loss of dot reproducibility is minimized. .
[0018]
Next, high-speed image formation will be described.
In a device that can obtain a popular copying speed and printing speed, there is no problem with the above-described toner configuration. However, when higher speed is required, the following two points are compatible with the transfer quality and the fixing quality compared to the popular type. I found out that
(1) In order to increase the speed, it is necessary to increase the rotational speed of the electrostatic charge image carrier. However, in this mechanism, the speed from the transfer material increases, so the pressure from the transfer material increases. As a result, transfer failure occurs.
(2) In order to increase the speed, in order to shorten the fixing time, the heat supply per unit time from the fixing unit decreases, and as a result, fixing failure occurs. Further, when the means for increasing the amount of the additive is used as a countermeasure for the above (1), the fixing quality is further deteriorated.
[0019]
Also, when the width of the electrostatic charge image carrier corresponds to the wide width of the copy or the printed matter, or when the life of the electrostatic image carrier is handled by the area of the electrostatic image carrier, the speed is further increased. A similar phenomenon occurred. In both cases, the electrostatic charge image carrier itself is weighted, and in order to drive the weighted electrostatic charge image carrier with at least the adhesion of the transfer material, more pressure from the transfer material cannot be obtained. This is because it cannot be driven.
[0020]
The inventors of the present invention use a toner containing an external additive of the present invention to drive the electrostatic charge image bearing member at a higher speed even when the electrostatic charge image bearing member is driven by at least adhesion of the transfer material. It has been found that both the transfer quality and the fixing quality can be achieved at a high level even when driven by a motor or by weight. This is considered to be due to the effect of low surface energy, which is an important specificity of silico oil, that the adhesion force between the electrostatic charge image carrier and the toner can be reduced even when pressure from a transfer material such as paper is applied. . As a result, the amount of the additive composed of inorganic fine particles can be adjusted to a range that does not affect the fixing quality or rather can improve the fixing quality.
[0021]
(Toner circularity)
The toner according to the present invention is more effective when it has a specific shape. The toner shape is charged by contact with a carrier, and the chargeability of the toner sandwiched between the developing roll and the toner layer regulating member or the supply roller. And almost uniform thin layer properties.
In an irregular shape that is too far from the spherical shape, the toner thin layer is too thin, and a sufficient development amount cannot be obtained. Also, if it is too close to a sphere, it will easily pass through the layer regulating member and the supply roller, and will be overdeveloped, which will affect the image quality, resulting in an excessively high density, thin line breakage, image blurring, excessive gloss, etc. May bring.
Therefore, in the present invention, it is preferable that the toner has a specific shape in order to form a high-definition image having a reproducibility with an appropriate density. In the case of the present invention, the circularity is preferably regulated to 0.93 or more, particularly 0.95 or more.
[0022]
As a method for measuring the shape, an optical detection band method is suitable in which a suspension containing particles is passed through an imaging unit detection band on a flat plate, and a particle image is optically detected and analyzed by a CCD camera. is there. A toner having a circularity of 0.95 to 0.99, which is a value obtained by dividing the perimeter of an equivalent circle having the same projected area obtained by this method by the perimeter of the actual particle, has a high reproducibility with an appropriate density. It has been found that it is effective for forming a fine image.
This value can be measured as an average circularity by a flow type particle image analyzer FPIA-1000 (manufactured by Toa Medical Electronics Co., Ltd.). As a specific measuring method, 0.1 to 0.5 ml of a surfactant, preferably alkylbenzene sulfonate is added as a dispersant to 100 to 150 ml of water from which impure solids have been removed in advance, and further measurement is performed. Add about 0.1-0.5g of sample. The suspension in which the sample is dispersed is subjected to a dispersion treatment with an ultrasonic disperser for about 1 to 3 minutes, and the shape of the toner is measured by the above apparatus with a dispersion concentration of 3000 to 10,000 / μl.
[0023]
(Hydrophobic treatment of inorganic fine particles)
As a method for hydrophobizing the inorganic fine particles used in the present invention, a method of chemically treating with inorganic silicon fine particles reacting or physically adsorbing is used. A preferred method is a method of treating inorganic fine particles produced by vapor phase oxidation of a metal halide compound with an organosilicon compound.
[0024]
Examples of organosilicon compounds used in the hydrophobization treatment include hexamethyldisilazane, trimethylsilane, trimethylchlorosilane, trimethylethoxysilane, dimethyldichlorosilane, methotrechlorosilane, allyldimethylchlorosilane, allylphenyldichlorosilane, benzyl Dimethylchlorosilane, bromomethyldimethylchlorosilane, α-chloroethyltrichlorosilane, ρ-chloroethyltrichlorosilane, chloromethyldimethylchlorosilane, triorganosilylmercaptan, trimethylsilylmercaptan, triorganosilylacrylate, vinyldimethylacetoxysilane, dimethylethoxy Silane, dimethyldimethoxysilane, diphenyldiethoxysilane, hexamethyldisiloxane, 1,3-divinyltetramethyl Rudisiloxane, 1,3-diphenyltetramethyldisiloxane, dimethylpolysiloxane having 2 to 12 siloxane units per molecule and containing hydroxyl groups bonded to one Si at each terminal unit is there.
[0025]
A nitrogen-containing silane coupling agent can be used for hydrophobizing the untreated silica fine particles.
Examples of such treating agents include aminopropyltrimethoxysilane, aminopropyltriethoxysilane, dimethylaminopropyltrimethoxysilane, diethylaminopropyltrimethoxysilane, dipropylaminopropyltrimethoxysilane, dibutylaminopropyltrimethoxysilane, Monobutylaminopropyltrimethoxysilane, dioctylaminopropyltrimethoxysilane, dibutylaminopropyldimethoxysilane, dibutylaminopropylmonomethoxysilane, dimethylaminophenyltriethoxysilane, trimethoxysilyl-γ-propylphenylamine, trimethoxysilyl-γ -Propylbenzamine, Trimethoxysilyl-γ-propylpiperidine, Trimethoxysilyl-γ-propylmorpholine, Tri There are Tokishishiriru -γ- propyl imidazole. These treatment agents are used alone or in a mixture of two or more.
[0026]
In the present invention, the inorganic fine particles that have been hydrophobized or not hydrophobized are treated with silicone oil. Silicone oils in this case include dimethyl silicone oil, methylphenyl silicone oil, chlorophenyl silicone oil, methyl hydrogen silicone oil, alkyl-modified silicone oil, fluorine-modified silicone oil, polyether-modified silicone oil, alcohol-modified silicone oil, amino acid Modified silicone oil, epoxy-modified silicone oil, epoxy / polyether-modified silicone oil, phenol-modified silicone oil, carboxyl-modified silicone oil, mercapto-modified silicone oil, acrylic, methacryl-modified silicone oil, α-methylstyrene-modified silicone oil, and the like can be used. These silicone oils are used alone or in a mixture of two or more.
[0027]
In the present invention, the inorganic fine particles treated with these silicone oils have a silicone oil release rate of 10 to 70%, and those having a release rate of 30 to 50% are particularly useful for preventing image loss. Therefore, it is preferable.
Further, the hydrophobicity of the inorganic fine particles treated with silicone oil is particularly preferably in the range of 30-100. This degree of hydrophobicity is measured by the methanol titration test shown below.
[0028]
(Methanol titration test)
0.2 g of hydrophobized inorganic fine particles are added to 50 ml of water in a beaker. While stirring this mixture with a magnetic stirrer, methanol is added dropwise until the total amount of the hydrophobized inorganic fine particles is wetted. The end point is the time when the entire amount is wet. The degree of hydrophobicity is expressed as the percentage of methanol in the liquid mixture of methanol and water when the end point is reached.
[0029]
(Inorganic fine particles)
Examples of inorganic fine particles used as an external additive in the present invention include silica, alumina, titanium oxide, barium titanate, magnesium titanate, calcium titanate, strontium titanate, iron oxide, copper oxide, zinc oxide, tin oxide, and silica. Sand, clay, mica, wollastonite, diatomaceous earth, chromium oxide, cerium oxide, bengara, antimony trioxide, magnesium oxide, zirconium oxide, barium sulfate, barium carbonate, calcium carbonate, silicon carbide, silicon nitride, etc. it can. Of these, silica and titanium oxide are particularly preferable. The amount added is 0.1 to 5% by weight, preferably 0.3 to 3% by weight, based on the toner.
[0030]
As inorganic fine particles preferably used in the present invention, MOX80 (average particle size, about 30 nm), OX50 (average particle size, about 40 nm) and TT600 (average particle size, about 40 nm) manufactured by Nippon Aerosil Co., Ltd., manufactured by Idemitsu Kosan Co., Ltd. IT-PB (average particle size, about 40 nm) and IT-PC (average particle size, about 60 nm), TAF110A (average particle size, about 40-50 nm) and TAF510 (average particle size, about 60 nm) manufactured by Fuji Titanium Industry Co., Ltd. 40 to 50 nm).
These fine particles may be used alone or in combination of two or more when used as an electrophotographic toner.
[0031]
(Inorganic fine particle diameter)
The average particle size of the primary particles of the inorganic fine particles treated with the silicone oil is not particularly limited, but is at most 100 nm, preferably 70 nm or less. When the average particle size is larger than 100 nm, the surface area of the inorganic fine particles is reduced, the total amount of silicon oil that can be supported is also small, and even if the liberation rate is set in the above range, the effect is hardly exhibited. Moreover, the average particle diameter here is a number average particle diameter.
[0032]
The particle size of the inorganic fine particles used in the present invention can be measured by a particle size distribution measuring apparatus using dynamic light scattering, for example, DLS-700 manufactured by Otsuka Electronics Co., Ltd. or Coulter N4 manufactured by Coulter Electronics Co., Ltd. Since it is difficult to dissociate the secondary aggregation of the particles after the silicone oil treatment, it is preferable to directly determine the particle diameter from a photograph obtained by a scanning electron microscope or a transmission electron microscope. More preferably, the external additive on the toner surface is observed with a FE-SEM (field emission scanning electron microscope) at a magnification of 100,000 times. In this case, at least 100 or more inorganic fine particles are observed, and the average value of the major axis is obtained. When the external additive has an aggregate structure on the toner surface, the major axis of the single primary particle constituting the aggregate is determined.
[0033]
(Silicone oil treatment method)
In order to treat the inorganic fine particles with silicone oil, the inorganic fine particles that have been sufficiently dehydrated and dried in advance in an oven of several hundred degrees Celsius are uniformly contacted with the silicone oil to adhere the silicone oil to the surface of the inorganic fine particles. In order to attach the silicone oil, the inorganic fine particle powder and the silicone oil are sufficiently mixed with the powder by a mixer such as a rotary blade, or the silicone oil is dissolved with a relatively low boiling point solvent capable of diluting the silicone oil, What is necessary is just to impregnate the inorganic fine particle powder in the liquid and remove the solvent and dry. When the viscosity of the silicone oil is high, the treatment is preferably performed in a liquid.
[0034]
After that, the inorganic fine particle powder to which the silicone oil is adhered is subjected to heat treatment in an oven at 100 ° C. to several hundred degrees (usually around 400 ° C.), thereby using the hydroxyl group on the surface of the inorganic fine particle powder to form a siloxane bond between the metal and the silicone oil. The silicone oil itself can be further polymerized and crosslinked. A catalyst such as acid, alkali, metal salt, zinc octylate, tin octylate, dibutyltin dilaurate or the like may be included in the silicone oil in advance to promote the reaction.
[0035]
The inorganic fine particles used in the present invention may be previously treated with a hydrophobizing agent such as a silane coupling agent before the silicone oil treatment. Inorganic powder that has been hydrophobized in advance increases the amount of silicone oil adsorbed.
[0036]
The amount of free silicone oil and the amount of non-free silicone oil are almost determined by heat treatment. The non-free silicone oil referred to in this specification does not necessarily need to be chemically bonded to the surface of the inorganic fine particles, and includes those that are physically adsorbed on the pores of the fine particle surface.
[0037]
(Measurement of silicone oil release rate)
The silicone oil release rate can be measured by the following quantitative method.
[0038]
(1) Extraction of free silicone oil
The sample is immersed in chloroform, stirred and left to stand. Chloroform is added to the solid content after removing the supernatant by centrifugation, and the mixture is stirred and allowed to stand. Repeat this operation to remove the free silicone oil.
(2) Determination of carbon content
The amount of carbon was measured with a CHN element analyzer (CHN coder MT-5 type (manufactured by Yanaco)).
(3) Measurement of silicone oil release rate
The silicone oil release rate was determined by the following formula.
Silicone oil release rate = (C0-C1) / C0× 100 (%)
C0: Carbon content in the sample before extraction
C1: Carbon content in the sample after extraction
[0039]
(Other inorganic fine particles)
In the present invention, together with the external additive of the present invention, at least one kind of known inorganic fine particles not subjected to surface treatment and / or known inorganic fine particles surface-treated with a hydrophobizing agent other than silicone oil are used in combination. May be. As the hydrophobic treatment agent, for example, a silane coupling agent, a silylating agent, a silane coupling agent having a fluorinated alkyl group, an organic titanate coupling agent, an aluminum coupling agent, and the like are preferable surface treatment agents. .
The inorganic fine particles used in combination have an average particle size smaller than that of the inorganic fine particles treated with silicone oil. The small inorganic fine particles can increase the coverage of the toner surface and give the developer appropriate fluidity, and can ensure faithful reproducibility and a development amount for the latent image during development. In addition, toner aggregation and solidification during storage of the developer can be prevented. The amount added is 0.01 to 5% by weight, preferably 0.1 to 2% by weight, based on the toner.
[0040]
(Constituent material of toner)
As binder resin for toner, styrene such as polystyrene, poly p-chlorostyrene, polyvinyltoluene and the like, and polymers of the substitution products thereof; styrene-p-chlorostyrene copolymer, styrene-propylene copolymer, styrene-vinyltoluene Copolymer, Styrene-vinylnaphthalene copolymer, Styrene-methyl acrylate copolymer, Styrene-ethyl acrylate copolymer, Styrene-butyl acrylate copolymer, Styrene-octyl acrylate copolymer, Styrene- Methyl methacrylate copolymer, styrene-ethyl methacrylate copolymer, styrene-butyl methacrylate copolymer, styrene-α-chloromethyl methacrylate copolymer, styrene-acrylonitrile copolymer, styrene-vinyl methyl ketone copolymer Polymer, styrene-butadiene Copolymers, styrene-isoprene copolymers, styrene-acrylonitrile-indene copolymers, styrene copolymers such as styrene-maleic acid copolymers, styrene-maleic acid ester copolymers; polymethyl methacrylate, polybutyl Methacrylate, polyvinyl chloride, polyvinyl acetate, polyethylene, polypropylene, polyester, epoxy resin, epoxy polyol resin, polyurethane, polyamide, polyvinyl butyral, polyacrylic acid resin, rosin, modified rosin, terpene resin, aliphatic or alicyclic Examples thereof include hydrocarbon resins, aromatic petroleum resins, chlorinated paraffins, and paraffin waxes, which can be used alone or in combination.
[0041]
As the colorant, all known dyes and pigments can be used. For example, carbon black, nigrosine dye, black iron oxide (magnetite), naphthol yellow S, Hansa yellow (10G, 5G, G), cadmium yellow, yellow Iron oxide, ocher, yellow lead, titanium yellow, polyazo yellow, oil yellow, Hansa yellow (GR, A, RN, R), pigment yellow L, benzidine yellow (G, GR), permanent yellow (NCG), Vulcan fast Yellow (5G, R), Tartrazine Lake, Quinoline Yellow Lake, Anthrazan Yellow BGL, Isoindolinone Yellow, Bengala, Red Tan, Lead Zhu, Cadmium Red, Cadmium Mercury Red, Antimon Zhu, Permanent Red 4R , Para red, phisa red Parachlor ortho nitroaniline red, Resol Fast Scarlet G, Brilliant Fast Scarlet, Brilliant Carmine BS, Permanent Red (F2R, F4R, FRL, FRLL, F4RH), Fast Scarlet VD, Belkan Fast Rubin B, Brilliant Scarlet G, Resol Rubin GX, Permanent Red F5R, Brilliant Carmine 6B, Pigment Scarlet 3B, Bordeaux 5B, Tolujing Maroon, Permanent Bordeaux F2K, Helio Bordeaux BL, Bordeaux 10B, Bon Maroon Light, Bon Maroon Medium, Eosin Lake, Rhodamine Lake B, Rhodamine Lake Y , Alizarin lake, thioindigo red B, thioindigo maroon, oil red, quinacridone , Pyrazolone red, polyazo red, chrome vermilion, benzidine orange, perinone orange, oil orange, cobalt blue, cerulean blue, alkali blue rake, peacock blue rake, Victoria blue rake, metal-free phthalocyanine blue, phthalocyanine blue, fast sky blue, Indanthrene blue (RS, BC), indigo, ultramarine, bitumen, anthraquinone blue, fast violet B, methyl violet lake, cobalt violet, manganese purple, dioxane violet, anthraquinone violet, chrome green, zinc green, chromium oxide, pyridian, Emerald Green, Pigment Green B, Naphthol Green B, Green Gold, Acid Green Lake, Malachite Green lake, phthalocyanine green, anthraquinone green, titanium oxide, zinc white, litbon and mixtures thereof can be used.
[0042]
Generally the usage-amount of a coloring agent is 0.1-50 weight part with respect to 100 weight part of binder resin.
[0043]
The one-component and two-component developers of the present invention include the external additive, but may include a charge control agent as necessary. All known charge control agents can be used, such as nigrosine dyes, triphenylmethane dyes, chromium-containing metal complex dyes, molybdate chelate pigments, rhodamine dyes, alkoxy amines, quaternary ammonium salts (fluorine-modified). Quaternary ammonium salts), alkylamides, phosphorus simple substances or compounds, tungsten simple substances or compounds, fluorine-based activators, salicylic acid metal salts, and metal salts of salicylic acid derivatives.
[0044]
Specifically, Bontron 03 of nigrosine dye, Bontron P-51 of quaternary ammonium salt, Bontron S-34 of metal-containing azo dye, E-82 of oxynaphthoic acid metal complex, E of salicylic acid metal complex -84, phenolic condensate E-89 (above, Orient Chemical Industries), quaternary ammonium salt molybdenum complex TP-302, TP-415 (above, Hodogaya Chemical Co., Ltd.), quaternary Copy charge PSY VP2038 of ammonium salt, copy blue PR of triphenylmethane derivative, copy charge of quaternary ammonium salt NEG VP2036, copy charge NX VP434 (above, manufactured by Hoechst), LRA-901, LR- which is a boron complex 147 (Nippon Carlit), copper phthalocyanine, perylene, quinacrid And azo pigments, and other polymer compounds having functional groups such as sulfonic acid groups, carboxyl groups, and quaternary ammonium salts.
[0045]
The amount of charge control agent used in the present invention is uniquely determined by the type of binder resin, the presence or absence of additives used as necessary, and the toner production method including the dispersion method. However, it is preferably used in the range of 0.1 to 10 parts by weight with respect to 100 parts by weight of the binder resin. The range of 2 to 5 parts by weight is preferable. When the amount exceeds 10 parts by weight, the chargeability of the toner is too high, the effect of the main charge control agent is reduced, the electrostatic attractive force with the developing roller is increased, the flowability of the developer is reduced, and the image density is reduced. Incurs a decline.
[0046]
In order to impart releasability to the manufactured developer, it is preferable to include a wax in the manufactured developer. The wax has a melting point of 40 to 120 ° C., and preferably 50 to 110 ° C. When the melting point of the wax is excessive, the fixing property at a low temperature may be insufficient. On the other hand, when the melting point is excessively low, the offset resistance and durability may be decreased.
[0047]
The melting point of the wax can be obtained by differential scanning calorimetry (DSC). That is, the melting peak value when a sample of several mg is ripened at a constant temperature increase rate, for example, (10 ° C./min) is defined as the melting point.
[0048]
Examples of the wax that can be used in the present invention include solid paraffin wax, microcrystalline wax, rice wax, fatty acid amide wax, fatty acid wax, aliphatic monoketone, fatty acid metal salt wax, fatty acid ester wax, Examples thereof include partially saponified fatty acid ester waxes, silicone varnishes, higher alcohols, and carnauba waxes. Also, polyolefins such as low molecular weight polyethylene and polypropylene can be used. Particularly, a polyolefin having a softening point of 70 to 150 ° C. by the ring and ball method is preferable, and a polyolefin having a softening point of 120 to 150 ° C. is more preferable.
[0049]
In order to remove the developer after transfer remaining on the electrostatic image bearing member, it is preferable to use a cleaning property improver in combination with the toner. Examples of the cleaning property improver include fatty acid metal salts such as zinc stearate, calcium stearate, stearic acid and the like. The amount of cleaning improver added is preferably 0.01 to 5% by weight, more preferably 0.1 to 2% by weight, based on the toner.
[0050]
Further, when the external additive of the present invention is used in combination with resin fine particles, the chargeability of the developer can be enhanced, the number of reversely charged toner particles can be reduced, and background stains can be reduced. The amount of resin fine particles added is preferably 0.01 to 5% by weight, more preferably 0.1 to 2% by weight, based on the toner.
Examples of the resin fine particles include polystyrene obtained by soap-free emulsion polymerization, suspension polymerization, and dispersion polymerization, polycondensation systems such as methacrylic acid ester and acrylic acid ester copolymer, silicone, benzoguanamine, and nylon, and thermosetting resins. Polymer particles may be mentioned, and those having a relatively narrow particle size distribution and a volume average particle size of 0.01 to 1 μm are preferred.
[0051]
In the present invention, one or more known inorganic fine particles not subjected to surface treatment may be used in combination with the inorganic fine particles treated with hydrophobic and inorganic fine particles treated with silicone oil.
[0052]
(Toner production method)
The production of the toner of the present invention includes a step of mechanically mixing toner components including at least a binder resin, a main charge control agent and a pigment, a step of melt-kneading, a step of pulverizing, and a step of classifying. A method for producing toner having the above can be applied. In addition, in the mechanical mixing step and the melt-kneading step, a production method is also included in which powder other than the particles obtained as a product obtained in the pulverization or classification step is returned and reused.
[0053]
The “powder other than the particles used as the product” (sub-product) referred to here is a fine particle or coarse particle other than the component that becomes the product having a desired particle size obtained in the pulverization step after the melt-kneading step, and subsequently performed. It means fine particles and coarse particles other than the components that are produced in the classification step and become products with a desired particle size. It is preferable that such a by-product is mixed in the weight ratio of the other raw material 50 to the sub-product 50 from the other raw material 99 to the sub-product 1 in the mixing step and the melt-kneading step.
[0054]
The mixing step of mechanically mixing at least the binder resin, the main charge control agent and pigment, and the toner component including the by-product may be performed under normal conditions using a normal mixer with rotating wings, etc. There is no limit.
[0055]
When the above mixing process is completed, the mixture is then charged into a kneader and melt-kneaded. As the melt kneader, a uniaxial or biaxial continuous kneader or a batch kneader using a roll mill can be used. For example, KTK type twin screw extruder manufactured by Kobe Steel, TEM type extruder manufactured by Toshiba Machine Co., Ltd., twin screw extruder manufactured by KC Co., Ltd., PCM type twin screw extruder manufactured by Ikegai Iron Works Co., Ltd. A coneder manufactured by Busus is preferably used.
It is important that this melt-kneading is performed under appropriate conditions that do not cause the molecular chains of the binder resin to be broken. Specifically, the melt kneading temperature should be performed with reference to the softening point of the binder resin. If the temperature is too low than the softening point, cutting is severe, and if the temperature is too high, dispersion does not proceed.
[0056]
When the above melt-kneading process is completed, the kneaded product is then pulverized. In this pulverization step, it is preferable to first coarsely pulverize and then finely pulverize. At this time, a method of pulverizing by colliding with a collision plate in a jet stream or pulverizing with a narrow gap between a rotor and a stator that rotate mechanically is preferably used.
[0057]
After the pulverization step is completed or during the pulverization step, the pulverized product is classified in an air stream by centrifugal force or the like to obtain a toner having a desired circularity and particle size. The degree of circularity is preferably 0.93 or more, and preferably 0.94 or more. Moreover, about a particle size, it is desirable that a weight average diameter is 4-20 micrometers. Preferably, it is 6-10 micrometers.
[0058]
The weight average diameter of the toner used in the present invention can be measured by various methods. In the present invention, the weight average diameter was measured using a multisizer. That is, Multisizer II (manufactured by Coulter Co.) is used as a measuring device, and an interface (manufactured by Nikkaki Co., Ltd.) for outputting the number distribution and volume distribution is connected to a personal computer. Use to prepare 1% NaCl aqueous solution.
[0059]
As a measuring method, 0.1 to 5 ml of a surfactant, preferably alkylbenzenesulfonate is added as a dispersant to 100 to 150 ml of the electrolytic aqueous solution, and 2 to 20 mg of a measurement sample is further added. The electrolytic solution in which the sample was suspended was subjected to dispersion treatment with an ultrasonic disperser for about 1 to 3 minutes. When the toner particle size was measured as an aperture by the Multisizer II type, the measurement was performed using a 100 μm aperture. The volume and number of toner were measured to calculate the volume distribution and number distribution. Then, the weight-based weight average diameter determined from the volume distribution according to the present invention was determined from the volume distribution.
[0060]
The external additive of the present invention is added to and mixed with the toner. For mixing the external additive, a general powder mixer is used, but it is preferable to equip a jacket or the like and adjust the internal temperature. In order to change the load history applied to the external additive, the external additive may be added in the middle or gradually. Of course, you may change the rotation speed of a mixer, rolling speed, time, temperature, etc. A strong load may be given first, then a relatively weak load, and vice versa.
Examples of the mixing equipment that can be used include a V-type mixer, a rocking mixer, a Ladige mixer, a Nauter mixer, a Henschel mixer, and the like.
[0061]
In the present invention, the above-mentioned inorganic fine particles may be internally added to the toner. As an internal addition method, it is carried out in the same manner as other toner components in a mixing step and a melt-kneading step before melt-kneading.
[0062]
In the present invention, external addition and internal addition may be performed simultaneously. In addition to the inorganic fine particles used in the present invention, other additives may be added and mixed in order to improve the fluidity, storage stability, developability and transferability of the toner as described above.
[0063]
When the toner of the present invention is used for a two-component developer, it may be used by mixing with a magnetic carrier. The carrier to toner content ratio in the developer is 1 to 10 weights of toner with respect to 100 parts by weight of carrier. Part is preferred.
[0064]
As the magnetic carrier, conventionally known ones such as iron powder, ferrite powder, magnetite powder, magnetic resin carrier having a particle diameter of about 20 to 200 μm can be used. Examples of the coating material include amino resins such as urea-formaldehyde resin, melamine resin, benzoguanamine resin, urea resin, polyamide resin, and epoxy resin. Polyvinyl and polyvinylidene resins such as acrylic resins, polymethyl methacrylate resins, polyacrylonitrile resins, polyvinyl acetate resins, polyvinyl alcohol resins, polyvinyl butyral resins, polystyrene resins and styrene acrylic copolymer resins, Halogenated olefin resins such as vinyl, polyester resins such as polyethylene terephthalate resin and polybutylene terephthalate resin, polycarbonate resins, polyethylene resins, polyvinyl fluoride resins, polyvinylidene fluoride resins, polytrifluoroethylene resins, polyhexafluoro Propylene resin, copolymer of vinylidene fluoride and acrylic monomer, copolymer of vinylidene fluoride and vinyl fluoride, tetrafluoroethylene and vinylidene fluoride And fluoro such as terpolymers of non-fluoride monomers including, and silicone resins.
[0065]
Moreover, you may make conductive powder etc. contain in coating resin as needed. As the conductive powder, metal powder, carbon black, titanium oxide, tin oxide, zinc oxide or the like can be used. These conductive powders preferably have an average particle diameter of 1 μm or less. When the average particle diameter is larger than 1 μm, it becomes difficult to control electric resistance.
[0066]
The toner of the present invention can also be used as a one-component magnetic toner that does not use a carrier or a non-magnetic toner.
The toner or the two-component developer of the present invention is stored in a conventionally known container such as a bottle type or a cartridge type, and many of the containers are sold separately from the image forming apparatus, and are mounted on the image forming apparatus by the user. It is common to be used.
[0067]
(Full color image development method)
In the non-magnetic one-component development method using a conductive brush according to the present invention, a non-magnetic one component is developed by sequentially performing a number of times of development using a full color toner having a specific circularity, and sequentially transferring the toner onto a transfer medium. In the component full color process, the effect can be effectively used particularly for the uniform reproducibility of the halftone.
The full-color non-magnetic one-component image forming method of the present invention includes a conductive brush formed by a plurality of multi-color developing devices including a developing roller and a developing blade that uniformly regulates the layer thickness of the developer supplied onto the developing roller. In this method, the electrostatic latent image divided on each color formed on the photosensitive member by the charger and the exposure device is sequentially developed with a developer corresponding to each color and transferred to a transfer medium.
In this case, it is preferable to develop by a reversal development method in which the polarity of the electrostatic latent image on the photoreceptor and the polarity of the non-magnetic one-component developer are the same.
Further, it is preferable that development is performed by causing the electrostatic latent image on the photosensitive member and the developing roller to directly contact each other and rotating the developing roller at a higher speed than the photosensitive member.
The transferability of the toner of the present invention can be improved even by using a conventionally known electrophotographic developing device equipped with a corotron transfer device, but the transfer means is brought into contact with the surface of the electrostatic charge image carrier via a transfer material. When used in an electrophotographic developing apparatus that electrostatically transfers a toner image onto a transfer material, the effect is particularly effective.
Further, as shown in FIG. 1 described above, an electrophotographic developing apparatus that electrostatically transfers a toner image to a transfer material by driving the transfer material in close contact with the electrostatic charge image carrier itself without providing a rotation mechanism. Even when used, a remarkable effect can be obtained.
[0068]
【Example】
EXAMPLES Hereinafter, the present invention will be specifically described with reference to examples and comparative examples, but the present invention is not limited only to these examples. In the following examples, parts and% are based on weight unless otherwise specified.
[0069]
(External additive manufacturing example)
In a 300 ml Erlenmeyer flask, a stirring bar is placed, and 2.73 g of 300 cs polydimethylsiloxane KF-96 (300) (manufactured by Shin-Etsu Chemical Co., Ltd.) (9.1 parts by weight with respect to 100 parts by weight of the inorganic powder) ), 100 g of toluene was added, and the mixture was stirred for 30 minutes at room temperature using a magnetic stirrer to obtain a toluene solution of silicone oil. To this solution, 30 g of processing silica OX-50 (manufactured by Nippon Aerosil Co., Ltd.) was gradually added over 1 hour to prepare a dispersion in which the silica powder was completely wetted with a toluene solution of silicone oil.
[0070]
Thereafter, a probe for ultrasonic irradiation was inserted into the dispersion in the flask, and the mixture was ultrasonically dispersed for 1 hour while cooling with water from the outside of the flask and cooling with a UH-2C type ultrasonic disperser (manufactured by Ultrasonic Industry Co., Ltd.). As a result of observing the wall surface of the flask, it was visually confirmed that a very uniform dispersion without aggregates was formed.
The obtained dispersion was transferred to a 500 ml eggplant-shaped flask and treated with a rotary evaporator (manufactured by Tokyo Science Instruments Co., Ltd.) at a flask bath temperature of 40 ° C. under a reduced pressure of 10 mmHg for 5 hours to distill off toluene. The obtained solid was transferred to a stainless steel vat and dried under a reduced pressure of 1 mmHg or less until a constant weight was reached at a set temperature of 50 ° C. with a vacuum dryer (manufactured by Yamato Kagaku). External additive A shown in Table 1 Got. The external additive A has a silicone oil release rate of 78% and is outside the scope of the present invention.
[0071]
In order to obtain the external additive of the present invention with a silicone oil release rate of 10 to 70%, it is necessary to adjust the amount of silicone oil, and the same points except for adjusting the amount of silicone oil are the same. External additive B was prepared.
[0072]
In order to produce a more useful external additive having a silicone oil release rate in the range of 10 to 70%, it is effective to use a heat treatment method as described above. The heat treatment method will be described with an example.
When the predetermined treatment temperature is reached while maintaining the oxygen concentration at 0.1% or less under a nitrogen stream in an electric furnace OPENUSER (manufactured by ADVANTEC), a stainless steel bat containing the dried external additive A is removed. After being placed in an electric furnace for 2 hours at the predetermined temperature, it was immediately transferred to a desiccator dried with silica gel and cooled. When the obtained powder is in a strongly agglomerated state, it is 6 kg / cm by an IDS type jet mill (manufactured by Nippon Pneumatic Co., Ltd.).2It is necessary to supply the compressed air and crush it.
It is collected by a bag filter to obtain the external additive of the present invention having a silicone oil release rate of 10 to 70%. In the case of heat treatment, it is particularly preferable to adjust the heating temperature in order to make the liberation rate 10 to 70%. In this way, external additives C to H shown in Table 1 were produced.
The heat treatment can be performed not only after the silicone oil is attached to the inorganic fine particles, but also while the silicone oil is attached to the inorganic fine particles.
[0073]
The method for producing an external additive of the present invention described above is applicable not only to silica as the base inorganic fine particles but also to other materials such as alumina and titanium oxide.
Table 1 shows the external additives A to H produced by such a method.
(Replaced. Brings the contents that were later in the front)
[0074]
[Table 1]
[0075]
Examples 1-11,Reference example 1Comparative Examples 1 and 2
First, four colors of toner base material colored particles were prepared as follows.
(1) Production of black colored particles
    1200 parts of water
    200 parts phthalocyanine green water cake (solid content 30%)
    540 parts of carbon black (MA60 manufactured by Mitsubishi Chemical Corporation)
Stir the above materials well with a flasher. To this was added 1200 parts of a polyester resin (acid value; 3, hydroxyl value; 25, Mn; 45000, Mw / Mn; 4.0, Tg; 60 ° C.), and after kneading at 150 ° C. for 30 minutes, 1000 parts of xylene were added. In addition, the mixture was further kneaded for 1 hour, water and xylene were removed, rolled and cooled, and pulverized with a pulverizer to obtain a master batch pigment.
    100 parts of polyester resin
    (Acid value: 3, hydroxyl value: 25, Mn: 45000, Mw / Mn 4.0, Tg: 60 ° C.)
    5 parts of the above master batch
    Charge control agent (Orient Chemical Co., Ltd. Bontron E-84) 4 parts
The above materials were mixed with a mixer, melt-kneaded with a two-roll mill, and the kneaded product was rolled and cooled. After that, a collision plate type pulverizer (I-type mill; manufactured by Nippon Pneumatic Industry Co., Ltd.) using a jet mill and an air classification (DS classifier; manufactured by Nippon Pneumatic Industry Co., Ltd.) using a swirling flow are performed, and the volume average diameter is 13.5 μm. Black colored particles were obtained.
[0076]
(2) Production of yellow colored particles
600 parts of water
Pigment Yellow 17 hydrous cake (solid content 50%) 1200 parts
Stir the above materials well with a flasher. To this, 1200 parts of a polyester resin (acid value; 3, hydroxyl value; 25, Mn; 45000, Mw / Mn; 4.0, Tg; 60 ° C.) was added, and after kneading at 150 ° C. for 30 minutes, 1000 parts of xylene were added. In addition, the mixture was further kneaded for 1 hour, water and xylene were removed, rolled and cooled, pulverized with a pulverizer, and further passed with 3 rolls to obtain a master batch pigment.
100 parts of polyester resin
(Acid value: 3, hydroxyl value: 25, Mn: 45000,
(Mw / Mn: 4.0, Tg: 60 ° C.)
5 parts of the above master batch
Charge control agent (Orient Chemical Co., Ltd. Bontron E-84) 4 parts
The above materials were mixed with a mixer, melt-kneaded with a two-roll mill, and the kneaded product was rolled and cooled. Thereafter, pulverization and classification were performed in the same manner as in the black colored particle production example, and yellow colored particles having a volume average diameter of 13.2 μm were obtained.
[0077]
(3) Production of magenta colored particles
600 parts of water
Pigment Red 57 hydrous cake (solid content 50%) 1200 parts
Stir the above materials well with a flasher. To this was added 1200 parts of a polyester resin (acid value; 3, hydroxyl value; 25, Mn; 45000, Mw / Mn; 4.0, Tg; 60 ° C.), and after kneading at 150 ° C. for 30 minutes, 1000 parts of xylene were added. In addition, the mixture was further kneaded for 1 hour, water and xylene were removed, rolled and cooled, pulverized with a pulverizer, and further passed twice with a three-roll mill to obtain a master batch pigment.
100 parts of polyester resin
(Acid value: 3, hydroxyl value: 25, Mn: 45000,
(Mw / Mn: 4.0, Tg: 60 ° C.)
5 parts of the above master batch
Charge control agent (Orient Chemical Co., Ltd. Bontron E-84) 4 parts
The above materials were mixed with a mixer, melt-kneaded with a two-roll mill, and the kneaded product was rolled and cooled. Thereafter, pulverization and classification were performed in the same manner as in the black colored particle production example to obtain magenta colored particles having a volume average diameter of 13.5 μm.
[0078]
(4) Production of cyan colored particles
600 parts of water
Pigment Blue 15: 3 hydrous cake (solid content 50%) 1200 parts
Stir the above materials well with a flasher. To this was added 1200 parts of a polyester resin (acid value; 3, hydroxyl value; 25, Mn; 45000, Mw / Mn; 4.0, Tg; 60 ° C.), and after kneading at 150 ° C. for 30 minutes, 1000 parts of xylene were added. In addition, the mixture was further kneaded for 1 hour, water and xylene were removed, rolled and cooled, pulverized with a pulverizer, and further passed twice with a three-roll mill to obtain a master batch pigment.
100 parts of polyester resin
(Acid value: 3, hydroxyl value: 25, Mn: 45000,
(Mw / Mn: 4.0, Tg: 60 ° C.)
3 parts of the above master batch
Charge control agent (Orient Chemical Co., Ltd. Bontron E-84) 4 parts
The above materials were mixed with a mixer, melt-kneaded with a two-roll mill, and the kneaded product was rolled and cooled. Thereafter, pulverization and classification were performed in the same manner as in the black colored particle production example, and cyan colored particles having a volume average diameter of 13.4 μm were obtained.
[0079]
(Mixing with external additives and evaluation of the obtained toner)
100 parts by weight of the four colored particles obtained as described above and 1.0 part by weight of the external additive obtained in the external additive production example are mixed with a Henschel mixer and passed through a sieve having an opening of 50 μm. By removing coarse particles and aggregates, an electrophotographic toner was obtained. Table 2 shows the combination and the evaluation results of the obtained toner on various image evaluation machines. However, Example 7 used 0.5 part by weight of hydrophobic silica R972 (primary particle size 16 nm, manufactured by Nippon Aerosil Co., Ltd.), and Example 8 was acrylic resin fine particles MP-1000 (average particle size 400 nm, manufactured by Soken Chemical Co., Ltd.). ) Was used in combination with 0.5 parts by weight, and in Example 9, a toner was prepared by using both 0.5 parts by weight of R972 and 0.5 parts by weight of MP-1000.
When evaluating images with a two-component developer, a ferrite carrier having an average particle diameter of 50 μm coated with a silicone resin with an average thickness of 0.3 μm is used, and 5 parts by weight of each color toner is contained in a container with respect to 100 parts by weight of the carrier. A developer was prepared by uniformly mixing and charging using a tumbler mixer of the type that was rolled and stirred.
The developer thus obtained is an electrophotographic developing apparatus that electrostatically transfers a toner image to a transfer material by bringing a transfer means into contact with the surface of the electrostatic charge image carrier via the transfer material. Evaluation was performed and the results are shown in Table 2.
[0080]
[Table 2]
* D ++ and D ++ mean that other external additives are used in combination.
[0081]
(Color toner evaluation machine)
The resulting toner has (i) a four-color developing unit that develops a non-magnetic one-component developer on each belt sequentially on each belt, sequentially transfers them to an intermediate transfer member, and transfers all four colors onto a sheet of paper. Full-color laser printer Ipsio 5000 (made by Ricoh, its schematic diagram is shown in FIG. 3) (evaluator A), (ii) a non-magnetic one-component developing unit for four colors and a photosensitive member for four colors Tandem-type full-color LED printer GL8300 (manufactured by Fujitsu Ltd.) (Evaluation machine B), (iii) four-color developing unit having a two-component developer, Full color laser copier Imagio Color 2800 (Ricoh Co., Ltd., schematic diagram shown in FIG. 3) (Evaluation shown in FIG. 3) (Evaluation) Evaluated by machine C) . The developing units of the evaluation machines A and B are equipped with a developing roller made of an elastic material and a non-magnetic one-component developing unit made of a stainless steel blade with a regulated layer thickness. All three types of evaluation machines are reversal development systems in which the polarity of the electrostatic latent image on the photoreceptor and the polarity of the non-magnetic one-component developer are the same.
[0082]
(Evaluation item)
For each item, the following evaluation was performed after running 10,000 image charts having a 7% image area.
1) Image density
After outputting the solid image on 6000 paper manufactured by Ricoh, the image density was measured by X-Rite (manufactured by X-Rite). This was performed for four colors alone, and an average was obtained.
2) Fine line reproducibility
A 600 dpi fine line image was output to Ricoh type 6000 paper, and the degree of fine line bleeding was compared with a step sample. Rank 1 is the lowest and rank 5 is the highest. This was performed by overlapping four colors.
3) Dirt
The blank image was stopped during development, the developer on the developed photoreceptor was tape transferred, and the difference from the image density of the untransferred tape was measured with a 938 spectrocytometer (manufactured by X-Rite).
4) Halftone reproducibility
A continuous halftone image consisting of 1-dot (full-dot) writing and 1-dot blank is overlaid on plain paper with a relatively rough surface (X4024 paper made by Xerox Co., Ltd.) and output in four colors, and the degree of dot reproduction is increased. Compared to the stage sample. Rank 1 is the lowest and rank 5 is the highest.
5) White spots inside character images (worm-eating)
The character image was superimposed on a Ricoh type DX OHP sheet and output, and the toner untransferred frequency at which the inside of the line image in the character portion fell out was compared with a step sample. Rank 1 is the lowest and rank 5 is the highest.
[0083]
Examples 12-18,Reference example 2Comparative Examples 3-4
When the toner of the present invention is applied to a system in which a toner image is transferred to a transfer material by driving the transfer material in close contact with the electrostatic charge image carrier itself without providing a rotation mechanism as shown in FIG. It was confirmed. As a fixing method in this case, an oven fixing method in which heated air is supplied and fixed is used. FIG. 2 shows a conceptual diagram of a typical oven fixing method used in this embodiment. In this case, the toner 5 is fixed on the transfer material 1 by passing through the oven 4 in which the transfer material 1 and the toner 5 are heated.
[0084]
Four colors of toner base material colored particles were prepared as follows.
(Black colored particles)
1200 parts of water
200 parts phthalocyanine green water cake (solid content 30%)
540 parts of carbon black (MA60 manufactured by Mitsubishi Chemical Corporation)
Stir the above materials well with a flasher. To this, 1200 parts of an epoxy polyol resin (Mn; 3800, Mw / Mn; 3.9, Tg; 59 ° C.) was added, kneaded at 150 ° C. for 30 minutes, 1000 parts of xylene were added, and further kneaded for 1 hour, water and xylene After being removed, it was rolled and cooled, and pulverized with a pulverizer to obtain a master batch pigment.
100 parts of the above epoxy polyol resin
8 parts of the above master batch
Zinc salicylate derivatives
(Bontron E84, manufactured by Orient Chemical Co., Ltd.) 2 parts
The above materials were mixed with a mixer, melt-kneaded with a two-roll mill, and the kneaded product was rolled and cooled. Thereafter, pulverization classification was performed to obtain two types of black colored particles having a weight average particle diameter of 8.5 μm and circularity of 0.92 and 0.94.
[0085]
(Yellow colored particles)
600 parts of water
Pigment Yellow 17 hydrous cake (solid content 50%) 1200 parts
Stir the above materials well with a flasher. To this, 1200 parts of an epoxy polyol resin (Mn; 3800, Mw / Mn; 3.9, Tg; 59 ° C.) was added, kneaded at 150 ° C. for 30 minutes, 1000 parts of xylene were added, and further kneaded for 1 hour, water and xylene After being removed, it was cooled by rolling, pulverized with a pulverizer, and further passed twice with three rolls to obtain a master batch pigment.
100 parts of the above epoxy polyol resin
8 parts of the above master batch
Zinc salicylate derivatives
(Bontron E84, manufactured by Orient Chemical Co., Ltd.) 2 parts
The above materials were mixed with a mixer, melt-kneaded with a two-roll mill, and the kneaded product was rolled and cooled. Thereafter, pulverization classification was performed to obtain two kinds of yellow colored particles having a weight average particle diameter of 8.5 μm and circularity of 0.92 and 0.94.
[0086]
(Magenta colored particles)
600 parts of water
Pigment Red 57 hydrous cake (solid content 50%) 1200 parts
Stir the above materials well with a flasher. To this, 1200 parts of an epoxy polyol resin (Mn; 3800, Mw / Mn; 3.9, Tg; 59 ° C.) was added, kneaded at 150 ° C. for 30 minutes, 1000 parts of xylene were added, and further kneaded for 1 hour, water and xylene After being removed, the sample was rolled and cooled, pulverized with a pulverizer, and further passed twice with a three-roll mill to obtain a master batch pigment.
100 parts of the above epoxy polyol resin
8 parts of the above master batch
Zinc salicylate derivatives
(Bontron E84, manufactured by Orient Chemical Co., Ltd.) 2 parts
The above materials were mixed with a mixer, melt-kneaded with a two-roll mill, and the kneaded product was rolled and cooled. Thereafter, pulverization classification was performed to obtain two types of magenta colored particles having a weight average particle diameter of 8.5 μm and circularity of 0.92 and 0.94.
[0087]
(Cyan colored particles)
600 parts of water
Pigment Blue 15: 3 hydrous cake (solid content 50%) 1200 parts
Stir the above materials well with a flasher. To this, 1200 parts of an epoxy polyol resin (Mn; 3800, Mw / Mn; 3.9, Tg; 59 ° C.) was added, kneaded at 150 ° C. for 30 minutes, 1000 parts of xylene were added, and further kneaded for 1 hour, water and xylene After being removed, the sample was rolled and cooled, pulverized with a pulverizer, and further passed twice with a three-roll mill to obtain a master batch pigment.
100 parts of the above epoxy polyol resin
8 parts of the above master batch
Zinc salicylate derivatives
(Bontron E84, manufactured by Orient Chemical Co., Ltd.) 2 parts
The above materials were mixed with a mixer, melt-kneaded with a two-roll mill, and the kneaded product was rolled and cooled. Thereafter, pulverization classification was performed to obtain two kinds of cyan colored particles having a weight average particle diameter of 8.5 μm and circularity of 0.92 and 0.94.
[0088]
(Mixing with additives and evaluation of the resulting toner)
After mixing 100 parts by weight of the obtained 4 color × 2 kinds of colored particles and the above-mentioned external additives in the addition amount shown in Table 3 using a Henschel mixer, the agglomerates were passed through a sieve having an opening of 50 μm. The toner was obtained by removing. Further, 5 parts of these toners and 100 parts of a ferrite carrier having an average particle diameter of 50 μm coated with a silicone resin at an average thickness of 0.3 μm were mixed by a tumbler mixer to prepare a developer.
[0089]
Using the XEIKON image forming apparatus DCP32D in which the above toner and developer were set at an oven fixing temperature of 140 ° C., image evaluation was performed for worm-eaten and gloss.
According to the above-mentioned criteria for the worm-eaten, the gloss was visually evaluated on a five-point scale between an excellent image and an unacceptable value. The results are shown in Table 3.
The image processes used in these examples were able to obtain satisfactory results despite the use of a high-speed and special transfer method, in which images were more easily lost than normal processes.
Further, image evaluation was performed by setting the printing speed to 15 ppm / A4 and 35 ppm / A4 as necessary. About dot reproducibility evaluation of Examples 12-18, all became high quality of rank 4 or more.
[0090]
[Table 3]
* X indicates the same silica as used in the external additive A obtained by treating with hexamethyldisilazane.
[0091]
【The invention's effect】
According to the present invention, by using inorganic fine particles having a specific release rate treated with silicone oil as an external additive, the charging device, the developing device, the photosensitive member, and the intermediate transfer member are not contaminated by the developer, Even when a large number of high-quality images are used repeatedly over a long period of time, the background density is extremely low with an appropriate image density, and there is no reproducible image blur or dust on any transfer medium. It is possible to provide a developer capable of forming a stable image free of electrolysis and an electrophotographic developing apparatus using the developer.
Further, according to the present invention, it is possible to provide a toner and an image forming method capable of ensuring a high level of both transfer quality and fixing quality even in an image forming method in which an electrostatic charge image carrier is driven by at least adhesion of a transfer material. It becomes possible.
Furthermore, it is possible to provide a toner and an image forming method that can ensure a high level of both transfer quality and fixing quality even for higher speed copying and printing requirements.
Furthermore, it is possible to provide a toner and an image forming method that have better dot reproducibility than conventional ones.
[Brief description of the drawings]
FIG. 1 is a schematic view of a system in which a transfer material is driven in close contact with an electrostatic charge image carrier itself without providing a rotation mechanism.
FIG. 2 is a schematic view of an oven fixing method.
FIG. 3 is a schematic view of a full-color image forming apparatus of a system that sequentially transfers four-color toner images to an intermediate transfer member and collectively transfers the four-color toners onto transfer paper or the like.
[Brief description of symbols]
1 Transfer material
2 Electrostatic charge image carrier
3 Transfer section
4 Oven
5 Toner
41 Electrophotographic photoreceptor
42 Exposure unit
43 Electrophotographic photoreceptor
44 Each development unit for 4-color toner
45 Transfer belt
46 Transfer material
47 Transfer roller
48 Transfer belt cleaning member
49 Photoconductor cleaning member
50 Charger

Claims (8)

少なくとも結着樹脂と着色剤と外添剤からなる電子写真用トナーであって、該外添剤がシリコーンオイルを含む無機微粒子(シリコーンオイル処理の前に予めシランカップリング剤による処理を行って得られるものを除く)からなり、該シリコーンオイルの遊離率が30〜70%である電子写真用トナーを使用し、静電荷像担持体を少なくとも転写材の密着で駆動させる方式を用いることを特徴とする画像形成方法。An electrophotographic toner comprising at least a binder resin, a colorant, and an external additive, wherein the external additive contains inorganic fine particles containing silicone oil (obtained by pretreatment with a silane coupling agent prior to silicone oil treatment). Using a toner for electrophotography in which the liberation rate of the silicone oil is 30 to 70%, and using a method of driving the electrostatic charge image bearing member at least by adhesion of the transfer material. Image forming method. 該シリコーンオイルの遊離率が30〜50%であることを特徴とする、請求項1に記載の画像形成方法2. The image forming method according to claim 1, wherein the liberation rate of the silicone oil is 30 to 50%. 該無機微粒子がシリカと酸化チタンのいずれか一方又は双方であることを特徴とする、請求項1又は2に記載の画像形成方法The image forming method according to claim 1, wherein the inorganic fine particles are one or both of silica and titanium oxide. 該電子写真用トナーの重量平均粒径が15μm以下である、請求項1〜3のいずれかに記載の画像形成方法。The image forming method according to claim 1, wherein the electrophotographic toner has a weight average particle diameter of 15 μm or less. 該外添剤よりも一次粒子の平均粒径が小さい無機微粒子を含むことを特徴とする、請求項1〜4のいずれかに記載の画像形成方法。The image forming method according to claim 1, comprising inorganic fine particles having an average primary particle size smaller than that of the external additive. 該外添剤よりも平均粒径の大きな樹脂微粒子を含むことを特徴とする、請求項1〜3のいずれか又は5に記載の画像形成方法。6. The image forming method according to claim 1, further comprising resin fine particles having an average particle diameter larger than that of the external additive. 該電子写真用トナーの円形度が0.93以上であることを特徴とする、請求項1〜5のいずれかに記載の画像形成方法。The image forming method according to claim 1, wherein the electrophotographic toner has a circularity of 0.93 or more. 画像の定着方法として少なくとも非接触加熱定着方式を用いることを特徴とする、請求項1〜7のいずれかに記載の画像形成方法。The image forming method according to claim 1, wherein at least a non-contact heat fixing method is used as an image fixing method.
JP2001130244A 2000-04-28 2001-04-26 Toner and image forming method Expired - Fee Related JP4422363B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001130244A JP4422363B2 (en) 2000-04-28 2001-04-26 Toner and image forming method

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
JP2000-129240 2000-04-28
JP2000129240 2000-04-28
JP2000-133850 2000-05-02
JP2000133850 2000-05-02
JP2000-299739 2000-09-29
JP2000299739 2000-09-29
JP2001130244A JP4422363B2 (en) 2000-04-28 2001-04-26 Toner and image forming method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2008317208A Division JP4801721B2 (en) 2000-04-28 2008-12-12 Toner and image forming method

Publications (2)

Publication Number Publication Date
JP2002174926A JP2002174926A (en) 2002-06-21
JP4422363B2 true JP4422363B2 (en) 2010-02-24

Family

ID=27481257

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001130244A Expired - Fee Related JP4422363B2 (en) 2000-04-28 2001-04-26 Toner and image forming method

Country Status (1)

Country Link
JP (1) JP4422363B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4828032B2 (en) * 2001-03-05 2011-11-30 株式会社トクヤマ Hydrophobic silica powder and method for producing the same
JP2004045668A (en) * 2002-07-10 2004-02-12 Ricoh Co Ltd Developer for electrostatic charge pattern development, image forming apparatus, and image forming method
JP5003310B2 (en) * 2006-06-30 2012-08-15 住友化学株式会社 Surface hydrophobized metal oxide powder and method for producing the same
JP2011047988A (en) * 2009-08-25 2011-03-10 Canon Inc Toner
JP5483994B2 (en) * 2009-10-22 2014-05-07 キヤノン株式会社 Image forming method
JP5495727B2 (en) * 2009-11-17 2014-05-21 キヤノン株式会社 Image forming method
JP5807844B2 (en) * 2011-03-09 2015-11-10 株式会社リコー Toner, image forming apparatus, and process cartridge
US9268244B2 (en) 2011-04-26 2016-02-23 Ricoh Company, Ltd. Electrostatic image developing toner, image forming apparatus, image forming method, and process cartridge
JP6011776B2 (en) 2011-04-26 2016-10-19 株式会社リコー Toner, image forming apparatus, and process cartridge
JP2014106448A (en) * 2012-11-29 2014-06-09 Fuji Xerox Co Ltd Developer for electrostatic charge image development, developer cartridge, process cartridge, and image forming apparatus
JP6634673B2 (en) * 2014-12-12 2020-01-22 株式会社リコー Image forming apparatus, image forming method, and toner
JP2020144212A (en) * 2019-03-06 2020-09-10 株式会社リコー Electrophotographic toner, two-component developer, toner storage unit, image forming apparatus, and image forming method

Also Published As

Publication number Publication date
JP2002174926A (en) 2002-06-21

Similar Documents

Publication Publication Date Title
JP4801721B2 (en) Toner and image forming method
JP4093446B2 (en) Electrophotographic toner external additive, method for producing the same, electrophotographic toner, and electrophotographic developing apparatus
EP1059567B1 (en) Image forming apparatus comprising developing means provided with a black toner with specific sphericity , use of this black toner in an imaging process and toner kit
EP1406129B1 (en) Silicia fine particle, toner, two-component developer and image forming method
KR100940238B1 (en) Electrophotographic developing agent and electrophotographic image forming apparatus using the same
JPH03174164A (en) Production of toner for developing electrostatic charge image
JP3909839B2 (en) Toner, developer, process cartridge, image forming method, and image forming apparatus
JP4173012B2 (en) Electrophotographic toner external additive, electrophotographic toner, electrophotographic developer, image forming method and image forming apparatus
JP4422363B2 (en) Toner and image forming method
JPH08328312A (en) Image forming method, image forming device and toner kit
JP2899038B2 (en) Toner for developing electrostatic images
JP4132747B2 (en) Toner, developer, image forming method and image forming apparatus
JP3942162B2 (en) Toner for electrophotography and developing method
JP3731072B2 (en) Toner for developing electrostatic image, developer for developing electrostatic image, image forming method and image forming apparatus
JP4435183B2 (en) Electrophotographic toner, method for producing the same, and electrophotographic developing apparatus
JP3657917B2 (en) Toner for developing electrostatic image, full color toner kit, image forming method and image forming apparatus
JP4270779B2 (en) Image forming method
JP2704776B2 (en) Image forming method
JP4676994B2 (en) Electrophotographic toner, method for producing the same, and electrophotographic developing apparatus
JP2002023413A (en) External additive for electrophotographic toner, electrophotographic toner and device for electrophotographic development
JP2002055480A (en) Electrophotographic toner and method for forming image
JP7447525B2 (en) Toner, toner storage unit, developer, image forming device, and image forming method
JP2011215573A (en) Toner, method of manufacturing the same, developer, and image forming method
JP3938478B2 (en) Method for producing toner for electrophotography
JP3191068B2 (en) Image forming method

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050225

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060921

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20061017

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081014

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090908

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091201

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091204

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121211

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131211

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees