JP4421249B2 - Method for manufacturing polarization separating element - Google Patents

Method for manufacturing polarization separating element Download PDF

Info

Publication number
JP4421249B2
JP4421249B2 JP2003327896A JP2003327896A JP4421249B2 JP 4421249 B2 JP4421249 B2 JP 4421249B2 JP 2003327896 A JP2003327896 A JP 2003327896A JP 2003327896 A JP2003327896 A JP 2003327896A JP 4421249 B2 JP4421249 B2 JP 4421249B2
Authority
JP
Japan
Prior art keywords
birefringent film
organic birefringent
transparent substrate
organic
rotation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003327896A
Other languages
Japanese (ja)
Other versions
JP2005092030A (en
Inventor
明繁 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2003327896A priority Critical patent/JP4421249B2/en
Publication of JP2005092030A publication Critical patent/JP2005092030A/en
Application granted granted Critical
Publication of JP4421249B2 publication Critical patent/JP4421249B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

本発明は、偏光分離素子の製造方法に関する。 The present invention relates to the production how the polarization separating element.

直交する2つの偏光成分を分離する方法として、特許文献1では、透明基板上に入射光の異なる振動面に対し屈折率が異なる有機複屈折膜を接着し、かつ有機複屈折膜の表面に周期的な凹凸(回折格子)を形成した偏光分離素子が提案されている。また、特許文献1には、透明基板に有機複屈折膜を接着し、その後、有機複屈折膜の表面にフォトリソグラフィーによって周期的なレジストマスクを形成し、必要があればリフトオフによって金属マスクに反転した後、ドライエッチングによって回折格子を形成するプロセスなどが開示されている。 As a method for separating two orthogonal polarization components, in Patent Document 1, an organic birefringent film having a different refractive index is adhered to a transparent substrate on a vibrating surface having different incident light, and a period is formed on the surface of the organic birefringent film. A polarization separation element in which a general unevenness (diffraction grating) is formed has been proposed. In Patent Document 1, an organic birefringent film is bonded to a transparent substrate, and then a periodic resist mask is formed on the surface of the organic birefringent film by photolithography, and if necessary, inverted to a metal mask by lift-off. Then, a process for forming a diffraction grating by dry etching is disclosed.

貼り合せ光ディスクの作製方法で、回転中に紫外線を照射して紫外線硬化型接着剤を硬化する方法が、特許文献2,3に開示されている。   Patent Documents 2 and 3 disclose a method for producing a bonded optical disk by curing an ultraviolet curable adhesive by irradiating ultraviolet rays during rotation.

特開2000−75130号公報JP 2000-75130 A 特開平10−334521号公報JP 10-334521 A 特開2000−268416号公報JP 2000-268416 A

光ディスク用の光ピックアップでは、光源からの入射光と光ディスクからの反射光(情報信号)を分離して、反射光(情報信号)を効率良く受光素子に導くために、偏光分離素子が用いられている。従来はプリズムを接着したビームスプリッタとλ/4波長板の組み合わせが用いられていたが、ピックアップの小型化、低コスト化の要求に答えるため、ビームスプリッタの替わりに薄型の偏光分離素子が実現できる複屈折回折格子型偏光分離素子が開発されつつある。   In an optical pickup for an optical disk, a polarization separation element is used to separate incident light from a light source and reflected light (information signal) from the optical disk and efficiently guide the reflected light (information signal) to a light receiving element. Yes. Conventionally, a combination of a beam splitter with a prism attached and a λ / 4 wavelength plate was used. However, in order to meet the demands for miniaturization and cost reduction of the pickup, a thin polarization separation element can be realized instead of the beam splitter. Birefringent diffraction grating type polarization separation elements are being developed.

直交する2つの偏光成分を分離する方法として、特許文献1では透明基板上に入射光の異なる振動面に対し屈折率が異なる有機複屈折膜を接着し、かつ、有機複屈折膜表面に周期的な凹凸格子(回折格子)を形成した偏光分離素子が提案されている。なお、有機複屈折膜は延伸した有機高分子材料からなる。   As a method of separating two orthogonal polarization components, in Patent Document 1, an organic birefringent film having a different refractive index is bonded to a transparent substrate on a vibrating surface having different incident light, and the organic birefringent film surface is periodically formed. There has been proposed a polarization separation element in which a simple concavo-convex grating (diffraction grating) is formed. The organic birefringent film is made of a stretched organic polymer material.

この偏光分離素子では、接着剤を用いて有機複屈折膜を透明基板へ接着する際に、回折格子面内で光路を一定とするため、接着層の厚さを均一にする必要がある。また接着層に気泡が入ると、光(入射光、出射光)が気泡によって散乱し、回折効率が低下するため、気泡を巻きこまないような接着法が必要となる。   In this polarization separation element, when the organic birefringent film is bonded to the transparent substrate using an adhesive, the thickness of the adhesive layer needs to be uniform in order to make the optical path constant in the diffraction grating plane. Further, when bubbles enter the adhesive layer, light (incident light, outgoing light) is scattered by the bubbles and the diffraction efficiency is lowered. Therefore, an adhesion method that does not entrap the bubbles is required.

以上の点から、透明基板へ有機複屈折膜を接着する方法は、貼り合せ光ディスクで用いられているスピンナー法が適している。   From the above points, the spinner method used in the bonded optical disk is suitable for the method of adhering the organic birefringent film to the transparent substrate.

スピンナー法による貼り合せ光ディスクの製造方法を、図14を参照して以下に説明する。この製造方法では、以下の(a)〜(e)の順に工程が進む。   A method for manufacturing a bonded optical disk by the spinner method will be described below with reference to FIG. In this manufacturing method, the process proceeds in the order of the following (a) to (e).

(a)まず、第1の基板501のハブ502をスピンテーブル503のセンターピン504にさし込み、スピンテーブル503を回転させながら、第1の基板501に紫外線硬化型接着剤505を滴下する。   (A) First, the hub 502 of the first substrate 501 is inserted into the center pin 504 of the spin table 503, and the ultraviolet curable adhesive 505 is dropped on the first substrate 501 while the spin table 503 is rotated.

(b)第1の基板501の周辺部まで接着剤505が広がったらスピンテーブル503の回転を停止する。   (B) When the adhesive 505 spreads to the periphery of the first substrate 501, the rotation of the spin table 503 is stopped.

(c)第2の基板506のハブ507をスピンテーブル503のセンターピン504にさし込み、第1の基板501と第2の基板506を接触させる。   (C) The hub 507 of the second substrate 506 is inserted into the center pin 504 of the spin table 503, and the first substrate 501 and the second substrate 506 are brought into contact with each other.

(d)スピンテーブル503を回転させ、余分な接着剤を振り切り、接着層厚さを一定にする。   (D) Rotate the spin table 503, shake off excess adhesive, and make the adhesive layer thickness constant.

(e)スピンテーブル503の回転を停止し、紫外線を照射して接着層を硬化し、貼り合せ光ディスクを完成させる。   (E) The rotation of the spin table 503 is stopped, the ultraviolet ray is irradiated to cure the adhesive layer, and the bonded optical disk is completed.

貼り合せ光ディスクでは、約0.6mmのポリカーボネート基板やPMMA基板同士を接着している。これは、基板が比較的厚いため剛体として取り扱うことができる。そのため第1の基板501に第2の基板506を載置すると、第1の基板501に載置した後でも第2の基板506の平坦性は良く、第2、第1の基板506,501を高速回転させると、光ディスクの表面を完全に平坦化することができる。   In the bonded optical disk, a polycarbonate substrate or PMMA substrate having a thickness of about 0.6 mm is bonded. This can be handled as a rigid body because the substrate is relatively thick. Therefore, when the second substrate 506 is placed on the first substrate 501, the flatness of the second substrate 506 is good even after being placed on the first substrate 501, and the second and first substrates 506 and 501 are attached to each other. When rotated at high speed, the surface of the optical disk can be completely flattened.

しかしながら、偏光分離素子の作製においては、偏光分離素子の大きさが数mm角程度であるため、直径4〜8インチの透明基板に接着された有機複屈折膜上に数10〜数100個の回折格子をアレイ状に作製し、その後ダイシングによって個々の偏光分離素子を取り出している。また1枚の基板から取れる偏光分離素子数を多くするため、有機複屈折膜603や透明基板にはハブ502、507を設けていない。   However, in the production of the polarization separation element, since the size of the polarization separation element is about several millimeters square, several tens to several hundreds of pieces are formed on the organic birefringent film bonded to the transparent substrate having a diameter of 4 to 8 inches. A diffraction grating is formed in an array, and then individual polarization separation elements are taken out by dicing. In order to increase the number of polarization separation elements that can be taken from one substrate, the organic birefringent film 603 and the transparent substrate are not provided with the hubs 502 and 507.

そのため、図15に示すように、スピンテーブル503に透明基板601を真空吸着し、その後、透明基板601の中央に紫外線硬化型接着剤602を滴下し、スピンテーブル503を回転して接着剤602を透明基板601の全面に広げた後、有機複屈折膜603を透明基板上601に載せるが、有機複屈折膜603にはハブがないため、センターピン504で固定できず、フリーな状態で透明基板601に載る。一般的には載置装置を用いて有機複屈折膜603を接着剤602が塗付された透明基板601に載せるが、スピンテーブル503の回転中心に有機複屈折膜603の中心を正確に合せることは、載置装置の機械的精度の点から困難な場合が多い。そのため有機複屈折膜603がスピンテーブル503の回転中心に載っていない場合、前述の工程のようにスピンテーブル503を回転させると(図15(a))、有機複屈折膜603が位置ずれを起こす不具合が発生する(図15(b))。この位置ずれが大きい場合は透明基板601から有機複屈折膜603がはみ出してしまう。   Therefore, as shown in FIG. 15, the transparent substrate 601 is vacuum-adsorbed on the spin table 503, and then an ultraviolet curable adhesive 602 is dropped on the center of the transparent substrate 601, and the spin table 503 is rotated to apply the adhesive 602. After spreading over the entire surface of the transparent substrate 601, the organic birefringent film 603 is placed on the transparent substrate 601. However, since the organic birefringent film 603 does not have a hub, it cannot be fixed with the center pin 504, and the transparent substrate is free. 601. Generally, the organic birefringent film 603 is placed on the transparent substrate 601 coated with the adhesive 602 by using a mounting device, and the center of the organic birefringent film 603 is accurately aligned with the rotation center of the spin table 503. Is often difficult in terms of mechanical accuracy of the mounting device. Therefore, when the organic birefringent film 603 is not placed on the rotation center of the spin table 503, when the spin table 503 is rotated as described above (FIG. 15A), the organic birefringent film 603 is displaced. A problem occurs (FIG. 15B). When this positional deviation is large, the organic birefringent film 603 protrudes from the transparent substrate 601.

そして、紫外線照射によって接着剤602を硬化させた後、回折格子を形成するため、リソグラフィー、ドライエッチングを行うが、装置内や工程間の搬送は基板601の側面をクランプして行うことが多く、透明基板601から有機複屈折膜603がはみ出していると搬送が困難になり、回折格子を形成できなかった。   Then, after curing the adhesive 602 by ultraviolet irradiation, lithography and dry etching are performed in order to form a diffraction grating. In many cases, the side of the substrate 601 is clamped in the apparatus or between processes. If the organic birefringent film 603 protrudes from the transparent substrate 601, it becomes difficult to carry and a diffraction grating cannot be formed.

そのため、スピンテーブル503の回転中に有機複屈折膜603の位置ずれが発生した場合は、スピンテーブル503の回転を停止し、適切な位置へ有機複屈折膜603を戻す作業を行い、再びスピンテーブル503を回転させる必要があり、上記の作業を繰り返すことによって貼り合せ工程のスループットを遅くしていた。また、上記の作業のため、スピンテーブル503の回転時間を一定にすることができず、各基板601間で接着層厚さが不均一になる問題も発生していた。   Therefore, when the position of the organic birefringent film 603 is shifted during the rotation of the spin table 503, the rotation of the spin table 503 is stopped, and the organic birefringent film 603 is returned to an appropriate position. It was necessary to rotate 503, and the throughput of the bonding process was slowed by repeating the above operation. Further, due to the above work, the rotation time of the spin table 503 cannot be made constant, and there is a problem that the thickness of the adhesive layer is not uniform between the substrates 601.

スピンテーブル503の回転中に有機複屈折膜603の位置ずれを起こさせないためには、回転中に紫外線を照射する方法が考えられる。例えば貼り合せ光ディスクの作製方法では、特許文献2,3において、回転中に紫外線を照射して紫外線硬化型接着剤505を硬化する方法が提案されている。   In order not to cause the displacement of the organic birefringent film 603 during the rotation of the spin table 503, a method of irradiating ultraviolet rays during the rotation can be considered. For example, as a method for manufacturing a bonded optical disk, Patent Documents 2 and 3 propose a method of curing the ultraviolet curable adhesive 505 by irradiating ultraviolet rays during rotation.

しかしながら、偏光分離素子の作製においては、接着層厚さを均一化するため基板601をある程度回転させた後に紫外線を照射しなければならないので、有機複屈折膜603の位置ずれを完全に防止することは困難であった。   However, in the production of the polarization separating element, since it is necessary to irradiate ultraviolet rays after rotating the substrate 601 to some extent in order to make the adhesive layer thickness uniform, it is possible to completely prevent the misalignment of the organic birefringent film 603. Was difficult.

また、載置装置に画像認識機能を搭載し、スピンテーブル503の回転中心と有機複屈折膜603の中心を検出し、載置装置にフィードバック制御を掛けながらスピンテーブル503の回転中心に有機複屈折膜603の中心を置くような手段を用いた場合は、スピンテーブル503の回転中心と有機複屈折膜603の中心との位置合せ精度を著しく向上できるため、スピンテーブル503の回転中に有機複屈折膜603の位置ずれが起きにくい。   In addition, the image recognition function is mounted on the mounting device, the rotation center of the spin table 503 and the center of the organic birefringence film 603 are detected, and the organic birefringence is applied to the rotation center of the spin table 503 while feedback control is performed on the mounting device. In the case where means for placing the center of the film 603 is used, the alignment accuracy between the rotation center of the spin table 503 and the center of the organic birefringence film 603 can be remarkably improved, so that the organic birefringence during the rotation of the spin table 503 is achieved. Misalignment of the film 603 hardly occurs.

しかしながら、載置装置にCCD等を用いた検出装置やフィードバック制御系を設ける必要があり、載置装置のコストが上昇する。また、貼り合せ時に位置検出やフィードバック制御を行うため、貼り合せ工程のスループットが低下してしまう。そのため、安価に偏光分離素子を作製することが困難である。   However, it is necessary to provide a detection device using a CCD or the like and a feedback control system in the mounting device, which increases the cost of the mounting device. In addition, since position detection and feedback control are performed at the time of bonding, the throughput of the bonding process is reduced. Therefore, it is difficult to produce a polarization separation element at low cost.

また、有機複屈折膜603は面内の2方向で屈折率が異なるため、面内の2方向のうち特定の1方向に回折格子を形成する必要がある。そのため、リソグラフィー工程では有機複屈折膜603の面内で屈折率が異なる2方向のうち特定の1方向(有機複屈折膜603の「露光基準軸」という)に揃えてレジストパターンを形成しなければならない。そのため、有機複屈折膜603に露光基準軸の指標となるマーク(通常はオリエンテーションフラットを用いる)を設け、有機複屈折膜603のマークを基準位置としてレジストパターンを形成する。   Further, since the organic birefringent film 603 has different refractive indexes in two in-plane directions, it is necessary to form a diffraction grating in one specific direction out of the two in-plane directions. Therefore, in the lithography process, a resist pattern must be formed in alignment with one specific direction (referred to as the “exposure reference axis” of the organic birefringent film 603) out of two directions having different refractive indexes within the plane of the organic birefringent film 603. Don't be. Therefore, a mark (usually using an orientation flat) serving as an index of the exposure reference axis is provided on the organic birefringent film 603, and a resist pattern is formed using the mark on the organic birefringent film 603 as a reference position.

露光には縮小投影露光装置が用いられるが、通常、縮小投影露光装置では、基板601のオリエンテーションフラットを検出し、オリエンテーションフラットを基準位置にして1st露光(下層とアライメントを行わない露光)行う。そのため、透明基板601の内側にある有機複屈折膜603のマークを基準位置にして1st露光をおこなうためには、別の機構が必要になり、装置のコストアップに繋がる。   Although a reduction projection exposure apparatus is used for exposure, the reduction projection exposure apparatus normally detects the orientation flat of the substrate 601 and performs the first exposure (exposure without alignment with the lower layer) using the orientation flat as a reference position. Therefore, in order to perform the first exposure with the mark of the organic birefringent film 603 inside the transparent substrate 601 as the reference position, another mechanism is required, which leads to an increase in the cost of the apparatus.

そのため、図15に示すように、透明基板601にもオリエンテーションフラット611を設け、有機複屈折膜603の接着工程で透明基板601のオリエンテーションフラットと有機複屈折膜603のマークの相対位置を許容範囲内で抑え(有機複屈折膜603にオリエンテーションフラット612を設ける場合は、透明基板601と有機複屈折膜603のオリエンテーションフラット612とをお互いに平行にする)、露光工程では透明基板601のオリエンテーションフラット612を基準位置にして1st露光を行っている。   Therefore, as shown in FIG. 15, an orientation flat 611 is also provided on the transparent substrate 601, and the relative position of the orientation flat of the transparent substrate 601 and the mark of the organic birefringent film 603 is within an allowable range in the bonding process of the organic birefringent film 603. (When the orientation flat 612 is provided on the organic birefringent film 603, the transparent substrate 601 and the orientation flat 612 of the organic birefringent film 603 are parallel to each other). In the exposure process, the orientation flat 612 of the transparent substrate 601 is First exposure is performed at the reference position.

そして、有機複屈折膜603の接着工程において、有機複屈折膜603が透明基板601からはみ出さない程度に位置ずれを抑え込むことができた場合においても、有機複屈折膜603の僅かな位置ずれは有機複屈折膜603のマークと透明基板601のオリエンテーションフラット612の相対位置をずらし、許容範囲を超える割合を多くする。その結果、露光工程では透明基板601のオリエンテーションフラット611を基準位置にするため、レジストパターンの方向が有機複屈折膜603の露光基準軸と一致しない割合が増加し、所望の光学特性を持つ偏光分離素子が得られる歩留が低下してしまう不具合がある。   Even when the organic birefringent film 603 can be suppressed to such an extent that the organic birefringent film 603 does not protrude from the transparent substrate 601 in the bonding process of the organic birefringent film 603, the slight misalignment of the organic birefringent film 603 is not. The relative position between the mark of the organic birefringent film 603 and the orientation flat 612 of the transparent substrate 601 is shifted to increase the ratio exceeding the allowable range. As a result, since the orientation flat 611 of the transparent substrate 601 is used as the reference position in the exposure process, the ratio that the resist pattern direction does not coincide with the exposure reference axis of the organic birefringent film 603 increases and polarization separation having desired optical characteristics is achieved. There is a problem that the yield at which the element is obtained is lowered.

また、特許文献には、透明基板に有機複屈折膜を接着し、その後、有機複屈折膜の表面にフォトリソグラフィーによって周期的なレジストマスクを形成し、必要があればリフトオフによって金属マスクに反転した後、ドライエッチングによって回折格子を形成するプロセスを開示している。また、有機複屈折膜の表面にフォトリソグラフィーによって周期的なレジストマスクを形成し、その後ドライエッチングによって回折格子を形成し、その後、透明基板に回折格子を形成した有機複屈折膜を接着するプロセスを開示している。 In Patent Document 1 , an organic birefringent film is bonded to a transparent substrate, and then a periodic resist mask is formed on the surface of the organic birefringent film by photolithography, and if necessary, inverted to a metal mask by lift-off. Then, a process for forming a diffraction grating by dry etching is disclosed. In addition, a periodic resist mask is formed on the surface of the organic birefringent film by photolithography, then a diffraction grating is formed by dry etching, and then the process of adhering the organic birefringent film having the diffraction grating formed on a transparent substrate is performed. Disclosure.

しかしながら、特許文献に開示のプロセスに貼り合せ光ディスクで採用されている接着法を用いると、以下の問題が発生する。 However, when the bonding method employed in the bonded optical disk is used in the process disclosed in Patent Document 1 , the following problems occur.

すなわち、接着後の有機複屈折膜603の表面の凹凸が影響を与える項目は、回折格子を形成するためのマスクパターンを作製する露光工程での1ショット(shot)面積と、偏光分離素子の波面収差である。   That is, the items affected by the unevenness of the surface of the organic birefringent film 603 after bonding are the one shot area in the exposure process for producing the mask pattern for forming the diffraction grating, and the wavefront of the polarization separating element. Aberration.

貼り合せ光ディスクに用いられた方法によって有機複屈折膜を接着した場合、数mm角範囲では有機複屈折膜の凹凸は小さいが、うねりのようなロングスパン(long span)が発生することが判明した。接着後の有機複屈折膜の凹凸の概念図を図17に示す。   When the organic birefringent film is bonded by the method used for the bonded optical disk, it has been found that the unevenness of the organic birefringent film is small in the range of several mm square, but a long span like swell occurs. . A conceptual diagram of the unevenness of the organic birefringent film after bonding is shown in FIG.

ここで1個の偏光分離素子の大きさを5mm角、露光には縮小投影露光装置としてニコン社のNSR2205i12Dを用いた場合、偏光分離素子の波面収差から許容される有機複屈折膜の凹凸は1.0μm以下であり、NA=0.50では焦点深度が2.9μmになることが実験により確かめられている。   Here, when the size of one polarization separation element is 5 mm square and the exposure uses a Nikon NSR2205i12D as a reduction projection exposure apparatus, the unevenness of the organic birefringent film allowed from the wavefront aberration of the polarization separation element is 1 It has been confirmed by experiments that the depth of focus is 2.9 μm at NA = 0.50.

上記のデータから偏光分離素子の波面収差を小さくするためには、少なくとも5mm角で凹凸を1.0μm以下に抑える必要がある。これを波面収差から規定される凹凸を、仮に凹凸(A)とする。   From the above data, in order to reduce the wavefront aberration of the polarization separation element, it is necessary to suppress the unevenness to 1.0 μm or less at least 5 mm square. The unevenness defined by the wavefront aberration is assumed to be unevenness (A).

また、前述のNSR2205i12Dは最大の露光面積は22mm角であり、リソグラフィーの焦点深度が2.5μmであることから、2.5mm以下の凹凸であれば、1ショットで露光できることになる。ここで焦点深度から規定される凹凸を、仮に凹凸(B)とする。   Further, the above-described NSR2205i12D has a maximum exposure area of 22 mm square, and the focal depth of lithography is 2.5 μm. Therefore, if the unevenness is 2.5 mm or less, it can be exposed with one shot. Here, the unevenness defined by the depth of focus is assumed to be unevenness (B).

有機複屈折膜を透明基板に接着後回折格子を形成するプロセスでは、数mm角範囲では有機複屈折膜の凹凸は小さいため、5mm角では波面収差から規定される凹凸(A)以下となり、作製されるほぼ全ての偏光分離素子は、実用上問題ない波面収差に抑えられている。   In the process of forming a diffraction grating after adhering an organic birefringent film to a transparent substrate, the unevenness of the organic birefringent film is small in the range of several mm square, so the unevenness (A) specified by wavefront aberration is less than 5 mm square, and the fabrication is Almost all polarized light separating elements are suppressed to wavefront aberrations that are not problematic in practice.

一方、1ショットの露光面積を見ると、うねりのようなロングスパンの凹凸が焦点深度から規定される凹凸(B)を超えるため、1ショットの露光面積を22mm角には設定できず、1ショットの露光面積を小さくする必要があった。2.0μmピッチ、duty=50%のパターンを露光する場合は、露光面積は10mm角に限定され、リソグラフィーのスループットを低下させていた。   On the other hand, when looking at the exposure area of one shot, the long-span irregularities such as waviness exceed the irregularities (B) defined by the focal depth, so the exposure area of one shot cannot be set to 22 mm square. It was necessary to reduce the exposure area. In the case of exposing a pattern with a 2.0 μm pitch and duty = 50%, the exposure area is limited to 10 mm square, reducing the lithography throughput.

また、露光工程でより微細なパターンを露光しようとすると、リソグラフィーの焦点深度が低下し、波面収差から規定される凹凸(A)より焦点深度から規定される凹凸(B)が大きくなる場合がある。その場合は1ショットの露光面積を1chip角としても、有機複屈折膜603を透明基板に接着後、回折格子を形成するプロセスでは偏光分離素子の製造歩留が著しく低下してしまう不具合がある。   Further, when trying to expose a finer pattern in the exposure process, the depth of focus of lithography decreases, and the unevenness (B) defined by the focal depth may be larger than the unevenness (A) defined by the wavefront aberration. . In that case, even if the exposure area of one shot is set to 1 chip angle, there is a problem that the manufacturing yield of the polarization separation element is significantly lowered in the process of forming the diffraction grating after the organic birefringent film 603 is bonded to the transparent substrate.

次に、有機複屈折膜に回折格子を形成した後に透明基板に接着するプロセスの問題点を説明する。   Next, the problem of the process of adhering to a transparent substrate after forming a diffraction grating on the organic birefringent film will be described.

膜形状の部材にリソグラフィーを行なう装置はプラスチックLCDで利用されており、このような装置を用いることで有機複屈折膜上にレジストパターンを形成できる。しかしながら、膜形状の部材をドライエッチングする装置は市販されておらず、透明基板に固定しないまま有機複屈折膜を加工することは実用上不可能である。   An apparatus for performing lithography on a film-shaped member is used in a plastic LCD. By using such an apparatus, a resist pattern can be formed on an organic birefringent film. However, an apparatus for dry etching a film-shaped member is not commercially available, and it is practically impossible to process an organic birefringent film without being fixed to a transparent substrate.

また、膜形状の部材を加工できるドライエッチング装置を新規に開発した場合においても、以下の懸念がある。   Further, even when a dry etching apparatus that can process a film-shaped member is newly developed, there are the following concerns.

すなわち、光ディスクは0.6mm厚さであるためカセットラックに収納し、カセットラックに吸着アームを挿し込み、記録層と対抗する面を吸着アームで保持することで、記録層にキズを付けないでハンドリングを行っている。   That is, since the optical disk is 0.6 mm thick, it is stored in the cassette rack, the suction arm is inserted into the cassette rack, and the surface facing the recording layer is held by the suction arm, so that the recording layer is not damaged. We are handling.

しかし、偏光分離素子では入手可能な有機複屈折膜の厚さは50〜100μm程度であるため、カセットラックに収納することができず、1枚ずつ横置きにして吸着アームで回折格子を形成した面を保持する必要がある。そのため、接着時のハンドリングによって回折格子にキズをつけ、偏光分離素子の波面収差を低下させる懸念がある。   However, since the thickness of the organic birefringent film that can be obtained in the polarization separation element is about 50 to 100 μm, it cannot be stored in a cassette rack, and a diffraction grating is formed by placing it horizontally one by one. It is necessary to hold the surface. Therefore, there is a concern that the diffraction grating is scratched by handling during bonding, and the wavefront aberration of the polarization separation element is reduced.

吸着アームの機構を工夫して回折格子を形成した面と対向する面のみを保持することも考えられるが、吸着アームの機構が複雑化してしまう。   Although it is conceivable to devise the mechanism of the suction arm and hold only the surface opposite to the surface on which the diffraction grating is formed, the mechanism of the suction arm becomes complicated.

本願発明は、以上のような諸問題の解決のためになされたもので、偏光分離素子を製造するために最適な技術を提供することを目的とする。   The present invention has been made to solve the above-described problems, and an object thereof is to provide an optimum technique for manufacturing a polarization separation element.

請求項に記載の発明は、入射光の異なる振動面に対し屈折率が異なる有機複屈折膜の一方の面上に紫外線を透過する周期的なマスクパターンを形成するマスクパターン形成工程と、前記有機複屈折膜の前記マスクパターンを形成した面と反対の面で前記有機複屈折膜を透明基板に接着する接着工程と、前記のマスクパターンを用いて前記有機複屈折膜の表面をエッチングして周期的な凹凸による回折格子を形成する回折格子形成工程と、を含む偏光分離素子の製造方法において、前記接着工程では、前記透明基板に基板面方向の回転である第1の回転を与えて当該透明基板全面に紫外線硬化型接着剤を塗布し、その後、前記紫外線硬化型接着剤上に前記マスクパターンを形成した面と反対側の面で前記有機複屈折膜を載置し、その後、前記透明基板に基板面方向の回転である第2の回転を与えて前記有機複屈折膜表面を平坦化し、前記第2の回転中に前記紫外線硬化型接着剤を溶解し、かつ、前記有機複屈折膜を溶解しない有機溶媒を滴下して前記透明基板の周辺部の紫外線硬化型接着剤を除去し、その後、前記透明基板に第1の紫外線を照射して紫外線硬化型接着剤を硬化する処理を行う。 The invention according to claim 1 is a mask pattern forming step of forming a periodic mask pattern that transmits ultraviolet light on one surface of an organic birefringent film having a different refractive index with respect to different vibration surfaces of incident light, An adhesion step of bonding the organic birefringent film to a transparent substrate on a surface opposite to the surface on which the mask pattern of the organic birefringent film is formed; and etching the surface of the organic birefringent film using the mask pattern. In the method for manufacturing a polarization separation element including a diffraction grating forming step of forming a diffraction grating by periodic unevenness, in the bonding step, the transparent substrate is given a first rotation that is a rotation in the substrate surface direction, and An ultraviolet curable adhesive is applied to the entire surface of the transparent substrate, and then the organic birefringent film is placed on the surface opposite to the surface on which the mask pattern is formed on the ultraviolet curable adhesive. A second rotation which is a rotation in the substrate surface direction is applied to the bright substrate to flatten the surface of the organic birefringent film, the ultraviolet curable adhesive is dissolved during the second rotation, and the organic birefringence is obtained. An organic solvent that does not dissolve the film is dropped to remove the UV curable adhesive at the periphery of the transparent substrate, and then the UV curable adhesive is cured by irradiating the transparent substrate with a first ultraviolet ray. Do.

請求項に記載の発明は、請求項1に記載の偏光分離素子の製造方法において、前記マスクパターン形成工程では、前記マスクパターンを、SiO,Si,SiON,In,ITO(Indium thin Oxide)の各材料からなる群のうちの少なくとも1つの材料で形成する。 According to a second aspect of the present invention, in the method of manufacturing a polarization separation element according to the first aspect, in the mask pattern forming step, the mask pattern is formed of SiO 2 , Si 3 N 4 , SiON, In 2 O 3 , It is made of at least one material selected from the group consisting of ITO (Indium thin Oxide) materials.

請求項に記載の発明は、請求項1または2に記載の偏光分離素子の製造方法において、前記接着工程では、前記有機溶媒としてイソプロピルアルコールとアセトンとのうち少なくとも一方を用いる。 According to a third aspect of the present invention, in the method of manufacturing a polarization separation element according to the first or second aspect , in the bonding step, at least one of isopropyl alcohol and acetone is used as the organic solvent.

請求項に記載の発明は、第1の回転を与えて透明基板全面に紫外線硬化型接着剤が塗布されるため、透明基板上では接着剤が無い領域が発生せず、かつ周期的なマスクパターンが紫外線を透過するため、第1の紫外線を照射することで透明基板とマスクパターンを形成した有機複屈折膜は全面接着が実現できる。 In the first aspect of the present invention, since the ultraviolet curable adhesive is applied to the entire surface of the transparent substrate by applying the first rotation, a region without the adhesive does not occur on the transparent substrate and the periodic mask is used. Since the pattern transmits ultraviolet rays, the entire surface of the organic birefringent film formed with the transparent substrate and the mask pattern can be realized by irradiating the first ultraviolet rays.

また、接着された有機複屈折膜表面の平面性は、従来例と同様にうねりのようなロングスパンの凹凸は残るかもしれないが、数mm角程度の範囲における凹凸は低減できる。偏光分離素子の波面収差に影響を与えるのは、この数mm角範囲の凹凸であるため、接着された有機複屈折膜上では数mm角の平面性は良好であるので、個々の偏光分離素子の波面収差は実用上問題ないレベルに抑えることができる。   Further, the flatness of the surface of the bonded organic birefringent film may have long-span irregularities such as undulations as in the conventional example, but the irregularities in the range of about several mm square can be reduced. It is this unevenness in the range of several mm square that affects the wavefront aberration of the polarized light separating element, and the flatness of several mm square is good on the bonded organic birefringent film. The wavefront aberration can be suppressed to a level that causes no problem in practice.

さらに、接着前に有機複屈折膜表面に既にマスクパターンを形成しているため、接着後のうねりのようなロングスパンの凹凸は、マスクパターンを形成する露光での1ショットの露光面積や解像度に影響を与えない。
そのうえ、1ショットの露光面積や解像度はマスクパターンを形成する露光での有機複屈折膜の平坦性で決定される。マスクパターンを形成する露光では有機複屈折膜へ引っ張りのテンションをかけて平坦化して行なったときは、従来よりも露光時の凹凸を小さくできる。その結果、従来よりも1ショットの露光面積を拡大でき、露光時のスループットを改善できる。そして、解像度が向上するため、より微細な回折格子を形成できる。
Furthermore, since the mask pattern has already been formed on the surface of the organic birefringent film before bonding, long-span irregularities such as waviness after bonding cause the exposure area and resolution of one shot in the exposure to form the mask pattern. Does not affect.
In addition, the exposure area and resolution of one shot are determined by the flatness of the organic birefringent film in the exposure for forming the mask pattern. In the exposure for forming the mask pattern, when the organic birefringent film is flattened by applying tension to the organic birefringent film, the unevenness at the time of exposure can be made smaller than in the conventional case. As a result, the exposure area of one shot can be increased as compared with the conventional case, and the throughput during exposure can be improved. Since the resolution is improved, a finer diffraction grating can be formed.

第2の回転中に紫外線硬化型接着剤を溶解し、かつ有機複屈折膜を溶解しない有機溶媒を滴下するため、有機複屈折膜で被覆されていない透明基板周辺の紫外線硬化型接着剤は除去される。その結果、装置間や装置内の搬送で基板の周辺部をハンドリングしても、基板の周辺部からの異物発生が非常に少ないので、偏光分離素子の製造歩留を向上できる。   During the second rotation, the UV curable adhesive is dissolved around the transparent substrate that is not covered with the organic birefringent film because the organic solvent that dissolves the UV curable adhesive and does not dissolve the organic birefringent film is dropped. Is done. As a result, even if the peripheral portion of the substrate is handled between the apparatuses or in the apparatus, the generation of foreign matter from the peripheral portion of the substrate is very small, so that the manufacturing yield of the polarization separating element can be improved.

透明基板を回転させながら前記の有機溶媒を滴下するため、有機溶媒には遠心力がかかり、有機複屈折膜と透明基板とで挟まれた領域にある紫外線硬化型接着剤へは染み込みにくいので、第1の紫外線を照射することで透明基板と有機複屈折膜は十分な接着面積が得られる。   Since the organic solvent is dropped while rotating the transparent substrate, a centrifugal force is applied to the organic solvent, and it is difficult to penetrate the ultraviolet curable adhesive in the region sandwiched between the organic birefringent film and the transparent substrate. By irradiating the first ultraviolet ray, a sufficient adhesion area can be obtained between the transparent substrate and the organic birefringent film.

また、接着された有機複屈折膜表面の平面性について見ると、請求項2,3と同様にうねりのようなロングスパンの凹凸は残るが、数mm角範囲の凹凸は小さくなる。その結果,個々の偏光分離素子の波面収差は実用上問題ないレベルに抑えることができる。   Further, in view of the planarity of the surface of the bonded organic birefringent film, long-span irregularities such as undulations remain as in the second and third aspects, but the irregularities in the range of several mm square are reduced. As a result, the wavefront aberration of each polarization separation element can be suppressed to a level that causes no problem in practice.

さらに、マスクパターンを形成するために露光を行なう場合に、有機複屈折膜へ引っ張りのテンションをかけて平坦化して行なえば、従来よりも1ショットの露光面積を拡大できる。また、より微細な回折格子を形成できる。   Further, when exposure is performed to form a mask pattern, if the organic birefringent film is flattened by applying tension to the organic birefringent film, the exposure area of one shot can be increased as compared with the conventional case. In addition, a finer diffraction grating can be formed.

そのうえ、第2の回転中に紫外線硬化型接着剤を溶解し、かつ有機複屈折膜を溶解しない有機溶媒を滴下するため、有機複屈折膜で被覆されていない透明基板周辺の紫外線硬化型接着剤は除去される。   In addition, an ultraviolet curable adhesive around the transparent substrate that is not coated with the organic birefringent film is added so that the organic solvent that does not dissolve the organic birefringent film is dropped during the second rotation. Is removed.

透明基板を回転させながら前記の有機溶媒を滴下するため、有機溶媒には遠心力がかかり、有機複屈折膜と透明基板とで挟まれた領域にある紫外線硬化型接着剤へは染み込みにくいので、第1,第2の紫外線を照射することで透明基板と有機複屈折膜は十分な接着面積が得られる。   Since the organic solvent is dropped while rotating the transparent substrate, a centrifugal force is applied to the organic solvent, and it is difficult to penetrate the ultraviolet curable adhesive in the region sandwiched between the organic birefringent film and the transparent substrate. By irradiating the first and second ultraviolet rays, a sufficient adhesion area can be obtained between the transparent substrate and the organic birefringent film.

第2の回転中に第1の紫外線照射を行うことで紫外線硬化型接着剤を半硬化させるため、紫外線硬化型接着剤と有機複屈折膜との固着力が強まり、第2の回転によって起こる有機複屈折膜の位置ずれを低減できる。その結果,有機複屈折膜が透明基板からはみ出す頻度が小さくなり、搬送不良を低減できより低コストで偏光分離素子を作製できる。   Since the ultraviolet curable adhesive is semi-cured by performing the first ultraviolet irradiation during the second rotation, the adhesive force between the ultraviolet curable adhesive and the organic birefringent film is increased, and the organic caused by the second rotation Misalignment of the birefringent film can be reduced. As a result, the frequency with which the organic birefringent film protrudes from the transparent substrate is reduced, so that conveyance failure can be reduced, and a polarization separation element can be manufactured at a lower cost.

接着前に有機複屈折膜の面内の2方向のうち特定の1方向に平行にマスクパターンを形成すれば、第2の回転中に有機複屈折膜が僅かに動き透明基板上で有機複屈折膜が回転した場合においても、前記のマスクパターンを用いて有機複屈折膜をエッチングするため、回折格子の方向を有機複屈折膜の面内の2方向のうち特定の1方向に揃えることができ、所定の回折効率が得られる。   If the mask pattern is formed in parallel to one of the two directions in the plane of the organic birefringent film before bonding, the organic birefringent film slightly moves during the second rotation, and the organic birefringence is formed on the transparent substrate. Even when the film rotates, since the organic birefringent film is etched using the mask pattern, the direction of the diffraction grating can be aligned with one of the two directions in the plane of the organic birefringent film. A predetermined diffraction efficiency is obtained.

また、接着された有機複屈折膜表面の平面性について見ると、請求項2〜4と同様にうねりのようなロングスパンの凹凸は残るが、数mm角範囲の凹凸は小さくなる。その結果、個々の偏光分離素子の波面収差は実用上問題ないレベルに抑えることができる。   Further, in view of the planarity of the surface of the bonded organic birefringent film, long-span irregularities such as waviness remain as in the case of claims 2 to 4, but the irregularities in the range of several mm square are reduced. As a result, the wavefront aberration of each polarization separation element can be suppressed to a level that causes no problem in practice.

さらに、マスクパターンを形成するために露光を行なう場合に、有機複屈折膜へ引っ張りのテンションをかけて平坦化して行なえば、従来よりも1ショットの露光面積を拡大できる。また、より微細な回折格子を形成できる。   Further, when exposure is performed to form a mask pattern, if the organic birefringent film is flattened by applying tension to the organic birefringent film, the exposure area of one shot can be increased as compared with the conventional case. In addition, a finer diffraction grating can be formed.

そのうえ、第3の回転中に紫外線硬化型接着剤を溶解し、かつ有機複屈折膜を溶解しない有機溶媒を滴下するため、有機複屈折膜で被覆されていない透明基板周辺の紫外線硬化型接着剤は除去される。   In addition, an ultraviolet curable adhesive around the transparent substrate that is not coated with the organic birefringent film is added to drop the organic solvent that dissolves the ultraviolet curable adhesive and does not dissolve the organic birefringent film during the third rotation. Is removed.

透明基板を回転させながら前記の有機溶媒を滴下するため、有機溶媒には遠心力がかかり、有機複屈折膜と透明基板とで挟まれた領域にある紫外線硬化型接着剤へは染み込みにくいので、第1第2の紫外線を照射することで透明基板と有機複屈折膜は十分な接着面積が得られる。   Since the organic solvent is dropped while rotating the transparent substrate, a centrifugal force is applied to the organic solvent, and it is difficult to penetrate the ultraviolet curable adhesive in the region sandwiched between the organic birefringent film and the transparent substrate. By irradiating the first and second ultraviolet rays, a sufficient adhesion area can be obtained between the transparent substrate and the organic birefringent film.

更に、第2の回転を停止して有機複屈折膜を透明基板上で滑動し、位置を修正した後透明基板と有機複屈折膜の相対位置が許容値内であることを確認した後、第1の紫外線照射を行ない紫外線硬化型接着剤を半硬化させため、透明基板と有機複屈折膜の相対位置を許容値内に納めて有機複屈折膜と透明基板の固着力を強めることができる。その結果、第3の回転中で有機複屈折膜の位置ずれは更に起き難くなり、有機複屈折膜が透明基板からはみ出す頻度を更に小さくできる。   Further, after stopping the second rotation, sliding the organic birefringent film on the transparent substrate, correcting the position, and confirming that the relative position between the transparent substrate and the organic birefringent film is within the allowable value, Since the ultraviolet curable adhesive is semi-cured by performing the ultraviolet irradiation of No. 1, the relative position of the transparent substrate and the organic birefringent film can be kept within an allowable value, and the adhesion force between the organic birefringent film and the transparent substrate can be strengthened. As a result, the displacement of the organic birefringent film is less likely to occur during the third rotation, and the frequency at which the organic birefringent film protrudes from the transparent substrate can be further reduced.

接着前に有機複屈折膜の面内の2方向のうち特定の1方向に平行にマスクパターンを形成した場合には、第3の回転中に有機複屈折膜が僅かに動き、透明基板上で有機複屈折膜が回転した場合においても、前記のマスクパターンを用いて有機複屈折膜をエッチングするため、回折格子の方向を有機複屈折膜の面内の2方向のうち特定の1方向に揃えることができ、所定の回折効率が得られる。   When the mask pattern is formed in parallel with one of the two directions in the plane of the organic birefringent film before bonding, the organic birefringent film slightly moves during the third rotation, Even when the organic birefringent film is rotated, the organic birefringent film is etched using the mask pattern, so that the direction of the diffraction grating is aligned with one of the two directions in the plane of the organic birefringent film. And a predetermined diffraction efficiency is obtained.

請求項記載の発明によれば、SiO,Si,SiON,In,ITOは酸を主成分とするエッチング液で除去できる。具体的にはSiO,Si,SiONはフッ酸系のエッチング液によって、In,ITOは第2塩化鉄および塩酸系のエッチング液で除去できる。よって、ウエットエッチングは被エッチング物である紫外線を透過する周期的なマスクパターンと有機複屈折膜の選択比が大きいため、マスクパターンの除去工程では有機複屈折膜のエッチング形状を劣化させず、良好な回折格子の形状を作ることができる。 According to the second aspect of the present invention, SiO 2 , Si 3 N 4 , SiON, In 2 O 3 , and ITO can be removed with an etching solution containing an acid as a main component. Specifically, SiO 2 , Si 3 N 4 , and SiON can be removed with a hydrofluoric acid etching solution, and In 2 O 3 and ITO can be removed with a ferric chloride and hydrochloric acid etching solution. Therefore, since the wet etching has a large selection ratio between the periodic mask pattern that transmits ultraviolet light, which is the object to be etched, and the organic birefringent film, the etching pattern of the organic birefringent film is not deteriorated in the mask pattern removal process, which is good A simple diffraction grating shape.

また、SiO,Si,SiON,In,ITOはほとんどの有機溶媒に不要であることから、第2、第3の回転中に紫外線硬化型接着剤を溶解し、かつ有機複屈折膜を溶解しない有機溶媒を滴下しても、マスクパターンの形状は劣化しない。
請求項に記載の発明によれば、貼り合せ光ディスク等の貼り合せ工程で広く用いられているアクリル系やエポキシ系紫外線硬化型接着剤は、イソプロピルアルコールとアセトンに非常によく溶解するので、イソプロピルアルコールやアセトンを用いると、有害性の大きい他の有機溶媒を用いるより作業環境や装置安全性を向上できる。
Also, since SiO 2 , Si 3 N 4 , SiON, In 2 O 3 , and ITO are unnecessary in most organic solvents, the UV curable adhesive is dissolved during the second and third rotations, and organic Even if an organic solvent that does not dissolve the birefringent film is dropped, the shape of the mask pattern does not deteriorate.
According to the third aspect of the present invention, the acrylic or epoxy UV curable adhesive widely used in the bonding process for bonded optical disks and the like is very well soluble in isopropyl alcohol and acetone. When alcohol or acetone is used, it is possible to improve the working environment and the safety of the apparatus as compared with other organic solvents that are highly harmful.

発明を実施するための最良の形態について複数例説明する。   A plurality of examples of the best mode for carrying out the invention will be described.

[偏光分離素子の製造方法1]
図1、図2は、本実施形態1である偏光分離素子の製造方法の工程(a)〜(n)を示す説明図である。本製造方法の工程は、この(a)〜(n)の順に進行する。
[Polarization Separation Device Manufacturing Method 1]
1 and 2 are explanatory views showing steps (a) to (n) of the method for manufacturing a polarization beam splitting element according to the first embodiment. The steps of this manufacturing method proceed in the order of (a) to (n).

(a)まず、120mm角に切断した厚さ80μmの有機複屈折膜101の四隅に引っ張りのテンション(矢印で示す)を与え、有機複屈折膜101を平坦化する。その後、有機複屈折膜101に引っ張りのテンションを与えたまま、有機複屈折膜101表面にスプレー法やロールコート法によってポジレジスト102(例えば、住友化学社のPFi−34)を塗布し、60℃のプリベークを行なう。   (A) First, tensile tensions (indicated by arrows) are applied to the four corners of an organic birefringent film 101 having a thickness of 80 μm cut into 120 mm square, and the organic birefringent film 101 is flattened. Thereafter, a positive resist 102 (for example, PFi-34 manufactured by Sumitomo Chemical Co., Ltd.) is applied to the surface of the organic birefringent film 101 by a spray method or a roll coat method while applying a tensile tension to the organic birefringent film 101, and is heated to 60 ° C. Pre-bake

(b)有機複屈折膜101に引っ張りのテンションを与えたまま、縮小投影露光装置(例えば、ニコン社のNSR2205i12D)を用いて、レチクル103上の周期的なパターン(ピッチ2.0μm、duty=50%)を有機複屈折膜101の遅相軸に平行に露光する。尚、露光はNA=0.50で行い、1ショットは15mm角とする。   (B) A periodic pattern (pitch: 2.0 μm, duty = 50) on the reticle 103 using a reduction projection exposure apparatus (for example, NSR2205i12D manufactured by Nikon Corporation) with a tension applied to the organic birefringent film 101. %) Is exposed parallel to the slow axis of the organic birefringent film 101. The exposure is performed with NA = 0.50, and one shot is 15 mm square.

偏光分離素子1では有機複屈折膜101の面内の2方向のうち特定の1方向は回折格子112を揃える必要がある。本例では周期的なパターンを遅相軸に平行に露光することで回折格子112の方向を遅相軸に平行な方向に合わせることができる。   In the polarization separation element 1, the diffraction grating 112 needs to be aligned in one specific direction out of the two directions in the plane of the organic birefringent film 101. In this example, the direction of the diffraction grating 112 can be aligned with the direction parallel to the slow axis by exposing the periodic pattern parallel to the slow axis.

(c)現像液(例えば、東京応化工業製NMD−3の2.38%溶液)を用いてディップ現像を行い、有機複屈折膜101表面に周期的なレジストパターン104を完成させる。   (C) Dip development is performed using a developer (for example, 2.38% solution of NMD-3 manufactured by Tokyo Ohka Kogyo Co., Ltd.) to complete a periodic resist pattern 104 on the surface of the organic birefringent film 101.

(d)有機複屈折膜101に引っ張りのテンションを与えたまま、周期的なレジストパターン104上に有機複屈折膜101と後述の透明基板105の接着に用いる紫外線硬化型接着剤109(後述)を硬化するための紫外線を透過する膜106をスパッタ法や真空蒸着法によって50から100nm成膜する。本例では紫外線を透過する膜106として、EB蒸着法によるITO(Indium thin Oxide)膜を60nm成膜する。紫外線を透過する膜106(ITO)を成膜した後、有機複屈折膜101の引っ張りのテンションを解除する。   (D) An ultraviolet curable adhesive 109 (described later) used for bonding the organic birefringent film 101 and a transparent substrate 105 (described later) onto the periodic resist pattern 104 while applying a tensile tension to the organic birefringent film 101. A film 106 that transmits ultraviolet light for curing is formed to a thickness of 50 to 100 nm by sputtering or vacuum deposition. In this example, an ITO (Indium thin Oxide) film of 60 nm is formed as the film 106 that transmits ultraviolet rays by an EB vapor deposition method. After the film 106 (ITO) that transmits ultraviolet rays is formed, the tension of the organic birefringent film 101 is released.

(e)有機複屈折膜101をアセトン浴に浸漬し、10分間の超音波振動を与えてリフトオフを行い、周期的なレジストパターン104から紫外線を透過する周期的なマスクパターン(ITOパターン)107を形成する。その後、有機複屈折膜101をφ90mmに切断する。   (E) The organic birefringent film 101 is immersed in an acetone bath, lifted off by applying ultrasonic vibration for 10 minutes, and a periodic mask pattern (ITO pattern) 107 that transmits ultraviolet rays from the periodic resist pattern 104 is formed. Form. Thereafter, the organic birefringent film 101 is cut into φ90 mm.

(f)そして、直径100mm、厚さ1.0mmの透明基板105(例えば、光学ガラス(例えば、ショット社のBK7))をスピンテーブル111に載せ、真空吸着によってスピンテーブル111に固定する。その後スピンテーブル111を10〜50rpmで回転させて、透明基板105を基板面方向に回転させながら、透明基板105の中央部にディスペンサー108を用いて屈折率1.52のアクリル系紫外線硬化型接着剤109を3〜10g滴下する。その後、スピンテーブル111を150〜500rpmで回転させ(第1の回転)、透明基板105の全面に紫外線硬化型接着剤109を広げ(図1(g))、スピンテーブル111の回転を停止する。   (F) Then, a transparent substrate 105 (for example, optical glass (for example, BK7 of Schott)) having a diameter of 100 mm and a thickness of 1.0 mm is placed on the spin table 111 and fixed to the spin table 111 by vacuum suction. Thereafter, the spin table 111 is rotated at 10 to 50 rpm, and the transparent substrate 105 is rotated in the direction of the substrate surface, and an acrylic ultraviolet curable adhesive having a refractive index of 1.52 is used at the center of the transparent substrate 105 using the dispenser 108. 3-10 g of 109 is dropped. Thereafter, the spin table 111 is rotated at 150 to 500 rpm (first rotation), the ultraviolet curable adhesive 109 is spread over the entire surface of the transparent substrate 105 (FIG. 1G), and the rotation of the spin table 111 is stopped.

(h)有機複屈折膜101の中心をスピンテーブル111の回転中心にほぼ合せながら、載置装置を用いて紫外線硬化型接着剤109の上に、前記のマスクパターン(ITOパターン)を形成する面と反対側の面で有機複屈折膜101を載せる。   (H) A surface on which the mask pattern (ITO pattern) is formed on the ultraviolet curable adhesive 109 using a mounting device while the center of the organic birefringent film 101 is substantially aligned with the rotation center of the spin table 111. The organic birefringent film 101 is placed on the opposite surface.

(i)スピンテーブル111を1000〜3000rpmで回転させることで、透明基板105を基板面方向に回転させて(第2の回転)、紫外線硬化型接着剤109を振り切り、接着層の厚さを基板105の面内で一定にして有機複屈折膜101の表面を平坦化する。   (I) By rotating the spin table 111 at 1000 to 3000 rpm, the transparent substrate 105 is rotated in the direction of the substrate surface (second rotation), the UV curable adhesive 109 is shaken off, and the thickness of the adhesive layer is changed to the substrate. The surface of the organic birefringent film 101 is flattened in the plane of 105.

(j)第2の回転中に、有機複屈折膜101にイソプロピルアルコールを滴下する。イソプロピルアルコールは、本例に用いたアクリル系紫外線硬化型接着剤109を溶解し、かつ有機複屈折膜101を溶解しない有機溶媒である。(j)の工程後には、透明基板105周辺部に残っていた紫外線硬化型接着剤109は、イソプロピルアルコールによって除去される。   (J) During the second rotation, isopropyl alcohol is dropped on the organic birefringent film 101. Isopropyl alcohol is an organic solvent that dissolves the acrylic ultraviolet curable adhesive 109 used in this example and does not dissolve the organic birefringent film 101. After the step (j), the ultraviolet curable adhesive 109 remaining around the transparent substrate 105 is removed with isopropyl alcohol.

(k)スピンテーブル111の回転を停止し、有機複屈折膜101側から高圧水銀灯を用いて紫外線(第1の紫外線)を照射し、紫外線硬化型接着剤109を硬化させる。   (K) The rotation of the spin table 111 is stopped, and ultraviolet rays (first ultraviolet rays) are irradiated from the organic birefringent film 101 side using a high pressure mercury lamp to cure the ultraviolet curable adhesive 109.

(l)そして、有機複屈折膜101を接着した透明基板105をスピンテーブル111から外し、NLDエッチング装置を用い酸素ガスを主成分とするエッチングガス雰囲気中で、前記の紫外線を透過するマスクパターン107(ITOパターン)をマスクにして、有機複屈折膜101を深さ3μmエッチングする。   (L) Then, the transparent substrate 105 to which the organic birefringent film 101 is bonded is removed from the spin table 111, and the mask pattern 107 that transmits the ultraviolet rays in an etching gas atmosphere containing oxygen gas as a main component using an NLD etching apparatus. Using the (ITO pattern) as a mask, the organic birefringent film 101 is etched by a depth of 3 μm.

それから、塩酸と第2塩化鉄を用いたITOエッチング液を用いてマスクパターン(ITOパターン)107を除去し、エッチング後の有機複屈折膜101による周期的な凹凸が形成された回折格子112を完成させる。   Then, the mask pattern (ITO pattern) 107 is removed using an ITO etching solution using hydrochloric acid and ferric chloride, and a diffraction grating 112 in which periodic irregularities are formed by the organic birefringent film 101 after etching is completed. Let

(m)その後、平面加工をした、φ200mm、厚み50mmのステンレス台(図示せず)上に回折格子112を形成した基板を置き、回折格子112面に光学的に等方的なアクリル系紫外線硬化型接着剤(等方性接着剤)113をマイクロシリンジで1.0mL滴下する。そして両面を光学研磨した直径100mm、厚み1mmの対向透明基板114(例えば、ショット社の光学ガラスBK7を使用)を載せ、更に対向透明基板114上に光学研磨した光学ガラスを載せ、対向透明基板114に100gf/cmの圧力を加え、等方性接着剤113を被接着面全面に広げる。なお、対向透明基板114の被接着面と対向する面には入射光の反射が最小となるよう反射防止膜(図示せず)を形成している。この状態で対向透明基板114を通して紫外線を照射し、等方性接着剤113を硬化する。 (M) Thereafter, a flat plate-processed substrate having a diffraction grating 112 formed thereon is placed on a stainless steel table (not shown) having a diameter of 200 mm and a thickness of 50 mm, and optically isotropic acrylic ultraviolet curing is performed on the surface of the diffraction grating 112. 1.0 mL of mold adhesive (isotropic adhesive) 113 is dropped with a micro syringe. Then, a counter transparent substrate 114 having a diameter of 100 mm and a thickness of 1 mm having both surfaces optically polished (for example, using an optical glass BK7 manufactured by SCHOTT) is mounted, and optical glass having been optically polished is mounted on the counter transparent substrate 114. A pressure of 100 gf / cm 2 is applied to spread the isotropic adhesive 113 over the entire surface to be bonded. Note that an antireflection film (not shown) is formed on the surface of the counter transparent substrate 114 facing the surface to be bonded so as to minimize the reflection of incident light. In this state, the isotropic adhesive 113 is cured by irradiating ultraviolet rays through the counter transparent substrate 114.

(n)以上の工程により作成された製作物116を、ダイシングソー115を用いて5mm角に切り出し、複数の偏光分離素子1を完成させる。   (N) The product 116 created by the above steps is cut into a 5 mm square using a dicing saw 115 to complete a plurality of polarization separation elements 1.

このようにして製作された偏光分離素子1は、透明基板105上に、入射光の異なる振動面に対し屈折率が異なる有機複屈折膜101を紫外線硬化型接着剤109で接着し、有機複屈折膜101の表面に周期的な凹凸を形成して回折格子112としたものとなる。   In the polarization separation element 1 manufactured in this way, an organic birefringent film 101 having a different refractive index is bonded to a transparent substrate 105 with respect to different vibration surfaces of incident light with an ultraviolet curable adhesive 109, thereby organic birefringence. The diffraction grating 112 is formed by forming periodic irregularities on the surface of the film 101.

完成した偏光分離素子1に波長680nmのS偏光を照射し、受光素子で1次回折光を受け、1次回折効率を測定する。結果、回折格子112が良好に形成された偏光分離素子1は回折効率32%以上を概ね達成する。   The completed polarization separation element 1 is irradiated with S-polarized light having a wavelength of 680 nm, and the first-order diffraction efficiency is measured by receiving the first-order diffracted light with the light-receiving element. As a result, the polarization separation element 1 in which the diffraction grating 112 is well formed generally achieves a diffraction efficiency of 32% or more.

以上説明した偏光分離素子1の製造方法によれば、第1の回転により透明基板105の全面に紫外線硬化型接着剤109が塗布されるため、透明基板105上では接着剤が無い領域が発生しない。そのため、接着剤が塗布された透明基板105に紫外線を透過する周期的なマスクパターンを形成した面と対抗する面で有機複屈折膜101を載置した場合、有機複屈折膜101は全面に渡って接着剤を介して透明基板105表面と接触する。   According to the method for manufacturing the polarization separating element 1 described above, the ultraviolet curable adhesive 109 is applied to the entire surface of the transparent substrate 105 by the first rotation, and therefore, no region without the adhesive is generated on the transparent substrate 105. . Therefore, when the organic birefringent film 101 is placed on the surface opposite to the surface on which the periodic mask pattern that transmits ultraviolet rays is formed on the transparent substrate 105 to which the adhesive is applied, the organic birefringent film 101 covers the entire surface. To contact the surface of the transparent substrate 105 through an adhesive.

また、周期的なマスクパターン107は紫外線を透過する膜106から形成されているため、第1の紫外線照射によって周期的なマスクパターン107の間にある領域のみならず周期的なマスクパターン107の直下にある紫外線硬化型接着剤109も硬化し、全面接着が可能となる。   Further, since the periodic mask pattern 107 is formed of a film 106 that transmits ultraviolet rays, not only the region between the periodic mask patterns 107 but also immediately below the periodic mask pattern 107 by the first ultraviolet irradiation. The UV curable adhesive 109 is also cured and can be adhered to the entire surface.

尚、紫外線を透過する膜106は紫外線の透過が100%である必要はなく、若干の吸収がある場合は紫外線の照射エネルギーを増加すれば問題ない。実用的には紫外線硬化型接着剤109の硬化に適した波長の紫外線を30〜99%透過すれば良い。   The film 106 that transmits ultraviolet rays does not need to have 100% transmission of ultraviolet rays, and if there is some absorption, there is no problem if the irradiation energy of ultraviolet rays is increased. Practically, 30 to 99% of ultraviolet rays having a wavelength suitable for curing the ultraviolet curable adhesive 109 may be transmitted.

これは有機複屈折膜101表面に形成するマスクパターン107が紫外線を透過する材質からなることではじめて実現できる効果であり、レジストや金属等のエッチングマスクでは紫外線を吸収ないし遮蔽してしまい、周期的なマスクパターン107の直下にある紫外線硬化型接着剤109は硬化されず、有機複屈折膜101と透明基板105の接着力を大きくできない。その結果、前述のダイシング工程等で有機複屈折膜101の剥離が発生しやすい。   This is an effect that can be realized only when the mask pattern 107 formed on the surface of the organic birefringent film 101 is made of a material that transmits ultraviolet rays, and an etching mask such as a resist or metal absorbs or shields ultraviolet rays, and is periodic. The ultraviolet curable adhesive 109 immediately below the mask pattern 107 is not cured, and the adhesive force between the organic birefringent film 101 and the transparent substrate 105 cannot be increased. As a result, the organic birefringent film 101 is likely to be peeled off in the dicing process described above.

また、この偏光分離素子1の製造方法によると、ドライエッチングによって回折格子112の凸部になる領域には接着時には紫外線を透過する周期的なマスクパターン107が形成されているため、回折格子112の凸部には接着時のハンドリング中にキズが付きにくい。   Further, according to the method of manufacturing the polarization separation element 1, the periodic mask pattern 107 that transmits ultraviolet rays is formed in the region that becomes the convex portion of the diffraction grating 112 by dry etching, so that the diffraction grating 112 The protrusions are not easily scratched during handling during bonding.

一方、ドライエッチングによって回折格子112の凹部になる領域は紫外線を透過する周期的なマスクパターンがないためキズがつくが、その後の有機複屈折膜101のドライエッチングによって除去される。そのため、回折格子112を形成した有機複屈折膜101を透明基板105と接着する従来例と比較して波面収差を抑制できる。   On the other hand, a region that becomes a concave portion of the diffraction grating 112 by dry etching is scratched because there is no periodic mask pattern that transmits ultraviolet rays, but is removed by subsequent dry etching of the organic birefringent film 101. Therefore, wavefront aberration can be suppressed as compared with the conventional example in which the organic birefringent film 101 on which the diffraction grating 112 is formed is bonded to the transparent substrate 105.

接着された有機複屈折膜101表面の平面性について見ると、本例における接着方法では、従来例と同様にうねりのようなロングスパンの凹凸は残るが、数mm角範囲の凹凸は小さくなる。   Looking at the planarity of the surface of the bonded organic birefringent film 101, in the bonding method in this example, long-span irregularities such as waviness remain as in the conventional example, but the irregularities in the range of several mm square are reduced.

偏光分離素子1の波面収差に影響を与えるのは数mm角範囲の凹凸である。本例の偏光分離素子の製造方法によると、数mm角の平面性は良好であるため、ダイシングによって分割された個々の偏光分離素子1の波面収差は実用上問題ないレベルに抑えることができる。   It is unevenness in the range of several mm square that affects the wavefront aberration of the polarization separation element 1. According to the manufacturing method of the polarization separation element of this example, the flatness of several mm square is good, and therefore the wavefront aberration of each polarization separation element 1 divided by dicing can be suppressed to a level that does not cause a problem in practice.

また、本例の偏光分離素子の製造方法では、接着前に有機複屈折膜101表面に既にマスクパターンを形成しているため、接着後のうねりのようなロングスパンの凹凸は露光工程での1ショットの露光面積に影響を与えない。   Further, in the manufacturing method of the polarization separating element of this example, since the mask pattern has already been formed on the surface of the organic birefringent film 101 before bonding, long span irregularities such as waviness after bonding are 1 in the exposure process. Does not affect shot exposure area.

1ショットの露光面積は、(b)の露光工程での有機複屈折膜101の平坦性で決定される。露光工程では有機複屈折膜101へ引っ張りのテンションをかけて平坦化して露光を行なう。引っ張りのテンションは従来例の回転による遠心力よりも大きくできるので、露光時の凹凸を小さくできる。その結果、従来例よりも1ショットの露光面積を拡大でき、露光工程のスループットを改善できる。   The exposure area of one shot is determined by the flatness of the organic birefringent film 101 in the exposure step (b). In the exposure process, the organic birefringent film 101 is exposed to a flattened surface by applying a tension. Since the tension of the tension can be made larger than the centrifugal force by the rotation of the conventional example, the unevenness at the time of exposure can be reduced. As a result, the exposure area of one shot can be increased as compared with the conventional example, and the throughput of the exposure process can be improved.

従来例の接着方法では、2.0μmピッチのパターンを露光する場合、リソグラフィー歩留を90%以上にするためには1ショットの露光面積は10mm角であったが、本例の偏光分離素子1の製造方法により1ショットの露光面積を2.25倍に拡大できる。   In the conventional bonding method, when a 2.0 μm pitch pattern is exposed, the exposure area of one shot is 10 mm square in order to increase the lithography yield to 90% or more. With this manufacturing method, the exposure area of one shot can be expanded 2.25 times.

また、本例では紫外線を透過する周期的なマスクパターンとしてITO(Indium thin Oxide)を用いたが、その他にはSiO,Si,SiON,Inが適している。SiO,Si,SiON,In,ITOは、酸素イオンや酸素ラジカルに対して耐性があるため、NLDを用いた有機複屈折膜101のドライエッチング工程では良好なエッチングマスクとなり、有機複屈折膜101に矩形なパターンを形成できる。 Further, in this example, ITO (Indium thin Oxide) is used as a periodic mask pattern that transmits ultraviolet rays, but SiO 2 , Si 3 N 4 , SiON, and In 2 O 3 are suitable for others. Since SiO 2 , Si 3 N 4 , SiON, In 2 O 3 and ITO are resistant to oxygen ions and oxygen radicals, they are good etching masks in the dry etching process of the organic birefringent film 101 using NLD. A rectangular pattern can be formed on the organic birefringent film 101.

更に、SiO,Si,SiON,In,ITOは酸によって除去できる。SiO,Si,SiONはフッ酸系のエッチング液によって、In,ITOは第2塩化鉄および塩酸系のエッチング液で除去できる。ウエットエッチングは被エッチング物であるマスクパターン107と有機複屈折膜101の選択比が大きいため、マスクパターン107の除去工程では有機複屈折膜101のエッチング形状を劣化させず、良好な回折格子112の形状を作ることができる。 Furthermore, SiO 2 , Si 3 N 4 , SiON, In 2 O 3 and ITO can be removed by acid. SiO 2 , Si 3 N 4 , and SiON can be removed with a hydrofluoric acid based etchant, and In 2 O 3 and ITO can be removed with a ferric chloride and hydrochloric acid based etchant. Since the wet etching has a large selection ratio between the mask pattern 107 to be etched and the organic birefringent film 101, the etching pattern of the organic birefringent film 101 is not deteriorated in the removal process of the mask pattern 107, and a good diffraction grating 112 is formed. Shape can be made.

加えて、SiO,Si,SiON,In,ITOはほとんどの有機溶媒に不要であることから、第2の回転中に紫外線硬化型接着剤109を溶解し、かつ有機複屈折膜101を溶解しない有機溶媒を滴下しても、マスクパターンの形状は劣化しない。 In addition, SiO 2 , Si 3 N 4 , SiON, In 2 O 3 , and ITO are unnecessary in most organic solvents, so the UV curable adhesive 109 is dissolved during the second rotation, and the organic composite is dissolved. Even when an organic solvent that does not dissolve the refractive film 101 is dropped, the shape of the mask pattern does not deteriorate.

また、本例では、第2の回転中に、紫外線硬化型接着剤109を溶解し、かつ有機複屈折膜101を溶解しない有機溶媒を滴下するため、有機複屈折膜101で被覆されていない透明基板105周辺の紫外線硬化型接着剤109は除去される。   Further, in this example, an organic solvent that dissolves the ultraviolet curable adhesive 109 and does not dissolve the organic birefringent film 101 is dropped during the second rotation, so that it is not covered with the organic birefringent film 101. The ultraviolet curable adhesive 109 around the substrate 105 is removed.

透明基板105を回転させながら前記の有機溶媒を滴下するため、有機溶媒には遠心力がかかり、有機複屈折膜101と透明基板105とで挟まれた領域にある紫外線硬化型接着剤109へは染み込みにくい。そのため、第1の紫外線を照射すると透明基板105と有機複屈折膜101は十分な接着面積が得られる。   Since the organic solvent is dropped while rotating the transparent substrate 105, centrifugal force is applied to the organic solvent, and the ultraviolet curable adhesive 109 in the region sandwiched between the organic birefringent film 101 and the transparent substrate 105 is applied. Hard to penetrate. Therefore, when the first ultraviolet ray is irradiated, a sufficient adhesion area is obtained between the transparent substrate 105 and the organic birefringent film 101.

また、透明基板105の周辺部には接着剤が残らないので、装置間や装置内の搬送で基板105の周辺部をハンドリングしても基板105の周辺部からの異物発生が非常に少ないので、偏光分離素子1の製造歩留を向上できる。   In addition, since no adhesive remains in the peripheral portion of the transparent substrate 105, foreign matter generation from the peripheral portion of the substrate 105 is very small even if the peripheral portion of the substrate 105 is handled between apparatuses or in the apparatus. The production yield of the polarization separation element 1 can be improved.

なお、本例では、有機溶媒としてイソプロピルアルコールを用いたが、前記の有機溶媒はイソプロピルアルコールに限定する必要は無く、紫外線硬化型接着剤109を溶解しかつ有機複屈折膜101を溶解しない有機溶媒であれば、さまざまな有機溶媒を用いることができる。しかしながら、貼り合せ光ディスク等の貼り合せ工程で広く用いられているアクリル系やエポキシ系紫外線硬化型接着剤109は、イソプロピルアルコールとアセトンに非常によく溶解するので、有害性の大きい他の有機溶媒よりイソプロピルアルコールやアセトンを用いることは、作業環境や装置安全性の面からより望ましい。   In this example, isopropyl alcohol is used as the organic solvent. However, the organic solvent is not necessarily limited to isopropyl alcohol, and the organic solvent that dissolves the ultraviolet curable adhesive 109 and does not dissolve the organic birefringent film 101. If so, various organic solvents can be used. However, the acrylic or epoxy UV curable adhesive 109 widely used in the bonding process of bonded optical disks and the like is very well soluble in isopropyl alcohol and acetone, and therefore more harmful than other organic solvents. The use of isopropyl alcohol or acetone is more desirable from the viewpoint of work environment and equipment safety.

本例では、透明基板105をスピンテーブル111に固定した後、スピンテーブル111を回転させながら透明基板105の中央部にアクリル系紫外線硬化型接着剤109を滴下して接着剤を塗布するが、接着剤の塗付方法は当該方法に限定される必要は無く、透明基板105をスピンテーブル111に固定した後、スピンテーブル111を停止したまま透明基板105の中央部に接着剤を滴下し、その後スピンテーブル111を回転させて透明基板105全面に接着剤を広げても良い。   In this example, after the transparent substrate 105 is fixed to the spin table 111, the acrylic UV curable adhesive 109 is dropped onto the central portion of the transparent substrate 105 while the spin table 111 is rotated, and the adhesive is applied. The method of applying the agent is not necessarily limited to this method, and after fixing the transparent substrate 105 to the spin table 111, the adhesive is dropped on the central portion of the transparent substrate 105 while the spin table 111 is stopped, and then the spin is performed. The table 111 may be rotated to spread the adhesive on the entire surface of the transparent substrate 105.

さらに、紫外線硬化型接着剤109は室温で塗布するが、紫外線硬化型接着剤109の粘度が高く、有機複屈折膜101を載せたときに紫外線硬化型接着剤109の流動性が乏しく、気泡を巻き込みやすいときは、紫外線硬化型接着剤109が塗布された透明基板105をオーブンや赤外線ランプ等を用いて加熱し、紫外線硬化型接着剤109の粘度を低下させる。後に有機複屈折膜101を載せるのが望ましい。あるいは、紫外線硬化型接着剤109をオーブン等を用いて予め加熱し、紫外線硬化型接着剤109の粘度を低下させた後に、第1の回転によって透明基板105に塗布し、その後に有機複屈折膜101を載せるのも望ましい。   Further, the ultraviolet curable adhesive 109 is applied at room temperature, but the viscosity of the ultraviolet curable adhesive 109 is high, and when the organic birefringent film 101 is placed, the fluidity of the ultraviolet curable adhesive 109 is poor, and bubbles are generated. When it is easy to entrain, the transparent substrate 105 coated with the ultraviolet curable adhesive 109 is heated using an oven, an infrared lamp, or the like to reduce the viscosity of the ultraviolet curable adhesive 109. It is desirable to mount the organic birefringent film 101 later. Alternatively, the ultraviolet curable adhesive 109 is preheated using an oven or the like to reduce the viscosity of the ultraviolet curable adhesive 109 and then applied to the transparent substrate 105 by the first rotation, and then the organic birefringent film It is also desirable to load 101.

[偏光分離素子の製造方法2]
図3、図4は、本実施形態2である偏光分離素子の製造方法の工程(a)〜(n)を示す説明図である。本製造方法の工程は、この(a)〜(n)の順に進行する。
[Polarization Separation Element Manufacturing Method 2]
3 and 4 are explanatory diagrams showing steps (a) to (n) of the method for manufacturing a polarization beam splitting element according to the second embodiment. The steps of this manufacturing method proceed in the order of (a) to (n).

(a)まず、ロール形状の有機複屈折膜101から一端を引き出し、有機複屈折膜101の表面にロールコート法によってポジレジスト102(例えば、東京応化工業社のTDMR−AR640)を塗布し、60℃のプリベークを行なう。尚、有機複屈折膜101は幅120mmで厚さ100μmである。   (A) First, one end is drawn out from the roll-shaped organic birefringent film 101, and a positive resist 102 (for example, TDMR-AR640 of Tokyo Ohka Kogyo Co., Ltd.) is applied to the surface of the organic birefringent film 101 by a roll coating method. Pre-bake at ℃. The organic birefringent film 101 has a width of 120 mm and a thickness of 100 μm.

(b)有機複屈折膜101に引っ張りのテンションを与え平坦化する。後に、縮小投影露光装置(例えば、ニコン社のNSR2205i12D)を用いて、レチクル103上の周期的なパターン(ピッチ1.6μm、duty=50%)を有機複屈折膜101の遅相軸に平行に露光する。尚、露光はNA=0.50で行い、1ショットは10mm角とする。   (B) A tension is applied to the organic birefringent film 101 to flatten it. Later, using a reduction projection exposure apparatus (for example, NSR2205i12D manufactured by Nikon Corporation), a periodic pattern (pitch 1.6 μm, duty = 50%) on the reticle 103 is made parallel to the slow axis of the organic birefringent film 101. Exposure. The exposure is performed at NA = 0.50, and one shot is 10 mm square.

(c)現像液(例えば、東京応化工業社のNMD−3の2.38%溶液)を用いてスプレー現像を行い、有機複屈折膜101表面に周期的なレジストパターン104を完成させる。   (C) Spray development is performed using a developer (for example, a 2.38% solution of NMD-3 manufactured by Tokyo Ohka Kogyo Co., Ltd.) to complete a periodic resist pattern 104 on the surface of the organic birefringent film 101.

(d)有機複屈折膜101に引っ張りのテンションを与えたまま、周期的なレジストパターン104上に、有機複屈折膜101と透明基板105の接着に用いる紫外線硬化型接着剤109を硬化するための紫外線を透過する膜106をスパッタ法や真空蒸着法によって50〜100nm成膜する。本例では、紫外線を透過する膜106として、スパッタ法によるSiO膜を60nm成膜する。 (D) For curing the ultraviolet curable adhesive 109 used for bonding the organic birefringent film 101 and the transparent substrate 105 on the periodic resist pattern 104 while applying a tensile tension to the organic birefringent film 101. A film 106 that transmits ultraviolet rays is formed to a thickness of 50 to 100 nm by sputtering or vacuum deposition. In this example, a 60 nm SiO 2 film is formed by sputtering as the film 106 that transmits ultraviolet rays.

(e)紫外線を透過する膜106(SiO)を成膜した後、有機複屈折膜101の引っ張りのテンションを解除する。その後、有機複屈折膜101をアセトン浴に浸漬し、10分間の超音波振動を与えてリフトオフを行い、周期的なレジストパターン104から紫外線を透過する周期的なマスクパターン(SiOパターン)を形成する。 (E) After forming the film 106 (SiO 2 ) that transmits ultraviolet rays, the tension of the organic birefringent film 101 is released. Thereafter, the organic birefringent film 101 is immersed in an acetone bath, lifted off by applying ultrasonic vibration for 10 minutes, and a periodic mask pattern (SiO 2 pattern) that transmits ultraviolet rays from the periodic resist pattern 104 is formed. To do.

(f)そして、有機複屈折膜101をφ90mmに切り出す。   (F) Then, the organic birefringent film 101 is cut into φ90 mm.

尚、本例では(a)〜(f)の各工程は、インライン装置を用いて一貫して行なう。   In this example, the steps (a) to (f) are performed consistently using an inline device.

(g)その後、直径100mm、厚さ1.0mmの光学ガラス(例えば、ショット社のBK7)からなる透明基板105をスピンテーブル111に載せ、真空吸着によってスピンテーブル111に固定する。そして、スピンテーブル111を10〜50rpmで回転させながら、透明基板105の中央部にディスペンサー108を用いて屈折率1.56のエポキシ系紫外線硬化型接着剤109を3〜10g滴下する。その後、スピンテーブル111を150〜500rpmで回転して、透明基板105を基板面方向に回転させることで(第1の回転)、透明基板105の全面に紫外線硬化型接着剤109を広げ(図3(h))、スピンテーブル111の回転を停止する。   (G) Thereafter, a transparent substrate 105 made of optical glass (for example, BK7 manufactured by Schott) having a diameter of 100 mm and a thickness of 1.0 mm is placed on the spin table 111 and fixed to the spin table 111 by vacuum suction. Then, while rotating the spin table 111 at 10 to 50 rpm, 3 to 10 g of an epoxy-based ultraviolet curable adhesive 109 having a refractive index of 1.56 is dropped onto the central portion of the transparent substrate 105 using the dispenser 108. Thereafter, the spin table 111 is rotated at 150 to 500 rpm, and the transparent substrate 105 is rotated in the direction of the substrate surface (first rotation), so that the ultraviolet curable adhesive 109 is spread over the entire surface of the transparent substrate 105 (FIG. 3). (H)), the rotation of the spin table 111 is stopped.

(i)有機複屈折膜101の中心をスピンテーブル111の回転中心にほぼ合せながら、載置装置を用いて紫外線硬化型接着剤109の上に、前記のマスクパターン107(SiOパターン)を形成した面とは反対側の面で有機複屈折膜101を載せる。 (I) The mask pattern 107 (SiO 2 pattern) is formed on the ultraviolet curable adhesive 109 using a mounting device while the center of the organic birefringent film 101 is substantially aligned with the rotation center of the spin table 111. The organic birefringent film 101 is placed on the surface opposite to the surface that has been subjected to.

(j)そして、スピンテーブル111を1000〜3000rpmで回転することで、透明基板105を基板面方向に回転させて(第2の回転)、紫外線硬化型接着剤109を振り切り、接着層の厚さを基板105の面内で一定にして有機複屈折膜101表面を平坦化する。   (J) Then, by rotating the spin table 111 at 1000 to 3000 rpm, the transparent substrate 105 is rotated in the direction of the substrate surface (second rotation), the UV curable adhesive 109 is shaken off, and the thickness of the adhesive layer Is made constant in the plane of the substrate 105 to flatten the surface of the organic birefringent film 101.

(k)第2の回転開始60秒後に、第2の回転を行いながら有機複屈折膜101にアセトンを滴下し、かつ有機複屈折膜101側からメタルハライドランプを用いて紫外線(第1の紫外線)を照射して紫外線硬化型接着剤109を硬化させる。   (K) 60 seconds after the start of the second rotation, acetone is dropped on the organic birefringent film 101 while performing the second rotation, and ultraviolet light (first ultraviolet light) is emitted from the organic birefringent film 101 side using a metal halide lamp. To cure the ultraviolet curable adhesive 109.

アセトンは本例に用いたエポキシ系紫外線硬化型接着剤109を溶解し、かつ有機複屈折膜101を溶解しない有機溶媒である。そのため、(k)の工程後には透明基板105周辺部に残っていた紫外線硬化型接着剤109はアセトンによって除去される。   Acetone is an organic solvent that dissolves the epoxy ultraviolet curable adhesive 109 used in this example and does not dissolve the organic birefringent film 101. Therefore, the ultraviolet curable adhesive 109 remaining in the periphery of the transparent substrate 105 after the step (k) is removed with acetone.

なお、本例では、遠心力によって有機複屈折膜101を平坦化しながら紫外線硬化型接着剤109を硬化させるのが良いため、紫外線照射時間10分で紫外線硬化型接着剤109の推奨硬化条件になるように、紫外線の光強度を設定する。   In this example, it is preferable to cure the ultraviolet curable adhesive 109 while flattening the organic birefringent film 101 by centrifugal force. Therefore, the recommended curing conditions for the ultraviolet curable adhesive 109 are achieved with an ultraviolet irradiation time of 10 minutes. Thus, the light intensity of ultraviolet rays is set.

(l)スピンテーブル111の回転を停止し、有機複屈折膜101を接着した透明基板105をスピンテーブル111から外し、NLDエッチング装置を用い、酸素ガスを主成分とするエッチングガス雰囲気中で、前記の紫外線を透過するマスクパターン107(SiOパターン)をマスクにして、有機複屈折膜101を深さ3μmエッチングする。そして、フッ酸と硝酸を用いたSiOエッチング液を用いてマスクパターン107(SiOパターン)を除去し、回折格子112を完成させる。 (L) Stop the rotation of the spin table 111, remove the transparent substrate 105 to which the organic birefringent film 101 is bonded from the spin table 111, and use an NLD etching apparatus in an etching gas atmosphere mainly containing oxygen gas. The organic birefringent film 101 is etched to a depth of 3 μm using the mask pattern 107 (SiO 2 pattern) that transmits ultraviolet rays of the mask as a mask. Then, the mask pattern 107 (SiO 2 pattern) is removed using a SiO 2 etching solution using hydrofluoric acid and nitric acid, and the diffraction grating 112 is completed.

(m)そして、平面加工したφ200mm、厚み50mmのステンレス台(図示せず)上に回折格子112を形成した基板105を置き、回折格子112面に光学的に等方的なエポキシ系紫外線硬化型接着剤109(等方性接着剤113)をマイクロシリンジ(図示せず)で1.0mL滴下する。そして、両面を光学研磨した直径100mm、厚み1mmの対向透明基板114(光学ガラス(例えば、ショット社のBK7を使用))を載せ、更に対向透明基板114上に光学研磨した光学ガラスを載せ、対向透明基板114に100gf/cmの圧力を加え、等方性接着剤113を被接着面全面に広げる。なお、対向透明基板114の被接着面とは反対側の面には、入射光の反射が最小となるよう反射防止膜(図示せず)を形成している。この状態で対向透明基板114を通して紫外線を照射し、等方性接着剤113を硬化する。
(n)その後、この製作物116を、ダイシングソー115を用いて5mm角に切りだし、複数の偏光分離素子1を完成させる。
(M) Then, a substrate 105 on which a diffraction grating 112 is formed is placed on a flat-processed stainless steel plate (not shown) having a diameter of 200 mm and a thickness of 50 mm, and an optically isotropic epoxy UV curing type is provided on the surface of the diffraction grating 112. 1.0 mL of the adhesive 109 (isotropic adhesive 113) is dropped with a micro syringe (not shown). Then, an opposing transparent substrate 114 (optical glass (for example, using BK7 of Schott)) having a diameter of 100 mm and a thickness of 1 mm, which is optically polished on both sides, is placed, and further optically polished optical glass is placed on the opposing transparent substrate 114 and facing. A pressure of 100 gf / cm 2 is applied to the transparent substrate 114 to spread the isotropic adhesive 113 over the entire adherend surface. An antireflection film (not shown) is formed on the surface of the counter transparent substrate 114 opposite to the surface to be bonded so as to minimize the reflection of incident light. In this state, the isotropic adhesive 113 is cured by irradiating ultraviolet rays through the counter transparent substrate 114.
(N) Thereafter, the product 116 is cut into a 5 mm square by using a dicing saw 115 to complete a plurality of polarization separation elements 1.

このようにして製作された偏光分離素子1は、透明基板105上に、入射光の異なる振動面に対し屈折率が異なる有機複屈折膜101を紫外線硬化型接着剤109で接着し、有機複屈折膜101の表面に周期的な凹凸を形成して回折格子112としたものとなる。   In the polarization separation element 1 manufactured in this way, an organic birefringent film 101 having a different refractive index is bonded to a transparent substrate 105 with respect to different vibration surfaces of incident light with an ultraviolet curable adhesive 109, thereby organic birefringence. The diffraction grating 112 is formed by forming periodic irregularities on the surface of the film 101.

このようにして完成した偏光分離素子1に波長680nmのS編光を照射し、受光素子で1次回折光を受け、1次回折効率を測定する。その結果、回折格子112が良好に形成された偏光分離素子1は回折効率32%以上を概ね達成する。   The polarization splitting element 1 thus completed is irradiated with S-shaped light having a wavelength of 680 nm, and the light receiving element receives the first-order diffracted light and measures the first-order diffraction efficiency. As a result, the polarization separation element 1 in which the diffraction grating 112 is well formed generally achieves a diffraction efficiency of 32% or more.

このような偏光分離素子の製造方法によっても、偏光分離素子の製造方法1の方法と同様に回折格子112の全面接着が可能である。   Also by such a method of manufacturing a polarization separation element, the entire surface of the diffraction grating 112 can be bonded in the same manner as the method of manufacturing method 1 of the polarization separation element.

また、紫外線を透過する周期的なマスクパターンが回折格子112の凸部になる領域を保護するため、回折格子112を形成した有機複屈折膜101を透明基板105と接着する従来例と比較して、波面収差を抑制できる。   Compared with the conventional example in which the organic birefringent film 101 on which the diffraction grating 112 is formed is bonded to the transparent substrate 105 in order to protect the region where the periodic mask pattern that transmits ultraviolet rays becomes the convex portion of the diffraction grating 112. Wavefront aberration can be suppressed.

接着された有機複屈折膜101の表面の平面性について見ると、偏光分離素子の製造方法1と同様にうねりのようなロングスパンの凹凸は残るが、数mm角範囲の凹凸は小さくなる。そのため、(n)の工程で分割された個々の偏光分離素子1の波面収差は、実用上問題ないレベルに抑えることができる。   Looking at the planarity of the surface of the bonded organic birefringent film 101, long-span irregularities such as waviness remain as in the polarization separation element manufacturing method 1, but the irregularities in the range of several mm square are reduced. Therefore, the wavefront aberration of each polarization separation element 1 divided in the step (n) can be suppressed to a level that causes no problem in practice.

また、接着前に(b)の露光工程で有機複屈折膜101へ引っ張りのテンションをかけて平坦化して露光を行なうことにより露光時に凹凸を小さくできる。その結果、従来例よりも1ショットの露光面積を拡大でき、露光工程のスループットを改善できる。   Further, the unevenness at the time of exposure can be reduced by performing exposure by applying a tension to the organic birefringent film 101 in the exposure step (b) and performing exposure before bonding. As a result, the exposure area of one shot can be increased as compared with the conventional example, and the throughput of the exposure process can be improved.

従来例の接着方法では、1.6μmピッチのパターンを露光する場合、リソグラフィー歩留を90%以上にするためには1ショットの露光面積を5mm角にする必要があったが、本例の偏光分離素子の製造方法によると、1ショットの露光面積を4倍に拡大できる。   In the conventional bonding method, when a pattern having a pitch of 1.6 μm is exposed, in order to increase the lithography yield to 90% or more, the exposure area of one shot needs to be 5 mm square. According to the manufacturing method of the separation element, the exposure area of one shot can be expanded four times.

また、本例では紫外線を透過する周期的なマスクパターン107としてSiOを用いたが、SiOはITOと同様に有機複屈折膜101のドライエッチング工程では良好なエッチングマスクとなる。 Further, in this example, SiO 2 is used as the periodic mask pattern 107 that transmits ultraviolet rays. However, SiO 2 is a good etching mask in the dry etching process of the organic birefringent film 101 like ITO.

更に、SiOはフッ酸系のエッチング液によって除去できるため、良好な回折格子112の形状を作ることができる。 Furthermore, since SiO 2 can be removed by a hydrofluoric acid-based etching solution, a favorable shape of the diffraction grating 112 can be formed.

加えて、SiOは有機溶媒に不要であることから、前述の第2の回転中に紫外線硬化型接着剤109を溶解し、かつ有機複屈折膜101を溶解しない有機溶媒を滴下しても、マスクパターンの形状は劣化しない。
また、本例でも第2の回転中に紫外線硬化型接着剤109を溶解し、かつ有機複屈折膜101を溶解しない有機溶媒を滴下するため、有機複屈折膜101で被覆されていない透明基板105の周辺の紫外線硬化型接着剤109は除去される。
In addition, since SiO 2 is not necessary for the organic solvent, even if the organic solvent that dissolves the ultraviolet curable adhesive 109 and does not dissolve the organic birefringent film 101 is dropped during the second rotation described above, The shape of the mask pattern does not deteriorate.
Also in this example, since the ultraviolet curable adhesive 109 is dissolved during the second rotation and the organic solvent that does not dissolve the organic birefringent film 101 is dropped, the transparent substrate 105 not covered with the organic birefringent film 101 is used. The UV curable adhesive 109 in the vicinity of is removed.

[偏光分離素子の製造方法3]
図5、図6は、本実施形態3である偏光分離素子の製造方法の工程(a)〜(n)を示す説明図である。本製造方法の工程は、この(a)〜(n)の順に進行する。
[Polarization Separation Element Manufacturing Method 3]
5 and 6 are explanatory diagrams showing steps (a) to (n) of the method for manufacturing a polarization beam splitting element according to the third embodiment. The steps of this manufacturing method proceed in the order of (a) to (n).

(a)まず、120mm角に切断した厚さ80μmの有機複屈折膜101の四隅に引っ張りのテンションを与え、有機複屈折膜101を平坦化する。その後、有機複屈折膜101に引っ張りのテンションを与えたまま、有機複屈折膜101の表面にスプレー法やロールコート法によってポジレジスト102(例えば、東京応化工業社のTDMR−AR640)を0.7μm塗布し、60℃のプリベークを行なう。   (A) First, tensile tension is applied to the four corners of the organic birefringent film 101 having a thickness of 80 μm cut into 120 mm square, and the organic birefringent film 101 is flattened. Thereafter, with a tensile tension applied to the organic birefringent film 101, 0.7 μm of positive resist 102 (for example, TDMR-AR640 manufactured by Tokyo Ohka Kogyo Co., Ltd.) is applied to the surface of the organic birefringent film 101 by a spray method or a roll coat method. Apply and pre-bake at 60 ° C.

(b)そして、有機複屈折膜101に引っ張りのテンションを与えたまま、縮小投影露光装置(例えば、ニコン社のNSR2205i12D)を用いて、レチクル103上の周期的なパターン(ピッチ1.2μm、duty=50%)を有機複屈折膜101の遅相軸に平行に露光する。尚、露光はNA=0.50で行い、1ショットは5mm角とする。   (B) A periodic pattern (pitch 1.2 μm, duty) on the reticle 103 using a reduction projection exposure apparatus (for example, NSR2205i12D manufactured by Nikon Corporation) with a tensile tension applied to the organic birefringent film 101. = 50%) is exposed parallel to the slow axis of the organic birefringent film 101. The exposure is performed with NA = 0.50, and one shot is 5 mm square.

(c)現像液(例えば、東京応化工業社のNMD−3の2.38%溶液)を用いてディップ現像を行い、有機複屈折膜101表面に周期的なレジストパターン104を完成させる。   (C) Dip development is performed using a developer (for example, a 2.38% solution of NMD-3 manufactured by Tokyo Ohka Kogyo Co., Ltd.) to complete a periodic resist pattern 104 on the surface of the organic birefringent film 101.

(d)有機複屈折膜101に引っ張りのテンションを与えたまま、周期的なレジストパターン104上に有機複屈折膜101と透明基板105との接着に用いる紫外線硬化型接着剤109を硬化するための紫外線を透過する膜106を、スパッタ法や真空蒸着法によって50〜100nm成膜する。本例では、紫外線を透過する膜106として、スパッタ法によるSiON膜を50nm成膜する。   (D) For curing the ultraviolet curable adhesive 109 used for bonding the organic birefringent film 101 and the transparent substrate 105 onto the periodic resist pattern 104 while applying a tensile tension to the organic birefringent film 101. A film 106 that transmits ultraviolet rays is formed to a thickness of 50 to 100 nm by sputtering or vacuum deposition. In this example, a 50 nm thick SiON film is formed by sputtering as the film 106 that transmits ultraviolet rays.

(e)紫外線を透過する膜106(SiON)を成膜した後、有機複屈折膜101の引っ張りのテンションを解除する。その後、有機複屈折膜101をアセトン浴に浸漬し、10分間の超音波振動を与えてリフトオフを行い、周期的なレジストパターン104から紫外線を透過する周期的なマスクパターン107(SiONパターン)を形成する。その後、有機複屈折膜101をφ90mmに切断する。   (E) After the film 106 (SiON) that transmits ultraviolet rays is formed, the tension of the organic birefringent film 101 is released. Thereafter, the organic birefringent film 101 is immersed in an acetone bath and lifted off by applying ultrasonic vibration for 10 minutes to form a periodic mask pattern 107 (SiON pattern) that transmits ultraviolet rays from the periodic resist pattern 104. To do. Thereafter, the organic birefringent film 101 is cut into φ90 mm.

(f)直径100mm、厚さ1.0mmの光学ガラス(例えば、ショット社のBK7)からなる透明基板105をスピンテーブル111に載せ、真空吸着によってスピンテーブル111に固定する。そして、スピンテーブル111を10〜50rpmで回転させながら、透明基板105の中央部にディスペンサー108を用いて屈折率1.56のエポキシ系紫外線硬化型接着剤109を3〜10g滴下する。その後、スピンテーブル111を150〜500rpmで回転することで、透明基板105を基板面方向に回転し(第1の回転)、透明基板105全面に紫外線硬化型接着剤109を広げ(図5(g))、スピンテーブル111の回転を停止する。   (F) A transparent substrate 105 made of optical glass having a diameter of 100 mm and a thickness of 1.0 mm (for example, BK7 manufactured by Schott) is placed on the spin table 111 and fixed to the spin table 111 by vacuum suction. Then, while rotating the spin table 111 at 10 to 50 rpm, 3 to 10 g of an epoxy-based ultraviolet curable adhesive 109 having a refractive index of 1.56 is dropped onto the central portion of the transparent substrate 105 using the dispenser 108. Thereafter, by rotating the spin table 111 at 150 to 500 rpm, the transparent substrate 105 is rotated in the substrate surface direction (first rotation), and the ultraviolet curable adhesive 109 is spread over the entire surface of the transparent substrate 105 (FIG. 5G )), The rotation of the spin table 111 is stopped.

(h)そして、有機複屈折膜101の中心をスピンテーブル111の回転中心にほぼ合せながら、載置装置を用いて紫外線硬化型接着剤109の上に、前記のマスクパターン107(SiONパターン)を形成した面とは反対側の面で有機複屈折膜101を載せた。   (H) Then, the mask pattern 107 (SiON pattern) is formed on the ultraviolet curable adhesive 109 using the mounting device while the center of the organic birefringent film 101 is substantially aligned with the rotation center of the spin table 111. The organic birefringent film 101 was placed on the surface opposite to the formed surface.

(i)スピンテーブル111を1000〜3000rpmで回転して、透明基板105を基板面方向に回転させ(第2の回転)、紫外線硬化型接着剤109を振り切り、接着層の厚さを基板105の面内で一定にして有機複屈折膜101の表面を平坦化する。   (I) The spin table 111 is rotated at 1000 to 3000 rpm, the transparent substrate 105 is rotated in the substrate surface direction (second rotation), the UV curable adhesive 109 is shaken off, and the thickness of the adhesive layer is set to The surface of the organic birefringent film 101 is flattened while being constant in the plane.

(j)そして、第2の回転開始60秒後に、第2の回転を行いながら有機複屈折膜101にアセトンを滴下し、かつ有機複屈折膜101側からメタルハライドランプを用いて紫外線(第1の紫外線)を照射して紫外線硬化型接着剤109を半硬化させる。   (J) Then, 60 seconds after the start of the second rotation, acetone is dropped on the organic birefringent film 101 while performing the second rotation, and ultraviolet rays (first first) are used from the organic birefringent film 101 side using a metal halide lamp. The ultraviolet curable adhesive 109 is semi-cured by irradiating with ultraviolet rays.

アセトンは本例に用いたエポキシ系紫外線硬化型接着剤109を溶解し、かつ有機複屈折膜101を溶解しない有機溶媒である。そのため、(j)の工程後には透明基板105周辺部に残っていた紫外線硬化型接着剤109はアセトンによって除去される。   Acetone is an organic solvent that dissolves the epoxy ultraviolet curable adhesive 109 used in this example and does not dissolve the organic birefringent film 101. Therefore, the ultraviolet curable adhesive 109 remaining around the transparent substrate 105 after the step (j) is removed with acetone.

また、本例では第1の紫外線照射によって紫外線硬化型接着剤109を半硬化させれば良いので、第1の紫外線照射は偏光分離素子の製造方法2の1/10〜1/3のエネルギーとする。   Further, in this example, the ultraviolet curable adhesive 109 may be semi-cured by the first ultraviolet irradiation, so that the first ultraviolet irradiation is 1/10 to 1/3 the energy of the manufacturing method 2 of the polarization beam splitting element. To do.

(k)その後、スピンテーブル111の回転を停止し、有機複屈折膜101側からメタルハライドランプを用いて紫外線(第2の紫外線)を照射し、紫外線硬化型接着剤109を完全に硬化させる。   (K) Thereafter, the rotation of the spin table 111 is stopped, and ultraviolet rays (second ultraviolet rays) are irradiated from the organic birefringent film 101 side using a metal halide lamp to completely cure the ultraviolet curable adhesive 109.

(l)有機複屈折膜101を接着した透明基板105をスピンテーブル111から外し、NLDエッチング装置を用い酸素ガスを主成分とするエッチングガス雰囲気中で、前記の紫外線を透過するマスクパターン107(SiONパターン)をマスクにして、有機複屈折膜101を深さ2.4μmエッチングする。そして、フッ酸と硝酸を用いたSiOエッチング液を用いてマスクパターン107(SiONパターン)を除去し、回折格子112を完成させる。 (L) The transparent substrate 105 to which the organic birefringent film 101 is bonded is removed from the spin table 111, and the mask pattern 107 (SiON) that transmits the ultraviolet rays in an etching gas atmosphere containing oxygen gas as a main component using an NLD etching apparatus. Using the pattern as a mask, the organic birefringent film 101 is etched to a depth of 2.4 μm. Then, the mask pattern 107 (SiON pattern) is removed using a SiO 2 etching solution using hydrofluoric acid and nitric acid, and the diffraction grating 112 is completed.

(m)その後、平面加工したφ200mm、厚み50mmのステンレス台(図示せず)上に回折格子112を形成した基板105を置き、回折格子112面に光学的に等方的なエポキシ系紫外線硬化型接着剤109(等方性接着剤113)をマイクロシリンジ(図示せず)で1.0mL滴下する。そして両面を光学研磨した直径100mm、厚み1mmの対向透明基板114(光学ガラス(例えば、ショット社のBK7を使用))を載せ、更に、対向透明基板114上に光学研磨した光学ガラスを載せ、対向透明基板114に100gf/cmの圧力を加え、等方性接着剤113を被接着面全面に広げる。なお、対向透明基板114の被接着面と反対側の面には入射光の反射が最小となるよう反射防止膜(図示せず)を形成しておく。この状態で対向透明基板114を通して紫外線を照射し、等方性接着剤113を硬化する。
(n)この製作物116を、ダイシングソー115を用いて5mm角に切りだし、複数の偏光分離素子1を完成させる。
(M) Thereafter, a substrate 105 on which a diffraction grating 112 is formed is placed on a flat-finished stainless steel plate (not shown) having a diameter of 200 mm and a thickness of 50 mm, and an optically isotropic epoxy ultraviolet curing type is provided on the surface of the diffraction grating 112. 1.0 mL of the adhesive 109 (isotropic adhesive 113) is dropped with a micro syringe (not shown). Then, the opposite transparent substrate 114 (optical glass (for example, using BK7 manufactured by Schott)) having a diameter of 100 mm and a thickness of 1 mm, which is optically polished on both sides, is placed, and further optically polished optical glass is placed on the opposite transparent substrate 114 to face the substrate. A pressure of 100 gf / cm 2 is applied to the transparent substrate 114 to spread the isotropic adhesive 113 over the entire adherend surface. An antireflection film (not shown) is formed on the surface of the counter transparent substrate 114 opposite to the surface to be bonded so as to minimize the reflection of incident light. In this state, the isotropic adhesive 113 is cured by irradiating ultraviolet rays through the counter transparent substrate 114.
(N) The product 116 is cut into a 5 mm square using a dicing saw 115 to complete a plurality of polarized light separating elements 1.

このようにして製作された偏光分離素子1は、透明基板105上に、入射光の異なる振動面に対し屈折率が異なる有機複屈折膜101を紫外線硬化型接着剤109で接着し、有機複屈折膜101の表面に周期的な凹凸を形成して回折格子112としたものとなる。   In the polarization separation element 1 manufactured in this way, an organic birefringent film 101 having a different refractive index is bonded to a transparent substrate 105 with respect to different vibration surfaces of incident light with an ultraviolet curable adhesive 109, thereby organic birefringence. The diffraction grating 112 is formed by forming periodic irregularities on the surface of the film 101.

このようにして完成した偏光分離素子1に波長400nmのS偏光を照射し、受光素子で1次回折光を受け、1次回折効率を測定する。結果、回折格子112が良好に形成された偏光分離素子1は仕様の回折効率25%以上を達成する。   The polarized light separating element 1 thus completed is irradiated with S-polarized light having a wavelength of 400 nm, the first-order diffracted light is received by the light-receiving element, and the first-order diffraction efficiency is measured. As a result, the polarization separation element 1 in which the diffraction grating 112 is well formed achieves the specified diffraction efficiency of 25% or more.

このような偏光分離素子の製造方法によると、第1の回転により透明基板105全面に紫外線硬化型接着剤109が塗布されるため、透明基板105上では接着剤109が無い領域が発生しない。そのため、接着剤109が塗布された透明基板105に紫外線を透過する周期的なマスクパターン107を形成した面と反対側の面で有機複屈折膜101を載置した場合、有機複屈折膜101は全面に渡って接着剤を介して透明基板105表面と接触する。   According to such a method of manufacturing a polarization separation element, the ultraviolet curable adhesive 109 is applied to the entire surface of the transparent substrate 105 by the first rotation, and therefore, no region without the adhesive 109 is generated on the transparent substrate 105. Therefore, when the organic birefringent film 101 is placed on the surface opposite to the surface on which the periodic mask pattern 107 that transmits ultraviolet rays is formed on the transparent substrate 105 to which the adhesive 109 is applied, the organic birefringent film 101 is The entire surface contacts the surface of the transparent substrate 105 via an adhesive.

また、周期的なマスクパターンは紫外線を透過する膜106から形成されているため、第1の紫外線照射および第2の紫外線照射によって、周期的なマスクパターン107の間にある領域のみならず、周期的なマスクパターン107の直下にある紫外線硬化型接着剤109も硬化し、全面接着が可能となる。
さらに、紫外線を透過する周期的なマスクパターン107が回折格子112の凸部になる領域を保護するため、回折格子112を形成した有機複屈折膜101を透明基板105と接着する従来例と比較して、波面収差を抑制できる。
In addition, since the periodic mask pattern is formed from the film 106 that transmits ultraviolet rays, not only the region between the periodic mask patterns 107 but also the periodicity due to the first ultraviolet irradiation and the second ultraviolet irradiation. The ultraviolet curable adhesive 109 just below the typical mask pattern 107 is also cured, and the entire surface can be bonded.
Furthermore, in order to protect the region where the periodic mask pattern 107 that transmits ultraviolet rays becomes a convex portion of the diffraction grating 112, the organic birefringent film 101 on which the diffraction grating 112 is formed is compared with the conventional example in which the transparent substrate 105 is bonded. Thus, wavefront aberration can be suppressed.

さらに、第2の回転中に第1の紫外線照射を行うことで紫外線硬化型接着剤109を半硬化させるため、紫外線硬化型接着剤109と有機複屈折膜101との固着力が強まり、透明基板105の回転によって起こる有機複屈折膜101の位置ずれを低減できる。その結果、有機複屈折膜101が透明基板105からはみ出す頻度が小さくなり、搬送不良を低減でき、より低コストで偏光分離素子1を作製できる。   Further, since the ultraviolet curable adhesive 109 is semi-cured by performing the first ultraviolet irradiation during the second rotation, the adhesive force between the ultraviolet curable adhesive 109 and the organic birefringent film 101 is increased, and the transparent substrate The misalignment of the organic birefringent film 101 caused by the rotation of 105 can be reduced. As a result, the frequency with which the organic birefringent film 101 protrudes from the transparent substrate 105 is reduced, the conveyance failure can be reduced, and the polarization separation element 1 can be manufactured at a lower cost.

なお、接着層の厚さを均一化するため、透明基板105を回転させてある程度接着剤を振り切らなければならないので、第1の紫外線照射によって紫外線硬化型接着剤109が急激に硬化して高粘度化することを避ける必要があり、第1の紫外線は比較的弱い強度で照射するのが望ましく、本例では第2の紫外線照射の1/10の強度で紫外線照射を行う。
また、第1の紫外線照射によって紫外線硬化型接着剤109を高粘度化しつつ、接着層の厚さを均一化するためには、第2の回転のレシピを最適化する必要があり、本例では第1の紫外線照射中に3ステップで回転数を上昇させる。
In order to make the thickness of the adhesive layer uniform, the transparent substrate 105 must be rotated and the adhesive must be shaken off to some extent, so that the UV curable adhesive 109 is rapidly cured by the first UV irradiation and has a high viscosity. Therefore, it is desirable to irradiate the first ultraviolet ray with a relatively weak intensity. In this example, the ultraviolet ray irradiation is performed with an intensity of 1/10 of the second ultraviolet ray irradiation.
Further, in order to make the thickness of the adhesive layer uniform while increasing the viscosity of the UV curable adhesive 109 by the first UV irradiation, it is necessary to optimize the recipe for the second rotation. During the first ultraviolet irradiation, the rotational speed is increased in three steps.

本例では、有機溶媒の滴下中に透明基板105を回転しながら第1の紫外線を照射するが、第1の紫外線の照射はこれに限定する必要はなく、前記の有機溶媒の滴下前、あるいは滴下後の一方であっても何ら構わず、第1の紫外線照射によって紫外線硬化型接着剤109が半硬化して高粘度化し、有機複屈折膜101との固着力が大きくなれば良い。   In this example, the first ultraviolet ray is irradiated while rotating the transparent substrate 105 during the dropping of the organic solvent. However, the irradiation of the first ultraviolet ray is not necessarily limited to this, or before the dropping of the organic solvent, or It does not matter if it is one after dropping, as long as the ultraviolet curable adhesive 109 is semi-cured by the first ultraviolet irradiation to increase the viscosity, and the adhesive strength with the organic birefringent film 101 is increased.

また、本例の製造方法によると、第2の回転中に有機複屈折膜101が僅かに動き、有機複屈折膜101は透明基板105からはみ出さないが有機複屈折膜101が回転した場合においても、接着前に既に有機複屈折膜101の面内の2方向のうち特定の1方向に(つまり遅相軸に)平行に紫外線を透過する周期的なマスクパターンが形成されているので、作製された偏光分離素子1の回折格子112は有機複屈折膜101の面内の2方向のうち特定の1方向に(つまり遅相軸に)揃えることができる。その結果、所定の回折効率が得られる。よって、従来の接着法と比較して、本例では第2の回転中の有機複屈折膜101のズレに対する仕様を、有機複屈折膜101の端と透明基板105の端の距離に限定できる。   Further, according to the manufacturing method of this example, the organic birefringent film 101 slightly moves during the second rotation, and the organic birefringent film 101 does not protrude from the transparent substrate 105, but the organic birefringent film 101 rotates. In addition, since a periodic mask pattern that transmits ultraviolet rays is formed in parallel to one specific direction (that is, to the slow axis) of the two directions in the plane of the organic birefringent film 101 before bonding, The diffraction grating 112 of the polarized light separating element 1 can be aligned in one specific direction (that is, the slow axis) of the two directions in the plane of the organic birefringent film 101. As a result, a predetermined diffraction efficiency is obtained. Therefore, compared with the conventional bonding method, in this example, the specification for the deviation of the organic birefringent film 101 during the second rotation can be limited to the distance between the end of the organic birefringent film 101 and the end of the transparent substrate 105.

一般に有機複屈折膜101の遅相軸、進相軸は外形で判断できるようにしてメーカーから供給されるため、(b)の露光工程では、有機複屈折膜101の外形を基準にして露光することで、有機複屈折膜101の面内の2方向のうち特定の1方向に揃えて、紫外線を透過する周期的なマスクパターンを形成することが可能であり、比較的容易に実現できる。   In general, the slow axis and the fast axis of the organic birefringent film 101 are supplied from the manufacturer so that they can be determined by the outer shape. Therefore, in the exposure step (b), exposure is performed based on the outer shape of the organic birefringent film 101. Thus, it is possible to form a periodic mask pattern that transmits ultraviolet light so as to be aligned in one specific direction out of the two directions in the plane of the organic birefringent film 101, and can be realized relatively easily.

接着された有機複屈折膜101表面の平面性について見ると、本例の接着方法では偏光分離素子の製造方法1、2と同様にうねりのようなロングスパンの凹凸は残るが、数mm角範囲の凹凸は小さくなる。そのため、ダイシングによって分割された個々の偏光分離素子1の波面収差は実用上問題ないレベルに抑えることができる。   Looking at the planarity of the surface of the bonded organic birefringent film 101, the bonding method of this example has long-span irregularities such as waviness as in the manufacturing methods 1 and 2 of the polarized light separating element, but it has a range of several mm square. The unevenness of becomes smaller. Therefore, the wavefront aberration of each polarization separation element 1 divided by dicing can be suppressed to a level that does not cause a problem in practice.

また、本例の偏光分離素子の製造方法において、接着前に有機複屈折膜101表面に既にマスクパターン107を形成しているため、接着後のうねりのようなロングスパンの凹凸は露光工程での1ショットの露光面積に影響を与えない。(b)の露光工程では有機複屈折膜101へ引っ張りのテンションをかけて平坦化して露光を行なうため、露光時に凹凸を小さくできる。その結果、より微細なパターンを露光する場合、従来例よりもリソグラフィー歩留を向上することができる。   Further, in the manufacturing method of the polarization separating element of this example, since the mask pattern 107 is already formed on the surface of the organic birefringent film 101 before bonding, long span irregularities such as waviness after bonding are not observed in the exposure process. Does not affect the exposure area of one shot. In the exposure step (b), the organic birefringent film 101 is flattened by applying tension to the organic birefringent film 101, so that unevenness can be reduced during exposure. As a result, when a finer pattern is exposed, the lithography yield can be improved as compared with the conventional example.

従来例の接着方法では1.2μmピッチを露光する場合、1ショットが5mm角でもリソグラフィー歩留は40から60%程度であったが、本例の偏光分離素子の製造方法によると歩留を70%以上に改善できる。   In the bonding method of the conventional example, when a 1.2 μm pitch is exposed, the lithography yield is about 40 to 60% even if one shot is 5 mm square, but according to the manufacturing method of the polarization separating element of this example, the yield is 70%. % Can be improved.

また、本例では紫外線を透過する周期的なマスクパターン107としてSiONを用いたが、SiONはITOやSiOと同様に有機複屈折膜101のドライエッチング工程では良好なエッチングマスクとなる。 In this example, SiON is used as the periodic mask pattern 107 that transmits ultraviolet rays. However, SiON is a good etching mask in the dry etching process of the organic birefringent film 101 like ITO and SiO 2 .

更に、SiONはフッ酸系のエッチング液によって除去できるため、良好な回折格子112の形状を作ることができる。   Furthermore, since SiON can be removed by a hydrofluoric acid-based etching solution, a favorable shape of the diffraction grating 112 can be formed.

加えて、SiOは有機溶媒に不要であることから、第2の回転中に紫外線硬化型接着剤109を溶解し、かつ有機複屈折膜101を溶解しない有機溶媒を滴下しても、マスクパターン107の形状は劣化しない。 In addition, since SiO 2 is not necessary for the organic solvent, the mask pattern can be removed even when the organic solvent that dissolves the ultraviolet curable adhesive 109 and does not dissolve the organic birefringent film 101 is dropped during the second rotation. The shape of 107 does not deteriorate.

また、本例では第2の回転中に、紫外線硬化型接着剤109を溶解し、かつ有機複屈折膜101を溶解しない有機溶媒を滴下するため、有機複屈折膜101で被覆されていない透明基板105周辺の紫外線硬化型接着剤109は除去される。   Further, in this example, an organic solvent that dissolves the ultraviolet curable adhesive 109 and does not dissolve the organic birefringent film 101 is dropped during the second rotation. The ultraviolet curable adhesive 109 around 105 is removed.

尚、第1の紫外線照射の光強度が小さいため、紫外線硬化型接着剤109はゆっくり硬化され、前記の有機溶媒の滴下によって透明基板105周辺部の接着剤は十分に除去される。   Since the light intensity of the first ultraviolet irradiation is low, the ultraviolet curable adhesive 109 is slowly cured, and the adhesive around the transparent substrate 105 is sufficiently removed by the dropping of the organic solvent.

[偏光分離素子の製造方法4]
図7、図8は、本実施形態4である偏光分離素子の製造方法の工程(a)〜(r)を示す説明図である。本製造方法の工程は、この(a)〜(r)の順に進行する。
[Polarization Separation Element Manufacturing Method 4]
7 and 8 are explanatory views showing steps (a) to (r) of the method for manufacturing a polarization beam splitting element according to the fourth embodiment. The steps of this production method proceed in the order of (a) to (r).

(a)200mm角に切断した厚さ80μmの有機複屈折膜101の四隅に引っ張りのテンションを与え、有機複屈折膜101を平坦化する。その後、有機複屈折膜101に引っ張りのテンションを与えたまま、有機複屈折膜101表面にロールコート法によってポジレジスト102(例えば、東京応化工業社のTDMR−AR640)を0.7μm塗布し、60℃のプリベークを行なう。   (A) Tensile tension is applied to the four corners of the organic birefringent film 101 having a thickness of 80 μm cut into 200 mm square, and the organic birefringent film 101 is flattened. Thereafter, with a tensile tension applied to the organic birefringent film 101, a 0.7 μm positive resist 102 (for example, TDMR-AR640 manufactured by Tokyo Ohka Kogyo Co., Ltd.) is applied to the surface of the organic birefringent film 101 by a roll coating method. Pre-bake at ℃.

(b)有機複屈折膜101に引っ張りのテンションを与えたまま、縮小投影露光装置(例えば、ニコン社のNSR4425i)を用いて、レチクル103上の周期的なパターン(ピッチ2.0μm、duty=50%)を有機複屈折膜101の遅相軸に平行に露光する。尚露光はNA=0.30で行い、1ショットは30mm角とする。   (B) A periodic pattern (pitch: 2.0 μm, duty = 50) on the reticle 103 using a reduction projection exposure apparatus (for example, NSR 4425i manufactured by Nikon Corporation) with a tension applied to the organic birefringent film 101. %) Is exposed parallel to the slow axis of the organic birefringent film 101. Exposure is performed at NA = 0.30, and one shot is 30 mm square.

(c)そして、現像液(例えば、東京応化工業社のNMD−3の2.38%溶液)を用いてディップ現像を行い、有機複屈折膜101表面に周期的なレジストパターン104を完成させる。   (C) Then, dip development is performed using a developer (for example, a 2.38% solution of NMD-3 manufactured by Tokyo Ohka Kogyo Co., Ltd.) to complete a periodic resist pattern 104 on the surface of the organic birefringent film 101.

(d)有機複屈折膜101に引っ張りのテンションを与えたまま、周期的なレジストパターン104上に有機複屈折膜101と透明基板105の接着に用いる紫外線硬化型接着剤109を硬化するための紫外線を透過する膜106を、スパッタ法や真空蒸着法によって50〜100nm成膜する。本例では紫外線を透過する膜106として、EB蒸着法によるIn膜を60nm成膜する。 (D) Ultraviolet light for curing the ultraviolet curable adhesive 109 used for bonding the organic birefringent film 101 and the transparent substrate 105 on the periodic resist pattern 104 while applying tension to the organic birefringent film 101. A film 106 that transmits light is formed to a thickness of 50 to 100 nm by a sputtering method or a vacuum evaporation method. In this example, an In 2 O 3 film by EB vapor deposition is formed to a thickness of 60 nm as the film 106 that transmits ultraviolet rays.

(e)次に、紫外線を透過する膜106(In)を成膜した後、有機複屈折膜101の引っ張りのテンションを解除する。その後、有機複屈折膜101をアセトン浴に浸漬し、10分間の超音波振動を与えてリフトオフを行い、周期的なレジストパターン104から紫外線を透過する周期的なマスクパターン(Inパターン)を形成する。その後、有機複屈折膜101をφ155mmに切断する。 (E) Next, after forming a film 106 (In 2 O 3 ) that transmits ultraviolet rays, the tension of the organic birefringent film 101 is released. Thereafter, the organic birefringent film 101 is immersed in an acetone bath, lifted off by applying ultrasonic vibration for 10 minutes, and a periodic mask pattern (In 2 O 3 pattern) that transmits ultraviolet rays from the periodic resist pattern 104. Form. Thereafter, the organic birefringent film 101 is cut to φ155 mm.

(f)直径165mm、厚さ1.0mm、オリエンテーションフラット付きの光学ガラス(例えば、ショット社のBK7)からなる透明基板105をスピンテーブル111に載せ、真空吸着によってスピンテーブル111に固定する。その後、スピンテーブル111を10〜50rpmで回転させながら、透明基板105の中央部にディスペンサー108を用いて屈折率1.56のエポキシ系紫外線硬化型接着剤109を8〜13g滴下する。その後、スピンテーブル111を100から200rpmで回転して、透明基板105を基板面方向に回転し(第1の回転)、透明基板105全面に紫外線硬化型接着剤109を広げ(図7(g))、その後、スピンテーブル111の回転を停止する。   (F) A transparent substrate 105 made of optical glass having a diameter of 165 mm, a thickness of 1.0 mm, and an orientation flat (for example, BK7 manufactured by Schott) is placed on the spin table 111 and fixed to the spin table 111 by vacuum suction. Thereafter, while rotating the spin table 111 at 10 to 50 rpm, 8 to 13 g of an epoxy ultraviolet curable adhesive 109 having a refractive index of 1.56 is dropped onto the central portion of the transparent substrate 105 using the dispenser 108. Thereafter, the spin table 111 is rotated at 100 to 200 rpm, the transparent substrate 105 is rotated in the substrate surface direction (first rotation), and the ultraviolet curable adhesive 109 is spread over the entire surface of the transparent substrate 105 (FIG. 7G). Then, the rotation of the spin table 111 is stopped.

(h)有機複屈折膜101の中心をスピンテーブル111の回転中心にほぼ合せながら、載置装置を用いて紫外線硬化型接着剤109の上に、前記のマスクパターン(Inパターン)を形成した面と対向する面で有機複屈折膜101を載せた。 (H) While aligning the center of the organic birefringent film 101 substantially with the rotation center of the spin table 111, the mask pattern (In 2 O 3 pattern) is formed on the ultraviolet curable adhesive 109 using a mounting device. The organic birefringent film 101 was placed on the surface facing the formed surface.

(i)スピンテーブル111を400rpmで8秒間回転して、透明基板105を基板面方向に回転し(第2の回転)、接着剤を振り切る。   (I) The spin table 111 is rotated at 400 rpm for 8 seconds, the transparent substrate 105 is rotated in the substrate surface direction (second rotation), and the adhesive is shaken off.

(j)スピンテーブル111の回転を停止して、有機複屈折膜101の位置ずれを目視で観察したところ、有機複屈折膜101は透明基板105上で2mm程度動いて、有機複屈折膜101の中心とスピンテーブル111の回転中心から大きくずれている場合がある。この場合は、調整治具131を用いて有機複屈折膜101の外側にずれた側の端部を透明基板105の中心側へ押し(図9(a)を参照)、透明基板105上を滑るように有機複屈折膜101を動かし(以後、滑るように動かすことを「滑動」という)、有機複屈折膜101の位置修正(つまり透明基板105と有機複屈折膜101の中心を合わせる)を行なう(図9(b))。   (J) When the rotation of the spin table 111 is stopped and the misalignment of the organic birefringent film 101 is visually observed, the organic birefringent film 101 moves about 2 mm on the transparent substrate 105, and the organic birefringent film 101 There is a case where the center and the rotation center of the spin table 111 are greatly deviated. In this case, the adjustment jig 131 is used to push the end of the organic birefringent film 101 on the outer side to the center side of the transparent substrate 105 (see FIG. 9A) and slide on the transparent substrate 105. The organic birefringent film 101 is moved (hereinafter, “sliding” is referred to as “sliding”), and the position of the organic birefringent film 101 is corrected (that is, the center of the transparent substrate 105 and the organic birefringent film 101 are aligned). (FIG. 9B).

(k)スピンテーブル111を再度回転して、透明基板105を基板面方向に回転し(第2の回転)、接着剤を振り切る。そして、有機複屈折膜101の位置ずれを目視で観察して、位置ずれがあれば修正する。この作業は繰り返し行うが、その場合の一例を以下に挙げる。   (K) The spin table 111 is rotated again, the transparent substrate 105 is rotated in the substrate surface direction (second rotation), and the adhesive is shaken off. Then, the misalignment of the organic birefringent film 101 is visually observed, and any misalignment is corrected. This operation is repeated, but an example of this case is given below.

まず、スピンテーブル111を再度400rpmで2秒間回転して、透明基板105を基板面方向に回転し(第2の回転)、接着剤を振り切る。スピンテーブル111の回転を停止して有機複屈折膜101の位置ずれを目視で観察すると、有機複屈折膜101は透明基板105上でほとんど動いていなかった。   First, the spin table 111 is rotated again at 400 rpm for 2 seconds, the transparent substrate 105 is rotated in the substrate surface direction (second rotation), and the adhesive is shaken off. When the rotation of the spin table 111 was stopped and the misalignment of the organic birefringent film 101 was observed visually, the organic birefringent film 101 hardly moved on the transparent substrate 105.

その後、スピンテーブル111を700rpmで5秒間回転して、透明基板105を基板面方向に回転して(第2の回転)、接着剤を振り切る。スピンテーブル111の回転を停止して有機複屈折膜101の位置ずれを目視で観察すると、有機複屈折膜101は透明基板105上で約2mm程度動いていた。そこで、前述の調整治具131を用い、有機複屈折膜101を透明基板105上で滑動し、有機複屈折膜101の位置修正を行なった。   Thereafter, the spin table 111 is rotated at 700 rpm for 5 seconds, the transparent substrate 105 is rotated in the substrate surface direction (second rotation), and the adhesive is shaken off. When the rotation of the spin table 111 was stopped and the misalignment of the organic birefringent film 101 was visually observed, the organic birefringent film 101 moved about 2 mm on the transparent substrate 105. Therefore, using the adjusting jig 131 described above, the organic birefringent film 101 was slid on the transparent substrate 105 to correct the position of the organic birefringent film 101.

その後、スピンテーブル111を再度700rpmで11秒間回転して、透明基板105を基板面方向に回転し(第2の回転)、接着剤を振り切る。スピンテーブル111の回転を停止して有機複屈折膜101の位置ずれを目視で観察したところ、有機複屈折膜101は透明基板105上で約4mm程度動いていた。そこで、前述の調整治具131を用い、有機複屈折膜101を透明基板105上で滑動し、有機複屈折膜101の位置修正を行なった。   Thereafter, the spin table 111 is rotated again at 700 rpm for 11 seconds, the transparent substrate 105 is rotated in the direction of the substrate surface (second rotation), and the adhesive is shaken off. When the rotation of the spin table 111 was stopped and the misalignment of the organic birefringent film 101 was visually observed, the organic birefringent film 101 moved about 4 mm on the transparent substrate 105. Therefore, using the adjusting jig 131 described above, the organic birefringent film 101 was slid on the transparent substrate 105 to correct the position of the organic birefringent film 101.

その後、スピンテーブル111を再度700rpmで11秒間回転して、透明基板105を基板面方向に回転し(第2の回転)、接着剤を振り切った。その後、スピンテーブル111の回転を停止して有機複屈折膜101の位置ずれを目視で観察したところ、有機複屈折膜101は透明基板105上でほとんど動いていなかった。   Thereafter, the spin table 111 was again rotated at 700 rpm for 11 seconds, the transparent substrate 105 was rotated in the direction of the substrate surface (second rotation), and the adhesive was shaken off. Thereafter, when the rotation of the spin table 111 was stopped and the positional deviation of the organic birefringent film 101 was visually observed, the organic birefringent film 101 hardly moved on the transparent substrate 105.

その後、スピンテーブル111を再度700rpmで6秒回転して、透明基板105を基板面方向に回転し(第2の回転)、接着剤を振り切った。スピンテーブル111の回転を停止して有機複屈折膜101の位置ずれを目視で観察したところ、有機複屈折膜101は透明基板105上でほとんど動いていなかった。   Thereafter, the spin table 111 was rotated again at 700 rpm for 6 seconds, the transparent substrate 105 was rotated in the direction of the substrate surface (second rotation), and the adhesive was shaken off. When the rotation of the spin table 111 was stopped and the misalignment of the organic birefringent film 101 was visually observed, the organic birefringent film 101 hardly moved on the transparent substrate 105.

その後、スピンテーブル111を900rpmで3秒間回転して、透明基板105を基板面方向に回転し(第2の回転)、接着剤を振り切った。スピンテーブル111の回転を停止して有機複屈折膜101の位置ずれを目視で観察したところ、有機複屈折膜101は透明基板105上で約5mm程度動いていた。その後調整治具を用い、有機複屈折膜101を透明基板105上で滑動し、有機複屈折膜101の位置修正を行った。   Thereafter, the spin table 111 was rotated at 900 rpm for 3 seconds, the transparent substrate 105 was rotated in the direction of the substrate surface (second rotation), and the adhesive was shaken off. When the rotation of the spin table 111 was stopped and the displacement of the organic birefringent film 101 was visually observed, the organic birefringent film 101 moved on the transparent substrate 105 by about 5 mm. Thereafter, using an adjustment jig, the organic birefringent film 101 was slid on the transparent substrate 105 to correct the position of the organic birefringent film 101.

その後、スピンテーブル111を再度900rpmで8秒間回転して、透明基板105を基板面方向に回転し(第2の回転)、接着剤を振り切った。スピンテーブル111の回転を停止して有機複屈折膜101の位置ずれを目視で観察したところ、有機複屈折膜101は透明基板105上で約2mm程度動いていた。その後、調整治具131を用い、有機複屈折膜101を透明基板105上で滑動し、有機複屈折膜101の位置修正を行った。   Thereafter, the spin table 111 was again rotated at 900 rpm for 8 seconds, the transparent substrate 105 was rotated in the substrate surface direction (second rotation), and the adhesive was shaken off. When the rotation of the spin table 111 was stopped and the misalignment of the organic birefringent film 101 was visually observed, the organic birefringent film 101 moved about 2 mm on the transparent substrate 105. Thereafter, using the adjustment jig 131, the organic birefringent film 101 was slid on the transparent substrate 105 to correct the position of the organic birefringent film 101.

その後、スピンテーブル111を再度900rpmで29秒間回転して、透明基板105を基板面方向に回転し(第2の回転)、接着剤を振り切った。スピンテーブル111の回転を停止して有機複屈折膜101の位置ずれを目視で観察したところ、有機複屈折膜101は透明基板105上でほとんど動いていなかった。   Thereafter, the spin table 111 was rotated again at 900 rpm for 29 seconds, the transparent substrate 105 was rotated in the direction of the substrate surface (second rotation), and the adhesive was shaken off. When the rotation of the spin table 111 was stopped and the misalignment of the organic birefringent film 101 was visually observed, the organic birefringent film 101 hardly moved on the transparent substrate 105.

その後、スピンテーブル111を再度900rpmで20秒間回転して、透明基板105を基板面方向に回転し(第2の回転)、接着剤を振り切った。その後、スピンテーブル111の回転を停止し、倍率4〜50倍の測長顕微鏡で有機複屈折膜101と透明基板105の相対位置を観察した結果、有機複屈折膜101の端と透明基板105の端の距離は4mm以上あった。   Thereafter, the spin table 111 was again rotated at 900 rpm for 20 seconds, the transparent substrate 105 was rotated in the direction of the substrate surface (second rotation), and the adhesive was shaken off. Thereafter, the rotation of the spin table 111 is stopped, and the relative position between the organic birefringent film 101 and the transparent substrate 105 is observed with a length measuring microscope having a magnification of 4 to 50 times. The edge distance was 4 mm or more.

有機複屈折膜101の接着後の仕様において、透明基板105の端と有機複屈折膜101の端の距離はエッチング装置のクランプ幅から規定される。本例では2mm以上である。
上記の顕微鏡での測定結果から、有機複屈折膜101の端と透明基板105の端の距離が許容値内であることが確認された。
In the specification after the organic birefringent film 101 is bonded, the distance between the end of the transparent substrate 105 and the end of the organic birefringent film 101 is defined by the clamp width of the etching apparatus. In this example, it is 2 mm or more.
From the measurement result with the above-mentioned microscope, it was confirmed that the distance between the end of the organic birefringent film 101 and the end of the transparent substrate 105 was within an allowable value.

(l)次に、スピンテーブル111の回転を停止した状態で、有機複屈折膜101側から高圧水銀灯を用いて第1の紫外線を照射し、紫外線硬化型接着剤109を半硬化する。   (L) Next, in a state where the rotation of the spin table 111 is stopped, the ultraviolet curable adhesive 109 is semi-cured by irradiating the first ultraviolet light from the organic birefringent film 101 side using a high pressure mercury lamp.

(m)透明基板105を700rpmで45秒間回転して、透明基板105を基板面方向に回転し(第3の回転)、有機複屈折膜101膜と透明基板105の境界にアセトンを滴下する。アセトンは、本例に用いたエポキシ系の紫外線硬化型接着剤109を溶解し、かつ有機複屈折膜101を溶解しない有機溶媒である。本工程によって、(m)工程後に基板周辺部に残っていた紫外線硬化型接着剤109はアセトンによって除去される。また、本例では第1の紫外線照射によって紫外線硬化型接着剤109を半硬化させれば良いので、第1の紫外線照射は推奨硬化条件の1/10〜1/3のエネルギーとする。   (M) The transparent substrate 105 is rotated at 700 rpm for 45 seconds, the transparent substrate 105 is rotated in the substrate surface direction (third rotation), and acetone is dropped at the boundary between the organic birefringent film 101 and the transparent substrate 105. Acetone is an organic solvent that dissolves the epoxy ultraviolet curable adhesive 109 used in this example and does not dissolve the organic birefringent film 101. By this step, the ultraviolet curable adhesive 109 remaining on the periphery of the substrate after the step (m) is removed with acetone. In this example, since the ultraviolet curable adhesive 109 may be semi-cured by the first ultraviolet irradiation, the first ultraviolet irradiation has energy of 1/10 to 1/3 of the recommended curing conditions.

(n)その後、スピンテーブル111の回転を停止し、有機複屈折膜101側から高圧水銀灯を用いて第2の紫外線を照射し、紫外線硬化型接着剤109を完全に硬化させる。   (N) Thereafter, the rotation of the spin table 111 is stopped, and the second ultraviolet ray is irradiated from the organic birefringent film 101 side using a high-pressure mercury lamp, and the ultraviolet curable adhesive 109 is completely cured.

(o)透明基板105をスピンテーブル111から外し、倍率4〜50倍の測長顕微鏡で有機複屈折膜101と透明基板105の相対位置を再度測定する。結果、有機複屈折膜101端と透明基板105端の距離は(l)〜(n)の工程を経ても変化はなかった。   (O) The transparent substrate 105 is removed from the spin table 111, and the relative position between the organic birefringent film 101 and the transparent substrate 105 is measured again with a length measuring microscope having a magnification of 4 to 50 times. As a result, the distance between the end of the organic birefringent film 101 and the end of the transparent substrate 105 did not change even after the steps (l) to (n).

(p)透明基板105を、NLDエッチング装置を用い酸素ガスを主成分とするエッチングガス雰囲気中で、前記の紫外線を透過するマスクパターン107(In)をマスクにして、有機複屈折膜101を深さ3μmエッチングする。その後、塩酸と第二塩化鉄を用いたInエッチング液を用いてマスクパターン107(Inパターン)を除去し、回折格子112を完成させる。 (P) An organic birefringent film using the mask pattern 107 (In 2 O 3 ) that transmits ultraviolet light as a mask for the transparent substrate 105 in an etching gas atmosphere containing oxygen gas as a main component using an NLD etching apparatus. 101 is etched to a depth of 3 μm. Thereafter, the mask pattern 107 (In 2 O 3 pattern) is removed using an In 2 O 3 etching solution using hydrochloric acid and ferric chloride, and the diffraction grating 112 is completed.

(q)平面加工したφ250mm、厚み50mmのステンレス台(図示せず)上に回折格子112を形成した透明基板105を置き、回折格子112面に光学的に等方的なアクリル系紫外線硬化型接着剤109(等方性接着剤113)をマイクロシリンジで1.2mL滴下する。そして両面を光学研磨した直径165mm、厚み1mmの対向透明基板114(光学ガラス(例えば、ショット社のBK7))に載せ、更に対向透明基板114上に光学研磨した光学ガラスを載せ、対向透明基板114に100gf/cmの圧力を加え、等方性接着剤113を被接着面全面に広げた。この状態で対向透明基板114を通して紫外線を照射し、等方性接着剤113を硬化する。 (Q) A transparent substrate 105 on which a diffraction grating 112 is formed is placed on a flat-finished stainless steel plate (not shown) having a diameter of 250 mm and a thickness of 50 mm, and an optically isotropic acrylic ultraviolet curable adhesive is adhered to the surface of the diffraction grating 112. 1.2 mL of the agent 109 (isotropic adhesive 113) is dropped with a micro syringe. Then, both surfaces are optically polished on a counter transparent substrate 114 (optical glass (for example, BK7 of Schott)) having a diameter of 165 mm and a thickness of 1 mm, and further optically polished optical glass is mounted on the counter transparent substrate 114. A pressure of 100 gf / cm 2 was applied to the surface to spread the isotropic adhesive 113 over the entire adherend surface. In this state, the isotropic adhesive 113 is cured by irradiating ultraviolet rays through the counter transparent substrate 114.

(r)その後、ダイシングソー115を用いて5mm角に切りだし、複数の偏光分離素子1を完成させる。   (R) Then, it cuts out into 5 mm square using the dicing saw 115, and completes the several polarization separation element 1. FIG.

このようにして製作された偏光分離素子1は、透明基板105上に、入射光の異なる振動面に対し屈折率が異なる有機複屈折膜101を紫外線硬化型接着剤109で接着し、有機複屈折膜101の表面に周期的な凹凸を形成して回折格子112としたものとなる。   In the polarization separation element 1 manufactured in this way, an organic birefringent film 101 having a different refractive index is bonded to a transparent substrate 105 with respect to different vibration surfaces of incident light with an ultraviolet curable adhesive 109, thereby organic birefringence. The diffraction grating 112 is formed by forming periodic irregularities on the surface of the film 101.

このようにして完成した偏光分離素子1に波長680nmのS偏光を照射し、受光素子で1次回折光を受け、1次回折効率を測定する。結果、回折格子112が良好に形成された全ての偏光分離素子1は仕様の回折効率32%以上を達成する。   The polarized light separating element 1 thus completed is irradiated with S-polarized light having a wavelength of 680 nm, and the first-order diffracted light is received by the light-receiving element, and the first-order diffraction efficiency is measured. As a result, all the polarization separation elements 1 in which the diffraction grating 112 is well formed achieve the specified diffraction efficiency of 32% or more.

(a)〜(r)の工程により有機複屈折膜101を接着した基板105を、ダイシングソー115を用いて切断し、200倍の金属顕微鏡で断面を観察し、基板の直径方向での接着層厚さを測定した結果を図10に示す。図10に示すように、有機複屈折膜101の端からの距離にかかわりなく、本例での接着層厚さは平均31μmで、直径方向でほぼ均一であることが確認され、上記の接着法では接着層の膜厚制御に問題はなかった。   The substrate 105 to which the organic birefringent film 101 is bonded by the steps (a) to (r) is cut using a dicing saw 115, the cross section is observed with a 200-fold metal microscope, and the bonding layer in the diameter direction of the substrate The result of measuring the thickness is shown in FIG. As shown in FIG. 10, regardless of the distance from the end of the organic birefringent film 101, it was confirmed that the adhesive layer thickness in this example was an average of 31 μm and was substantially uniform in the diameter direction. Then, there was no problem in the film thickness control of the adhesive layer.

本製造方法によっても、偏光分離素子の製造方法3と同様に、第1の紫外線照射および第2の紫外線照射によって全面接着が可能となる。   Also by this manufacturing method, the entire surface can be bonded by the first ultraviolet irradiation and the second ultraviolet irradiation as in the manufacturing method 3 of the polarization beam splitting element.

また、紫外線を透過する周期的なマスクパターン107が回折格子112の凸部になる領域を保護するため、回折格子112を形成した有機複屈折膜101を透明基板105と接着する従来例と比較して、波面収差を抑制できる。   Compared with the conventional example in which the organic birefringent film 101 on which the diffraction grating 112 is formed is bonded to the transparent substrate 105 in order to protect the region where the periodic mask pattern 107 that transmits ultraviolet rays becomes the convex portion of the diffraction grating 112. Thus, wavefront aberration can be suppressed.

さらに、本例の製造方法に従うと、有機複屈折膜101の接着工程が透明基板105上に紫外線硬化型接着剤109を塗布し、その後、紫外線硬化型接着剤109上に有機複屈折膜101を載せ、その後、透明基板105を回転し、その後、透明基板105の回転を止めた状態で有機複屈折膜101を透明基板105上で滑動して位置を修正した後、透明基板105を回転し、再度、透明基板105の回転を停止し、透明基板105と有機複屈折膜101の相対位置が許容値内であることを確認した後、透明基板105と透明基板105の回転を止めた状態で第1の紫外線を照射して、紫外線硬化型接着剤109を半硬化する。そのため、透明基板105と有機複屈折膜101の相対位置を許容値内に納めて有機複屈折膜101と透明基板105の固着力を強めることができる。その結果、第3の回転中で有機複屈折膜101の位置ずれは更に起き難くなり、有機複屈折膜101が透明基板105からはみ出す頻度を更に小さくできる。   Further, according to the manufacturing method of this example, the bonding process of the organic birefringent film 101 applies the ultraviolet curable adhesive 109 on the transparent substrate 105, and then the organic birefringent film 101 is applied on the ultraviolet curable adhesive 109. After that, the transparent substrate 105 is rotated, and after the rotation of the transparent substrate 105 is stopped, the organic birefringent film 101 is slid on the transparent substrate 105 to correct the position, and then the transparent substrate 105 is rotated. The rotation of the transparent substrate 105 is stopped again, and after confirming that the relative position between the transparent substrate 105 and the organic birefringent film 101 is within the allowable value, the rotation of the transparent substrate 105 and the transparent substrate 105 is stopped. The ultraviolet curable adhesive 109 is semi-cured by irradiating the ultraviolet ray 1. Therefore, the relative position between the transparent substrate 105 and the organic birefringent film 101 can be kept within an allowable value, and the adhesion force between the organic birefringent film 101 and the transparent substrate 105 can be increased. As a result, the displacement of the organic birefringent film 101 is less likely to occur during the third rotation, and the frequency at which the organic birefringent film 101 protrudes from the transparent substrate 105 can be further reduced.

そのうえ、本例においても、第3の回転中に有機複屈折膜101が僅かに動き、有機複屈折膜101は透明基板105からはみ出さないが、有機複屈折膜101が回転した場合においても、接着前に既に有機複屈折膜101の面内の2方向のうち特定の1方向に(つまり遅相軸に)平行に紫外線を透過する周期的なマスクパターン107が形成されているので、作製された偏光分離素子1の回折格子112は有機複屈折膜101の面内の2方向のうち特定の1方向に(つまり遅相軸に)揃えられ、所定の回折効率を得ることができる。
よって、本例の製造方法では、第2の回転を停止した後に、透明基板105と有機複屈折膜101の相対位置が許容値内であることを確認しなければならない項目は有機複屈折膜101端と透明基板105端の距離の1項目で十分である。
In addition, also in this example, the organic birefringent film 101 moves slightly during the third rotation, and the organic birefringent film 101 does not protrude from the transparent substrate 105, but even when the organic birefringent film 101 rotates, Since the periodic mask pattern 107 that transmits ultraviolet rays is formed in parallel with one specific direction (that is, with respect to the slow axis) of the two directions in the plane of the organic birefringent film 101 before bonding, it is manufactured. The diffraction grating 112 of the polarization separating element 1 is aligned in one specific direction (that is, the slow axis) of the two directions in the plane of the organic birefringent film 101, and a predetermined diffraction efficiency can be obtained.
Therefore, in the manufacturing method of this example, after the second rotation is stopped, the item for which it is necessary to confirm that the relative position between the transparent substrate 105 and the organic birefringent film 101 is within the allowable value is the organic birefringent film 101. One item of the distance between the edge and the edge of the transparent substrate 105 is sufficient.

接着された有機複屈折膜101表面の平面性について見ると、本例の接着方法では偏光分離素子の製造方法1〜3と同様にうねりのようなロングスパンの凹凸は残るが、数mm角範囲の凹凸は小さくなる。その結果、ダイシングによって分割された個々の偏光分離素子1の波面収差は実用上問題ないレベルに抑えることができる。   Looking at the planarity of the surface of the bonded organic birefringent film 101, in the bonding method of this example, as in the manufacturing methods 1 to 3 of the polarization separating element, long-span irregularities such as waviness remain, but in the range of several mm square. The unevenness of becomes smaller. As a result, the wavefront aberration of each polarization separation element 1 divided by dicing can be suppressed to a level that does not cause a problem in practice.

本例においても接着後のうねりのようなロングスパンの凹凸は露光工程での1ショットの露光面積に影響を与えず、1ショットの露光面積は(b)の露光工程での有機複屈折膜101の平坦性で決定される。この露光工程では有機複屈折膜101へ引っ張りのテンションをかけて平坦化して露光を行なうため、従来例の回転による遠心力よりもテンションを大きくでき、露光時の凹凸を小さくできる。その結果、従来例よりも1ショットの露光面積を拡大でき、露光工程のスループットを改善できる。   Also in this example, the long span unevenness such as the waviness after bonding does not affect the exposure area of one shot in the exposure process, and the exposure area of one shot is the organic birefringent film 101 in the exposure process of (b). Determined by the flatness. In this exposure step, the organic birefringent film 101 is flattened by applying tension to the organic birefringent film 101, so that the tension can be made larger than the centrifugal force due to the rotation of the conventional example, and the unevenness at the time of exposure can be reduced. As a result, the exposure area of one shot can be increased as compared with the conventional example, and the throughput of the exposure process can be improved.

従来例の接着方法ではNA=0.30の縮小投影露光装置を用いた場合、2.0μmピッチのパターンを露光する場合リソグラフィー歩留を90%以上にするためには、1ショットの露光面積を15mm角にする必要があったが、本例の偏光分離素子1の製造方法により1ショットの露光面積を4倍に拡大できた。   In the conventional bonding method, when a reduced projection exposure apparatus with NA = 0.30 is used, when exposing a pattern with a pitch of 2.0 μm, in order to increase the lithography yield to 90% or more, the exposure area of one shot is reduced. Although it was necessary to make it 15 mm square, the exposure area of one shot could be expanded four times by the method of manufacturing the polarization separating element 1 of this example.

また、本例では紫外線を透過する周期的なマスクパターン107としてInを用いたが、Inは酸素イオンや酸素ラジカルに対して耐性があるため、有機複屈折膜101のドライエッチング工程では良好なエッチングマスクとなる。 In this example, In 2 O 3 is used as the periodic mask pattern 107 that transmits ultraviolet rays. However, since In 2 O 3 is resistant to oxygen ions and oxygen radicals, the organic birefringent film 101 is dried. In the etching process, a good etching mask is obtained.

更に、Inは第2塩化鉄および塩酸系のエッチング液で除去できるため、マスクパターン107の除去工程では有機複屈折膜101のエッチング形状を劣化させず、良好な回折格子112の形状を作ることができる。 Furthermore, since In 2 O 3 can be removed with a ferric chloride and hydrochloric acid-based etching solution, the etching pattern of the organic birefringent film 101 is not deteriorated in the removal process of the mask pattern 107, and a good diffraction grating 112 shape can be obtained. Can be made.

加えて、Inはほとんどの有機溶媒に不要であることから、第2の回転中に紫外線硬化型接着剤109を溶解し、かつ有機複屈折膜101を溶解しない有機溶媒を滴下しても、マスクパターン107の形状は劣化しない。 In addition, since In 2 O 3 is unnecessary for most organic solvents, an organic solvent that dissolves the UV curable adhesive 109 and does not dissolve the organic birefringent film 101 during the second rotation is dropped. However, the shape of the mask pattern 107 does not deteriorate.

本例の偏光分離素子の製造方法によると、第1の紫外線を照射して紫外線硬化型接着剤109を半硬化した後に透明基板105を回転(第3の回転)させながら、紫外線硬化型接着剤109を溶解し、かつ有機複屈折膜101を溶解しない有機溶媒を滴下するため、有機複屈折膜101で被覆されていない透明基板105周辺の紫外線硬化型接着剤109を除去することができる。また、透明基板105を回転させながら前記の有機溶媒を滴下するため、有機溶媒には遠心力がかかり、有機複屈折膜101と透明基板105とで挟まれた領域にある紫外線硬化型接着剤109へは染み込みにくいので、透明基板105と有機複屈折膜101は十分な接着面積が得られる。その結果、透明基板105の周辺部には接着剤が残らないので、装置間や装置内の搬送で基板周辺部をハンドリングしても基板周辺部からの異物発生が非常に少ないので、偏光分離素子1の製造歩留を向上できる。   According to the manufacturing method of the polarization separating element of this example, the ultraviolet curable adhesive is rotated (third rotation) while the transparent substrate 105 is rotated (third rotation) after irradiating the first ultraviolet ray and semi-curing the ultraviolet curable adhesive 109. Since the organic solvent which dissolves 109 and does not dissolve the organic birefringent film 101 is dropped, the ultraviolet curable adhesive 109 around the transparent substrate 105 not covered with the organic birefringent film 101 can be removed. Further, since the organic solvent is dropped while rotating the transparent substrate 105, a centrifugal force is applied to the organic solvent, and the ultraviolet curable adhesive 109 in the region sandwiched between the organic birefringent film 101 and the transparent substrate 105 is applied. The transparent substrate 105 and the organic birefringent film 101 can obtain a sufficient bonding area because they do not easily penetrate into the substrate. As a result, no adhesive remains in the peripheral portion of the transparent substrate 105. Therefore, even if the peripheral portion of the substrate is handled by conveyance between apparatuses or in the apparatus, the generation of foreign matter from the peripheral portion of the substrate is very small. 1 production yield can be improved.

なお、本例では回転後の有機複屈折膜101のずれを目視で観察し、第1の紫外線を照射する前に測長顕微鏡で有機複屈折膜101と透明基板105の相対位置を精密に測定するが、回転後の有機複屈折膜101のずれを毎回測長顕微鏡等を用いて精密に測定しても良い。また、前記の測定結果と許容値との差を割り出し、位置調整にフィードバック制御をかけると、有機複屈折膜101の位置ずれを短時間で抑えることが可能となり、より望ましい。   In this example, the organic birefringent film 101 after rotation is visually observed for deviation, and the relative position between the organic birefringent film 101 and the transparent substrate 105 is accurately measured with a length measuring microscope before the first ultraviolet ray is irradiated. However, the deviation of the organic birefringent film 101 after rotation may be accurately measured using a length measuring microscope or the like each time. In addition, it is more desirable to calculate the difference between the measurement result and the allowable value and to apply feedback control to the position adjustment, because the positional deviation of the organic birefringent film 101 can be suppressed in a short time.

[光ピックアップ]
次に、前述の偏光分離素子の製造方法で製造した偏光分離素子を用いた光ピックアップの構成例について説明する。図11は、この光ピックアップの構成の一例を示す説明図である。
[Optical pickup]
Next, a configuration example of an optical pickup using the polarization separation element manufactured by the above-described method for manufacturing a polarization separation element will be described. FIG. 11 is an explanatory diagram showing an example of the configuration of this optical pickup.

すなわち、このDVD用の光ピックアップ201では、レーザーダイオード202から出射された波長680nmのS偏光の光が、偏光分離素子1とコリメータレンズ203、λ/4波長板204、対物レンズ205を通った後、DVD206を照射し、DVD206の記録ピットからの反射光は、λ/4波長板204で直線偏光になった後、偏光分離素子1で回折してフォトダイオード207に導かれ、周知の手段により、フォーカス検出、トラック検出、信号検出が行われる。   That is, in this optical pickup 201 for DVD, after the S-polarized light having a wavelength of 680 nm emitted from the laser diode 202 passes through the polarization separation element 1, the collimator lens 203, the λ / 4 wavelength plate 204, and the objective lens 205. The reflected light from the recording pit of the DVD 206 is linearly polarized by the λ / 4 wavelength plate 204 and then diffracted by the polarization separation element 1 and guided to the photodiode 207 by a known means. Focus detection, track detection, and signal detection are performed.

本例の光ピックアップ201を用い、DVD−ROMから情報信号の再生を行った所、プリズムを接着したビームスプリッタとλ/4波長板を組み合わせた従来のDVD用光ピックアップと同等の信号出力を得ることができ、本例の光ピックアップ201が従来の光ピックアップと同等の再生特性を持つことが確認できる。また、本例のピックアップ201では、偏光分離素子1がプリズムを接着したビームスプリッタよりも小型になっているため、従来の光ピックアップよりも装置全体を小型化できる。   When an information signal was reproduced from a DVD-ROM using the optical pickup 201 of this example, a signal output equivalent to that of a conventional DVD optical pickup combining a beam splitter with a prism attached and a λ / 4 wavelength plate is obtained. It can be confirmed that the optical pickup 201 of this example has the same reproduction characteristics as those of the conventional optical pickup. Further, in the pickup 201 of this example, since the polarization separation element 1 is smaller than the beam splitter to which the prism is bonded, the entire apparatus can be made smaller than the conventional optical pickup.

[接着装置1]
前述の偏光分離素子の製造方法に用いて好適な、有機複屈折膜101を接着する作業に用いる接着装置の一例について説明する。図12は、この接着装置の説明図である。
[Adhesion device 1]
An example of an adhesion apparatus used for the operation of adhering the organic birefringent film 101, which is suitable for use in the above-described method for manufacturing a polarization separation element, will be described. FIG. 12 is an explanatory diagram of this bonding apparatus.

この接着装置301は、透明基板105を保持するスピンテーブル111と、スピンテーブル111を回転させるステッピングモーター等からなる回転装置(図示せず)と、ロボットアーム307で駆動され、透明基板105に紫外線硬化型接着剤109を塗布するディスペンサー108からなる塗布装置302と、2本の吸着アーム303によって紫外線を透過する周期的なマスクパターン107が形成された有機複屈折膜101の両端を保持し、透明基板105上に塗布された紫外線硬化型接着剤109上にマスクパターン107が形成された面と反対側の面で載置する載置装置304と、紫外線硬化型接着剤109を溶解し、かつ有機複屈折膜101を溶解しない有機溶媒を透明基板105に滴下するリンス装置305と、透明基板105に紫外線を照射する高圧水銀灯やメタルハライドランプ等からなる紫外線照射装置306から構成されている。   The bonding apparatus 301 is driven by a rotation device (not shown) including a spin table 111 that holds the transparent substrate 105, a stepping motor that rotates the spin table 111, and the robot arm 307, and the transparent substrate 105 is UV-cured. A coating device 302 composed of a dispenser 108 for applying a mold adhesive 109 and two organic arm refraction films 101 on which a periodic mask pattern 107 that transmits ultraviolet rays is formed by two adsorption arms 303 are held on a transparent substrate. 105, a placement device 304 that is placed on the surface opposite to the surface on which the mask pattern 107 is formed on the ultraviolet curable adhesive 109 applied on the surface 105, an ultraviolet curable adhesive 109, and an organic composite. A rinsing device 305 for dropping an organic solvent that does not dissolve the refractive film 101 onto the transparent substrate 105, and the transparent substrate 1 And a ultraviolet irradiation device 306 consisting of a high-pressure mercury lamp or a metal halide lamp for irradiating ultraviolet rays to 5.

本例の接着装置301を用いて有機複屈折膜101を接着する手順を次に説明する。直径100mm、厚さ1.0mmのオリエンテーションフラットを持つ光学ガラス(例えば、ショット社のBK7)からなる透明基板105をスピンテーブル111に載せ、真空吸着によってスピンテーブル111に固定する。その後、透明基板105の中央部にロボットアーム307によってディスペンサー108を移動し、スピンテーブル111を50rpmで回転させながら、透明基板105の中央部にディスペンサー108を用いて屈折率1.52のアクリル系紫外線硬化型接着剤109を4g滴下する。   Next, the procedure for bonding the organic birefringent film 101 using the bonding apparatus 301 of this example will be described. A transparent substrate 105 made of optical glass (for example, BK7 manufactured by Schott) having an orientation flat having a diameter of 100 mm and a thickness of 1.0 mm is placed on the spin table 111 and fixed to the spin table 111 by vacuum suction. Thereafter, the dispenser 108 is moved by the robot arm 307 to the central portion of the transparent substrate 105 and the spin table 111 is rotated at 50 rpm, and the acrylic ultraviolet ray having a refractive index of 1.52 is used by using the dispenser 108 at the central portion of the transparent substrate 105. 4 g of curable adhesive 109 is dropped.

その後、ディスペンサー108を元の位置に戻し、スピンテーブル111を400rpmで回転させ(第1の回転)、透明基板105全面に紫外線硬化型接着剤109を広げ、スピンテーブル111の回転を停止する。その後、偏光分離素子の製造方法1の方法によって、紫外線を透過する周期的なマスクパターンを形成された有機複屈折膜101(直径90mm、厚さ80μm)の両端を載置装置304の2本の吸着アーム303に真空吸着して保持し、載置装置304を透明基板105上へ移動し、有機複屈折膜101の中心をスピンテーブル111の回転中心にほぼ合せながら2本の吸着アーム303の真空吸着を徐々に解除して、紫外線硬化型接着剤109の上に前記のマスクパターンを形成した面の反対側の面で有機複屈折膜101を載せる。   Thereafter, the dispenser 108 is returned to the original position, the spin table 111 is rotated at 400 rpm (first rotation), the ultraviolet curable adhesive 109 is spread over the entire surface of the transparent substrate 105, and the rotation of the spin table 111 is stopped. Thereafter, both ends of the organic birefringent film 101 (diameter: 90 mm, thickness: 80 μm) on which a periodic mask pattern that transmits ultraviolet rays is formed by the method of the polarization separating element manufacturing method 1 are placed on the two mounting devices 304. The suction arm 303 is vacuum-sucked and held, the mounting device 304 is moved onto the transparent substrate 105, and the vacuum of the two suction arms 303 is adjusted while the center of the organic birefringent film 101 is substantially aligned with the rotation center of the spin table 111. The adsorption is gradually released, and the organic birefringent film 101 is placed on the surface opposite to the surface on which the mask pattern is formed on the ultraviolet curable adhesive 109.

その後、載置装置を元の位置に戻し、スピンテーブル111を700rpmで10秒回転し、その後1100rpmで回転して(第2の回転)、紫外線硬化型接着剤109を振り切り、有機複屈折膜101表面を平坦化する。   Thereafter, the mounting device is returned to the original position, the spin table 111 is rotated at 700 rpm for 10 seconds, and then rotated at 1100 rpm (second rotation), and the ultraviolet curable adhesive 109 is shaken off, and the organic birefringent film 101 is rotated. Flatten the surface.

また1100rpmの回転開始後5秒に紫外線照射装置306とリンス装置305を移動し、スピンテーブル111を1100rpmで回転した状態で有機複屈折膜101側から第1の紫外線を照射して紫外線硬化型接着剤109を半硬化させつつ、紫外線硬化型接着剤109を溶解し、かつ有機複屈折膜101を溶解しない有機溶媒(本例ではイソプロピルアルコールを使用)を透明基板105端に滴下して、基板周辺部の紫外線硬化型接着剤109を除去する。その後、スピンテーブル111の回転を停止し、リンス機構を元の位置に戻す。そして、紫外線照射機構を用いて有機複屈折膜101側から第2の紫外線を照射して紫外線硬化型接着剤109を完全硬化させる。紫外線照射終了後、紫外線照射機構を元の位置に戻し、スピンテーブル111の真空吸着を解除して有機複屈折膜101を接着する。透明基板105を取り出す。   In addition, the ultraviolet irradiation device 306 and the rinsing device 305 are moved 5 seconds after the start of the rotation of 1100 rpm, and the first ultraviolet ray is irradiated from the organic birefringent film 101 side in a state where the spin table 111 is rotated at 1100 rpm. While the curing agent 109 is semi-cured, an organic solvent (in this example, using isopropyl alcohol) that dissolves the ultraviolet curable adhesive 109 and does not dissolve the organic birefringent film 101 is dropped onto the end of the transparent substrate 105 to surround the substrate. Part of the UV curable adhesive 109 is removed. Thereafter, the rotation of the spin table 111 is stopped, and the rinse mechanism is returned to the original position. Then, the ultraviolet curable adhesive 109 is completely cured by irradiating the second ultraviolet ray from the organic birefringent film 101 side using the ultraviolet irradiation mechanism. After the ultraviolet irradiation is completed, the ultraviolet irradiation mechanism is returned to the original position, the vacuum adsorption of the spin table 111 is released, and the organic birefringent film 101 is bonded. The transparent substrate 105 is taken out.

このように、本例の接着装置301を用いると、偏光分離素子の製造方法3を実施できるため、透明基板105からの有機複屈折膜101のはみ出しを防止できる。   As described above, when the bonding apparatus 301 of this example is used, since the polarization separating element manufacturing method 3 can be performed, the organic birefringent film 101 can be prevented from protruding from the transparent substrate 105.

また、接着後の有機複屈折膜101は第2の回転中に僅かなズレが生じても、面内の2方向のうち特定の1方向に(つまり遅相軸に)平行に紫外線を透過する周期的なマスクパターンが形成されているため、回折格子112を面内の2方向のうち特定の1方向に(つまり遅相軸に)に揃えることができる。その結果、所定の回折効率を得ることができる。   Further, even if the organic birefringent film 101 after the bonding is slightly displaced during the second rotation, the organic birefringent film 101 transmits ultraviolet rays in parallel to one specific direction (that is, to the slow axis) out of the two in-plane directions. Since the periodic mask pattern is formed, the diffraction grating 112 can be aligned in one specific direction (that is, on the slow axis) of the two in-plane directions. As a result, a predetermined diffraction efficiency can be obtained.

さらに、第1の紫外線を照射して紫外線硬化型接着剤109を半硬化した後に、透明基板105を回転させながら紫外線硬化型接着剤109を溶解し、かつ有機複屈折膜101を溶解しない有機溶媒を滴下するため、基板周辺部には接着剤残が残らない。その結果、装置間や装置内の搬送で基板周辺部をハンドリングしても、基板周辺部からの異物発生が非常に少ないので、偏光分離素子1の製造歩留を向上できる。   Further, after the ultraviolet ray curable adhesive 109 is semi-cured by irradiating the first ultraviolet ray, the ultraviolet curable adhesive 109 is dissolved while the transparent substrate 105 is rotated, and the organic birefringent film 101 is not dissolved. The adhesive remains on the periphery of the substrate. As a result, even if the substrate peripheral part is handled by conveyance between apparatuses or in the apparatus, the generation of foreign matter from the peripheral part of the substrate is very small, so that the manufacturing yield of the polarization separation element 1 can be improved.

なお、本例では、第1の紫外線照射によって紫外線硬化型接着剤109を半硬化させるが、紫外線の照射エネルギーを大きくして第1の紫外線照射によって紫外線硬化型接着剤109を完全硬化すると、偏光分離素子の製造方法2を実施できる。   In this example, the ultraviolet curable adhesive 109 is semi-cured by the first ultraviolet irradiation. However, when the ultraviolet irradiation energy 109 is increased and the ultraviolet curable adhesive 109 is completely cured by the first ultraviolet irradiation, the polarization is changed. The manufacturing method 2 of a separation element can be implemented.

また、第2の回転中に第1の紫外線照射を行なわず、第2の回転停止後に紫外線の照射エネルギーを大きくして第1の紫外線照射によって紫外線硬化型接着剤109を完全硬化すると、偏光分離素子の製造方法1を実施できる。   In addition, if the first ultraviolet irradiation is not performed during the second rotation, and the ultraviolet irradiation energy is increased after the second rotation is stopped and the ultraviolet curable adhesive 109 is completely cured by the first ultraviolet irradiation, the polarization separation is performed. Element manufacturing method 1 can be carried out.

[接着装置2]
前述の偏光分離素子の製造方法に用いて好適な、有機複屈折膜101を接着する作業に用いる接着装置の別の一例について説明する。図13は、この接着装置の説明図である。
[Adhesion device 2]
Another example of the bonding apparatus used for the operation of bonding the organic birefringent film 101, which is suitable for use in the above-described method for manufacturing the polarization separation element, will be described. FIG. 13 is an explanatory diagram of this bonding apparatus.

この接着装置301は、透明基板105を保持するスピンテーブル111と、スピンテーブル111を回転させるステッピングモーター等からなる回転装置(図示せず)と、透明基板105に紫外線硬化型接着剤109を塗布するディスペンサー108からなる塗布装置302と、2本の吸着アーム303によって紫外線を透過する周期的なマスクパターン107が形成された有機複屈折膜101の両端を保持し、透明基板105上に塗布された紫外線硬化型接着剤109上にマスクパターン107を形成した面とは反対側の面で載置する載置装置304と、有機複屈折膜101を透明基板105上で滑動して位置を修正する位置調整装置311と、透明基板105の端と有機複屈折膜101の端の距離を読み取る位置検出装置312と、紫外線硬化型接着剤109を溶解し、かつ有機複屈折膜101を溶解しない有機溶媒を透明基板105に滴下するリンス装置305と、透明基板105に紫外線を照射する高圧水銀灯やメタルハライドランプ等からなる紫外線照射装置306から構成されている。   The bonding apparatus 301 applies a UV curable adhesive 109 to the transparent substrate 105 and a rotating device (not shown) including a spin table 111 that holds the transparent substrate 105, a stepping motor that rotates the spin table 111, and the like. An ultraviolet ray applied on the transparent substrate 105 while holding both ends of the organic birefringent film 101 on which a periodic mask pattern 107 that transmits ultraviolet rays is formed by a coating device 302 including a dispenser 108 and two adsorption arms 303. Position adjustment for correcting the position by sliding the organic birefringent film 101 on the transparent substrate 105 and the mounting device 304 mounted on the surface opposite to the surface on which the mask pattern 107 is formed on the curable adhesive 109. A device 311, a position detection device 312 for reading the distance between the end of the transparent substrate 105 and the end of the organic birefringent film 101, and purple A rinsing device 305 that drops an organic solvent that dissolves the linear curing adhesive 109 and does not dissolve the organic birefringent film 101 onto the transparent substrate 105, and an ultraviolet ray that includes a high-pressure mercury lamp, a metal halide lamp, or the like that irradiates the transparent substrate 105 with ultraviolet rays. The irradiation device 306 is configured.

なお、位置調整装置311にはXY方向に可動できる2軸アーム313の先端に調整治具131が付いており、調整治具で有機複屈折膜101を押し、透明基板105上を滑らせる機構になっており、位置検出装置312は倍率が4〜50倍に可変できるズームレンズの付いたCCDカメラと、この撮影画像から2点間の長さ測定が可能な画像処理装置から構成されている。   The position adjustment device 311 has an adjustment jig 131 at the tip of a biaxial arm 313 that can move in the X and Y directions. The adjustment jig 131 pushes the organic birefringent film 101 with the adjustment jig and slides on the transparent substrate 105. The position detection device 312 includes a CCD camera with a zoom lens whose magnification can be varied from 4 to 50 times, and an image processing device capable of measuring the length between two points from this captured image.

本例の接着装置301を用いて有機複屈折膜101を接着する手順を次に説明する。直径165mm、厚さ1.0mm、54mmのオリエンテーションフラットを持つ光学ガラス(例えば、ショット社のBK7)からなる透明基板105をスピンテーブル111に載せ、真空吸着によってスピンテーブル111に固定する。その後、透明基板105の中央部にロボットアーム307によってディスペンサー108を移動し、スピンテーブル111を20rpmで回転させながら、透明基板105の中央部にディスペンサー108を用いて屈折率1.56のエポキシ系紫外線硬化型接着剤109を10g滴下する。   Next, the procedure for bonding the organic birefringent film 101 using the bonding apparatus 301 of this example will be described. A transparent substrate 105 made of optical glass having a diameter of 165 mm, a thickness of 1.0 mm, and an orientation flat with a thickness of 54 mm (for example, BK7 from Schott) is placed on the spin table 111 and fixed to the spin table 111 by vacuum suction. Thereafter, the dispenser 108 is moved by the robot arm 307 to the central portion of the transparent substrate 105 and the spin table 111 is rotated at 20 rpm, and the epoxy ultraviolet ray having a refractive index of 1.56 is used by using the dispenser 108 at the central portion of the transparent substrate 105. 10 g of curable adhesive 109 is dropped.

その後、ディスペンサー108を元の位置に戻し、スピンテーブル111を300rpmで回転させ(第1の回転)、透明基板105全面に紫外線硬化型接着剤109を広げ、スピンテーブル111の回転を停止する。その後、偏光分離素子の製造方法4の方法によって紫外線を透過する周期的なマスクパターン107が形成された有機複屈折膜101(直径155mm、厚さ80μm)の両端を載置装置304の2本の吸着アーム303に真空吸着して保持し、載置装置304を透明基板105上へ移動し、有機複屈折膜101の中心をスピンテーブル111の回転中心にほぼ合せながら2本の吸着アーム303の真空吸着を徐々に解除して、紫外線硬化型接着剤109の上にマスクパターン107を形成した面とは反対側の面で有機複屈折膜101を載せる。   Thereafter, the dispenser 108 is returned to the original position, the spin table 111 is rotated at 300 rpm (first rotation), the ultraviolet curable adhesive 109 is spread over the entire surface of the transparent substrate 105, and the rotation of the spin table 111 is stopped. Thereafter, both ends of the organic birefringent film 101 (having a diameter of 155 mm and a thickness of 80 μm) on which the periodic mask pattern 107 that transmits ultraviolet rays is formed by the method of manufacturing method 4 of the polarized light separating element are placed on the two ends of the mounting device 304. The suction arm 303 is vacuum-sucked and held, the mounting device 304 is moved onto the transparent substrate 105, and the vacuum of the two suction arms 303 is adjusted while the center of the organic birefringent film 101 is substantially aligned with the rotation center of the spin table 111. The adsorption is gradually released, and the organic birefringent film 101 is placed on the surface opposite to the surface on which the mask pattern 107 is formed on the ultraviolet curable adhesive 109.

その後、載置装置304を元の位置に戻し、スピンテーブル111を1100rpmで回転させ(第2の回転)、紫外線硬化型接着剤109を振り切り、有機複屈折膜101の表面を平坦化する。その後、スピンテーブル111の回転を停止し、2軸アーム313を動かして調整治具131を有機複屈折膜101側面に突き当て、有機複屈折膜101の位置ズレに応じて2軸アーム313をXY方向に動かして有機複屈折膜101を調整治具131で押し、有機複屈折膜101を透明基板105上で滑るように動かし(滑動)、有機複屈折膜101の位置修正を行う。位置調整終了後、位置調整装置311を元の位置に戻す。その後、スピンテーブル111を1100rpmで5秒間回転させ(第2の回転)、スピンテーブル111の回転を停止する。その後、透明基板105上に位置検出装置312を移動し、XYの2方向について透明基板105の端と有機複屈折膜101の端との距離を測定し、透明基板105の端と有機複屈折膜101の端との距離が許容値内であることを確認する。上記の測定値が許容値を超えている場合は、許容値と実測値のずれを算出し、位置検出装置312を元に戻し、位置調整装置311の2軸アームを動かして調整治具131を有機複屈折膜101の側面に突き当て、前記の算出したずれに応じて2軸アーム313をXY方向に動かし、有機複屈折膜101を調整治具131で押し、有機複屈折膜101を透明基板105上で滑動して位置調整を行う。その後、位置調整装置311を元の位置に戻し、再度、スピンテーブル111を1100rpmで5秒間回転させ(第2の回転)、スピンテーブル111の回転を停止し、透明基板105上に位置検出装置312を再度移動して、透明基板105の端と有機複屈折膜101の端との距離を測定し、許容値内に入るまで上記の作業を繰り返す。その後、紫外線照射装置306とリンス装置305を移動し、スピンテーブル111の回転を停止した状態で有機複屈折膜101側から第1の紫外線を照射して紫外線硬化型接着剤109を半硬化させる。第1の紫外線照射後、スピンテーブル111を700rpmで回転させ(第3の回転)、紫外線硬化型接着剤109を溶解し、かつ有機複屈折膜101を溶解しない有機溶媒(本例ではアセトンを使用)を透明基板105端に滴下して、基板105の周辺部に残っていた紫外線硬化型接着剤109を除去する。その後、スピンテーブル111の回転を停止し、リンス装置305を元の位置に戻す。そして、紫外線照射装置306を用いて有機複屈折膜101側から第2の紫外線を照射して紫外線硬化型接着剤109を完全硬化させる。紫外線照射終了後、紫外線照射装置306を元の位置に戻し、スピンテーブル111の真空吸着を解除して有機複屈折膜101を接着した透明基板105を取り出す。   Thereafter, the mounting device 304 is returned to the original position, the spin table 111 is rotated at 1100 rpm (second rotation), the ultraviolet curable adhesive 109 is shaken off, and the surface of the organic birefringent film 101 is flattened. Thereafter, the rotation of the spin table 111 is stopped, the biaxial arm 313 is moved, the adjustment jig 131 is abutted against the side surface of the organic birefringent film 101, and the biaxial arm 313 is moved to XY according to the positional deviation of the organic birefringent film 101. The organic birefringent film 101 is pushed in the direction by the adjusting jig 131, and the organic birefringent film 101 is slid on the transparent substrate 105 (sliding) to correct the position of the organic birefringent film 101. After the position adjustment is completed, the position adjustment device 311 is returned to the original position. Thereafter, the spin table 111 is rotated at 1100 rpm for 5 seconds (second rotation), and the rotation of the spin table 111 is stopped. Thereafter, the position detection device 312 is moved onto the transparent substrate 105, the distance between the end of the transparent substrate 105 and the end of the organic birefringent film 101 is measured in two directions XY, and the end of the transparent substrate 105 and the organic birefringent film are measured. Confirm that the distance to the end of 101 is within the allowable value. If the measured value exceeds the allowable value, the deviation between the allowable value and the actually measured value is calculated, the position detecting device 312 is returned to the original position, the biaxial arm of the position adjusting device 311 is moved, and the adjusting jig 131 is moved. Abutting on the side surface of the organic birefringent film 101, the biaxial arm 313 is moved in the X and Y directions according to the calculated deviation, the organic birefringent film 101 is pushed by the adjusting jig 131, and the organic birefringent film 101 is made transparent. The position is adjusted by sliding on 105. Thereafter, the position adjusting device 311 is returned to the original position, the spin table 111 is again rotated at 1100 rpm for 5 seconds (second rotation), the rotation of the spin table 111 is stopped, and the position detection device 312 is placed on the transparent substrate 105. Is moved again, the distance between the end of the transparent substrate 105 and the end of the organic birefringent film 101 is measured, and the above operation is repeated until the distance falls within an allowable value. Thereafter, the ultraviolet irradiating device 306 and the rinsing device 305 are moved, and the ultraviolet curable adhesive 109 is semi-cured by irradiating the first ultraviolet light from the organic birefringent film 101 side while the rotation of the spin table 111 is stopped. After the first ultraviolet irradiation, the spin table 111 is rotated at 700 rpm (third rotation) to dissolve the ultraviolet curable adhesive 109 and not to dissolve the organic birefringent film 101 (in this example, acetone is used). ) Is dropped onto the edge of the transparent substrate 105 to remove the ultraviolet curable adhesive 109 remaining on the periphery of the substrate 105. Thereafter, the rotation of the spin table 111 is stopped, and the rinse device 305 is returned to the original position. Then, the ultraviolet curable adhesive 109 is completely cured by irradiating the second ultraviolet light from the organic birefringent film 101 side using the ultraviolet irradiation device 306. After the ultraviolet irradiation is completed, the ultraviolet irradiation device 306 is returned to the original position, the vacuum adsorption of the spin table 111 is released, and the transparent substrate 105 to which the organic birefringent film 101 is bonded is taken out.

このように本例の接着装置301を用いると、偏光分離素子の製造方法4を実現できるため、透明基板105からの有機複屈折膜101のはみ出しを更に防止できる。   As described above, when the bonding apparatus 301 of the present example is used, the polarization separating element manufacturing method 4 can be realized, and thus the protrusion of the organic birefringent film 101 from the transparent substrate 105 can be further prevented.

また、透明基板105と有機複屈折膜101の相対位置を許容値内に収めることが可能であり、有機複屈折膜101が透明基板105からはみ出す頻度を著しく小さくできる。   In addition, the relative position between the transparent substrate 105 and the organic birefringent film 101 can be within an allowable value, and the frequency of the organic birefringent film 101 protruding from the transparent substrate 105 can be significantly reduced.

さらに、接着後の有機複屈折膜101は第3の回転中に僅かなズレが生じても、面内の2方向のうち特定の1方向に(つまり遅相軸に)平行に紫外線を透過する周期的なマスクパターン107が形成されているため、回折格子112を面内の2方向のうち特定の1方向に(つまり遅相軸に)に揃えることができる。その結果、所定の回折効率を得ることができる。   Further, even if the organic birefringent film 101 after bonding is slightly displaced during the third rotation, the organic birefringent film 101 transmits ultraviolet rays in parallel to one specific direction (that is, to the slow axis) out of the two in-plane directions. Since the periodic mask pattern 107 is formed, the diffraction grating 112 can be aligned in one specific direction (that is, on the slow axis) of the two in-plane directions. As a result, a predetermined diffraction efficiency can be obtained.

そのうえ、第1の紫外線を照射して紫外線硬化型接着剤109を半硬化した後に、透明基板105を回転させながら紫外線硬化型接着剤109を溶解し、かつ有機複屈折膜101を溶解しない有機溶媒を滴下するため、基板105の周辺部には接着剤残が残らない。その結果、装置間や装置内の搬送で基板周辺部をハンドリングしても基板周辺部からの異物発生が非常に少ないので、偏光分離素子1の製造歩留を向上できる。   In addition, after the ultraviolet ray curable adhesive 109 is semi-cured by irradiating the first ultraviolet ray, the ultraviolet curable adhesive 109 is dissolved while the transparent substrate 105 is rotated, and the organic birefringent film 101 is not dissolved. As a result, no adhesive residue remains on the periphery of the substrate 105. As a result, since the generation of foreign matter from the peripheral portion of the substrate is very small even if the peripheral portion of the substrate is handled by conveyance between apparatuses or in the apparatus, the manufacturing yield of the polarization separation element 1 can be improved.

本発明を実施するための最良の一形態である偏光分離素子の製造方法1の各工程を示す説明図である。It is explanatory drawing which shows each process of the manufacturing method 1 of the polarization splitting element which is the best form for implementing this invention. 偏光分離素子の製造方法1の各工程を示す説明図である。It is explanatory drawing which shows each process of the manufacturing method 1 of a polarization splitting element. 偏光分離素子の製造方法2の各工程を示す説明図である。It is explanatory drawing which shows each process of the manufacturing method 2 of a polarization splitting element. 偏光分離素子の製造方法2の各工程を示す説明図である。It is explanatory drawing which shows each process of the manufacturing method 2 of a polarization splitting element. 偏光分離素子の製造方法3の各工程を示す説明図である。It is explanatory drawing which shows each process of the manufacturing method 3 of a polarization splitting element. 偏光分離素子の製造方法3の各工程を示す説明図である。It is explanatory drawing which shows each process of the manufacturing method 3 of a polarization splitting element. 偏光分離素子の製造方法4の各工程を示す説明図である。It is explanatory drawing which shows each process of the manufacturing method 4 of a polarization splitting element. 偏光分離素子の製造方法4の各工程を示す説明図である。It is explanatory drawing which shows each process of the manufacturing method 4 of a polarization splitting element. 偏光分離素子の製造方法4の(j)工程の説明図である。It is explanatory drawing of the (j) process of the manufacturing method 4 of a polarization splitting element. 偏光分離素子の製造方法4の(a)〜(r)の工程により有機複屈折膜接着した基板を、ダイシングソーを用いて切断し、200倍の金属顕微鏡で断面を観察し、基板の直径方向での接着層厚さを測定した結果を示すグラフである。The substrate to which the organic birefringent film is bonded by the steps (a) to (r) of the manufacturing method 4 of the polarized light separating element is cut using a dicing saw, the cross section is observed with a 200 times metal microscope, and the diameter direction of the substrate It is a graph which shows the result of having measured the adhesive layer thickness in. 偏光分離素子の製造方法1〜4で製造した偏光分離素子を用いた光ピックアップの説明図である。It is explanatory drawing of the optical pick-up using the polarization separation element manufactured with the manufacturing methods 1-4 of the polarization separation element. 本発明を実施するための最良の一形態である接着装置1の説明図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an explanatory view of a bonding apparatus 1 which is the best mode for carrying out the present invention. 接着装置2の説明図である。It is explanatory drawing of the bonding apparatus 2. FIG. スピンナー法による貼り合せ光ディスクの製造方法を説明する説明図である。It is explanatory drawing explaining the manufacturing method of the bonded optical disk by a spinner method. 本発明の課題を説明する説明図である。It is explanatory drawing explaining the subject of this invention. 本発明の課題を説明する説明図である。It is explanatory drawing explaining the subject of this invention. 本発明の課題を説明する説明図である。It is explanatory drawing explaining the subject of this invention.

符号の説明Explanation of symbols

1 偏光分離素子
101 有機複屈折膜
105 透明基板
107 マスクパターン
109 紫外線硬化型接着剤
112 回折格子
111 スピンテーブル
301 接着装置
302 塗布装置
304 載置装置
305 リンス装置
306 紫外線照射装置
311 位置調整装置
312 位置検出装置
DESCRIPTION OF SYMBOLS 1 Polarization separation element 101 Organic birefringent film 105 Transparent substrate 107 Mask pattern 109 UV curable adhesive 112 Diffraction grating 111 Spin table 301 Adhesive device 302 Coating device 304 Placement device 305 Rinse device 306 Ultraviolet irradiation device 311 Position adjustment device 312 Position Detection device

Claims (3)

入射光の異なる振動面に対し屈折率が異なる有機複屈折膜の一方の面上に紫外線を透過する周期的なマスクパターンを形成するマスクパターン形成工程と、前記有機複屈折膜の前記マスクパターンを形成した面と反対の面で前記有機複屈折膜を透明基板に接着する接着工程と、前記のマスクパターンを用いて前記有機複屈折膜の表面をエッチングして周期的な凹凸による回折格子を形成する回折格子形成工程と、を含む偏光分離素子の製造方法において、
前記接着工程では、
前記透明基板に基板面方向の回転である第1の回転を与えて当該透明基板全面に紫外線硬化型接着剤を塗布し、
その後、前記紫外線硬化型接着剤上に前記マスクパターンを形成した面と反対側の面で前記有機複屈折膜を載置し、
その後、前記透明基板に基板面方向の回転である第2の回転を与えて前記有機複屈折膜表面を平坦化し、前記第2の回転中に前記紫外線硬化型接着剤を溶解し、かつ、前記有機複屈折膜を溶解しない有機溶媒を滴下して前記透明基板の周辺部の紫外線硬化型接着剤を除去し、
その後、前記透明基板に第1の紫外線を照射して紫外線硬化型接着剤を硬化する処理を行うことを特徴とする偏光分離素子の製造方法。
A mask pattern forming step of forming a periodic mask pattern that transmits ultraviolet light on one surface of an organic birefringent film having a different refractive index with respect to different vibration surfaces of incident light, and the mask pattern of the organic birefringent film Bonding the organic birefringent film to a transparent substrate on the surface opposite to the formed surface, and etching the surface of the organic birefringent film using the mask pattern to form a diffraction grating with periodic irregularities And a method of manufacturing a polarization separation element including a diffraction grating forming step,
In the bonding step,
Applying a first rotation which is a rotation in the substrate surface direction to the transparent substrate to apply an ultraviolet curable adhesive to the entire surface of the transparent substrate,
Then, the organic birefringent film is placed on the surface opposite to the surface on which the mask pattern is formed on the ultraviolet curable adhesive,
Then, a second rotation which is a rotation in the substrate surface direction is applied to the transparent substrate to flatten the surface of the organic birefringent film, the ultraviolet curable adhesive is dissolved during the second rotation, and Dropping an organic solvent that does not dissolve the organic birefringent film to remove the UV curable adhesive around the transparent substrate,
Thereafter, a process for irradiating the transparent substrate with a first ultraviolet ray to cure the ultraviolet curable adhesive is performed.
前記マスクパターン形成工程では、前記マスクパターンを、
SiO,Si,SiON,In,ITO(Indium thin Oxide)の各材料からなる群のうちの少なくとも1つの材料で形成することを特徴とする請求項1に記載の偏光分離素子の製造方法。
In the mask pattern forming step, the mask pattern is
2. The polarization separation according to claim 1, wherein the polarization separation is made of at least one material selected from the group consisting of SiO 2 , Si 3 N 4 , SiON, In 2 O 3 , and ITO (Indium thin Oxide). Device manufacturing method.
前記接着工程では、前記有機溶媒としてイソプロピルアルコールとアセトンとのうち少なくとも一方を用いることを特徴とする請求項1または2に記載の偏光分離素子の製造方法。 3. The method of manufacturing a polarization separation element according to claim 1, wherein at least one of isopropyl alcohol and acetone is used as the organic solvent in the adhesion step.
JP2003327896A 2003-09-19 2003-09-19 Method for manufacturing polarization separating element Expired - Fee Related JP4421249B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003327896A JP4421249B2 (en) 2003-09-19 2003-09-19 Method for manufacturing polarization separating element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003327896A JP4421249B2 (en) 2003-09-19 2003-09-19 Method for manufacturing polarization separating element

Publications (2)

Publication Number Publication Date
JP2005092030A JP2005092030A (en) 2005-04-07
JP4421249B2 true JP4421249B2 (en) 2010-02-24

Family

ID=34457640

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003327896A Expired - Fee Related JP4421249B2 (en) 2003-09-19 2003-09-19 Method for manufacturing polarization separating element

Country Status (1)

Country Link
JP (1) JP4421249B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5789409B2 (en) * 2010-06-22 2015-10-07 Dmg森精機株式会社 Optical scale

Also Published As

Publication number Publication date
JP2005092030A (en) 2005-04-07

Similar Documents

Publication Publication Date Title
US20040174596A1 (en) Polarization optical device and manufacturing method therefor
JP4280567B2 (en) Polarizing optical element and manufacturing method thereof
JP4421249B2 (en) Method for manufacturing polarization separating element
JP4280518B2 (en) Polarizing optical element and manufacturing method thereof
JP4237020B2 (en) Method for manufacturing polarization separation element
JP4139129B2 (en) Method for manufacturing polarization separating element, bonding apparatus, and optical pickup apparatus
JP4222860B2 (en) Method for producing polarization separating element using organic birefringent film and organic birefringent film bonding apparatus used therefor
JP4229709B2 (en) Method of manufacturing polarization separating element and organic birefringent film bonding apparatus therefor
JP4084078B2 (en) Method for manufacturing polarization separation element, polarization separation element, optical pickup device, and bonding apparatus
JP4116317B2 (en) Polarization separating element, method for manufacturing the same, bonding apparatus, and optical pickup apparatus
JP2003302514A (en) Diffraction optical element, method for manufacturing the same, optical pickup device and optical disk drive device
JP4283621B2 (en) Method for manufacturing polarization separation element, polarization separation element, and optical pickup device
JP4204809B2 (en) Method for manufacturing diffractive optical element
JP2005338638A (en) Polarizing hologram element, its manufacturing method, optical pickup apparatus using polarizing hologram element and optical disk drive apparatus
JP4259894B2 (en) Method for manufacturing polarization separation element
US8243260B2 (en) Lithography apparatus
JP2004165403A (en) Alignment bonding method and device thereof
JP4445288B2 (en) Alignment bonding method, alignment bonding apparatus, optical element, optical pickup apparatus
JPH11311711A (en) Manufacture of optical element and manufactured optical element
JP2004286892A (en) Alignment apparatus, alignment and adhesion apparatus, alignment mark, and adhesion method
JP2003294947A (en) Polarized light separating element and method for manufacturing the same
JP4219615B2 (en) Polarized light separating element and manufacturing method thereof
US20240019609A1 (en) Forming an optical system
JP2005249856A (en) Alignment joining method, alignment joining device, and optical device
JP2003302529A (en) Polarized beam splitter and its fabricating method, bonding apparatus, and optical pickup unit

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20051021

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060807

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060811

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090430

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090519

AA92 Notification of invalidation

Free format text: JAPANESE INTERMEDIATE CODE: A971092

Effective date: 20090602

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090616

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090807

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090908

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091027

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091201

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091202

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121211

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131211

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees