JP5031221B2 - Method for preventing surface cracks in cold forging - Google Patents

Method for preventing surface cracks in cold forging Download PDF

Info

Publication number
JP5031221B2
JP5031221B2 JP2005306096A JP2005306096A JP5031221B2 JP 5031221 B2 JP5031221 B2 JP 5031221B2 JP 2005306096 A JP2005306096 A JP 2005306096A JP 2005306096 A JP2005306096 A JP 2005306096A JP 5031221 B2 JP5031221 B2 JP 5031221B2
Authority
JP
Japan
Prior art keywords
forging
rate
enlargement ratio
elongation
limit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005306096A
Other languages
Japanese (ja)
Other versions
JP2006150444A (en
Inventor
盛彦 中崎
一郎 高須
善久 土井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Sanyo Special Steel Co Ltd
Original Assignee
Honda Motor Co Ltd
Sanyo Special Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd, Sanyo Special Steel Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2005306096A priority Critical patent/JP5031221B2/en
Publication of JP2006150444A publication Critical patent/JP2006150444A/en
Application granted granted Critical
Publication of JP5031221B2 publication Critical patent/JP5031221B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Forging (AREA)

Description

本発明は、自動車等の連続冷間鍛造時の半加工品および成形品の表面割れの防止方法に関する。   The present invention relates to a method for preventing surface cracking of a semi-processed product and a molded product during continuous cold forging of an automobile or the like.

従来より、自動車等に使用され靭性を必要とする部品には、連続冷間鍛造法が使用されてきた。   Conventionally, a continuous cold forging method has been used for parts that are used in automobiles and require toughness.

そして、連続冷間鍛造時の半加工品および成形品の表面に発生する割れを防止するために、鍛造素材、潤滑剤等の改善が行われている。そして鍛造型の製作前に表面割れの有無を判定する方法として、特許文献1には型により鍛造加工される被加工材の内部に、ファイバーフローラインを表現するための複数のトレースポイントを設定し、被加工材の変形に伴うトレースポイントの変位を算出し、変位後のトレースポイントを結ぶことにより被加工材の変形後のファイバーフローラインを表現し、また変形による拡大率の高い部分にはトレースポイント間に新たなトレースポイントを設定し、短時間で鍛造工程をシミュレートすることができ、素材の長手方向に垂直な断面内や大きく拡大される部位の解析および解析結果の3次元的評価をも行うことのできる鍛造解析方法が示されており、また非特許文献1には延性破壊の条件式が示されている。
特開2000−197942号公報 大矢根守哉 「延性破壊の条件式について」日本機械学会誌 第75巻 第639号 昭和47年4月 P596〜601
And in order to prevent the crack which generate | occur | produces on the surface of the semi-processed goods and molded product at the time of continuous cold forging, improvement of a forging raw material, a lubricant, etc. is performed. As a method for determining the presence or absence of surface cracks before the forging die is manufactured, Patent Document 1 sets a plurality of trace points for expressing a fiber flow line inside the workpiece to be forged by the die. Calculate the displacement of the trace point accompanying the deformation of the workpiece, and connect the trace points after the displacement to represent the fiber flow line after the deformation of the workpiece. A new trace point can be set between points, and the forging process can be simulated in a short time. Analysis of the cross section perpendicular to the longitudinal direction of the material and the part that is greatly enlarged and the three-dimensional evaluation of the analysis result A forging analysis method that can also be performed is shown, and Non-Patent Document 1 shows a conditional expression for ductile fracture.
JP 2000-197942 A Moriya Oyane “Conditions for Ductile Fracture” Journal of the Japan Society of Mechanical Engineers Vol. 75, No. 639 April 1972 P596-601

近年、ニアネットシェイプ化が進むに従って、鍛造素材、潤滑条件、鍛造工程数等、あらゆる条件の限界点における操業が要求されるため、従来から行なわれてきた、過去の経験に基づく実機によるトライ&エラー方式では対応できなくなり、また、実機で検討する前にCAEによる表面割れの有無を事前に精度高く予測する必要がある。   In recent years, as near-net shaping has progressed, operations at the limit points of all conditions such as forging materials, lubrication conditions, number of forging processes, etc. are required. It is impossible to cope with the error method, and it is necessary to predict the presence or absence of surface cracks due to CAE with a high degree of accuracy in advance before examining the actual system.

しかしながら、上記特許文献1には鍛造解析方法が示されはいるものの、表面割れの限界条件が明確ではない、また上記の非特許文献1に係る「延性破壊の条件式」を使用しても、割れが生じる部位と応力の高い部位とが異なることがあるため、鍛造金型を製作する前に表面割れの有無を精度高く予測することが困難で、これに代わる手法が求められている。   However, although the forging analysis method is shown in the above Patent Document 1, the limit condition of the surface crack is not clear, and even if the “conditional expression of ductile fracture” according to the above Non-Patent Document 1 is used, Since the part where the crack occurs and the part where the stress is high may be different, it is difficult to accurately predict the presence or absence of the surface crack before manufacturing the forging die, and an alternative method is required.

本発明は上記課題を達成するためになされたものであり、種々検討の結果、表面拡大率(伸び率)なる評価指標と最大主応力を用いることによって、割れの有無を事前に精度高く予測できることに着眼してなされた連続冷間鍛造における表面割れ防止法である。   The present invention has been made to achieve the above-mentioned problems, and as a result of various studies, the presence or absence of cracks can be predicted with high accuracy in advance by using the evaluation index of the surface expansion rate (elongation rate) and the maximum principal stress. Is a method for preventing surface cracking in continuous cold forging.

前記課題を達成するための第1の発明は、mass%で、C:0.45〜0.60%、Si:0.03〜0.15%、Mn:0.20〜0.50%、B:5〜50ppm、Ti:0.02〜0.05%、N≦100ppmであり、その他不純物元素を含む完全球状化熱処理後の炭素鋼を鍛造素材とする連続冷間鍛造における表面割れ防止方法であって、全鍛造工程における半加工品または成形品の表面のすべての部位の表面拡大率を、前記鍛造素材の限界表面拡大率である10以下とし、該表面拡大率が該鍛造素材の限界表面拡大率である10を超えて15以下の場合には、該限界表面拡大率を超える部位の最大主応力を前記鍛造素材の引張り強さ以下に収めることを特徴とする表面割れの防止方法である。
1st invention for achieving the said subject is mass%, C: 0.45-0.60%, Si: 0.03-0.15%, Mn: 0.20-0.50%, B: 5-50ppm, Ti: 0.02-0.05% N ≦ 100 ppm, a method for preventing surface cracking in continuous cold forging using carbon steel after complete spheroidizing heat treatment containing other impurity elements as a forging material, the surface of a semi-processed product or a molded product in the whole forging process the surface enlargement ratio of all of the sites, and following the forging is the limit surface magnification of the material 10, when the surface enlargement ratio is 10 to 15 from more than the limit surface magnification of the forged material of It is a method for preventing surface cracking, characterized in that the maximum principal stress at a site exceeding the limit surface expansion rate is kept below the tensile strength of the forging material.

連続冷間鍛造においては表面拡大率が限界表面拡大率以下となるように工程設計、型設計を行うことにより半加工品または成形品の表面割れを防止することができる。
また、表面拡大率が限界表面拡大率を超えた所定の領域において半加工品または完成品の表面割れが生じる場合と生じない場合が発生し、表面拡大率がこの領域から外れて大きくなると上記変動要因に拘わらず常に表面割れが生じる。しかし、完全球状化熱処理後の炭素鋼を鍛造素材とする連続冷間鍛造においては、表面拡大率が限界表面拡大率を超える場合でも、限界表面拡大率の1.5倍以下の場合は、その部位の最大主応力を引張り強さσ以下にすれば、表面割れを防止することができ、その部位の最大主応力を引張り強さσの85%以下にすればより安定した鍛造表面を得ることができる。
In continuous cold forging, surface cracking of a semi-processed product or a molded product can be prevented by performing process design and mold design so that the surface expansion rate is equal to or less than the limit surface expansion rate.
In addition, when the surface enlargement ratio exceeds the limit surface enlargement ratio, the surface crack of the semi-processed product or the finished product may or may not occur. Regardless of the factor, surface cracks always occur. However, in continuous cold forging using forged carbon steel after complete spheroidizing heat treatment, even if the surface enlargement ratio exceeds the limit surface enlargement ratio, if below strength sigma B tensile maximum principal stress sites, it is possible to prevent surface cracking, a more stable forged surface if below 85% of the maximum principal stress in the site tensile strength sigma B Obtainable.

なお、最大主応力値を引張り強さ以下に収めるには、工程設計、型設計変更に限られず、鍛造素材の特性変更や潤滑剤の変更等により行なってもよい。   In order to keep the maximum principal stress value below the tensile strength, it is not limited to the process design and the die design change, but may be performed by changing the characteristics of the forging material or changing the lubricant.

本発明によれば、CAEによる応力計算値のみを使用する場合に比較して、連続冷間鍛造工程おける表面割れを正確に予測することができ、トライ&エラーを繰返す必要がなくなるため、鍛造工程数を必要最小限とした最適の鍛造工程設計および鍛造型設計が可能となり、熱処理工程の廃止、製造準備期間の短縮、鍛造型の製作費用の削減ができるという効果が得られる。 According to the present invention, the surface crack in the continuous cold forging process can be accurately predicted as compared with the case where only the stress calculation value by CAE is used, and it is not necessary to repeat the trial and error. Optimum forging process design and forging die design with a minimum number can be realized, and the effects of eliminating the heat treatment process, shortening the production preparation period, and reducing the production cost of the forging die can be obtained.

図1は本実施の形態に係る鍛造工程設計および鍛造型製作のフロー図である。   FIG. 1 is a flowchart of forging process design and forging die manufacturing according to the present embodiment.

図1において、先ず第1作業において従来の経験またはデータベースに基づき、製品形状を睨んで所定の鍛造工程数と各工程の型形状(素材形状)を定める。   In FIG. 1, first, in a first operation, based on conventional experience or a database, a predetermined number of forging steps and a die shape (material shape) for each step are determined taking into account the product shape.

次に、第2作業において、各工程における素材表面のすべての部位の表面拡大率(伸び率)ρを3次元CAEにより算出する。   Next, in the second operation, the surface expansion rate (elongation rate) ρ of all the parts of the material surface in each process is calculated by three-dimensional CAE.

続いて、第3作業において、第2作業で算出した表面拡大率(伸び率)ρと鍛造素材のデータベース内の限界表面拡大率(伸び率)ρとの大小を比較する。そして算出した表面拡大率(伸び率)ρが限界表面拡大率(伸び率)ρより小さいとき、即ちρ≦ρのときには、鍛造工程数は確定され、鍛造型の製作に着手可能となる。ここで限界表面拡大率とは鍛造素材鋼表面の主応力が引張り強さを僅かに超える状態において、表面拡大率が一定値より大きくなると、鍛造素材鋼の表面に割れの生じる表面拡大率の限界値(最大値)をいい、それぞれの鍛造素材鋼がそれぞれ有する固有の値である。 Subsequently, in the third operation, the size of the surface expansion rate (elongation rate) ρ calculated in the second operation and the limit surface expansion rate (elongation rate) ρ A in the database of the forging material are compared. And when the calculated surface enlargement ratio (elongation) [rho is a limit surface enlargement ratio less than (elongation) [rho A, i.e. when [rho ≦ [rho A is forging number is confirmed, it is possible undertake production of forging die . Here, the limit surface expansion ratio is the limit of the surface expansion ratio that causes cracks on the surface of the forged material steel when the surface expansion ratio exceeds a certain value in the state where the main stress on the forged material steel surface slightly exceeds the tensile strength. The value (maximum value) is a unique value that each forged steel has.

表面拡大率(伸び率)ρが限界表面拡大率(伸び率)ρより大きいとき、即ちρ>ρのときは、第4作業において、表面拡大率(伸び率)ρが限界表面拡大率の1.5倍を超える場合には、第1作業に戻って、表面拡大率(伸び率)ρの大きい部位の形状を修正して第2作業以降の作業を繰返す。表面拡大率(伸び率)ρが限界表面拡大率(伸び率)ρの1.5倍以下である場合には、第5作業において、表面拡大率(伸び率)ρが限界表面拡大率(伸び率)ρより大きく、その1.5倍以下の部位の最大主応力σを算出し、鍛造素材のデータベース内の引張り強さσとの大小を比較する。そして算出した最大主応力σが引張り強さσより小さい(より好ましくは、引張り強さの85%以下)のとき、即ちσ<σ(より好ましくはσ≦0.85σ)のとは、鍛造工程数は確定され、鍛造型の製作に着手可能となる。逆に算出した最大主応力σが引張り強さσより大きいとき、即ちσ>σのときは、第1作業に戻って、表面拡大率(伸び率)ρの大きい部位の形状を修正して第2作業以降の作業を繰返す。 When the surface expansion rate (elongation rate) ρ is larger than the limit surface expansion rate (elongation rate) ρ A , that is, when ρ> ρ A , the surface expansion rate (elongation rate) ρ is the limit surface expansion rate in the fourth operation. If the ratio exceeds 1.5 times, the process returns to the first work, the shape of the portion having a large surface expansion rate (elongation rate) ρ is corrected, and the work after the second work is repeated. Surface magnification (elongation) [rho is a limit surface magnification ratio is equal to or less than 1.5 times the (elongation) [rho A, in the fifth operation, the surface enlargement ratio (elongation) [rho is a limit surface magnification ( greater than elongation) [rho a, calculates the maximum principal stress sigma sites of 1.5 times or less, it compares the magnitude of the tensile strength sigma B in the database of the forging material. When the calculated maximum principal stress σ is smaller than the tensile strength σ B (more preferably, 85% or less of the tensile strength), that is, σ <σ B (more preferably, σ ≦ 0.85σ B ) The number of forging steps is determined, and the production of forging dies can be started. When the maximum principal stress sigma is the tensile strength sigma is greater than B which is calculated conversely, i.e. when the sigma> sigma B, back to the first working surface magnification (elongation) Fix large part of the shape of ρ Repeat the second and subsequent operations.

なお、第3作業において、表面拡大率(伸び率)ρが限界表面拡大率(伸び率)ρに対して余裕のあるとき、即ちρ≪ρのときには、第1作業における工程設計において、鍛造工程を削減して第2作業以降の作業を繰返し、逆に第3作業において表面拡大率(伸び率)ρが限界表面拡大率(伸び率)ρよりはるかに大きいとき、即ちρ≫ρのときは、鍛造工程を増加させる必要がある。 In the third operation, when the surface enlargement ratio (elongation) [rho is having a margin against the limit surface magnification (elongation) [rho A, ie if Ro«ro A, in the process design in the first operation, When the surface enlargement rate (elongation rate) ρ is much larger than the limit surface enlargement rate (elongation rate) ρ A in the third operation, that is, ρ >> ρ. When A , it is necessary to increase the forging process.

また、上記第2作業において、表面拡大率(伸び率)ρは3次元CAEによって算出したが、プラスティシン実験によって測定することも可能であり、金型を製作した後に改修するとき、或いは金型に先行して試作金型を製作して金型形状を決定するときにはプラスティシン実験によって測定することが有効である。   In the second operation, the surface enlargement rate (elongation rate) ρ is calculated by three-dimensional CAE. However, it can be measured by a plasticine experiment. When a prototype mold is manufactured prior to the mold and the mold shape is determined, it is effective to measure by plasticine experiment.

上記の通り、各鍛造工程における素材表面のすべての部位の表面拡大率(伸び率)ρを検討する必要であるが、上記フロー図の第2作業の実作業においては、素材表面の表面拡大率(伸び率)ρが限界表面拡大率(伸び率)ρに近いと予想される部位のみを選んでCAE解析を行えば目的を達成することができ、CAEの解析工数を低減できる。 As described above, it is necessary to examine the surface expansion rate (elongation rate) ρ of all the parts of the material surface in each forging process, but in the actual work of the second operation in the above flow diagram, the surface expansion rate of the material surface The purpose can be achieved if CAE analysis is performed by selecting only a portion where (elongation rate) ρ is expected to be close to the limit surface enlargement rate (elongation rate) ρ A , and the CAE analysis man-hours can be reduced.

mass%で、C:0.45〜0.60%、Si:0.03〜0.15%、Mn:0.20
〜0.50%、B:5〜50ppm、Ti:0.02〜0.05%、N≦:100ppm
であり、その他不純物元素を含む炭素鋼で完全球状化焼鈍材(限界表面拡大率ρ=10、引張り強さ590MPa)を鍛造素材に用い、鍛造工程設計と鍛造型製作に表面拡大率(伸び率)ρを適用したナックルスピンドルの連続冷間鍛造に係る実施例と比較例について以下説明する。
mass%, C: 0.45-0.60%, Si: 0.03-0.15%, Mn: 0.20
˜0.50%, B: 5 to 50 ppm, Ti: 0.02 to 0.05%, N ≦: 100 ppm
In addition, carbon steel containing other impurity elements is used as a forging material with a fully spheroidized annealing material (limit surface expansion ratio ρ A = 10, tensile strength 590 MPa), and surface expansion ratio (elongation) is used for forging process design and forging die production. Examples and comparative examples relating to continuous cold forging of a knuckle spindle to which (ratio) ρ is applied will be described below.

図2は本発明の実施例または比較例に係るナックルスピンドルの連続冷間鍛造の各工程における素材の形状図(断面)であり、図1に示す鍛造工程設計および鍛造型製作のフロー図に基づいて工程設計され、鍛造型の製作がなされたものである。   FIG. 2 is a shape diagram (cross section) of a material in each step of continuous cold forging of a knuckle spindle according to an example or a comparative example of the present invention, and is based on a forging process design and a forging die manufacturing flowchart shown in FIG. The process was designed and a forging die was produced.

図2において、10はナックルスピンドルであり、軸部20とボール部30で形成されている。このナックルスピンドル10は4つの冷間鍛造工程で構成され、図(A)は第1工程を示し、円筒状の鍛造素材のうち、主として製品の軸部となる部分が加工成形されている。   In FIG. 2, reference numeral 10 denotes a knuckle spindle, which is formed by a shaft portion 20 and a ball portion 30. This knuckle spindle 10 is composed of four cold forging steps, and FIG. 1 (A) shows the first step, in which a portion of the cylindrical forging material, which is mainly a shaft portion of a product, is processed and formed.

図(B)は第2工程であり、主として製品のボール部となる部分が加工成形され、図(C)は第3工程であり、第2工程に続いて主として製品のボール部がさらに加工成形されている。図(D)は最終工程となる第4工程であり、製品形状まで加工成形されている。   Fig. (B) shows the second step, where the part that will be the ball part of the product is mainly processed and molded. Fig. (C) shows the third step, and the ball part of the product is further processed and molded following the second step. Has been. FIG. 4D shows the fourth step, which is the final step, and the product shape is processed and molded.

図3は本発明の実施例1に係るナックルスピンドルの連続冷間鍛造における3次元CAEによる変形解析図であり、図(A)は円筒形状素材の1部を有限要素法によりエレメン
トに分割したものであり、図(B)は図2に示す第3工程に達したときの素材およびエレメントの変化の状態を鍛造素材の中心部(O点)から外周部(G点)に亘って示している。
FIG. 3 is a deformation analysis diagram by three-dimensional CAE in continuous cold forging of the knuckle spindle according to the first embodiment of the present invention. FIG. 3A is a diagram in which a part of a cylindrical material is divided into elements by a finite element method. FIG. (B) shows the state of change of the material and elements when reaching the third step shown in FIG. 2 from the center (point O) to the outer periphery (point G) of the forging material. .

なお、図3は変形をグラフィックに表現してはいるものの、目視によって表面拡大率(伸び率)ρを定量的に捕らえることは困難であるが、3次元CAEによる解析においては表面拡大率(伸び率)ρはデジタルに把握され、このエレメントの伸び率が所定の値を超えたところで表面割れが発生し、従来の延性破壊条件式等のように応力計算値の最大部位と表面割れの発生部位が異なることがないので、表面割れの評価が極めて正確にできる。図3のC部は表面拡大率がピ−クとなる部位を示している。   Although FIG. 3 graphically represents the deformation, it is difficult to quantitatively capture the surface enlargement rate (elongation rate) ρ by visual observation, but in the analysis by three-dimensional CAE, the surface enlargement rate (elongation) Ratio) ρ is grasped digitally, and surface cracks occur when the elongation of this element exceeds a predetermined value, and the maximum stress calculation value and the surface crack generation site as in the conventional ductile fracture condition equation Therefore, the surface crack can be evaluated very accurately. C part of FIG. 3 has shown the site | part from which a surface expansion rate becomes a peak.

図4は本発明の実施例および比較例に係る連続冷間鍛造の第3工程におけるパンチの表面形状を示す外形線図である。   FIG. 4 is an outline diagram showing the surface shape of the punch in the third step of the continuous cold forging according to the example of the present invention and the comparative example.

図5は実施例1および比較例1に係る連続冷間鍛造における表面拡大率(伸び率)ρを示すグラフであり、表1に示されている実施例1と比較例1に対応したものであり、鍛造型のコーナRの形状の異なるナックルスピンドルの第3工程終了時のボール部内面の半径方向の表面拡大率(伸び率)ρを示し、横座標の原点(0mm)部は図3(B)の中心部(O点)を、横座標の末端(約80mm)部は図3(B)の右端部(G点)に相当する。   FIG. 5 is a graph showing the surface expansion rate (elongation rate) ρ in continuous cold forging according to Example 1 and Comparative Example 1, and corresponds to Example 1 and Comparative Example 1 shown in Table 1. Yes, it shows the surface expansion rate (elongation rate) ρ in the radial direction of the inner surface of the ball portion at the end of the third step of the knuckle spindle having a different shape of the corner R of the forging die. The central portion (point O) of B) and the end portion (about 80 mm) of the abscissa correspond to the right end portion (point G) in FIG.

図5では、表面拡大率(伸び率)ρをボール部内面の表面形状に沿って連続的に把握することが可能であり、どの部位で表面割れが発生するかを明確に把握できる。   In FIG. 5, the surface expansion rate (elongation rate) ρ can be continuously grasped along the surface shape of the inner surface of the ball portion, and it can be clearly grasped at which part the surface crack occurs.

表1は実施例と比較例に係る表面拡大率(伸び率)ρ、最大主応力σと表面割れの関係を一覧表にしたものである。   Table 1 lists the relationship between the surface expansion rate (elongation rate) ρ, the maximum principal stress σ, and the surface cracks according to Examples and Comparative Examples.

表1において、実施例1は図2に示すようにナックルスピンドルのコーナRを15mmとしたものであり、表面拡大率(伸び率)ρは、第3工程が7.1、第4工程が7、6で
、表面割れは発生していない。因みに最大主応力σを見ると、第3工程が100MPa、第4工程が640MPaである。
In Table 1, in Example 1, as shown in FIG. 2, the corner radius of the knuckle spindle is 15 mm, and the surface enlargement ratio (elongation rate) ρ is 7.1 in the third step and 7 in the fourth step. 6 and no surface cracks occurred. Incidentally, the maximum principal stress σ is 100 MPa for the third step and 640 MPa for the fourth step.

実施例2は比較例1に使用した鍛造型と同一型(図2に示すようにコーナRを1mmとしたもの)を使用して成形したものであるが、鍛造の第2工程終了後、ボンデ処理を行ない潤滑を強化したことによってコーナRが1mmと小さいにも拘らず摩擦係数μが0.1
0と小さいため、第3、第4工程における表面拡大率がそれぞれ9.0、9.4と限界表面拡大率ρの10以下にあり、表面割れはない。因みに、最大主応力σを見ると、第3工程では−20MPa、第4工程では740MPaと引張り強さσの590MPa(伸び率)を超えている。
Example 2 was formed using the same forging die used in Comparative Example 1 (the corner R was 1 mm as shown in FIG. 2), but after the second forging process was completed, the bonder The friction coefficient μ is 0.1 even though the corner R is as small as 1 mm by processing and strengthening the lubrication.
Since 0 is smaller, third, there surface enlargement ratio is 10 or less of 9.0,9.4 and limitations surface enlargement ratio [rho A, respectively, in the fourth step, surface cracking does not. Incidentally, looking at the maximum principal stress σ, the third step is −20 MPa, the fourth step is 740 MPa, which exceeds the tensile strength σ B of 590 MPa (elongation).

実施例1、実施例2から表面拡大率ρが限界表面拡大率ρ以下(ρ<10)であれば
、最大主応力σの如何に拘わらず表面割れの発生がないことが分かる。
From Examples 1 and 2, it can be seen that when the surface expansion ratio ρ is equal to or less than the limit surface expansion ratio ρ A (ρ <10), no surface cracks occur regardless of the maximum principal stress σ.

次に、比較例1は実施例1と同じ4つの工程からなり、実施例1と同一の素材鋼を使用しているが、鍛造型の形状が異なる(コーナR=1mm)ものであり、第3工程における表面拡大率(伸び率)ρが11.8と限界表面拡大率ρの10を超えているが、最大主
応力が210MPaと小さく(σ≦0.85σ)、コーナR部の表面割れの発生はない。しかし第4工程において、表面拡大率ρが12.2と第3工程と同等であるが最大主応力σが860MPaと引張り強さσの590MPaを超えており、表面割れが第4工程において顕在化している。
Next, Comparative Example 1 consists of the same four steps as Example 1, and uses the same material steel as Example 1, but the shape of the forging die is different (corner R = 1 mm). The surface expansion rate (elongation rate) ρ in 3 steps exceeds 11.8 and the critical surface expansion rate ρ A of 10, but the maximum principal stress is as small as 210 MPa (σ ≦ 0.85σ B ). There is no surface cracking. However, in the fourth step, the surface enlargement ratio ρ is 12.2 which is equivalent to the third step, but the maximum principal stress σ exceeds 860 MPa and the tensile strength σ B of 590 MPa, and surface cracks are apparent in the fourth step. It has become.

比較例2は比較例1に使用した鍛造型と同一型(図2に示すようにコーナRを1mmとしたもの)、同一素材鋼使用し、潤滑量を減らすことにより摩擦係数を0.25にしたも
のであるが、第3工程における表面拡大率(伸び率)ρが14.1と限界表面拡大率ρ
の10を超えているが、最大主応力σが400MPaと小さく(σ≦0.85σ)、コーナR部の表面割れの発生はない。しかし第4工程において、表面拡大率ρが14.4と第3工程と同等であるが最大主応力σが880MPaと引張り強さσの590MPaを超えており、比較例1と同様に第4工程において表面割れが顕在化している。
Comparative Example 2 uses the same forging die used in Comparative Example 1 (the corner R is 1 mm as shown in FIG. 2) and the same material steel, and the friction coefficient is reduced to 0.25 by reducing the amount of lubrication. The surface expansion rate (elongation rate) ρ in the third step is 14.1, and the limit surface expansion rate ρ A
However, the maximum principal stress σ is as small as 400 MPa (σ ≦ 0.85σ B ), and there is no occurrence of surface cracks in the corner R portion. However, in the fourth step, the surface expansion ratio ρ is 14.4, which is equivalent to the third step, but the maximum principal stress σ exceeds 880 MPa and the tensile strength σ B exceeds 590 MPa. Surface cracks are evident in the process.

比較例1、比較例2の第3工程から表面拡大率ρが限界表面拡大率ρの10を超えても15以下(ρ≦15)である場合には、最大主応力σが引張り強さσに対して余裕があれば(σ≦0.85σ)、表面割れが発生しないことが明白である。 Comparative Example 1, when the surface enlargement ratio from the third step of the Comparative Example 2 [rho is 15 or less than 10 limits the surface enlargement ratio ρ A (ρ ≦ 15), the strong tensile maximum principal stress σ of If there is a margin with respect to σ B (σ ≦ 0.85σ B ), it is clear that surface cracks do not occur.

比較例3、4、5は比較例1に使用した鍛造型と同一型(図2に示すようにコーナRを1mmとしたもの)、同一素材鋼を使用し、潤滑量を変化させて摩擦係数をそれぞれ0.30、0.40、0.10にしたものであり、第3工程における表面拡大率ρが17.3、19.6、16.7と限界表面拡大率ρの10を大幅に超えて(ρ>15)表面割れが第3工程で発生した。因みに第3工程の最大主応力σを見ると、それぞれ680、780、400MPaと引張り強さσの590MPaの上下にある。 Comparative Examples 3, 4, and 5 use the same type of forging die used in Comparative Example 1 (the corner R is 1 mm as shown in FIG. 2) and the same material steel, and the friction amount is changed by changing the amount of lubrication. the are those respectively to 0.30,0.40,0.10, surface enlargement ratio in the third step [rho is significantly 17.3,19.6,16.7 and 10 limits the surface enlargement ratio [rho a (Ρ> 15), surface cracks occurred in the third step. Incidentally, the maximum principal stress σ in the third step is above and below 680, 780, 400 MPa and 590 MPa of tensile strength σ B , respectively.

比較例3、4、5(第3工程)から、表面拡大率ρが限界表面拡大率ρから大幅に超える(ρ>15)と表面割れが生じ、この場合は最大主応力σを算出するまでもないことが分かる。 Comparative Example 3, 4, and 5 (third step), the surface enlargement ratio [rho greatly exceeds the critical surface enlargement ratio ρ A (ρ> 15) and the surface cracking occurs, in this case calculates the maximum principal stress σ It turns out that it is not too long.

実施例3は実施例1に使用した鍛造型と同一型を使用し、潤滑剤を減じて成形したものであり、第3、第4工程における表面拡大率がそれぞれ11.8、12.0と限界表面拡大率ρの10を超えているが、表面割れはない。因みに、最大主応力σを見ると、第3工程では180MPaと引張り強度の85%以下であり、第4工程では520MPaと引張り強度の85%を超えている。表面拡大率ρが限界表面拡大率ρの10を超えても15以下の範囲にあれば、最大主応力σが引張り強度σの85%を超えても100%に満たない場合は表面割れの発生はない。特に引張り強度σの85%以下の場合には、表面拡大率が限界表面拡大率ρ以下にある場合と同様の極めて良好な鍛造表面が得られる。 Example 3 uses the same die as the forging die used in Example 1, and is formed by reducing the lubricant, and the surface enlargement rates in the third and fourth steps are 11.8 and 12.0, respectively. The limit surface enlargement ratio ρ A exceeds 10, but there is no surface crack. Incidentally, looking at the maximum principal stress σ, the third step is 180 MPa and 85% or less of the tensile strength, and the fourth step is 520 MPa and exceeds 85% of the tensile strength. If the surface expansion ratio ρ exceeds 10 of the limit surface expansion ratio ρ A and is in the range of 15 or less, the surface cracks occur when the maximum principal stress σ exceeds 85% of the tensile strength σ B but does not reach 100%. There is no occurrence. In particular, when the tensile strength σ B is 85% or less, a very good forged surface similar to the case where the surface expansion rate is the critical surface expansion rate ρ A or less can be obtained.

Figure 0005031221
Figure 0005031221

以上説明したように、本実施例によると表面拡大率(伸び率)ρによって、3次元CAEによる応力計算値を使用する場合に比較して、連続冷間鍛造工程おける表面割れを正確に予測することができるので、トライ&エラーを繰返す必要がなくなり、鍛造工程数の削減を可能とする最適の鍛造工程設計および鍛造型設計が可能となり、熱処理工程の廃止、製造準備期間が短縮でき、鍛造型の製作費用の削減もできた。   As described above, according to the present embodiment, the surface cracking rate in the continuous cold forging process is accurately predicted by the surface expansion rate (elongation rate) ρ as compared with the case where the stress calculation value by the three-dimensional CAE is used. Therefore, it is not necessary to repeat trial and error, the optimal forging process design and forging die design that can reduce the number of forging processes is possible, the heat treatment process can be eliminated, the production preparation period can be shortened, and the forging die The production cost was also reduced.

本実施の形態に係る鍛造工程設計および鍛造型製作のフロー図である。It is a flowchart of the forge process design and forge die manufacture which concern on this Embodiment. 本発明の実施例または比較例に係るナックルスピンドルの連続冷間鍛造の各工程における素材の形状図である。It is a shape figure of the raw material in each process of the continuous cold forging of the knuckle spindle which concerns on the Example or comparative example of this invention. 本発明の実施例1に係るナックルスピンドルの連続冷間鍛造における3次元CAEによる変形解析図である。It is a deformation | transformation analysis figure by three-dimensional CAE in the continuous cold forging of the knuckle spindle which concerns on Example 1 of this invention. 本発明の実施例および比較例に係る連続冷間鍛造の第3工程におけるパンチの表面形状を示す外形線図である。It is an outline drawing which shows the surface shape of the punch in the 3rd process of the continuous cold forging which concerns on the Example and comparative example of this invention. 本発明の実施例1および比較例1に係る連続冷間鍛造における表面拡大率(伸び率)ρを示すグラフである。It is a graph which shows the surface expansion rate (elongation rate) (rho) in the continuous cold forging which concerns on Example 1 and Comparative Example 1 of this invention.

符号の説明Explanation of symbols

10・・・ナックルスピンドル
20・・・ボール部
30・・・軸部

10 ... Knuckle spindle 20 ... Ball part 30 ... Shaft part

Claims (1)

mass%で、C:0.45〜0.60%、Si:0.03〜0.15%、Mn:0.20〜0.50%、B:5〜50ppm、Ti:0.02〜0.05%、N≦100ppmであり、その他不純物元素を含む完全球状化熱処理後の炭素鋼を鍛造素材とする連続冷間鍛造における表面割れ防止方法であって、全鍛造工程における半加工品または成形品の表面のすべての部位の表面拡大率を、前記鍛造素材の限界表面拡大率である10以下とし、該表面拡大率が該鍛造素材の限界表面拡大率である10を超えて15以下の場合には、該限界表面拡大率を超える部位の最大主応力を前記鍛造素材の引張り強さである590MPa以下に収めることを特徴とする表面割れの防止方法。 At mass%, C: 0.45-0.60%, Si: 0.03-0.15%, Mn: 0.20-0.50%, B: 5-50ppm, Ti: 0.02-0.05%, N≤100ppm, complete with other impurity elements A method for preventing surface cracking in continuous cold forging using carbon steel after spheroidizing heat treatment as a forging material, wherein the forging material has a surface enlargement ratio of all parts of the surface of a semi-processed product or a molded product in the entire forging process. of a 10 or less which is the limit surface magnification, when the surface enlargement ratio is 10 to 15 from more than the limit surface magnification of forged material, the maximum principal stress sites exceeding該限field surface enlargement ratio A method for preventing surface cracking, wherein the forging material has a tensile strength of 590 MPa or less.
JP2005306096A 2004-10-26 2005-10-20 Method for preventing surface cracks in cold forging Expired - Fee Related JP5031221B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005306096A JP5031221B2 (en) 2004-10-26 2005-10-20 Method for preventing surface cracks in cold forging

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004310463 2004-10-26
JP2004310463 2004-10-26
JP2005306096A JP5031221B2 (en) 2004-10-26 2005-10-20 Method for preventing surface cracks in cold forging

Publications (2)

Publication Number Publication Date
JP2006150444A JP2006150444A (en) 2006-06-15
JP5031221B2 true JP5031221B2 (en) 2012-09-19

Family

ID=36629336

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005306096A Expired - Fee Related JP5031221B2 (en) 2004-10-26 2005-10-20 Method for preventing surface cracks in cold forging

Country Status (1)

Country Link
JP (1) JP5031221B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5223560A (en) * 1975-08-14 1977-02-22 Shiyuraubenkonbinaato Veb Method of manufacturing high strencth cold formed parts
JPH06179032A (en) * 1992-12-11 1994-06-28 Toyota Motor Corp Closed die forging device
JP4420481B2 (en) * 1998-05-07 2010-02-24 株式会社デンソー Austenitic stainless steel with excellent cold forging and machinability
JP3657468B2 (en) * 1999-08-06 2005-06-08 本田技研工業株式会社 Method and apparatus for forming perforated products
JP2004276030A (en) * 2003-03-12 2004-10-07 Sanyo Special Steel Co Ltd Evaluation method of cold-forging process using surface magnification

Also Published As

Publication number Publication date
JP2006150444A (en) 2006-06-15

Similar Documents

Publication Publication Date Title
RU2644089C2 (en) Thermomechanical processing of high-strength non-magnetic corrosion-resistant material
US20060081315A1 (en) Method for producing Ni based alloy and forging die
JP2007130661A (en) Multi-stage forward extrusion method
US10960448B1 (en) Process for equal channel angular pressing fine grain titanium round tube
JP2012219931A (en) Rack bar and method of manufacturing the same
JP2006150445A (en) Continuous cold forging method of knuckle spindle
Paramasivam et al. Numerical simulation of cold orbital forging process for gear manufacturing
Sharma et al. A systematic review of factors affecting the process parameters and various measurement techniques in forging processes
JP6520465B2 (en) Method of manufacturing martensitic stainless steel pipe
WO2013111768A1 (en) Hot upset forging method
JP5031221B2 (en) Method for preventing surface cracks in cold forging
EP2786814A1 (en) Method for manufacturing seamless pipe
JP2004276030A (en) Evaluation method of cold-forging process using surface magnification
JP2008246569A (en) Method for manufacturing die for forging
JP4559256B2 (en) Prediction method of forging cracks in cold forging process
Kiener et al. Researching of commonalities and differences in cold forging of spur and helical gears
Hu et al. Process optimization for design of duplex universal joint fork using unequal thickness flash
Saffar et al. On the effects of eccentricity in precision forging process
Dong et al. Homogeneity of microstructure and Vickers hardness in cold closed-die forged spur-bevel gear of 20CrMnTi alloy
KR102333584B1 (en) The rack processing method and the rack processed according to the method
Rajendran et al. Hot Forging Die Design Optimization Using FEM Analysis for Near-Net Forming of 18CrNiMo7-6 Steel Pinion Shaft. Metals 2023, 13, 815
JP6612295B2 (en) Tubing material and method for producing the tubing
Karanjule et al. Determination of the optimal reduction ratio for least springback during cold drawing of seamless tubes
JP3608489B2 (en) Drawing method
CN113118351B (en) Forging method for multi-way pipe fitting

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080908

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110405

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120305

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20120312

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120612

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120627

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150706

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees