JP4420481B2 - Austenitic stainless steel with excellent cold forging and machinability - Google Patents

Austenitic stainless steel with excellent cold forging and machinability Download PDF

Info

Publication number
JP4420481B2
JP4420481B2 JP13919398A JP13919398A JP4420481B2 JP 4420481 B2 JP4420481 B2 JP 4420481B2 JP 13919398 A JP13919398 A JP 13919398A JP 13919398 A JP13919398 A JP 13919398A JP 4420481 B2 JP4420481 B2 JP 4420481B2
Authority
JP
Japan
Prior art keywords
stainless steel
machinability
austenitic stainless
forging
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP13919398A
Other languages
Japanese (ja)
Other versions
JP2000017396A (en
Inventor
純也 朝岡
雅亨 永田
裕樹 山田
昭 細川
吉信 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku Steel Co Ltd
Denso Corp
Original Assignee
Tohoku Steel Co Ltd
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku Steel Co Ltd, Denso Corp filed Critical Tohoku Steel Co Ltd
Priority to JP13919398A priority Critical patent/JP4420481B2/en
Publication of JP2000017396A publication Critical patent/JP2000017396A/en
Application granted granted Critical
Publication of JP4420481B2 publication Critical patent/JP4420481B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、高い耐蝕性と強度を保有しかつ冷温間鍛造加工性及び被削性を兼ね備えたオーステナイト系ステンレス鋼に関する。
【0002】
【従来の技術】
一般に、高い耐蝕性と強度を有する材料としてSUS303、SUS304に示すようなオーステナイト系ステンレス鋼(JISが規定する18Cr−8Ni系ステンレス鋼)が知られている。
しかし、このようなオーステナイト系ステンレス鋼は塑性加工による加工硬化が大きいために塑性加工によって製品にすることが難しく、冷温間鍛造などの塑性加工を行なわずに機械加工(切削)によって部品を製造することが多く行なわれている。
ところが、切削によって中空状(カップ状)あるいは複雑な部品を製造するような場合には材料の歩留まりが著しく低下し、また鍛造などの加工品に比べ強度も劣るという欠点を有している。
【0003】
普通鋼(快削鋼)において一般に被削性を向上させる元素としてS、Pb、Se等が知られているが、上記のオーステナイト系ステンレス鋼にも0.15%を超えるS、あるいは0.15%を超えるSeを添加して、機械加工性(被削性)を向上させたもの(SUS303)がある。
この0.15%を超えるSあるいはSeを添加したものは、もともと被削性のみを向上させることが目的であるから、製造上の何らかの都合でこれらを塑性加工するような場合には、単に変形抵抗が大きいということばかりではなく、これらの多量に添加したS等が原因で簡単な塑性加工でも割れを発生してしまうという問題があった。
【0004】
しかし、オーステナイト系ステンレス鋼は本来、高い耐蝕性と強度を有する材料であり製造工程が安定し製品が広く普及しているので、欠陥があればそれを改善し極力この材料を採用しようとする動機は高い。このようなことから上記の問題点に関し、いくつかの改良が検討されている。
その一つに、SUS304のオーステナイト系ステンレス鋼にCu3〜4%を添加し、S及びその他不純物を低く抑えて塑性加工性を向上させたSUSXM7がある。
このSUSXM7はオーステナイト系ステンレス鋼の加工硬化性が緩和され、比較的形状の簡単なボルト、ナット類のヘッダー材の製造に主として使用されている。
しかし、これもまたステンレス鋼に塑性加工性を付与することが中心に考えられた材料なので、上記SUS303の問題とは逆に機械加工性(被削性)が著しく劣る結果となった。
したがってこのような材料は上記ヘッダー材のような単純形状の切削など、精密な機械加工性を必要としない部品の製造に限定されるという問題がある。
【0005】
【発明が解決しようとする課題】
本発明は、上記のような問題点に鑑み、高い耐蝕性と強度を有しかつ塑性加工(冷温間鍛造加工)性を付与すると同時に機械加工性(被削性)を向上させたオーステナイト系ステンレス鋼及び冷温間鍛造部品並びにこれらの加工方法を提供する。そしてこれにより、製品強度をさらに向上させ、中空状(カップ状)あるいは複雑な部品の製造においても、材料の歩留まりを著しく低減させようとするものである。
【0006】
【課題を解決するための手段】
本発明は、
本発明は、
1.C0.08%以下、Si1.00%以下、Mn2.00%以下、P0.045%以下、S0.05〜0.15%、Ni8.50〜10.50%、Cr17.00〜19.00%、Cu3.00〜4.00%、残部Fe及び不可避的不純物からなることを特徴とする冷温間鍛造加工性及び切削加工性に優れたオーステナイト系ステンレス鋼。
2.C0.08%以下、Si1.00%以下、Mn2.00%以下、P0.045%以下、S0.05〜0.15%、Pb0.15以下、Ni8.50〜10.50%、Cr17.00〜19.00%、Cu3.00〜4.00%、残部Fe及び不可避的不純物からなることを特徴とする冷温間鍛造加工性及び切削加工性に優れたオーステナイト系ステンレス鋼。
3.S0.07〜0.12%であることを特徴とする上記1又は2に記載の冷温間鍛造加工性及び切削加工性に優れたオーステナイト系ステンレス鋼、に関する。
【0007】
【発明の実施の形態】
本発明のオーステナイト系ステンレス鋼に含有される元素の作用と数値の技術的理由及び製造条件を以下に説明する。なお、本発明明細書中で使用する%は全て重量%を示す(特に表示しない限り「重量」の記載を省略する)。
(C:0.08%以下)
Cはオーステナイト系ステンレス鋼に止むを得なく含まれる不純物であり、多すぎると熱間加工性を悪化させるだけでなく耐食性も劣化させるので、なるべく少ない方がよい。しかし、C:0.08%以下にするためには原料の純度を上げるか、特別な精練等が必要になり高価になるので、上限を0.08%とする。
(Si:1.00%以下)
Siはオーステナイト系ステンレス鋼に脱酸剤として添加され、又このSiはFeのマトリックスに固溶して鋼の強度を高める。多すぎると冷温間鍛造加工性を損なうので上限を1.00%とする。
【0008】
(Mn:2.00%以下)
MnはSiと同様にオーステナイト系ステンレス鋼の製造時に脱酸剤として必要とされ、鋼中の介在物の形態を制御、特にMnSを形成して被削性を高める。しかし、2.00%を超えると加工硬化が大きくなり冷温間鍛造加工性が著しく阻害されるので、上限を2.00%とする。
(P:0.045%以下)
Pはオーステナイト系ステンレス鋼に止むを得なく含まれる不純物であり、多すぎると熱間加工性を悪化させるだけでなく耐食性も劣化させるので、なるべく少ない方がよい。しかし、P:0.045%以下にするためには原料の純度を上げるか、特別な精練等が必要になり高価になるので、上限を0.045%とする。
【0009】
(S:0.05〜0.15%)
Sはオーステナイト系ステンレス鋼の被削性向上のために添加するもので0.05%未満ではその効果も十分でなく、又0.15%を超えて添加すると冷温間鍛造加工性が著しく悪化し、MnSのような非金属介在物に沿ってクラックが発生し易くなるので、Sの添加は0.15%を上限とする。 被削性向上と良好な冷温間鍛造加工性を保有させるために、より好ましくはS:0.07〜0.12%とする。
(Pb:0.15%以下)
PbはSと複合添加することによりオーステナイト系ステンレス鋼の被削性を更に向上させることができる。0.15%以下であれば、冷温間鍛造加工性に影響を与えることはない。したがって、上限を0.15%とする。
【0010】
(Ni:8.50〜10.50%)
Niはオーステナイト系ステンレス鋼の基本元素で、本鋼の組織をオーステナイト組織に維持し高い耐食性と強度を保有させるために添加する。8.50%未満では安定なオーステナイト組織を維持できず、又10.50%を超えるとこの効果も飽和し高価になるだけなのでNiを8.50〜10.50%に限定する。
(Cr:17.00〜19.00%)
CrはNiと同様オーステナイト系ステンレス鋼の基本元素で、本鋼の組織をオーステナイト組織に維持し、高い耐食性と強度を保有させるために添加する。しかし、17.00%未満ではその効果も十分ではなく19.00%を超えると冷温間鍛造加工性を阻害するばかりでなく高価になるのでCr:17.00〜19.00%に限定する。
【0011】
(Cu:3.00〜4.00%)
Cuはオーステナイト系ステンレス鋼にあって、冷温間鍛造加工時の加工硬化性を抑え、冷温間鍛造加工を改善するために添加するもので、その効果は3.00%未満では十分でなく、4.00%を超えるとCuが粒界に析出し熱間加工性を阻害するためにCuを3.00〜4.00%に限定する。
(室温〜350°Cの温度における加熱加工)
後述するように、本発明のオーステナイト系ステンレス鋼は冷間でも加工できるが、加温して鍛造などの塑性加工を行なうと加工性が向上するので室温(25°C前後をいうが、「常温」と表示する場合もある。)〜350°Cの温度に加熱加工するのが好ましい。
しかし、350°Cを超えると鍛造などの塑性加工の際に使用した潤滑剤が劣化し、焼き付が生じるだけでなく熱膨張等により鍛造加工品の寸法精度が著しく悪化するので350°Cを上限とするのが良い。さらに好適な温度範囲は100°C〜250°Cである。
【0012】
【実施例および比較例】
本発明のオーステナイト系ステンレス鋼の実施例に供した代表的組成(実施例1〜4)並びに比較例1(SUSXM7の代表的組成)及び比較例2(SUS303の代表的組成)、比較例3(SUS303にCu添加、Sを低下)及び比較例4(SUS303にCu添加)を表1に示す。
これらの実施例および比較例について以下に述べる加工性(鍛造性)の評価試験及び被削性の評価試験等を実施した。
【0013】
【表1】

Figure 0004420481
【0014】
図1はSUSXM7(比較例1に相当)を主成分とするオーステナイト系ステンレス鋼にSを添加した(比較例2のみSUS303の組成)冷間鍛造加工での割れ限界加工率を示したものである。
冷間鍛造加工性の試験は塑性加工学会で指定されているノッチ付き拘束プレス試験を行なった。
図1に示すようにSが添加されることにより、割れ限界加工率は明らかに減少するが、S:0.069〜0.120%の範囲で添加した本発明鋼の実施例1〜3は安定して50%以上の加工率を確保できるが、S:0.18%以上添加した比較例2〜4では急激に割れ限界加工率は低下し30%以下となる。特に比較例2(SUS303)ではわずか10〜15%程度の加工率しか示さない。
なお、ここでSの添加量が0.002%である比較例1(SUSXM7)は65%程度の割れ限界加工率を示し、この加工率という観点だけでみれば最も良好な値を示している。
【0015】
図2に比較例1と本発明鋼の実施例1〜3の常温及び200°Cの冷温間鍛造加工での歪みと変形抵抗を示す。なお、ここで比較例2〜比較例4は冷温間鍛造加工性試験の際に割れが発生するため提示していない。
この図2から明らかなように、本発明鋼の実施例1〜3は理由は定かでないが、常温及び200°Cにおいて変形抵抗は割れ限界加工率が高い比較例1(SUSXM7)よりも低い値を示し、良好な結果が得られた。また実施例1〜3のS:0.069〜0.120%の範囲では変形抵抗の差はない。
【0016】
図3に、実施例2の組成について加工温度と変形抵抗の関係を示した。これによれば、加工温度が高くなるにつれ変形抵抗値が低くなり、加工温度を上げることが有効であることが分かる。
【0017】
表2に、本発明の実施例2及び4並びに比較例2及び3について温間後方押し出し試験を行った結果を示す。図4に冷温鍛造加工工程を示す。
表2に示すように、実施例2鋼については加工工程は3段階(P1、P2、P3)で、試験温度は100〜500°Cで行なった。
又、Pbを添加した実施例4鋼は200°Cでのみテストした。
特に比較例2及び3では実施例に比し変形抵抗及び変形能が劣ることが予想されるので、200°C以上での温度で割れ発生状況を調査した。
表2より明らかなように、本発明の実施例2は100〜350°Cのいずれの温度及びP1〜3のいずれの加工においても割れ発生及び焼き付き等が全く発生せず良好な冷温鍛造加工性を示した。
又、実施例4鋼も上記P1〜3工程で割れは全く発生しなかった。
しかし、実施例2において500°Cで全加工範囲で焼き付きが発生した。
また、比較例2及び3では、200°C、350°Cの温度でも工程P2の段階で割れが発生し、比較例3では200°C、P1の工程で焼き付きが発生した。
【0018】
【表2】
Figure 0004420481
【0019】
上記加温試験による、実施例2と比較例2の変形抵抗(パンチ面圧)の変化を図5に示す。実施例2において、鍛造加工の工程P1、P2では温度上昇に伴い、パンチ面圧荷重は低下(変形抵抗の低下)を示す。
だだし、工程P3では温度変化によるパンチ面圧の変化は殆ど認められない。これは工程P1、P2が押し出しによって成形されるのに対し、工程P3は押し出しと剪断加工を含む複合加工成形のため、押し出しのみのP1、P2との成形方法の違いによるものと考えられる。
これに対し、比較例2(SUS303)は加熱温度200°Cでも変形抵抗が高く、良好な結果は得られていない。いずれにしても、本発明において350°C以下の加熱は変形抵抗を低下させ、鍛造加工に極めて有効であることを示している。
【0020】
比較例2及び3の200°Cの温度で鍛造割れを発生した鍛造内周部のミクロ組織写真を図6(a)、(b)に示す。割れは鍛造内周部に開口し内部に進展している。この割れは鍛造工程P2の初期の段階で発生しているが、この段階は剪断と前方押出し加工が複合された状態であり、それによる引っ張り力が加工硬化された材料の伸び限界を超え、微少クラックが進展し割れに至ったものと思われる。
図7(a)、(b)に上記割れの先端部のミクロ組織を示す。割れ先端部にはMnSの介在物が認められ、割れはMnSの介在物に沿って進展しているのが認められる。
この割れは比較的Sの少ない比較例3(0.185%S)でも発生している。
図8(a)、(b)に、実施例3の200°C及び100°Cの鍛造内周部(比較例と同一部)のミクロ組織写真を示す。
本発明鋼には、割れは全く認められずSの上限を0.15%以下としたことの重要性が認められる。
【0021】
次に、本発明鋼の実施例1〜3並びに比較例1及び2の被削性を調査した。表3にそれぞれの切削試験条件を示す。
結果を図9(a)、(b)に示す。なお、図9(a)は外径切削加工での主分力の変化を、図9(b)は穴あけ加工でのスラスト力の変化を示す。
図9(a)から明らかなように、比較例1はS:0.002%と低く上記のように冷温間鍛造性に優れているが、外径切削加工では切削抵抗が非常に高く、被削性が極めて悪いことが分かる。
切削抵抗はSを添加することにより急激に減少するが、特に冷温間鍛造加工によって材料硬度がHRC10〜25となり、切削加工による切粉の破砕性が助長される。その結果S:0.05%以上になると快削オーステナイト系ステンレス鋼(SUS303相当)に匹敵する被削性を示す。
図9(b)に穴あけ加工時のスラスト力とSの関係を示すが、外径切削試験と同様の結果が得られた。
図9(a)、(b)にPb:0.14%を添加した実施例4鋼の切削抵抗値を同時に示した。この図から分かるように、Pbを添加することにより更に切削抵抗が減少し被削性が改善される。
【0022】
【表3】
Figure 0004420481
【0023】
以上の試験結果を纏めると表4に示すようになる。この表4に示すように代表的オーステナイト系ステンレス鋼であるSUSXM7及びSUS303を含む比較例1〜4のいずれも、塑性加工性(冷温間鍛造性)と機械加工性(被削性)の一方が良ければ他方が悪いという結果が得られた。
これに対し、同表4の実施例1〜4に示すように本発明のオーステナイト系ステンレス鋼は塑性加工性(冷温間鍛造性)及び機械加工性(被削性)が双方とも向上するというバランスのとれた優れた性質を有していることが分かる。
以上の通り、強度が高く耐蝕性に優れたオーステナイト系ステンレス鋼が、さらに塑性加工性(冷温間鍛造性)と機械加工性(被削性)の双方を兼ね備えることにより、用途を飛躍的に増大することができ、従来被削性や材料歩留まりが悪いとされていた常識を覆す画期的な材料となるものである。
【0024】
【表4】
Figure 0004420481
【0025】
【発明の効果】
高い耐蝕性と強度を有しかつ塑性加工性(冷温間鍛造性)を付与すると同時に機械加工性(被削性)を向上させ、さらに鍛造などの加工工程を経ることにより製品強度を高め、中空状(カップ状)あるいは複雑な部品の製造においても材料の歩留まりを著しく改善できるオーステナイト系ステンレス鋼及び冷温間鍛造部品並びにその加工方法を提供するものである。
【図面の簡単な説明】
【図1】オーステナイト系ステンレス鋼へのS添加量と割れ限界加工率の関係を示す。
【図2】実施例と比較例の常温と200°Cの温度における歪みと変形抵抗の関係を示す。
【図3】実施例2の組成について加工温度と変形抵抗の関係を示す。
【図4】プレス(鍛造)加工の3段階の工程(P1、P2、P3)を示す。
【図5】加熱試験による実施例2と比較例2の変形抵抗(パンチ面圧)の変化を示す。
【図6】比較例における200°Cの温度で割れが発生した鍛造内周部のミクロ組織写真を示す。
【図7】比較例における割れの先端部のミクロ組織写真を示す。
【図8】実施例における200°C及び100°Cの鍛造内周部のミクロ組織写真を示す。
【図9】実施例1〜4並びに比較例1及び2の被削性の調査結果であり、(a)は外径切削加工(主分力)、(b)は穴あけ加工(スラスト)を示す。
【符号の説明】
C 割れ発生部[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an austenitic stainless steel having high corrosion resistance and strength and having both cold and warm forging workability and machinability.
[0002]
[Prior art]
Generally, austenitic stainless steel (18Cr-8Ni stainless steel defined by JIS) as shown in SUS303 and SUS304 is known as a material having high corrosion resistance and strength.
However, such austenitic stainless steel is difficult to be made into a product by plastic working because of its large work hardening by plastic working, and parts are manufactured by machining (cutting) without performing plastic working such as cold and warm forging. There is a lot going on.
However, when hollow (cup-shaped) or complex parts are manufactured by cutting, there is a disadvantage that the yield of the material is remarkably reduced and the strength is inferior to that of a processed product such as forging.
[0003]
In general steel (free-cutting steel), S, Pb, Se and the like are generally known as elements for improving the machinability, but the above austenitic stainless steel also contains S exceeding 0.15%, or 0.15 There is a material (SUS303) that improves the machinability (machinability) by adding more than Se.
Since the purpose of adding S or Se exceeding 0.15% is originally to improve only machinability, in the case of plastic working for some reason in production, it is simply deformed. Not only is the resistance high, but there is a problem that cracks are generated even by simple plastic working due to S added in a large amount.
[0004]
However, austenitic stainless steel is inherently a material with high corrosion resistance and strength, and its production process is stable and products are widely used. Is expensive. For these reasons, several improvements have been studied with respect to the above problems.
One of them is SUSXM7, in which Cu 3-4% is added to SUS304 austenitic stainless steel, and S and other impurities are kept low to improve plastic workability.
This SUSXM7 is used mainly in the manufacture of header materials such as bolts and nuts with relatively simple shapes because the work hardenability of austenitic stainless steel is relaxed.
However, since this is also a material that is mainly thought to impart plastic workability to stainless steel, the result is that the machinability (machinability) is extremely inferior to the problem of SUS303.
Therefore, there is a problem that such a material is limited to the manufacture of parts that do not require precise machinability, such as cutting of a simple shape like the header material.
[0005]
[Problems to be solved by the invention]
In view of the above problems, the present invention provides austenitic stainless steel that has high corrosion resistance and strength, and has improved plastic workability (cold forging) and at the same time improved machinability (machinability). Steel and cold-warm forged parts and methods for their processing are provided. As a result, the product strength is further improved, and the yield of the material is remarkably reduced even in the production of hollow (cup) or complex parts.
[0006]
[Means for Solving the Problems]
The present invention
The present invention
1. C 0.08% or less, Si 1.00% or less, Mn 2.00% or less, P 0.045% or less, S 0.05 to 0.15%, Ni 8.50 to 10.50%, Cr 17.00 to 19.00% An austenitic stainless steel excellent in cold forging workability and cutting workability, characterized by comprising Cu3.00 to 4.00%, the balance Fe and inevitable impurities.
2. C 0.08% or less, Si 1.00% or less, Mn 2.00% or less, P 0.045% or less, S 0.05 to 0.15%, Pb 0.15 % or less, Ni 8.50 to 10.50%, Cr 17. An austenitic stainless steel excellent in cold forging workability and cutting workability, characterized by comprising 00 to 19.00%, Cu 3.00 to 4.00%, the balance Fe and inevitable impurities.
3. The austenitic stainless steel excellent in cold forging workability and cutting workability according to 1 or 2 above, which is S0.07 to 0.12%.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
The technical reason of the effect | action of the element contained in the austenitic stainless steel of this invention, a numerical value, and manufacturing conditions are demonstrated below. In addition, all% used in the specification of the present invention indicates% by weight (the description of “weight” is omitted unless otherwise indicated).
(C: 0.08% or less)
C is an impurity inevitably contained in the austenitic stainless steel, and if it is too much, not only the hot workability is deteriorated but also the corrosion resistance is deteriorated. However, in order to make C: 0.08% or less, the purity of the raw material is increased, or special scouring or the like is required, which is expensive, so the upper limit is made 0.08%.
(Si: 1.00% or less)
Si is added to the austenitic stainless steel as a deoxidizer, and this Si is dissolved in the Fe matrix to increase the strength of the steel. If the amount is too large, the cold forging processability is impaired, so the upper limit is made 1.00%.
[0008]
(Mn: 2.00% or less)
Mn is required as a deoxidizing agent during the production of austenitic stainless steel, like Si, and controls the form of inclusions in the steel, particularly forming MnS to enhance machinability. However, if it exceeds 2.00%, work hardening becomes large and cold forging workability is significantly hindered, so the upper limit is made 2.00%.
(P: 0.045% or less)
P is an impurity inevitably contained in the austenitic stainless steel, and if it is too much, not only the hot workability is deteriorated but also the corrosion resistance is deteriorated. However, in order to make P: 0.045% or less, the purity of the raw material is increased, or special scouring or the like is required, which is expensive, so the upper limit is made 0.045%.
[0009]
(S: 0.05-0.15%)
S is added to improve the machinability of austenitic stainless steel. If it is less than 0.05%, the effect is not sufficient, and if it exceeds 0.15%, cold-warm forging processability is remarkably deteriorated. Since cracks are likely to occur along non-metallic inclusions such as MnS, the upper limit of addition of S is 0.15%. More preferably, S: 0.07 to 0.12% in order to maintain machinability and good cold-warm forging workability.
(Pb: 0.15% or less)
When Pb is added in combination with S, the machinability of austenitic stainless steel can be further improved. If it is 0.15% or less, the cold forging processability will not be affected. Therefore, the upper limit is made 0.15%.
[0010]
(Ni: 8.50 to 10.50%)
Ni is a basic element of austenitic stainless steel, and is added to maintain the structure of the steel in an austenitic structure and to retain high corrosion resistance and strength. If it is less than 8.50%, a stable austenite structure cannot be maintained, and if it exceeds 10.50%, this effect is saturated and only expensive, so Ni is limited to 8.50 to 10.50%.
(Cr: 17.00-19.00%)
Cr, like Ni, is a basic element of austenitic stainless steel, and is added to maintain the structure of the steel in an austenitic structure and to retain high corrosion resistance and strength. However, if it is less than 17.00%, the effect is not sufficient, and if it exceeds 19.00%, not only the cold forging processability is inhibited but also expensive, so Cr is limited to 17.00 to 19.00%.
[0011]
(Cu: 3.00 to 4.00%)
Cu is an austenitic stainless steel and is added to suppress work hardening at the time of cold and warm forging and improve cold and warm forging. The effect is less than 3.00%. If it exceeds 0.000%, Cu precipitates at the grain boundaries and inhibits hot workability, so Cu is limited to 3.00 to 4.00%.
(Heat processing at room temperature to 350 ° C)
As will be described later, the austenitic stainless steel of the present invention can be processed even in the cold state. However, when plastic processing such as forging is performed by heating, the workability is improved. ] May be displayed.) It is preferable to heat process to a temperature of 350 ° C.
However, if it exceeds 350 ° C, the lubricant used in plastic processing such as forging deteriorates, and not only seizure occurs but also the dimensional accuracy of the forged product significantly deteriorates due to thermal expansion and the like. The upper limit is good. A more preferable temperature range is 100 ° C to 250 ° C.
[0012]
Examples and Comparative Examples
Typical composition (Examples 1 to 4) and Comparative Example 1 (typical composition of SUSXM7) and Comparative Example 2 (typical composition of SUS303), Comparative Example 3 (examples provided for Examples of the austenitic stainless steel of the present invention Table 1 shows SUS303 with Cu added and S reduced and Comparative Example 4 (SUS303 with Cu added).
These Examples and Comparative Examples were subjected to the following workability (forgeability) evaluation test and machinability evaluation test.
[0013]
[Table 1]
Figure 0004420481
[0014]
FIG. 1 shows the crack limit processing rate in cold forging by adding S to austenitic stainless steel mainly composed of SUSXM7 (corresponding to Comparative Example 1) (composition of SUS303 only in Comparative Example 2). .
The cold forging workability test was conducted with a notched constrained press test specified by the Japan Society for Technology of Plasticity.
As shown in FIG. 1, when S is added, the crack limit processing rate is clearly reduced, but Examples 1-3 of the steels of the present invention added in the range of S: 0.069 to 0.120% Although a processing rate of 50% or more can be secured stably, in Comparative Examples 2 to 4 where S: 0.18% or more is added, the crack limit processing rate rapidly decreases to 30% or less. In particular, Comparative Example 2 (SUS303) shows only a processing rate of about 10 to 15%.
Here, Comparative Example 1 (SUSXM7) in which the addition amount of S is 0.002% shows a crack limit processing rate of about 65%, and shows the best value only in terms of this processing rate. .
[0015]
FIG. 2 shows the distortion and deformation resistance in the cold forging process at normal temperature and 200 ° C. of Comparative Example 1 and Examples 1 to 3 of the steel of the present invention. Here, Comparative Examples 2 to 4 are not presented because cracks occur during the cold forging workability test.
As is apparent from FIG. 2, the reasons for Examples 1-3 of the steel of the present invention are not clear, but the deformation resistance at room temperature and 200 ° C. is lower than that of Comparative Example 1 (SUSXM7), which has a high crack limit processing rate. Good results were obtained. Further, there is no difference in deformation resistance in the range of S: 0.069 to 0.120% in Examples 1 to 3.
[0016]
FIG. 3 shows the relationship between the processing temperature and the deformation resistance for the composition of Example 2. This shows that the deformation resistance value decreases as the processing temperature increases, and it is effective to increase the processing temperature.
[0017]
Table 2 shows the results of a warm backward extrusion test for Examples 2 and 4 and Comparative Examples 2 and 3 of the present invention. FIG. 4 shows a cold and hot forging process.
As shown in Table 2, the working process of Example 2 steel was performed in three stages (P1, P2, P3), and the test temperature was 100 to 500 ° C.
Also, the steel of Example 4 to which Pb was added was tested only at 200 ° C.
In particular, in Comparative Examples 2 and 3, it is expected that the deformation resistance and deformability are inferior to those of the Examples. Therefore, the crack occurrence state was investigated at a temperature of 200 ° C. or higher.
As is clear from Table 2, Example 2 of the present invention has good cold-temperature forging workability without any cracking or seizure at any temperature of 100 to 350 ° C. and any processing of P1 to P3. showed that.
In addition, the steel of Example 4 was not cracked at all in the steps P1 to P3.
However, in Example 2, seizure occurred in the entire processing range at 500 ° C.
In Comparative Examples 2 and 3, cracks occurred at the stage of Step P2 even at temperatures of 200 ° C. and 350 ° C., and in Comparative Example 3, seizure occurred at the steps of 200 ° C. and P1.
[0018]
[Table 2]
Figure 0004420481
[0019]
FIG. 5 shows changes in the deformation resistance (punch surface pressure) between Example 2 and Comparative Example 2 due to the heating test. In Example 2, in the forging processes P1 and P2, the punch surface pressure load decreases (decreases deformation resistance) as the temperature increases.
However, in the process P3, almost no change in punch surface pressure due to temperature change is recognized. This is because the processes P1 and P2 are molded by extrusion, whereas the process P3 is a composite process molding including extrusion and shearing, and thus is considered to be due to the difference in molding method from P1 and P2 that are only extrusion.
On the other hand, Comparative Example 2 (SUS303) has high deformation resistance even at a heating temperature of 200 ° C., and good results have not been obtained. In any case, in the present invention, heating at 350 ° C. or lower reduces the deformation resistance, indicating that it is extremely effective for forging.
[0020]
FIGS. 6A and 6B are micrographs of the inner periphery of the forging where the forging crack occurred at a temperature of 200 ° C. in Comparative Examples 2 and 3. FIG. Cracks open to the inner periphery of the forging and propagate inside. This crack occurs at the initial stage of the forging process P2, but this stage is a state in which shearing and forward extrusion are combined, and the tensile force thereby exceeds the elongation limit of the work-hardened material, and is very small. It seems that the crack progressed and led to the crack.
7A and 7B show the microstructure of the tip of the crack. It is recognized that MnS inclusions are observed at the crack tip, and that the cracks propagate along the MnS inclusions.
This crack is also generated in Comparative Example 3 (0.185% S) with relatively little S.
FIGS. 8A and 8B show microstructure photographs of the forged inner periphery (the same part as the comparative example) of Example 3 at 200 ° C. and 100 ° C. FIG.
In the steel of the present invention, no cracks are observed, and it is recognized that the upper limit of S is 0.15% or less.
[0021]
Next, the machinability of Examples 1 to 3 of the present invention steel and Comparative Examples 1 and 2 was investigated. Table 3 shows the respective cutting test conditions.
The results are shown in FIGS. 9 (a) and 9 (b). FIG. 9A shows a change in main component force during outer diameter cutting, and FIG. 9B shows a change in thrust force during drilling.
As is clear from FIG. 9 (a), Comparative Example 1 has a low S: 0.002% and is excellent in cold-warm forgeability as described above. It can be seen that the machinability is extremely poor.
Although the cutting resistance is drastically reduced by adding S, the material hardness becomes HRC 10 to 25 particularly by cold-warm forging, and the friability of chips by cutting is promoted. As a result, when it becomes S: 0.05% or more, it shows machinability comparable to free-cutting austenitic stainless steel (equivalent to SUS303).
FIG. 9B shows the relationship between the thrust force during drilling and S, and the same result as in the outer diameter cutting test was obtained.
9 (a) and 9 (b) simultaneously show the cutting resistance values of the steel of Example 4 with Pb: 0.14% added. As can be seen from this figure, the addition of Pb further reduces the cutting resistance and improves the machinability.
[0022]
[Table 3]
Figure 0004420481
[0023]
The above test results are summarized in Table 4. As shown in Table 4, all of Comparative Examples 1 to 4 including SUSXM7 and SUS303, which are representative austenitic stainless steels, have one of plastic workability (cold forgeability) and machinability (machinability). The result was that the other was bad if it was good.
In contrast, as shown in Examples 1 to 4 of Table 4, the austenitic stainless steel of the present invention has a balance that both plastic workability (cold forgeability) and machinability (machinability) are improved. It can be seen that it has excellent properties.
As described above, austenitic stainless steel, which has high strength and excellent corrosion resistance, dramatically increases applications by combining both plastic workability (cold forgeability) and machinability (machinability). Therefore, it is an epoch-making material that overturns the common sense that machinability and material yield have been conventionally poor.
[0024]
[Table 4]
Figure 0004420481
[0025]
【The invention's effect】
It has high corrosion resistance and strength, imparts plastic workability (cold forgeability), and at the same time improves machinability (machinability), and further increases the strength of the product through processing processes such as forging, and is hollow. The present invention provides an austenitic stainless steel, a cold and warm forged part, and a method for processing the same, which can significantly improve the material yield even in the manufacture of the shape (cup shape) or complex parts.
[Brief description of the drawings]
FIG. 1 shows the relationship between the amount of S added to austenitic stainless steel and the crack limit processing rate.
FIG. 2 shows the relationship between strain and deformation resistance at room temperature and 200 ° C. in Examples and Comparative Examples.
FIG. 3 shows the relationship between processing temperature and deformation resistance for the composition of Example 2.
FIG. 4 shows three steps (P1, P2, P3) of press (forging) processing.
FIG. 5 shows changes in deformation resistance (punch surface pressure) between Example 2 and Comparative Example 2 due to a heating test.
FIG. 6 shows a microstructure photograph of a forged inner periphery where cracking occurred at a temperature of 200 ° C. in a comparative example.
FIG. 7 shows a microstructure photograph of the tip of a crack in a comparative example.
FIG. 8 is a microstructural photograph of the inner periphery of forging at 200 ° C. and 100 ° C. in Examples.
9 is a result of investigation on machinability of Examples 1 to 4 and Comparative Examples 1 and 2, where (a) shows outer diameter cutting (main component force) and (b) shows drilling (thrust). .
[Explanation of symbols]
C Crack generation part

Claims (2)

C0.08%以下、Si1.00%以下、Mn2.00%以下、P0.045%以下、S0.05〜0.15%、Pb0.15%以下(但し、0%を除く)、Ni8.50〜10.50%、Cr17.00〜19.00%、Cu3.00〜4.00%、残部Fe及び不可避的不純物からなることを特徴とする冷温間鍛造加工性及び切削加工性に優れたオーステナイト系ステンレス鋼。C 0.08% or less, Si 1.00% or less, Mn 2.00% or less, P 0.045% or less, S 0.05 to 0.15%, Pb 0.15% or less (excluding 0%) , Ni 8.50 Austenite excellent in cold forging workability and cutting workability, characterized by comprising: 10.50%, Cr 17.00-19.00%, Cu 3.00-4.00%, the balance Fe and inevitable impurities Stainless steel. S0.07〜0.12%であることを特徴とする請求項1記載の冷温間鍛造加工性及び切削加工性に優れたオーステナイト系ステンレス鋼。  The austenitic stainless steel excellent in cold forging processability and cutting processability according to claim 1, characterized by being S0.07 to 0.12%.
JP13919398A 1998-05-07 1998-05-07 Austenitic stainless steel with excellent cold forging and machinability Expired - Fee Related JP4420481B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13919398A JP4420481B2 (en) 1998-05-07 1998-05-07 Austenitic stainless steel with excellent cold forging and machinability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13919398A JP4420481B2 (en) 1998-05-07 1998-05-07 Austenitic stainless steel with excellent cold forging and machinability

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2008006706A Division JP2008179891A (en) 2008-01-16 2008-01-16 Austenitic stainless steel, cold- and warm-forged component made of austenitic stainless steel and method for processing the cold- and warm-forged component

Publications (2)

Publication Number Publication Date
JP2000017396A JP2000017396A (en) 2000-01-18
JP4420481B2 true JP4420481B2 (en) 2010-02-24

Family

ID=15239730

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13919398A Expired - Fee Related JP4420481B2 (en) 1998-05-07 1998-05-07 Austenitic stainless steel with excellent cold forging and machinability

Country Status (1)

Country Link
JP (1) JP4420481B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5031221B2 (en) * 2004-10-26 2012-09-19 山陽特殊製鋼株式会社 Method for preventing surface cracks in cold forging
CN104148555A (en) * 2014-06-30 2014-11-19 贵州安大航空锻造有限责任公司 Forge forming method for 1Cr14Mn14Ni stainless steel ring part
CN105436371A (en) * 2015-12-23 2016-03-30 太仓久信精密模具股份有限公司 Warm-forging forming process of transmission input shaft
RU2620420C1 (en) * 2016-01-19 2017-05-25 Открытое акционерное общество "Российский научно-исследовательский институт трубной промышленности" (ОАО "РосНИТИ") Method of manufacturing seamless cold-deformed high-strength pipes from chromium-nikel alloy

Also Published As

Publication number Publication date
JP2000017396A (en) 2000-01-18

Similar Documents

Publication Publication Date Title
CN1078262C (en) Austenite ferrite stainless steel of low nickel-content and high stretch percentage elongation
EP2388341B1 (en) Process for production of duplex stainless steel pipe
CN110607479B (en) Stainless steel for valve spring and preparation method of steel wire of stainless steel
JP3758508B2 (en) Manufacturing method of duplex stainless steel pipe
CA2979511C (en) A method of producing a tube of a duplex stainless steel
EP2177634A1 (en) Process for production of duplex stainless steel tubes
JP2002371339A (en) Soft stainless steel sheet superior in workability and cold-forging property
KR20180082581A (en) Cold rolled forged products
JP4997721B2 (en) Manufacturing method of hot forged products with excellent fatigue characteristics
JPH0885838A (en) Ni-base superalloy
JP5668547B2 (en) Seamless steel pipe manufacturing method
JP2005232581A (en) Hot-forged product excellent in fatigue-strength and its producing method
JPH09111412A (en) Non-heat treated steel having high strength, high yield ratio, and low ductility
CN109312434B (en) Rolled steel bar for hot forging
JP4420481B2 (en) Austenitic stainless steel with excellent cold forging and machinability
JP3235442B2 (en) High strength, low ductility non-heat treated steel
JPH0726350A (en) Austenitic stainless steel excellent in pitting corrosion resistance and its production
JPH09176786A (en) Non-heat treated steel with high strength and low ductility
JP3368735B2 (en) High strength, low ductility non-heat treated steel
CN111647797B (en) High-speed tool steel and steel heat treatment method thereof
JP2008179891A (en) Austenitic stainless steel, cold- and warm-forged component made of austenitic stainless steel and method for processing the cold- and warm-forged component
JPH093589A (en) High strength and low ductility non-heat-treated steel
JP3721723B2 (en) Machine structural steel with excellent machinability, cold forgeability and hardenability
JP3473500B2 (en) Low ductility non-heat treated steel
JP3623313B2 (en) Carburized gear parts

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050308

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061219

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080116

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080121

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20080215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090930

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091014

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091201

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121211

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131211

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees