JP4419239B2 - Powder volume measuring device - Google Patents

Powder volume measuring device Download PDF

Info

Publication number
JP4419239B2
JP4419239B2 JP37295199A JP37295199A JP4419239B2 JP 4419239 B2 JP4419239 B2 JP 4419239B2 JP 37295199 A JP37295199 A JP 37295199A JP 37295199 A JP37295199 A JP 37295199A JP 4419239 B2 JP4419239 B2 JP 4419239B2
Authority
JP
Japan
Prior art keywords
volume
distance
storage tank
laser
mirror
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP37295199A
Other languages
Japanese (ja)
Other versions
JP2001183209A (en
Inventor
秀一 村山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP37295199A priority Critical patent/JP4419239B2/en
Publication of JP2001183209A publication Critical patent/JP2001183209A/en
Application granted granted Critical
Publication of JP4419239B2 publication Critical patent/JP4419239B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/22Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water
    • G01F23/28Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring the variations of parameters of electromagnetic or acoustic waves applied directly to the liquid or fluent solid material
    • G01F23/284Electromagnetic waves
    • G01F23/292Light, e.g. infrared or ultraviolet
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F22/00Methods or apparatus for measuring volume of fluids or fluent solid material, not otherwise provided for

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Thermal Sciences (AREA)
  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、貯蔵タンクに収容された飼料、穀物、セメント、砂等の粉粒体のレベル面(表面)の高さを測定し、かつ、粉粒体の体積(重量)を測定する粉粒体の体積測定装置に関する。
【0002】
【従来の技術】
たとえば、飼料、穀物、セメント、砂等の、いわゆる粉粒体は、通常、略漏斗形状のホッパー等と称する貯蔵タンクに収容され、下端に設けられた小径の排出口から排出して使用される。
【0003】
このような貯蔵タンクは、通常、20〜30m と高く、また、その材質が、たとえば鉄板、コンクリート等のような不透明部材によって形成されているため、貯蔵タンク内の粉粒体の容量を外部から目視することは困難である。そこで、通常は、貯蔵タンクの上端開口等を基準点とし、この基準点から粉粒体のレベル面(表面)までの高さを測定することで、貯蔵タンク内における粉粒体の容量を認識している。
【0004】
粉粒体のレベル面の高さを測定する手段としては、超音波を貯蔵タンクの上端開口等から粉粒体のレベル面方向に送信するとともに、粉粒体のレベル面で反射した超音波を受信し、送信から受信までに経過した時間の算出によって上端開口等からレベル面までの距離を測定して表示する構成の測定装置が知られている。
【0005】
このような構成では、測定装置を貯蔵タンクの上端開口等に据え置きし、必要時に作動させて粉粒体のレベル面の高さを測定すればよいため、作業者の安全性が確保できるとともに、作業性が向上する。
【0006】
【発明が解決しようとする課題】
しかしながら、超音波を利用する測定装置においては、その送信領域が比較的大きな幅を有するため、測定点の特定化および明確化が難しい。そして、超音波が、貯蔵タンクを内側から補強する梁、リブに反射する虞れもあるため、測定値の信頼性の低下を招きやすい。
【0007】
ところで、貯蔵タンクに収容された粉粒体の表面は一般的に平坦でなく、上端開口から充填した後は安息角に略山型になるとともに、排出口からの排出の後は略すり鉢型となるため、このような貯蔵タンク内の粉粒体のレベル面の高さを測定する場合においては、どの点を測定したかによってその測定値の信頼性に大きな差異が生じる。
【0008】
本発明は、上記従来技術の問題点を解決するためになされたもので、粉粒体のレベル面における測定点を特定化して安息角の状態を入力したり、表面の角度を測定することにより、測定値の信頼性の向上をはかった粉粒体の体積測定装置を提供することを目的としている。
【0009】
【課題を解決するための手段】
このような問題点を解決するために、請求項1においては、
半径rが既知の貯蔵タンク内に貯蔵された粉粒体の体積測定装置において、
貯蔵タンク上部の中央付近に配置されたレーザ照射手段と、所定の距離を隔てて配置され一方が前記レーザの光軸に対して45度傾斜し、他方が45度+θの角度に傾斜した2枚のミラーと、前記2枚のミラーの距離と角度を維持した状態で2枚のミラーを同時に移動させるミラー駆動手段と、前記レーザの反射光に基づいて紛粒体までの距離を演算するレベル演算手段と、このレベル演算手段の出力に基づいて体積を演算する体積演算手段からなり、
前記貯蔵タンクの中心付近からの反射光を得る場合は、前記ミラー駆動手段により前記2枚のミラーをレーザの光路からはずして垂直方向にレーザを照射して前記紛粒体までの距離L1を演算し、前記貯蔵タンクの中心から離れた点からの反射光を得る場合は前記ミラー駆動手段を駆動してレーザ光路にミラーを移動させ、前記一方のミラーで反射したレーザ光を前記他方のミラーで反射させて中心付近から離れた点を照射して前記紛粒体までの距離L2を演算し、前記θから前記L2の鉛直距離L2×cosθを演算すると共に、安息角の傾きK=(L1−L2cosθ)/L2sinθ及び谷の深さX=rKを演算して谷の体積V1=πr ・X・(1/3)を演算し、紛粒体の体積Vを下記の式により演算することを特徴とする

V=(L−L1+X)πr −V1
【0014】
【発明の実施の形態】
以下、図面を用いて本発明の実施形態の一例について詳細に説明する。図1は本発明を適用する粉粒体の貯蔵タンクの一例を示す図であり、1は貯蔵タンク、2は貯蔵された粉粒体、3は貯蔵タンクの上方でかつ、中央付近に設けられた粉粒体搬送パイプであり、途中に注入バルブ4が設けられている。
【0015】
5は貯蔵タンクの下方でかつ、中央付近に設けられた粉粒体払い出しパイプであり、途中に排出バルブ6が設けられている。7はタンクの上方(蓋の上)に設置されたレーザ照射手段、8はレーザ照射手段7から出射したレーザ光で一点鎖線で示す方向または点線で示すいずれかの方向に出射している状態を示している。
【0016】
9はレーザ照射手段7からの信号に基づいて貯蔵タンク1の上面から粉粒体2の表面までの距離を演算するレベル演算手段、10は前述のレベル演算手段の出力に基づいて粉粒体の体積(重量)を演算する体積演算手段である。
【0017】
上記の構成において、はじめ貯蔵タンクが空の状態で上方の注入バルブを開として原料(粉粒体)を注入すると粉粒体2は線分Aで示すように安息角を持って堆積する。また、そのように堆積した状態から排出バルブ6を開として原料(粉粒体)を排出すると粉粒体2は線分Bで示すように安息角を持って払い出される。
【0018】
従って、単に貯蔵タンク1の上面から粉粒体2の表面までの距離を演算しても斜線A',B'で示す部分の体積が誤差となる。そこで本発明ではレーザ照射時点での貯蔵タンク内の状態が増加(減少)状態(若しくはどちらの状態で維持されているか)を増減入力手段11から入力する。体積演算手段10には前記誤差分に相当する体積が入力されており、その情報を加味した上で体積を演算する。
【0019】
貯蔵タンク内の状態の増加(減少)状態は注入若しくは注出バルブの開閉状態からも知ることができる。したがって、その状態を検知して体積演算手段10に入力して、誤差分の増減を行うようにしても良い。
【0020】
なお、貯蔵タンクの中央にパイプ3を設けた場合、レーザ照射手段は中央から少しずれた場所に取付けざるを得ず、その場合、レーザは一点鎖線で示すように垂直若しくは点線で示すように所定の角度を持って照射せざるを得ないが、貯蔵タンクの直径は数メートル(例えば3〜5m)に及ぶので、取付け位置の中央からのずれによる照射位置のずれは無視するものとする。
【0021】
また、貯蔵タンクの形状や注入,注出パイプ3,5の大きさ、粉粒体の種類、含有水分によって安息角が変化することが考えられるが、体積演算手段10には予めこれらにより変化する体積が入力されているものとする。
【0022】
図2は本発明の実施形態の一例を示す構成図である。なお、図2においては説明を簡単にするために図1に示す貯蔵タンク1上のパイプ3や注入バルブ4は省略し、粉粒体の状態は払い出された状態を示しており、図1と同一要素には同一符号を付している。また、ここではレーザ照射手段7から貯蔵タンクの底部までの距離L及び半径rは既知であり、可動ミラー間の距離は無視するものとする。
【0023】
図2において、12は所定の角度を有し所定の間隔で配置された2枚のミラー(12a,12b)であり、13は矢印D方向にミラーを駆動するミラー駆動手段である。
このような構成において、測定に際しては、はじめミラー12をレーザ光の光路からはずした状態で垂直方向に照射してレベル演算手段9により粉粒体の底部中央付近までの距離(L1)を演算する。
【0024】
次にミラー駆動手段13によりレーザ光の光路にミラー12を移動させる。ミラー12a例えば垂直に対して45度、ミラー12bは45度+θの角度に配置されており、中心付近から離れた点を照射する。レベル演算手段9はその点までの距離(L2)を演算する。
【0025】
次にレベル演算手段9は既知の角度θからL2の鉛直距離L2×cosθを演算し、安息角の傾きK及び谷の深さXを次式により演算する。
K=(L1−L2cosθ)/L2sinθ
X=rK
【0026】
次に谷の体積V1を次式により演算する。
V1=πr2・X・(1/3)
従って粉粒体の体積Vは
V=(L−L1+X)πr2−V1
により求めることができ、これに粉粒体の密度を乗じて重量を演算する。
なお、粉粒体が注入状態(山状)である場合はV1を加算する。また、Eで示す底部(斜線の部分)の体積は既知なので必要に応じて加算するものとする。
【0027】
なお、本発明の以上の説明は、説明および例示を目的として特定の好適な実施例を示したに過ぎない。したがって本発明はその本質から逸脱せずに多くの変更、変形をなし得ることは当業者に明らかである。例えば、レーザ照射手段7とレベル演算手段9及び体積(重量演算手段)は何れかが一体であっても良く、すべてを一体に構成しても良い。特許請求の範囲の欄の記載により定義される本発明の範囲は、その範囲内の変更、変形を包含するものとする。
【0028】
【発明の効果】
以上説明したように、本発明によれば本発明の請求項1においては、
半径rが既知の貯蔵タンク内に貯蔵された粉粒体の体積測定装置において、
貯蔵タンク上部の中央付近に配置されたレーザ照射手段と、所定の距離を隔てて配置され一方が前記レーザの光軸に対して45度傾斜し、他方が45度+θの角度に傾斜した2枚のミラーと、前記2枚のミラーの距離と角度を維持した状態で2枚のミラーを同時に移動させるミラー駆動手段と、前記レーザの反射光に基づいて紛粒体までの距離を演算するレベル演算手段と、このレベル演算手段の出力に基づいて体積を演算する体積演算手段からなり、
前記貯蔵タンクの中心付近からの反射光を得る場合は、前記ミラー駆動手段により前記2枚のミラーをレーザの光路からはずして垂直方向にレーザを照射して前記紛粒体までの距離L1を演算し、前記貯蔵タンクの中心から離れた点からの反射光を得る場合は前記ミラー駆動手段を駆動してレーザ光路にミラーを移動させ、前記一方のミラーで反射したレーザ光を前記他方のミラーで反射させて中心付近から離れた点を照射して前記紛粒体までの距離L2を演算し、前記θから前記L2の鉛直距離L2×cosθ)を演算すると共に、安息角の傾きK=(L1−L2cosθ)/L2sinθ及び谷の深さX=rKを演算して谷の体積V1=πr ・X・(1/3)を演算し、紛粒体の体積Vを演算する。
その結果、表面の角度に応じた測定が可能となり、測定値の信頼性の向上をはかった粉粒体の体積測定装置を実現することができる。
【0030】
【図面の簡単な説明】
【図1】 本発明を適用する粉粒体の貯蔵タンクの一例を示す図である。
【図2】 本発明の粉粒体の体積測定装置の実施態様の一例を示す図である。
【符号の説明】
1 貯蔵タンク
2 粉粒体
3,5 パイプ
4 注入バルブ
6 排出バルブ
7 レーザ照射手段
8 レーザ光
9 レベル演算手段
10 体積(重量)演算手段
11 増減入力手段
12 ミラー
13 ミラー駆動手段
.
[0001]
BACKGROUND OF THE INVENTION
The present invention measures the height of the level surface (surface) of a granular material such as feed, cereal, cement, sand, etc. contained in a storage tank, and measures the volume (weight) of the granular material The present invention relates to a body volume measuring device.
[0002]
[Prior art]
For example, so-called powder particles such as feed, cereal, cement, and sand are usually stored in a storage tank called a substantially funnel-shaped hopper and discharged from a small-diameter discharge port provided at the lower end. .
[0003]
Such a storage tank is usually as high as 20 to 30 m, and the material is formed of an opaque member such as an iron plate, concrete, etc., so that the capacity of the granular material in the storage tank is externally increased. It is difficult to see. Therefore, the capacity of the granular material in the storage tank is usually recognized by measuring the height from the reference point to the level surface (surface) of the granular material, using the top opening of the storage tank as the reference point. is doing.
[0004]
As a means of measuring the height of the level surface of the granular material, ultrasonic waves are transmitted from the upper end opening of the storage tank in the direction of the level surface of the granular material, and the ultrasonic wave reflected by the level surface of the granular material is used. 2. Description of the Related Art There is known a measuring apparatus configured to receive and to measure and display the distance from an upper end opening or the like to a level surface by calculating the time elapsed from transmission to reception.
[0005]
In such a configuration, it is only necessary to place the measuring device at the upper end opening of the storage tank and operate it when necessary to measure the height of the level surface of the granular material, so that the safety of the operator can be ensured, Workability is improved.
[0006]
[Problems to be solved by the invention]
However, in a measuring apparatus using ultrasonic waves, the transmission area has a relatively large width, and thus it is difficult to specify and clarify the measurement points. And since there exists a possibility that an ultrasonic wave may reflect on the beam and rib which reinforce a storage tank from an inner side, it tends to cause the fall of the reliability of a measured value.
[0007]
Incidentally, the surface of the contained particulate material to the storage tank is generally not flat, with the after filling the upper end opening becomes substantially mountain shape in angle of repose, a substantially mortar-shaped after discharge from the discharge port Therefore, when measuring the height of the level surface of the granular material in such a storage tank, the reliability of the measured value varies greatly depending on which point is measured.
[0008]
The present invention has been made to solve the above-mentioned problems of the prior art, and by specifying the measurement point on the level surface of the granular material and inputting the repose angle state or measuring the surface angle. An object of the present invention is to provide a volume measuring apparatus for a granular material in which the reliability of measured values is improved.
[0009]
[Means for Solving the Problems]
In order to solve such a problem, in claim 1,
In a volume measuring device for granular materials stored in a storage tank having a known radius r ,
Laser irradiation means arranged near the center of the upper part of the storage tank, and two pieces arranged at a predetermined distance, one inclined at 45 degrees with respect to the optical axis of the laser and the other inclined at an angle of 45 degrees + θ A mirror driving means for simultaneously moving the two mirrors while maintaining the distance and angle between the two mirrors, and a level calculation for calculating the distance to the particulates based on the reflected light of the laser And volume calculation means for calculating the volume based on the output of the level calculation means ,
When obtaining reflected light from the vicinity of the center of the storage tank, the mirror driving means removes the two mirrors from the laser optical path and irradiates the laser in the vertical direction to calculate the distance L1 to the particles. When obtaining reflected light from a point away from the center of the storage tank, the mirror driving means is driven to move the mirror to the laser light path, and the laser light reflected by the one mirror is reflected by the other mirror. A distance L2 from the vicinity of the center of the reflected particle is reflected to calculate the distance L2 to the particles, and the vertical distance L2 × cos θ of the L2 is calculated from the θ, and the angle of repose K = (L1− L2 cos θ) / L2 sin θ and valley depth X = rK are calculated to calculate the valley volume V 1 = πr 2 · X · (1/3), and the volume V of the powder is calculated by the following equation: Features .
Record
V = (L−L1 + X) πr 2 −V1
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an example of an embodiment of the present invention will be described in detail with reference to the drawings. FIG. 1 is a view showing an example of a storage tank for granular materials to which the present invention is applied . 1 is a storage tank, 2 is a stored granular material, 3 is provided above the storage tank and near the center. An injection valve 4 is provided on the way.
[0015]
Reference numeral 5 denotes a powder particle discharge pipe provided below the storage tank and near the center, and a discharge valve 6 is provided in the middle. 7 is a laser irradiating means installed above the tank (on the lid), 8 is a laser beam emitted from the laser irradiating means 7 and is emitted in the direction indicated by the alternate long and short dash line or in the direction indicated by the dotted line. Show.
[0016]
9 is a level calculating means for calculating the distance from the upper surface of the storage tank 1 to the surface of the granular material 2 based on the signal from the laser irradiation means 7, and 10 is the level of the granular material based on the output of the aforementioned level calculating means. Volume calculating means for calculating volume (weight).
[0017]
In the above configuration, when the raw material (powder) is injected while the storage tank is empty and the upper injection valve is opened, the powder 2 is deposited with an angle of repose as indicated by the line segment A. Further, when the raw material (powder particles) is discharged from the accumulated state by opening the discharge valve 6, the powder particles 2 are discharged with an angle of repose as indicated by a line segment B.
[0018]
Therefore, even if the distance from the upper surface of the storage tank 1 to the surface of the granular material 2 is simply calculated, the volume of the portion indicated by the oblique lines A ′ and B ′ becomes an error. Therefore, in the present invention, the increase / decrease state (or which state is maintained) in the storage tank at the time of laser irradiation is input from the increase / decrease input means 11. The volume corresponding to the error is input to the volume calculation means 10 and the volume is calculated in consideration of the information.
[0019]
The state of increase (decrease) in the storage tank can also be known from the open / close state of the injection or extraction valve. Therefore, the state may be detected and input to the volume calculation means 10 to increase or decrease the error.
[0020]
When the pipe 3 is provided at the center of the storage tank, the laser irradiation means must be attached at a position slightly deviated from the center. In this case, the laser is predetermined as shown by a vertical line or a dotted line as shown by a one-dot chain line. However, since the storage tank has a diameter of several meters (for example, 3 to 5 m), the deviation of the irradiation position due to the deviation from the center of the mounting position is ignored.
[0021]
In addition, it is conceivable that the angle of repose changes depending on the shape of the storage tank, the injection, the size of the extraction pipes 3 and 5, the type of the granular material, and the contained water content. Assume that the volume has been entered.
[0022]
FIG. 2 is a block diagram showing an example of an embodiment of the present invention . In FIG. 2, the pipe 3 and the injection valve 4 on the storage tank 1 shown in FIG. 1 are omitted for the sake of simplicity, and the state of the powder is shown as being discharged. The same elements are denoted by the same reference numerals. Here, the distance L and the radius r from the laser irradiation means 7 to the bottom of the storage tank are known, and the distance between the movable mirrors is ignored.
[0023]
In FIG. 2, reference numeral 12 denotes two mirrors (12a, 12b) arranged at a predetermined interval and having a predetermined angle, and 13 is a mirror driving means for driving the mirror in the direction of arrow D.
In such a configuration, at the time of measurement, the mirror 12 is first irradiated in the vertical direction while being removed from the optical path of the laser beam, and the distance (L1) to the vicinity of the bottom center of the granular material is calculated by the level calculation means 9. .
[0024]
Next, the mirror 12 is moved to the optical path of the laser beam by the mirror driving means 13. For example, the mirror 12a is disposed at an angle of 45 degrees with respect to the vertical and the mirror 12b is disposed at an angle of 45 degrees + θ, and irradiates a point away from the vicinity of the center. The level calculation means 9 calculates the distance (L2) to that point.
[0025]
Next, the level calculating means 9 calculates the vertical distance L2 × cos θ of L2 from the known angle θ, and calculates the repose angle inclination K and valley depth X by the following equations.
K = (L1-L2cosθ) / L2sinθ
X = rK
[0026]
Next, the valley volume V1 is calculated by the following equation.
V1 = πr 2 · X · (1/3)
Therefore, the volume V of the granular material is V = (L−L1 + X) πr 2 −V1.
The weight is calculated by multiplying this by the density of the granular material.
In addition, V1 is added when a granular material is an injection | pouring state (mountain shape). Further, since the volume of the bottom portion (hatched portion) indicated by E is known, it is added as necessary.
[0027]
It should be noted that the above description of the present invention is merely a specific preferred embodiment for the purpose of explanation and illustration. Accordingly, it will be apparent to those skilled in the art that the present invention can be modified and modified in many ways without departing from the essence thereof. For example, any one of the laser irradiation means 7, the level calculation means 9 and the volume (weight calculation means) may be integrated, or all may be integrated. The scope of the present invention defined by the description in the appended claims is intended to include modifications and variations within the scope.
[0028]
【The invention's effect】
As described above, according to the present invention, in claim 1 of the present invention,
In a volume measuring device for granular materials stored in a storage tank having a known radius r ,
Laser irradiation means arranged near the center of the upper part of the storage tank, and two pieces arranged at a predetermined distance, one inclined at 45 degrees with respect to the optical axis of the laser and the other inclined at an angle of 45 degrees + θ A mirror driving means for simultaneously moving the two mirrors while maintaining the distance and angle between the two mirrors, and a level calculation for calculating the distance to the particulates based on the reflected light of the laser And volume calculation means for calculating the volume based on the output of the level calculation means ,
When obtaining reflected light from the vicinity of the center of the storage tank, the mirror driving means removes the two mirrors from the laser optical path and irradiates the laser in the vertical direction to calculate the distance L1 to the particles. When obtaining reflected light from a point away from the center of the storage tank, the mirror driving means is driven to move the mirror to the laser light path, and the laser light reflected by the one mirror is reflected by the other mirror. The distance L2 to the particle is calculated by irradiating a point that is reflected and away from the vicinity of the center, the vertical distance L2 × cos θ of L2 is calculated from the θ, and the angle of repose K = (L1 -L2cosθ) / L2sinθ and the valley depth X = rK are calculated to calculate the volume V1 = πr 2 · X · (1/3) of the valley, and the volume V of the powder is calculated.
As a result, measurement according to the angle of the surface can be performed, and a volume measuring apparatus for a granular material that can improve the reliability of the measurement value can be realized.
[0030]
[Brief description of the drawings]
FIG. 1 is a diagram showing an example of a storage tank for granular materials to which the present invention is applied.
2 is a diagram illustrating an example embodiment of the volumetric equipment of granular material of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Storage tank 2 Granules 3, 5 Pipe 4 Injection valve 6 Discharge valve 7 Laser irradiation means 8 Laser light 9 Level calculation means 10 Volume (weight) calculation means 11 Increase / decrease input means 12 Mirror 13 Mirror drive means
.

Claims (1)

半径rが既知の貯蔵タンク内に貯蔵された粉粒体の体積測定装置において、
貯蔵タンク上部の中央付近に配置されたレーザ照射手段と、所定の距離を隔てて配置され一方が前記レーザの光軸に対して45度傾斜し、他方が45度+θの角度に傾斜した2枚のミラーと、前記2枚のミラーの距離と角度を維持した状態で2枚のミラーを同時に移動させるミラー駆動手段と、前記レーザの反射光に基づいて紛粒体までの距離を演算するレベル演算手段と、このレベル演算手段の出力に基づいて体積を演算する体積演算手段からなり、
前記貯蔵タンクの中心付近からの反射光を得る場合は、前記ミラー駆動手段により前記2枚のミラーをレーザの光路からはずして垂直方向にレーザを照射して前記紛粒体までの距離L1を演算し、前記貯蔵タンクの中心から離れた点からの反射光を得る場合は前記ミラー駆動手段を駆動してレーザ光路にミラーを移動させ、前記一方のミラーで反射したレーザ光を前記他方のミラーで反射させて中心付近から離れた点を照射して前記紛粒体までの距離L2を演算し、前記θから前記L2の鉛直距離L2×cosθを演算すると共に、安息角の傾きK=(L1−L2cosθ)/L2sinθ及び谷の深さX=rKを演算して谷の体積V1=πr ・X・(1/3)を演算し、紛粒体の体積Vを下記の式により演算することを特徴とする粉粒体の体積測定装置。

V=(L−L1+X)πr −V1
In a volume measuring device for granular materials stored in a storage tank having a known radius r ,
Laser irradiation means arranged near the center of the upper part of the storage tank, and two pieces arranged at a predetermined distance, one inclined at 45 degrees with respect to the optical axis of the laser and the other inclined at an angle of 45 degrees + θ A mirror driving means for simultaneously moving the two mirrors while maintaining the distance and angle between the two mirrors, and a level calculation for calculating the distance to the particulates based on the reflected light of the laser And volume calculation means for calculating the volume based on the output of the level calculation means ,
When obtaining reflected light from the vicinity of the center of the storage tank, the mirror driving means removes the two mirrors from the laser optical path and irradiates the laser in the vertical direction to calculate the distance L1 to the particles. When obtaining reflected light from a point away from the center of the storage tank, the mirror driving means is driven to move the mirror to the laser light path, and the laser light reflected by the one mirror is reflected by the other mirror. A distance L2 from the vicinity of the center of the reflected particle is reflected to calculate the distance L2 to the particles, and the vertical distance L2 × cos θ of the L2 is calculated from the θ. L2 cos θ) / L2 sin θ and valley depth X = rK are calculated to calculate the valley volume V 1 = πr 2 · X · (1/3), and the volume V of the powder is calculated by the following equation: measuring the volume of the particulate material, wherein Apparatus.
Record
V = (L−L1 + X) πr 2 −V1
JP37295199A 1999-12-28 1999-12-28 Powder volume measuring device Expired - Fee Related JP4419239B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP37295199A JP4419239B2 (en) 1999-12-28 1999-12-28 Powder volume measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP37295199A JP4419239B2 (en) 1999-12-28 1999-12-28 Powder volume measuring device

Publications (2)

Publication Number Publication Date
JP2001183209A JP2001183209A (en) 2001-07-06
JP4419239B2 true JP4419239B2 (en) 2010-02-24

Family

ID=18501318

Family Applications (1)

Application Number Title Priority Date Filing Date
JP37295199A Expired - Fee Related JP4419239B2 (en) 1999-12-28 1999-12-28 Powder volume measuring device

Country Status (1)

Country Link
JP (1) JP4419239B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3913335A1 (en) * 2020-05-20 2021-11-24 Rosenberger Telematics GmbH Method for determining the amount of bulk material in a standing container

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100951726B1 (en) 2001-12-27 2010-04-07 가부시키가이샤후지쿠라 Electroconductive composition, electroconductive coating and method for forming electroconductive coating
CN103292692B (en) * 2013-01-31 2016-12-28 王录民 A kind of warehouse volume of portable horizontal warehouse of grain measurement apparatus
US20160090235A1 (en) * 2014-09-29 2016-03-31 Sumitomo Metal Mining Co., Ltd. Ore supply apparatus and ore supply method
JP5844925B1 (en) * 2015-01-29 2016-01-20 株式会社中嶋製作所 Feed remaining amount measuring device and barn management system using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3913335A1 (en) * 2020-05-20 2021-11-24 Rosenberger Telematics GmbH Method for determining the amount of bulk material in a standing container

Also Published As

Publication number Publication date
JP2001183209A (en) 2001-07-06

Similar Documents

Publication Publication Date Title
JP4419239B2 (en) Powder volume measuring device
US3818333A (en) Microwave window and antenna apparatus for moisture measurement of fluidized material
KR20220103089A (en) Determination of the volume of concrete being rotated
US20130192351A1 (en) Method and apparatus for determining gvf (gas volume fraction) for aerated fluids and liquids in flotation tanks, columns, drums, tubes, vats
US20220341302A1 (en) Method and system for metering proppant
US6634234B1 (en) Adjustable measurement head and a level measurement device and method employing it
JPH10185638A (en) Impact type flow rate detecting device
AU634801B2 (en) Conveying-volume measurement from the cut contour of a bucket-wheel excavator or other open-cast mining appliance
US4422760A (en) Optical analyzing instrument having vibrating trough
CA1230625A (en) Apparatus for the reclamation of slurry from the bottom of a storage silo
JP7165504B2 (en) Railway inspection device and railway inspection method
JP3968821B2 (en) Unit volume mass measurement method of fresh concrete
JP3754400B2 (en) Powder measuring device
ES2855107T3 (en) Method and device for determining a volume of a sedimented bed in a mixture in a headspace
RU2485449C1 (en) Device to measure liquid flow in open canals
JP2002277222A (en) Method and system for measuring amount of earth removal in shield excavation
CN109564127A (en) Method and apparatus for determining the controlling level of the spatial discrimination in bulk material container
JP7188696B2 (en) Installation position calculation method of ultrasonic liquid level measuring device and ultrasonic sensor
JPH08508937A (en) Shooting head filling device
GB2228215A (en) Materials handling system including separation and measurement stages
JPS6022624A (en) Volume measuring method of belt conveyor carrying object utilizing interference fringes
JP2529750B2 (en) Device for measuring mechanical strength of radioactive waste
JPS58143218A (en) Flow rate measuring device
USRE29435E (en) Method of supervising the filling level in hoppers, shafts, silos and the like for miscellaneous materials and means for performing the method
JPH0617172B2 (en) Positioning method for continuous unloader

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060404

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090508

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090618

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091123

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121211

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090309

LAPS Cancellation because of no payment of annual fees