JP2002277222A - Method and system for measuring amount of earth removal in shield excavation - Google Patents

Method and system for measuring amount of earth removal in shield excavation

Info

Publication number
JP2002277222A
JP2002277222A JP2001079951A JP2001079951A JP2002277222A JP 2002277222 A JP2002277222 A JP 2002277222A JP 2001079951 A JP2001079951 A JP 2001079951A JP 2001079951 A JP2001079951 A JP 2001079951A JP 2002277222 A JP2002277222 A JP 2002277222A
Authority
JP
Japan
Prior art keywords
transporter
soil
loaded
weight
volume
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001079951A
Other languages
Japanese (ja)
Inventor
Akio Sugimoto
彰男 杉本
Hirosuke Nakatsuru
寛介 中津留
Takafumi Saiki
孝文 斎木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
WORLD TEC KK
Kajima Corp
Original Assignee
WORLD TEC KK
Kajima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by WORLD TEC KK, Kajima Corp filed Critical WORLD TEC KK
Priority to JP2001079951A priority Critical patent/JP2002277222A/en
Publication of JP2002277222A publication Critical patent/JP2002277222A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method and a system which can accurately measure earth removal volume nearby a cutting edge in shield excavation. SOLUTION: When earth removal loaded on a peak-end open conveyor 12 from the cutting edge and discharged in the shield excavation, facing-down shape measuring instrument 20 is provided above the path 11 of the conveyor 12, and measures the three-dimensional coordinates of the peak edge and loaded earth reception surface of the unloaded conveyor 12 and the three-dimensional coordinates of the peak edge and loaded earth surface of the conveyor 12 having been loaded with the waste earth. The volume of the loaded earth removable is computed, conveyor by conveyor, from the relative three-dimensional coordinates of the loaded earth reception surface and the relative three-dimensional coordinates of the loaded earth surface to the pack edge. Preferably, the weight of the conveyor 12 is measured before and after loading, and the weight of the loaded earth removal of each conveyor 12 is computed from the difference between the weight of the conveyor 12 before the loading and the weight after the loading. More preferably, the specific weight of the loaded earth removal of each conveyor 12 is computed from the volume and weight of the loaded earth removal.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はシールド掘進時の排
土量計測方法及びシステムに関し、とくにシールド掘進
時にカッターチャンバーから排出される排土の体積を高
精度に計測する方法及びシステムに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and a system for measuring the amount of earth removed during shield excavation, and more particularly, to a method and a system for measuring the volume of earth removed from a cutter chamber during shield excavation with high accuracy.

【0002】[0002]

【従来の技術】土圧式シールド等の密閉型シールド工事
では、図7に示すように、シールド掘進機1の機内と切
羽との間に隔壁5を設け、隔壁5の前面に設置したカッ
ターヘッド3の回転により地盤2を掘進する。カッター
ヘッド3による掘削土をカッターヘッド3と隔壁5との
間のカーターチャンバー4内に取り込み、カッターチャ
ンバー4内を土で充満して土圧を一定に保つことによ
り、切羽が自立しない軟弱な地盤2においても土と水の
圧力を押さえて切羽の安定を確保する。
2. Description of the Related Art In a closed shield construction such as an earth pressure shield, as shown in FIG. 7, a partition 5 is provided between the inside of a shield machine 1 and a face, and a cutter head 3 installed in front of the partition 5 is provided. Excavates the ground 2 by the rotation of. The excavated soil by the cutter head 3 is taken into the carter chamber 4 between the cutter head 3 and the partition wall 5, and the inside of the cutter chamber 4 is filled with the soil to keep the earth pressure constant, so that the soft ground where the face is not self-supporting is formed. Also in 2, the pressure of the soil and water is suppressed to ensure the stability of the face.

【0003】カッターチャンバー4内の土圧を一定に保
つためには、スクリューコンベア6によるカッターチャ
ンバー4からの排土量と掘削土量とのバランスをとる必
要がある。このバランスが崩れると、地表面の隆起・陥
没等を招き、交通障害、公衆災害等の重大事故につなが
る危険性がある。このためシールド工事では排土量と掘
削土量とのバランス管理(以下、排土量管理ということ
がある。)が必要であり、シールド掘進機1の掘進に伴
いカッターチャンバー4からの排土量の計測が求められ
る。
In order to keep the earth pressure in the cutter chamber 4 constant, it is necessary to balance the amount of soil removed from the cutter chamber 4 by the screw conveyor 6 and the amount of excavated soil. If this balance is lost, the ground surface may be raised or depressed, leading to a serious accident such as a traffic obstacle or a public disaster. For this reason, in the shield work, it is necessary to manage the balance between the amount of soil excavated and the amount of excavated soil (hereinafter, sometimes referred to as the amount of excavated soil), and the amount of earth removed from the cutter chamber 4 with the excavation of the shield excavator 1. Measurement is required.

【0004】従来のシールド工事における排土量管理で
は、スクリューコンベア6により排出した排土(以下、
ズリということがある)をズリ鋼車やベルトコンベアで
搬出する際に、鋼車やベルトコンベア上に設けたロード
セル等の重量センサで排土重量を計測して管理すること
が多かった。鋼車の軌条にロードセルを取り付けて排土
重量を計測する場合もある。しかし、排土重量のみでは
信頼度の高い排土量管理を行うことが難しく、最近では
掘削土体積と比較するため排土体積を計測することが求
められている。従来、シールド工事において排土体積を
計測する場合は以下の方法が用いられている。
[0004] In the conventional earth removal amount management in the shield construction, the earth removal (hereinafter, referred to as "height") discharged by the screw conveyor 6 is performed.
When carrying out the slipping by a slipping steel car or a belt conveyor, it is often the case that the unloading weight is measured and managed by a weight sensor such as a load cell provided on the steel car or the belt conveyor. In some cases, a load cell is attached to the rail of a steel car to measure the earth removal weight. However, it is difficult to manage the earth removal amount with high reliability only by the earth removal weight. Recently, it has been required to measure the earth removal volume in order to compare with the excavated soil volume. Conventionally, the following method has been used to measure the volume of earth removal in shield construction.

【0005】(a)目視によるズリ鋼車の台数により計
測する方法 排土を鋼車で搬出する場合に、搬出に要した鋼車の台数
と鋼車1台当たりの積載排土量とを乗算することにより
排土体積を算出する方法である。 (b)スクリューコンベアの回転数から算出する方法 排土排出時のスクリューコンベアの回転数とスクリュー
コンベアの1回転当たりの排土体積量と所定充填率との
積から間接的に排土体積を算出する方法である。 (c)土砂圧送ポンプのピストン回数から算出する方法 スクリューコンベアで排出した排土を土砂圧送ポンプで
搬出する場合に、圧送ポンプのピストン往復回数と圧送
ポンプのピストン1往復当たりの排土体積量と所定充填
率との積から間接的に排土体積を算出する方法である。 (d)土砂圧送ポンプに取り付けた流量計で計測する方
法 排土を土砂圧送ポンプで搬出する場合に、圧送ポンプの
圧送管に取り付けた流量計で排土体積を計測する方法で
ある。 (e)超音波、レーザ距離計等で計測する方法 特許第3089438号公報が開示するように、排土をズリ鋼
車で搬出する場合に、超音波又はレーザ距離計により空
の鋼車の荷台底面高さと排土積載後の積荷表面高さとを
求め、荷台底面高さと積荷表面高さとから排土の実質高
さを算出し、鋼車の底面積と排土の実質高さとの積から
排土体積を算出する方法である。
(A) A method of measuring the number of steel scraps by visual inspection When unloading soil by steel wheels, the number of steel wheels required for unloading is multiplied by the amount of unloading soil per steel wheel. This is a method of calculating the volume of soil removal. (B) Method of calculating from the number of revolutions of the screw conveyer Indirectly calculating the volume of earth removal from the product of the number of revolutions of the screw conveyer at the time of discharging the earth, the volume of earth removal per rotation of the screw conveyor, and the predetermined filling rate How to (C) Method for calculating from the number of pistons of the earth and sand pump The number of piston reciprocations of the pump and the amount of earth removal volume per reciprocation of the piston of the pump when the earth discharged from the screw conveyor is carried out by the earth and sand pump. This is a method of indirectly calculating the earth removal volume from the product of the predetermined filling rate. (D) Method of Measuring with a Flow Meter Attached to a Sediment Pump A method of measuring the volume of soil removed by a flow meter attached to a pumping pipe of a pressure pump when discharging the soil with a soil pump. (E) Method of measuring by ultrasonic wave, laser distance meter, etc. As disclosed in Japanese Patent No. 3089438, when unloading the soil by a scrap steel car, the carrier of an empty steel car is measured by ultrasonic wave or laser distance meter. The bottom height and the loading surface height after discharging are calculated, and the actual height of the discharging is calculated from the platform bottom height and the loading surface height.The discharging height is calculated from the product of the bottom area of the steel wheel and the actual discharging height. This is a method for calculating the soil volume.

【0006】[0006]

【発明が解決しようとする課題】しかし、上述した従来
の排土体積計測方法は何れも測定精度が低く、信頼度の
高い排土量管理を行うことが難しい問題点がある。すな
わち、方法(a)では鋼車毎の積載排土量が相違するた
め、方法(b)ではスクリューコンベア内の充填状況が
土質やチャンバー内の土砂の流動状態により異なり1回
転毎の排土体積量の変化が大きいため、また方法(c)
も土質や土砂の流動状態によりピストン1往復当たりの
排土体積量の変化が大きいため、それぞれ算出した排土
体積の誤差が累積して正確な排土体積を求めることがで
きない。方法(d)も圧送管内にエアーが入るため計測
誤差が生じる。
However, any of the above-mentioned conventional methods for measuring the volume of unloaded soil has a problem that it is difficult to perform highly reliable management of the unloaded volume with low measurement accuracy. That is, in the method (a), the loading and unloading amount for each steel wheel is different, and in the method (b), the filling state in the screw conveyor varies depending on the soil quality and the flow of the earth and sand in the chamber, and the discharging volume per rotation. Due to the large change in the amount, the method (c)
Also, since the amount of earth removal volume per one reciprocation of the piston changes greatly depending on the soil state and the flow state of the earth and sand, errors in the calculated earth removal volumes are accumulated, and an accurate earth removal volume cannot be obtained. In the method (d) as well, a measurement error occurs because air enters the pressure feeding pipe.

【0007】方法(e)においても、距離計と鋼車との
間隔は常時変化(積載量、ローリング等による変化)す
る可能性があるため、鋼車の底面高さ及び積荷表面高さ
の計測値に誤差が生じ得る。また、鋼車に積載した排土
の表面は平坦ではないため、超音波又はレーザ距離計で
排土の表面高さを求めるためには多数の距離計を用いる
必要がある。信頼度の高い排土量管理のためには切羽近
傍で掘削直後の排土体積を計測することが望ましいが、
シールド1内の切羽近傍は狭隘であるため多数の距離計
を配置することが難しい。このため方法(e)では排土
体積を切羽から離れた場所で計測せざるを得ず、掘削時
点から見ればかなりの時間遅れが生じてしまう問題点も
ある。信頼度の高い排土量管理のため、狭隘な切羽近傍
において排土体積を正確に計測できる技術の開発が望ま
れている。
Also in the method (e), the distance between the range finder and the steel wagon may constantly change (change due to the loading capacity, rolling, etc.), so that the bottom height of the steel wagon and the height of the cargo surface are measured. There may be errors in the values. In addition, since the surface of the earth removal loaded on the steel wheel is not flat, it is necessary to use a large number of distance meters in order to obtain the surface height of the earth removal using an ultrasonic wave or a laser distance meter. It is desirable to measure the earth removal volume immediately after excavation near the face for reliable earth removal amount management,
Since the vicinity of the face in the shield 1 is narrow, it is difficult to arrange many distance meters. For this reason, in the method (e), the earth removal volume must be measured at a place away from the face, and there is a problem that a considerable time delay occurs when viewed from the excavation time. There is a demand for the development of technology that can accurately measure the volume of soil removal in the vicinity of a narrow face for reliable management of the volume of soil removal.

【0008】そこで本発明の目的は、シールド掘進時に
切羽近傍において排土体積を正確に計測できる方法及び
システムを提供するにある。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a method and a system capable of accurately measuring the volume of soil removal near a face during shield excavation.

【0009】[0009]

【課題を解決するための手段】図1の実施例及び図2の
流れ図を参照するに、本発明のシールド掘進時の排土量
計測方法は、シールド掘進時に切羽から頂面開放搬送器
12に積載して排出される排土量を計測する方法におい
て、搬送器12の通路11の上方に下向き三次元形状計測装
置20を設け、空荷の搬送器12の頂端縁13及びその内側の
積載土受面14の形状の三次元座標(図5(A)参照)を
前記計測装置20により計測し、排土積載後の搬送器12の
頂端縁15及びその内側の積載土表面16の形状の三次元座
標(図5(B)参照)を前記計測装置20により計測し、
頂端縁13、15に対する積載土受面14の相対三次元座標と
積載土表面16の相対三次元座標とから搬送器12毎の積載
排土の体積を算出してなるものである。
With reference to the embodiment of FIG. 1 and the flowchart of FIG. 2, the method of measuring the amount of earth removal during shield excavation according to the present invention is described as follows.
In the method of measuring the amount of soil discharged loaded on 12, a downward three-dimensional shape measuring device 20 is provided above the passage 11 of the transporter 12, and the top end edge 13 of the empty transporter 12 and the inside thereof are provided. The three-dimensional coordinates (see FIG. 5A) of the shape of the loading soil receiving surface 14 are measured by the measuring device 20, and the shape of the top end edge 15 of the transporter 12 and the loading soil surface 16 inside the transporting device 12 after the discharging is loaded. The three-dimensional coordinates (see FIG. 5B) are measured by the measuring device 20,
The volume of the loaded soil for each transporter 12 is calculated from the relative three-dimensional coordinates of the loading soil receiving surface 14 with respect to the top edges 13 and 15 and the relative three-dimensional coordinates of the loading soil surface 16.

【0010】好ましくは、空荷及び排土積載後の搬送器
12の重量を計測し、空荷及び排土積載後の搬送器12の重
量差から搬送器12毎の積載排土の重量を算出する。更に
好ましくは、積載排土の体積と重量とから搬送器12毎の
積載排土の比重を算出する。
[0010] Preferably, the transporter after empty and unloaded loading
The weight of 12 is measured, and the weight of the loaded and discharged soil for each transporter 12 is calculated from the weight difference of the transporter 12 after the empty load and the discharging and loading. More preferably, the specific gravity of the loaded soil for each transporter 12 is calculated from the volume and weight of the loaded soil.

【0011】また図1の実施例を参照するに、本発明の
シールド掘進時の排土量計測システムは、シールド掘進
時に切羽から頂面開放搬送器12に積載して排出される排
土量を計測するシステムにおいて、搬送器12の通路11の
上方に下向きに設けられ且つ搬送器12の頂端縁13、15及
びその内側面14、16の形状の三次元座標(図5参照)を
計測する三次元形状計測装置20、前記三次元座標から頂
端縁13、15に対するその内側面14、16の形状の相対三次
元座標を算出する相対座標算出手段25、及び空荷の搬送
器12の積載土受面14の相対三次元座標と排土積載後の搬
送器12の積載土表面16の相対三次元座標とから搬送器12
毎の積載排土の体積を算出する排土体積算出手段26を備
えてなるものである。
Referring to the embodiment of FIG. 1, the system for measuring the amount of earth removed during shield excavation according to the present invention measures the amount of earth removed and discharged from the face to the top surface open transporter 12 during shield excavation. In the measuring system, a tertiary coordinate is provided downwardly above the passage 11 of the transporter 12 and measures three-dimensional coordinates (see FIG. 5) of the shapes of the top edges 13, 15 and the inner surfaces 14, 16 of the transporter 12. Original shape measuring device 20, relative coordinate calculating means 25 for calculating relative three-dimensional coordinates of the shape of inner surfaces 14, 16 with respect to top edges 13, 15 from the three-dimensional coordinates, and loading soil receiving device for empty cargo transporter 12. From the relative three-dimensional coordinates of the surface 14 and the relative three-dimensional coordinates of the loading soil surface 16 of the transporter 12 after discharging and loading,
The apparatus is provided with an unloading volume calculation means 26 for calculating the volume of the loaded unloading.

【0012】好ましくは、前記空荷及び排土積載後の搬
送器12の重量を計測する重量計測装置30を設け、前記空
荷及び排土積載後の搬送器12の重量差から搬送器12毎の
積載排土の重量を算出する排土重量算出手段33を設け
る。更に好ましくは、前記積載排土の体積と重量とから
搬送器12毎の積載排土の比重を算出する比重算出手段35
を設ける。
Preferably, there is provided a weight measuring device 30 for measuring the weight of the transporter 12 after the empty load and the dumping are loaded, and the weight difference of the transporter 12 after the empty load and the dumping is loaded. Is provided with an unloading weight calculating means 33 for calculating the weight of the loaded unloading. More preferably, specific gravity calculating means 35 for calculating the specific gravity of the loaded soil for each transporter 12 from the volume and weight of the loaded soil.
Is provided.

【0013】[0013]

【発明の実施の形態】図1は本発明の排土量計測システ
ムの一実施例を示す。同図において、カッターチャンバ
ー4からスクリューコンベア6及び二次スクリューコン
ベア9により排出した排土10は、ズリ鋼車等の頂面開放
搬送器12に積載され、切羽から立坑40(図7参照)まで
搬送される。立坑40において排土10を地上に回収して処
分し、空荷の搬送器12を切羽に戻して再び排土10の搬出
に用いる。本発明は、切羽から立坑40に至る搬送器12の
通路11の上方、この場合はズリ鋼車の軌条の上方に、下
向き三次元形状計測装置20を設置する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows an embodiment of the earth removal amount measuring system according to the present invention. In the same figure, the earth removal 10 discharged from the cutter chamber 4 by the screw conveyor 6 and the secondary screw conveyor 9 is loaded on the top open conveyor 12 such as a scrap steel wheel, from the face to the shaft 40 (see FIG. 7). Conveyed. In the shaft 40, the earth removal 10 is collected on the ground and disposed of, and the empty carrier 12 is returned to the face and used again for carrying out the earth removal 10. In the present invention, the downward three-dimensional shape measuring device 20 is installed above the passage 11 of the transporter 12 from the face to the shaft 40, in this case, above the rail of the shearing steel wheel.

【0014】下向き三次元形状計測装置20の一例は、図
4に示すように、搬送器12の進行方向長さ以上の長さで
通路11の方向に延在する走行レール21、走行レール21上
に走行自在に取り付けられ且つ該走行レール21に直交す
る平面と搬送器12の頂端縁(例えば鋼車の側壁上端縁)
及びその内側面との交線の形状を計測する二次元スキャ
ナ22、及び走行レール21上の二次元スキャナ22の走行位
置と走行位置毎の前記交線形状とから搬送器12の頂端縁
13、15及びその内側面14、16の形状の三次元座標を算出
する座標算出手段24を有するものである。走行レール21
は例えばシールド掘進機1又は排土装置(ベルトコンベ
アや二次スクリューコンベア等)を設置している台車の
適当な部位に支持する。
As shown in FIG. 4, an example of the downward three-dimensional shape measuring device 20 is a traveling rail 21 extending in the direction of the passage 11 with a length equal to or longer than the traveling direction of the transporter 12. And the top edge of the transporter 12 (eg, the upper edge of the side wall of the steel wheel).
And a two-dimensional scanner 22 for measuring the shape of the line of intersection with the inner surface thereof, and the top edge of the transporter 12 from the running position of the two-dimensional scanner 22 on the running rail 21 and the crossing line shape for each running position.
It has a coordinate calculating means 24 for calculating three-dimensional coordinates of the shapes of 13, 15 and the inner surfaces 14, 16. Travel rail 21
Is supported on an appropriate part of a bogie on which a shield machine 1 or an earth discharging device (belt conveyor, secondary screw conveyor, or the like) is installed.

【0015】図示例の二次元スキャナ22は、例えばレー
ザ光源からのスポット光27をガルバノミラーにより偏向
させながら走行レール21と直交向きに投光して被計測面
を走査し、スポット光27と被計測面との交点における散
乱光を前記ガルバノミラーによりCCDラインセンサ上
に結像させ、CCDラインセンサの出力信号から被計測
面上の交点までの距離及び向き(角度)を計測する。所
定距離の基準面を走査したときのCCDラインセンサの
出力信号を予め二次元スキャナ22に記憶しておけば、二
次元スキャナ22に固有の基準面に対する出力信号と被計
測面に対する出力信号との比較により基準面と被計測面
との間の距離、及び被計測面までの距離が求まる。ま
た、ガルバノミラーの回転角度から被計測面上の交点の
向きが求まる。被計測面上の交点までの距離及び向きが
求まれば、二次元スキャナ22に対する当該交点の三次元
座標が算出できる。従って二次元スキャナ22により、走
行レール21に直交する平面と走行レール21の下方に位置
付けた搬送器12の頂端縁及びその内側面との交線上の各
点の三次元座標を算出し、その交線の形状を求めること
ができる。このようなスポット光27の走査により被計測
面の表面の三次元座標及び形状を計測する二次元スキャ
ナ22は従来技術に属する。
The two-dimensional scanner 22 shown in the figure, for example, scans a surface to be measured by projecting a spot light 27 from a laser light source in a direction orthogonal to the traveling rail 21 while deflecting the spot light 27 by a galvanomirror. The scattered light at the intersection with the measurement surface is imaged on the CCD line sensor by the galvanometer mirror, and the distance and direction (angle) from the output signal of the CCD line sensor to the intersection on the measurement surface are measured. If the output signal of the CCD line sensor when scanning the reference plane at a predetermined distance is stored in the two-dimensional scanner 22 in advance, the output signal for the reference plane specific to the two-dimensional scanner 22 and the output signal for the surface to be measured can be compared. By comparison, the distance between the reference plane and the measured surface and the distance to the measured surface are obtained. Further, the direction of the intersection on the surface to be measured is determined from the rotation angle of the galvanomirror. If the distance and the direction to the intersection on the measured surface are determined, the three-dimensional coordinates of the intersection with respect to the two-dimensional scanner 22 can be calculated. Therefore, the two-dimensional scanner 22 calculates the three-dimensional coordinates of each point on the intersection line between the plane perpendicular to the traveling rail 21 and the top end edge of the transporter 12 positioned below the traveling rail 21 and the inner surface thereof. The shape of the line can be determined. The two-dimensional scanner 22 that measures the three-dimensional coordinates and the shape of the surface of the surface to be measured by scanning with the spot light 27 belongs to the related art.

【0016】図4(B)に示すように、二次元スキャナ
22のスポット光27の最大偏向角度(最大走査角度)θ
を、走行レール21の下方に位置付けた搬送器12の幅がス
ポット光27の走査範囲に収まるように定める。また走行
レール21の長さを、搬送器12の進行方向の一端から他端
までスポット光27が走査できるように、搬送器12の進行
方向長さ以上とする。走行レール21上の二次元スキャナ
22の走行位置を適当な手段で計測し、二次元スキャナ22
の走行レール21上の走行位置と二次元スキャナ22で求め
た前記交線上の各点の三次元座標とを座標算出手段24に
入力し、座標算出手段24により搬送器12の頂端縁及びそ
の内側面の形状の三次元座標を算出する。座標算出手段
24の一例は、土量計測コンピュータ18に内蔵のプログラ
ムである。
As shown in FIG. 4B, a two-dimensional scanner
Maximum deflection angle (maximum scanning angle) θ of 22 spot lights 27
Is determined such that the width of the transporter 12 positioned below the traveling rail 21 falls within the scanning range of the spot light 27. In addition, the length of the traveling rail 21 is set to be equal to or longer than the length in the traveling direction of the transporter 12 so that the spot light 27 can scan from one end to the other end in the traveling direction of the transporter 12. Two-dimensional scanner on traveling rail 21
The running position of 22 is measured by appropriate means,
The traveling position on the traveling rail 21 and the three-dimensional coordinates of each point on the intersection line obtained by the two-dimensional scanner 22 are input to the coordinate calculating means 24, and the coordinate calculating means 24 inputs the top edge of the transporter 12 and the inside thereof. Calculate the three-dimensional coordinates of the side shape. Coordinate calculation means
An example of the program 24 is a program built in the soil volume measuring computer 18.

【0017】図示例の三次元形状計測装置20によれば、
走査角度θでスポット光27を走査する二次元スキャナ22
を走行レール21上で1回走行させることにより、搬送器
12の頂端縁及びその内側面上の多数のポイントにスポッ
ト光を照射することができ、短時間で多数のポイントの
三次元座標を計測することができる。例えば二次元スキ
ャナ22を速度500mm/秒で走行させた場合、進行方向長
さ4mの搬送器の頂端縁及びその内側面の三次元座標を
8秒(=4000/500)程度の短時間で計測できる。ま
た、走行レール方向に20mm、走行レールと直角方向に12
〜14mm、搬送器12の深さ方向に6mm程度の分解能で多数
のポイントの三次元座標を計測することができ、搬送器
12の頂端縁及びその内側面の高精度な三次元座標の計測
が可能である。しかも、実質上1本の走行レール21の設
置スペースがあれば足り、広い設置スペースを必要とし
ないので、狭隘な切羽近傍にも設置可能である。
According to the three-dimensional shape measuring device 20 in the illustrated example,
Two-dimensional scanner 22 that scans spot light 27 at scanning angle θ
Is transported once on the traveling rail 21 so that the transporter
Many points on the top edge of the twelve and its inner surface can be irradiated with spot light, and three-dimensional coordinates of many points can be measured in a short time. For example, when the two-dimensional scanner 22 is run at a speed of 500 mm / sec, the three-dimensional coordinates of the top edge and the inner surface of the transporter having a length of 4 m in the traveling direction are measured in a short time of about 8 seconds (= 4000/500). it can. In addition, 20 mm in the direction of the running rail and 12 in the direction perpendicular to the running rail
3D coordinates of many points can be measured with a resolution of about 14 mm and a depth of about 6 mm in the depth direction of the transporter 12.
It is possible to measure three-dimensional coordinates of twelve top edges and their inner surfaces with high accuracy. In addition, since it is sufficient if there is practically one installation space for the traveling rail 21 and a large installation space is not required, it can be installed near a narrow face.

【0018】好ましくは、三次元形状計測装置20の走行
レール21の切羽側端を通路11上の排土積込位置(図3参
照)に臨ませ、排土積込位置と計測位置とを隣接させて
設ける。但し、本発明で用いる三次元形状計測装置20は
図示例の二次元スキャナ22利用のものに限定されず、例
えばステレオ画像法、スポット光投影法、パターン光投
影法、モアレトポグラフィー等の三次元画像計測法に基
づく三次元形状計測装置を用いることができる。
Preferably, the end face of the running rail 21 of the three-dimensional shape measuring device 20 faces the dumping loading position (see FIG. 3) on the passage 11 and the dumping loading position and the measuring position are adjacent to each other. To be provided. However, the three-dimensional shape measuring device 20 used in the present invention is not limited to the one using the two-dimensional scanner 22 in the illustrated example, and for example, a three-dimensional image method such as a stereo image method, a spot light projection method, a pattern light projection method, and a moire topography. A three-dimensional shape measurement device based on an image measurement method can be used.

【0019】図1に示すように、三次元形状計測装置20
に相対座標算出手段25と排土体積算出手段26とを接続す
る。相対座標算出手段25は、搬送器12の頂端縁及びその
内側面の形状の三次元座標を入力し、搬送器12の頂端縁
に対するその内側面の相対三次元座標を算出するもので
ある。二次元スキャナ22と搬送器12との間の距離は、搬
送器12への積載量等により常に変化する可能性がある。
従って二次元スキャナ22により求めた搬送器12の頂端縁
及びその内側面の形状の三次元座標には、二次元スキャ
ナ22と搬送器12との間の距離の変化による誤差が含まれ
る。これに対し搬送器12の頂端縁に対するその内側面の
相対三次元座標は、前記距離の変化による誤差が相殺さ
れている。従って相対三次元座標を用いて搬送器12の積
載排土の体積を算出すれば、前記距離の変化による誤差
を含まない高精度な計測が可能である。排土体積算出手
段26は、相対三次元座標により搬送器12の積載排土の体
積を算出するものである。相対座標算出手段25及び排土
体積算出手段26の一例も土量計測コンピュータ18に内蔵
のプログラムである。
As shown in FIG. 1, a three-dimensional shape measuring device 20
Is connected to the relative coordinate calculating means 25 and the earth discharging volume calculating means 26. The relative coordinate calculation means 25 inputs three-dimensional coordinates of the shape of the top edge of the transporter 12 and the inner surface thereof, and calculates relative three-dimensional coordinates of the inner surface of the transporter 12 with respect to the top edge. There is a possibility that the distance between the two-dimensional scanner 22 and the transporter 12 will always change depending on the load on the transporter 12 or the like.
Therefore, the three-dimensional coordinates of the shape of the top edge and the inner surface of the transporter 12 obtained by the two-dimensional scanner 22 include an error due to a change in the distance between the two-dimensional scanner 22 and the transporter 12. On the other hand, the error due to the change in the distance is offset in the relative three-dimensional coordinates of the inner side surface of the transporter 12 with respect to the top edge. Therefore, if the volume of the loaded soil of the transporter 12 is calculated using the relative three-dimensional coordinates, highly accurate measurement that does not include an error due to the change in the distance can be performed. The discharging volume calculating means 26 calculates the volume of the discharging load of the transporter 12 based on the relative three-dimensional coordinates. An example of the relative coordinate calculation means 25 and the soil discharge volume calculation means 26 are also programs built in the soil volume measurement computer 18.

【0020】図1の排土量計測システムを用いた排土量
計測処理の流れを図2に示す。図2の流れ図は、例えば
各々進行方向長さ4m×幅1.4m×深さ3mの3両編成
の搬送器121、122、123を用いてシールド掘進中の排土1
0を搬出する場合を示す。また図3は、排土積込時及び
排土体積計測時における各搬送器121、122、123の位置
を示す。以下、図2の流れ図及び図3を参照して本発明
による排土量計測方法を説明する。
FIG. 2 shows the flow of the earth removal amount measurement process using the earth removal amount measurement system of FIG. The flow chart of FIG. 2 is an example of the unloading 1 during shield excavation using three- carriage conveyors 12 1 , 12 2 , 12 3 each having a length of 4 m × width 1.4 m × depth 3 m in the traveling direction.
This shows the case where 0 is carried out. FIG. 3 shows the positions of the transporters 12 1 , 12 2 , and 12 3 at the time of discharging the soil and measuring the volume of the discharged soil. Hereinafter, the earth removal amount measuring method according to the present invention will be described with reference to the flowchart of FIG. 2 and FIG.

【0021】先ずステップ201において三次元形状計測
装置20の初期処理を行った後、ステップ202において図
3(A)に示すようにバッテリーロコ17等により空荷の
搬送器121、122、123の列を切羽へ進入させる。切羽側
の搬送器123が三次元形状計測装置20の下方に到達した
段階で、図3(B)のように搬送器123を例えば三次元
形状計測装置20の走行レール21の下方である計測位置に
位置決めして停止させ(ステップ203)、三次元形状計
測装置20により空荷の搬送器123の頂端縁及びその内側
の積載土受面の三次元座標を計測する(ステップ20
4)。三次元形状計測装置20による計測は例えば操作員
のペンダントスイッチ37による計測制御手段28に対する
指示により開始するが、適当なセンサ等で搬送器12の計
測位置への位置決めを検知して開始を指示することがで
きる。所定時間の経過等により計測の終了を判断し、次
いでステップ205において三次元形状計測装置20が算出
した頂端縁及び積載土受面の三次元座標を相対座標算出
手段25へ入力し、相対座標算出手段25において空荷の搬
送器123の頂端縁に対する積載土受面の相対三次元座標
を算出する。
First, in step 201, the initial processing of the three-dimensional shape measuring apparatus 20 is performed, and then in step 202, as shown in FIG. 3 (A), empty carriers 12 1 , 12 2 , 12 12 Row 3 goes into the face. At the stage where transporter 12 3 Face side reaches below the three-dimensional shape measuring device 20, is below the running rail 21 shown in FIG. 3 (B) transporter 12 3, for example, three-dimensional shape measuring apparatus 20 as and positioning the measurement position is stopped (step 203), for measuring the three-dimensional coordinates of the transporter 12 3 of the top edge and loading earth receiving surface of the inner unladen by the three-dimensional shape measuring apparatus 20 (step 20
Four). The measurement by the three-dimensional shape measuring apparatus 20 is started, for example, by an operator's instruction to the measurement control means 28 by a pendant switch 37, and the start is instructed by detecting the positioning of the transporter 12 at the measurement position by an appropriate sensor or the like. be able to. The end of the measurement is determined by elapse of a predetermined time or the like, and then, in step 205, the three-dimensional coordinates of the top edge and the loading soil receiving surface calculated by the three-dimensional shape measuring device 20 are input to the relative coordinate calculating means 25, and the relative coordinate calculation is performed. It calculates the relative three-dimensional coordinates of the loading soil abutment against the top edge of the conveying device 12 3 unladen in unit 25.

【0022】図5(A)は空荷の搬送器12の頂端縁13と
積載土受面14の一例を示す。同図に示すように空荷の搬
送器12の内側底部に残土が残っている場合は、搬送器12
の内側内面だけでなく残土表面が積載土受面となる。ま
た図6(A)に示すように残土の表面は必ずしも平坦で
はない。三次元形状計測装置20は、前述したように多数
のポイントの三次元座標を計測できるので、分解能を十
分細かくすることにより、搬送器12の内側の僅かな残土
や残土表面の凹凸をもれなく検出することができ、ステ
ップ204〜205において搬送器12の積載土受面14の正確な
相対三次元座標を算出できる。ステップ205で算出した
各搬送器12の積載土受面14の相対三次元座標は、後述す
るステップ212で使用するため、コンピュータ18の記憶
手段19に記憶する。
FIG. 5A shows an example of the top edge 13 of the empty carrier 12 and the loading soil receiving surface 14. As shown in the figure, if there is residual soil at the bottom inside the empty transporter 12,
The surface of the remaining soil as well as the inner surface of the inside becomes the loading soil receiving surface. Further, as shown in FIG. 6A, the surface of the remaining soil is not always flat. Since the three-dimensional shape measuring device 20 can measure the three-dimensional coordinates of a large number of points as described above, by sufficiently resolving the resolution, it is possible to detect the slight residual soil inside the transporter 12 and the unevenness of the surface of the residual soil without fail. In steps 204 to 205, the accurate relative three-dimensional coordinates of the loading soil receiving surface 14 of the transporter 12 can be calculated. The relative three-dimensional coordinates of the loading soil receiving surface 14 of each transporter 12 calculated in step 205 are stored in the storage unit 19 of the computer 18 for use in step 212 described later.

【0023】ステップ207において全ての空荷の搬送器1
2について積載土受面14の相対三次元座標の算出が終了
したか否かを判断し、未算出の搬送器12がある場合はス
テップ202へ戻り、図3(C)及び(D)に示すように
切羽方向へ進行させながら後続の搬送器122及び121につ
いて積載土受面14の相対三次元座標を算出する。全ての
空荷の搬送器12について積載土受面14の相対三次元座標
を算出したのち、図3(E)のように切羽と反対側の搬
送器121を排土積込位置に位置付け、シールドの掘進を
開始して搬送器121に排土を積み込む(ステップ208)。
In step 207, all empty carriers 1
It is determined whether or not the calculation of the relative three-dimensional coordinates of the loading soil receiving surface 14 has been completed for No. 2, and if there is a transporter 12 that has not been calculated, the process returns to step 202 and is shown in FIGS. 3 (C) and (D). It calculates the relative three-dimensional coordinates of the loading soil abutment 14 for subsequent conveyance 12 2 and 12 1 while traveling to the working face direction as. After calculating the relative three-dimensional coordinates of the loading soil abutment 14 for the transporter 12 of all unladen, positioning the transporter 12 the first working face opposite Hyde loading position as shown in FIG. 3 (E), the start the excavation shield stow earth unloading the transport 12 1 (step 208).

【0024】搬送器121内への排土積み込みが完了した
のち、図3(F)に示すように排土積載後の搬送器121
を切羽と反対に退出させ、再び計測位置に位置決めして
停止させ(ステップ209)、三次元形状計測装置20によ
り排土積載後の搬送器121の頂端縁及びその内側の積載
土表面の三次元座標を計測する(ステップ210)。ステ
ップ210における三次元座標の計測も、例えばペンダン
トスイッチ37による計測制御手段28に対する指示により
開始する。次いでステップ211において、座標算出手段2
4が算出した頂端縁及び積載土表面の三次元座標を相対
座標算出手段25へ入力し、相対座標算出手段25において
排土積載後の搬送器121の頂端縁に対する積載土表面の
相対三次元座標を算出する(ステップ211)。
After the loading and unloading into the transporter 12 1 is completed, as shown in FIG. 3 (F), the transporter 12 1 after the loading and discharging is loaded.
Was leave opposite the working face, again positioned at the measuring position is stopped (step 209), the third-order three-dimensional shape measuring apparatus 20 by dumping the top edge of the conveying device 12 1 after loading and loading soil surface of its inner The original coordinates are measured (step 210). The measurement of the three-dimensional coordinates in step 210 is also started by an instruction from the pendant switch 37 to the measurement control means 28, for example. Next, in step 211, the coordinate calculating means 2
4 inputs the three-dimensional coordinates of the calculated top edge and loading earth surface to the relative coordinate calculating means 25, the relative three-dimensional loading soil surface to the top edge of the conveying device 12 1 after dumping load in the relative coordinate calculating means 25 The coordinates are calculated (step 211).

【0025】図5(B)は排土積載後の搬送器12の頂端
縁15と積載土表面16の一例を示す。積載土表面16は平坦
ではなく、また最終鋼車等では図6(B)に示すように
搬送器12の積載土量が少ない場合又は積載位置が片寄っ
ていることがあるが、十分細かい分解能で多数のポイン
トの三次元座標を計測することにより、積載土表面16の
正確な相対三次元座標を算出できる。ステップ211で算
出した各搬送器12の積載土表面16の相対三次元座標もコ
ンピュータ18の記憶手段19に記憶する。
FIG. 5 (B) shows an example of the top edge 15 of the transporter 12 and the surface 16 of the loaded soil after the loading and discharging. The loading soil surface 16 is not flat, and in the case of a final steel wheel or the like, as shown in FIG. 6 (B), when the loading soil amount of the transporter 12 is small or the loading position is offset, the resolution is sufficiently fine. By measuring the three-dimensional coordinates of a large number of points, the accurate relative three-dimensional coordinates of the loading soil surface 16 can be calculated. The relative three-dimensional coordinates of the loading soil surface 16 of each transporter 12 calculated in step 211 are also stored in the storage means 19 of the computer 18.

【0026】ステップ212において、記憶手段19に記憶
した各搬送器12の積載土受面14及び積載土表面16の相対
三次元座標を排土体積算出手段26に読み込み、搬送器12
毎の積載排土の体積を算出する。体積算出方法の一例
は、積載土受面14の相対三次元座標と積載土表面16の相
対三次元座標とで囲まれた領域の体積を算出するもので
ある。相対三次元座標から積載排土の体積を算出するこ
とにより、三次元形状計測装置20と搬送器12との間隔の
変化に拘わらず、正確な体積が算出できる。
In step 212, the relative three-dimensional coordinates of the loading soil receiving surface 14 and the loading soil surface 16 of each transporter 12 stored in the storage means 19 are read into the discharge volume calculation means 26,
Calculate the volume of each load dump. One example of the volume calculation method is to calculate the volume of a region surrounded by the relative three-dimensional coordinates of the loading soil receiving surface 14 and the relative three-dimensional coordinates of the loading soil surface 16. By calculating the volume of the loaded earth from the relative three-dimensional coordinates, an accurate volume can be calculated irrespective of a change in the distance between the three-dimensional shape measuring device 20 and the transporter 12.

【0027】なお、三次元形状計測装置20がシールド掘
進機1に直接又は間接的に支持されている場合は、シー
ルド掘進中に走行レール21が移動するので、二次元スキ
ャナ22の走行速度とシールド掘削速度との差が誤差発生
の要因となり得る。例えば掘削速度30mm/分と想定する
と、10秒の計測時間で5mmの距離誤差が発生する。しか
し、距離誤差は搬送器12の進行方向長さ(例えば4m)
に比し十分に小さく、二次元スキャナ22の走行方向と掘
進方向とが同一方向であるため、積載排土体積の精度に
与える影響は小さい。
When the three-dimensional shape measuring device 20 is directly or indirectly supported by the shield machine 1, the traveling rail 21 moves during the shield excavation. The difference from the excavation speed may cause an error. For example, assuming an excavation speed of 30 mm / min, a distance error of 5 mm occurs in a measurement time of 10 seconds. However, the distance error is the length in the traveling direction of the transporter 12 (for example, 4 m).
Since the traveling direction of the two-dimensional scanner 22 and the excavation direction are the same direction, the influence on the accuracy of the volume of the unloaded soil is small.

【0028】ステップ211において全ての搬送器12につ
いて積載排土の体積の算出が終了したか否かを判断し、
未算出の搬送器12がある場合はステップ208へ戻り、搬
送器列を切羽と反対方向に後退させながら、図3(G)
のように後続の搬送器122を排土積込位置に位置付けて
排土を積み込む。更に図3(H)のように搬送器122
計測位置へ位置決めし、搬送器122の積載排土の体積を
算出する。なお、計測位置と積込位置とを隣接して設け
ることにより、搬送器121を計測位置へ位置付けた時に
後続の搬送器122を排土積込位置へ位置付けることがで
き、搬送器121の積載土体積の計測と搬送器122に対する
排土積込とを並行処理することが可能である。ステップ
208〜216の繰り返しにより全ての搬送器12について積載
排土の体積を算出したのち、ステップ217において排土
積載後の搬送器12を立坑40へ移動させる。
In step 211, it is determined whether or not the calculation of the volume of the loaded earth has been completed for all the transporters 12, and
If there is an uncalculated transporter 12, the process returns to step 208, and the transporter row is moved backward in the direction opposite to the cutting face, while FIG.
Stow earth removal position the subsequent transporter 12 2 Hyde loading position as. Further transporter 12 2 is positioned to the measurement position as shown in FIG. 3 (H), to calculate the volume of the loading dumping of transporter 12 2. Incidentally, by providing adjacent the measuring position and the loading position, it is possible to position the transporter 12 2 subsequent when positioned transporter 12 1 to the measuring position to the earth removal the loading position, the transporter 12 1 it is possible to concurrently process the soil discharge loading loading soil volume between the measurement for the transporter 12 second. Steps
After the volumes of the unloading and discharging of all the transporters 12 are calculated by repeating steps 208 to 216, the transporter 12 after the loading and discharging is moved to the shaft 40 in step 217.

【0029】ステップ218でシールドの掘進終了を判断
し、掘進を継続する場合はステップ202へ戻り排土量の
計測を継続する。例えば図7に示すように、2系統の3
両編成搬送器121、122、123及び124、125、126を切羽と
立坑との間で往復させながら図2の流れ図による排土量
計測を繰り返し、搬送器12毎の積載排土の体積を累積す
ることにより、リング毎の排土体積を正確に計測するこ
とができる。計測した排土体積は、土量計測コンピュー
タ18の表示装置又は印刷装置に随時出力して、排土量管
理に供する。また、添加剤注入管7により添加剤等をカ
ッターチャンバー4に注入している場合は、ステップ21
2で算出した積載土体積を注入添加剤の体積で補正する
ことにより、一層高精度な排土体積を計測することがで
きる。
At step 218, it is determined whether the excavation of the shield has been completed. If the excavation is to be continued, the process returns to step 202 to continue the measurement of the earth removal amount. For example, as shown in FIG.
While reciprocating the two knitting conveyors 12 1 , 12 2 , 12 3 and 12 4 , 12 5 , 12 6 between the cutting face and the shaft, repeating the earth removal amount measurement according to the flow chart of FIG. By accumulating the volume of earth removal, the earth removal volume of each ring can be accurately measured. The measured soil removal volume is output to a display device or a printing device of the soil volume measurement computer 18 as needed, and is used for soil removal volume management. If the additive or the like is injected into the cutter chamber 4 through the additive injection pipe 7, step 21 is executed.
By correcting the loaded soil volume calculated in 2 with the volume of the injected additive, it is possible to measure the discharged soil volume with higher accuracy.

【0030】本発明によれば、超音波やレーザ距離計等
で搬送器の積載土体積を計測する従来方法に比し、計測
装置と搬送器との間隔の変化に影響されない高精度な排
土体積の計測が可能である。また、搬送器の底部に残土
がある場合でも、残土上に積載した排土の体積を正確に
求めることができる。更に、三次元形状計測装置を狭隘
な切羽近傍に設置することができ、掘削後速やかに排土
体積を正確に計測することができるので、信頼度の高い
排土量管理に寄与することができ、地山の取り込み不足
又は取り込み過剰の防止対策等を迅速にとることが可能
となる。
According to the present invention, as compared with the conventional method of measuring the loaded soil volume of a transporter by using an ultrasonic wave or a laser distance meter, a high-precision soil removal which is not affected by a change in the distance between the measuring device and the transporter. Measurement of volume is possible. Further, even when there is residual soil at the bottom of the transporter, the volume of the discharged soil loaded on the residual soil can be accurately obtained. Furthermore, the three-dimensional shape measuring device can be installed near a narrow face, and the volume of the discharged soil can be accurately measured immediately after excavation, which contributes to reliable management of the discharged amount. Therefore, it is possible to quickly take measures to prevent insufficient or excessive incorporation of the ground.

【0031】こうして本発明の目的である「シールド掘
進時に切羽近傍において排土体積を正確に計測できる方
法及びシステム」の提供が達成できる。
Thus, it is possible to achieve the object of the present invention, that is, "a method and a system capable of accurately measuring the earth removal volume in the vicinity of a face during shield excavation".

【0032】[0032]

【実施例】図1及び図2の実施例では、切羽近傍の計測
位置に三次元形状計測装置20と共に搬送器12の重量を計
測する重量計測装置30を設け、搬送器12の積載土体積と
共にその重量を計測している。図示例の重量計測装置30
は、搬送器12を吊り上げるクレーン31とロードセル等の
重量センサ32とを有する。油圧ジャッキ等を用いて圧力
換算による重量計測や油圧ジャッキとロードセルとを組
み合わせて簡単に精度よく搬送器12の重量を計測する方
法もある。搬送器12にロードセル等を取り付けて積載排
土の重量を計測してもよい。また、搬送器12の通路11に
ロードセル等を設置して搬送器12の重量を計測すること
も可能であるが、この場合は切羽付近で計測するために
掘進にあわせて牽引して行く必要があり、煩わしい作業
が生じると共に高価である。図1の重量計測装置30は、
シールド掘進機1や排土装置の適当な部位に取り付ける
ことができ且つ安価である利点を有する。
In the embodiment shown in FIGS. 1 and 2, a weight measuring device 30 for measuring the weight of the transporter 12 is provided together with the three-dimensional shape measuring device 20 at the measurement position near the face, and together with the volume of the loaded soil of the transporter 12, The weight is being measured. Weight measuring device 30 in the illustrated example
Has a crane 31 for lifting the transporter 12 and a weight sensor 32 such as a load cell. There is also a method of measuring weight by pressure conversion using a hydraulic jack or the like, or simply and accurately measuring the weight of the transporter 12 by combining a hydraulic jack and a load cell. A load cell or the like may be attached to the transporter 12 to measure the weight of the loaded soil. It is also possible to measure the weight of the transporter 12 by installing a load cell or the like in the passage 11 of the transporter 12, but in this case, it is necessary to tow along with the excavation to measure near the face. Yes, it is cumbersome and expensive. The weight measuring device 30 of FIG.
There is an advantage that it can be attached to an appropriate part of the shield machine 1 or the earth removal device and is inexpensive.

【0033】図1の実施例では、図3(B)〜(D)の
ように進入時に空荷の搬送器12を計測位置へ位置付けた
時にクレーン31で吊上げて該搬送器12の重量を計測し、
計測重量を排土重量算出手段33へ入力してメモリ19に記
憶する(図2のステップ206)。また、図3(F)、
(H)、(J)のように排土積載後の搬送器12を計測位
置へ位置付けた時に該搬送器12の重量を計測し(ステッ
プ213)、計測重量を排土重量算出手段33へ入力してメ
モリ19に記憶する。排土重量算出手段33は、メモリ19に
記憶した進入時と退出時の重量差から搬送器12毎の積載
排土の重量を算出する(ステップ214)。なお、本発明
で使用する三次元形状計測装置20は、搬送器12を吊上げ
た状態でも振動しない限り正確な三次元座標を計測でき
るので、積載排土の体積計測と重量計測とを同時に並行
処理することも可能である。
In the embodiment of FIG. 1, when the empty transporter 12 is positioned at the measurement position when entering as shown in FIGS. 3B to 3D, it is lifted by the crane 31 and the weight of the transporter 12 is measured. And
The measured weight is input to the earth discharging weight calculating means 33 and stored in the memory 19 (step 206 in FIG. 2). FIG. 3 (F),
As shown in (H) and (J), when the transporter 12 after loading and unloading is positioned at the measurement position, the weight of the transporter 12 is measured (step 213), and the measured weight is input to the unloading weight calculation means 33. And store it in the memory 19. The unloading weight calculating means 33 calculates the weight of the unloading dump for each transporter 12 from the difference between the entry and exit weights stored in the memory 19 (step 214). Note that the three-dimensional shape measuring device 20 used in the present invention can measure accurate three-dimensional coordinates as long as it does not vibrate even when the transporter 12 is lifted. It is also possible.

【0034】更に図1の実施例は、積載排土の体積と重
量とから搬送器12毎の積載排土の比重を算出する比重算
出手段35を設けている。本発明によれば、切羽近傍に設
けた三次元形状計測装置20及び重量計測装置30により掘
削後速やかに排土の体積及び重量を計測でき、比重算出
手段35により掘削直後の排土の比重を求めることができ
る。排土の比重から掘削中の土質を推定することがで
き、カッタートルクや推力等の各種データと比重との関
係から掘進状況を推定することができる。また排土の比
重の変化から、スクリューコンベアを経て掘削土と共に
地下水が飛び出す噴発の有無も分かる。従って、掘削直
後の排土の比重が計測可能な本発明は、シールド掘進機
1の掘進管理への寄与が期待できる。
Further, the embodiment of FIG. 1 is provided with specific gravity calculating means 35 for calculating the specific gravity of the loaded soil for each transporter 12 from the volume and weight of the loaded soil. According to the present invention, the volume and weight of the excavated soil can be measured immediately after excavation by the three-dimensional shape measuring device 20 and the weight measuring device 30 provided near the face, and the specific gravity of the excavated earth immediately after excavation can be measured by the specific gravity calculating means 35. You can ask. The soil quality during excavation can be estimated from the specific gravity of the discharged soil, and the excavation situation can be estimated from the relationship between various data such as cutter torque and thrust and the specific gravity. Also, from the change in the specific gravity of the discharged soil, it can be determined whether or not there is an eruption of groundwater jumping out along with the excavated soil via the screw conveyor. Therefore, the present invention, which can measure the specific gravity of the earth removal immediately after excavation, can be expected to contribute to the excavation management of the shield excavator 1.

【0035】図7は、切羽近傍に三次元形状計測装置20
を設けて排土体積を計測し、立坑40に重量計測装置30を
設けて排土重量を計測する本発明の実施例を示す。同図
の重量計測装置30は、立坑40の坑口に設けた重量センサ
42付き門型クレーン41を有する。この場合は、立坑40に
おいて空荷の搬送器12を切羽へ進行させる前にその重量
を計測し、切羽近傍において搬送器12の積載排土の体積
を土量計測コンピュータ18により計測し、立坑40へ退出
した後に排土積載後の搬送器12の重量を重量計測装置30
で計測する。進入前と退出後の搬送器12の重量差から、
立坑40に設けた重量計測コンピュータ44により搬送器12
毎の積載排土の重量を算出する。図示例の重量計測コン
ピュータ44は、図1の排土重量算出プログラム33とメモ
リ45とを備えたものである。
FIG. 7 shows a three-dimensional shape measuring device 20 near the face.
An embodiment of the present invention is shown in which the volume of soil removal is measured by providing a pit, and the weight measuring device 30 is provided in the shaft 40 to measure the weight of the soil removal. The weight measuring device 30 shown in the figure is a weight sensor provided at the entrance of the shaft 40.
It has a portal crane 41 with 42. In this case, the weight of the empty transporter 12 is measured before the transport to the face in the shaft 40, and the volume of the unloaded soil of the transporter 12 is measured by the soil volume measurement computer 18 in the vicinity of the face, and the shaft 40 After exiting the conveyor, the weight of the transporter 12 after loading and discharging is measured by the weight measuring device 30
Measure with From the weight difference of the transporter 12 before entry and after exit,
The transporter 12 is operated by a weight measurement computer 44 provided in the shaft 40.
Calculate the weight of each unloading soil. The weight measuring computer 44 in the illustrated example is provided with the discharged soil weight calculation program 33 and the memory 45 shown in FIG.

【0036】また図7の実施例では、土量計測コンピュ
ータ18及び重量計測コンピュータ44を通信インタフェー
ス38及び43経由で管理事務所47のホストコンピュータ48
に接続している。ホストコンピュータ48に比重算出手段
35を設け、土量計測コンピュータ18及び重量計測コンピ
ュータ44から搬送器12毎の積載排土の体積及び重量をホ
ストコンピュータ48へ伝送し、搬送器12毎の積載排土の
比重を管理事務所で求める。図7のように排土量をホス
トコンピュータで一元管理することにより、データ整合
性の確認の容易化を図り、排土量管理の信頼度の一層の
向上が期待できる。
In the embodiment shown in FIG. 7, the volume measuring computer 18 and the weight measuring computer 44 are connected to the host computer 48 of the management office 47 via the communication interfaces 38 and 43.
Connected to Specific gravity calculation means in host computer 48
35, the volume and weight of the loaded soil for each transporter 12 are transmitted from the soil volume measuring computer 18 and the weight measuring computer 44 to the host computer 48, and the specific gravity of the loaded soil for each transporter 12 is determined by the management office. Ask. By centrally managing the earth removal amount by the host computer as shown in FIG. 7, it is possible to easily confirm the data consistency, and it is expected that the reliability of the earth removal amount management is further improved.

【0037】[0037]

【発明の効果】以上説明したように、本発明のシールド
掘進時の排土量計測方法及びシステムは、空荷の搬送器
の頂端縁及び積載土受面の三次元座標を三次元形状計測
装置により計測し、排土積載後の搬送器の頂端縁及び積
載土表面の三次元座標を前記計測装置により計測し、前
記頂端縁に対する積載土受面の相対三次元座標と積載土
表面の相対三次元座標とから搬送器毎の積載排土の体積
を算出するので、次の顕著な効果を奏する。
As described above, the method and system for measuring the amount of earth removed during shield excavation according to the present invention provide a three-dimensional shape measuring device for measuring the three-dimensional coordinates of the top edge of the empty carrier and the receiving surface of the loaded soil. The three-dimensional coordinates of the top edge and the loading soil surface of the conveyor after discharging and loading are measured by the measurement device, and the relative three-dimensional coordinates of the loading soil receiving surface with respect to the top edge and the relative tertiary of the loading soil surface are measured. Since the volume of the loaded earth for each transporter is calculated from the original coordinates, the following remarkable effects are obtained.

【0038】(イ)土質や土砂の流動状態に拘わらず、
排土の体積を直接的に且つ正確に計測できる。 (ロ)計測装置と搬送器との間隔の変化に拘わらず、高
精度な排土体積の計測が可能である。 (ハ)搬送器の底部に残土がある場合でも、残土上に積
載した排土の体積を正確に求めることができる。 (ニ)三次元形状計測装置のコンパクト化を図ることに
より、狭隘な切羽近傍で掘削後速やかに正確な排土体積
を計測できる。 (ホ)正確な排土体積の計測により、地山の取り込み不
足又は取り込み過剰の防止対策等を迅速にとることが可
能となり、排土量管理の質及びレベルの向上が期待でき
る。 (ヘ)排土の体積と重量の両者を計測することにより排
土の比重を求めることができ、排土の比重によるシール
ド掘進管理への寄与も期待できる。 (ト)搬送器識別システム等との組み合わせにより排土
量計測の自動化ヘの寄与も期待できる。 (チ)排土量計測システムの構築により、信頼度の高い
排土量管理、バランス管理の簡易化、管理コストの低減
等も期待できる。
(A) Regardless of the soil condition and the flow of soil,
The volume of earth removal can be measured directly and accurately. (B) Irrespective of the change in the distance between the measuring device and the transporter, highly accurate measurement of the discharged volume can be performed. (C) Even when there is residual soil at the bottom of the transporter, the volume of the discharged soil loaded on the residual soil can be accurately obtained. (D) By reducing the size of the three-dimensional shape measuring apparatus, it is possible to accurately measure the volume of discharged soil immediately after excavation near a narrow face. (E) By accurately measuring the earth removal volume, it is possible to quickly take measures to prevent insufficient or excessive incorporation of the ground, and to improve the quality and level of earth removal amount management. (F) By measuring both the volume and the weight of the earth removal, the specific gravity of the earth removal can be obtained, and the contribution of the specific gravity of the earth removal to shield excavation management can be expected. (G) Contribution to automation of earth removal amount measurement can also be expected by combination with a carrier identification system and the like. (H) By constructing the earth removal amount measurement system, it is expected that earth removal amount management with high reliability, simplification of balance management, reduction of management cost, and the like can be expected.

【図面の簡単な説明】[Brief description of the drawings]

【図1】は、本発明の土量計測システムの一実施例の説
明図である。
FIG. 1 is an explanatory diagram of an embodiment of a soil volume measurement system according to the present invention.

【図2】は、図1のシステムを用いた土量計測方法の流
れ図の一例である。
FIG. 2 is an example of a flowchart of a soil volume measuring method using the system of FIG. 1;

【図3】は、本発明の排土量計測方法の説明図である。FIG. 3 is an explanatory diagram of the earth removal amount measuring method of the present invention.

【図4】は、三次元形状計測装置の一例の説明図であ
る。
FIG. 4 is an explanatory diagram of an example of a three-dimensional shape measuring device.

【図5】は、搬送器の頂端縁及びその内側面の三次元座
標の説明図である。
FIG. 5 is an explanatory diagram of three-dimensional coordinates of a top edge of a transporter and an inner surface thereof.

【図6】は、搬送器内の残土及び積載排土の説明図であ
る。
FIG. 6 is an explanatory diagram of remaining soil and loaded earth in a transporter.

【図7】は、本発明の土量計測システムの他の実施例の
説明図である。
FIG. 7 is an explanatory diagram of another embodiment of the soil volume measurement system of the present invention.

【符号の説明】[Explanation of symbols]

1…シールド掘進機 2…地盤 3…カッターヘッド 4…カッターチャンバー 5…隔壁 6…スクリューコンベア 7…添加剤注入管 8…セグメント 9…二次スクリューコンベア 10…排土 11…通路 12…搬送器 13…頂端縁 14…積載土受面 15…頂端縁 16…積載土表面 17…バッテリーロコ 18…土量計測コンピュータ 19…メモリ 20…三次元形状計測装置 21…走行レール 22…二次元スキャナ 24…座標算出手段 25…相対座標算出手段 26…排土体積算出手段 27…スポット光 28…計測制御手段 30…重量計測装置 31…クレーン 32…重量センサ 33…排土重量算出手段 35…比重算出手段 37…ペンダントスイッチ 38…通信インタフェース 40…立坑 41…門型クレーン 42…重量センサ 43…通信インタフェース 44…重量計測コンピュータ 45…メモリ 47…管理事務所 48…ホストコンピュータ DESCRIPTION OF SYMBOLS 1 ... Shield excavator 2 ... Soil 3 ... Cutter head 4 ... Cutter chamber 5 ... Partition wall 6 ... Screw conveyor 7 ... Additive injection pipe 8 ... Segment 9 ... Secondary screw conveyor 10 ... Ejection 11 ... Path 12 ... Conveyor 13 … Top edge 14… Loading soil receiving surface 15… Top edge 16… Loading soil surface 17… Battery locomotive 18… Soil measuring computer 19… Memory 20… Three-dimensional shape measuring device 21… Travel rail 22… 2D scanner 24… Coordinates Calculation means 25 ... relative coordinate calculation means 26 ... discharge volume calculation means 27 ... spot light 28 ... measurement control means 30 ... weight measuring device 31 ... crane 32 ... weight sensor 33 ... discharge weight calculation means 35 ... specific gravity calculation means 37 ... Pendant switch 38 Communication interface 40 Vertical shaft 41 Gate crane 42 Weight sensor 43 Communication interface 44 Weight measuring computer 45 Memory 47 Administrative office 48 Host Computer

───────────────────────────────────────────────────── フロントページの続き (72)発明者 中津留 寛介 東京都港区元赤坂一丁目2番7号 鹿島建 設株式会社内 (72)発明者 斎木 孝文 大阪市城東区成育4−20−19 ビッグラン ドファイブ城東302号 Fターム(参考) 2D054 AC02 DA03 DA17 DA25 GA12 GA25 GA58 GA62 GA65 GA70 GA82 2F065 AA04 AA06 AA12 AA53 AA59 BB05 CC00 FF09 FF42 FF65 HH04 JJ03 JJ26 LL13 LL62 MM07 MM16 PP02 QQ23 QQ28 ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Kansuke Nakatsuru Kashima Construction Co., Ltd. 1-2-7 Moto-Akasaka, Minato-ku, Tokyo (72) Inventor Takafumi Saiki 4-20-19 Seikaku, Joto-ku, Osaka-shi Big Run DOFIVE Joto 302 F-term (Reference) 2D054 AC02 DA03 DA17 DA25 GA12 GA25 GA58 GA62 GA65 GA70 GA82 2F065 AA04 AA06 AA12 AA53 AA59 BB05 CC00 FF09 FF42 FF65 HH04 JJ03 JJ26 LL13 LL62 MM07 Q28 Q02 Q02 Q

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】シールド掘進時に切羽から頂面開放搬送器
に積載して排出される排土量を計測する方法において、
搬送器の通路上方に下向き三次元形状計測装置を設け、
空荷の搬送器の頂端縁及びその内側の積載土受面の形状
の三次元座標を前記計測装置により計測し、排土積載後
の搬送器の頂端縁及びその内側の積載土表面の形状の三
次元座標を前記計測装置により計測し、前記頂端縁に対
する積載土受面の相対三次元座標と積載土表面の相対三
次元座標とから前記搬送器毎の積載排土の体積を算出し
てなるシールド掘進時の排土量計測方法。
1. A method for measuring an amount of earth removal discharged from a face to a top surface open transporter when the shield is excavated,
A downward three-dimensional shape measuring device is provided above the path of the transporter,
The three-dimensional coordinates of the shape of the top edge of the empty carrier and the shape of the loading soil receiving surface inside it are measured by the measuring device, and the top edge of the transporter after discharging and the shape of the shape of the loading soil surface inside it are measured. The three-dimensional coordinates are measured by the measuring device, and the volume of the loaded soil for each transporter is calculated from the relative three-dimensional coordinates of the loaded soil receiving surface with respect to the top edge and the relative three-dimensional coordinates of the loaded soil surface. How to measure the amount of earth removal during shield excavation.
【請求項2】請求項1の計測方法において、前記空荷及
び排土積載後の搬送器の重量を計測し、前記空荷及び排
土積載後の搬送器の重量差から前記搬送器毎の積載排土
の重量を算出してなるシールド掘進時の排土量計測方
法。
2. The measuring method according to claim 1, wherein the weight of the transporter after the empty load and the dumping is loaded is measured, and the weight difference of the transporter after the empty load and the dumping is loaded. A method of measuring the amount of earth removal during shield excavation by calculating the weight of the earth unloading.
【請求項3】請求項2の計測方法において、前記積載排
土の体積と重量とから前記搬送器毎の積載排土の比重を
算出してなるシールド掘進時の排土量計測方法。
3. The method according to claim 2, wherein a specific gravity of the loaded soil for each of the transporters is calculated from a volume and a weight of the loaded soil.
【請求項4】請求項1から3の何れかの計測方法におい
て、前記三次元形状計測装置に、搬送器の進行方向長さ
以上の長さで前記通路方向に延在し且つ通路上方に固定
の走行レール、前記走行レール上に走行自在に取り付け
られ且つ該走行レールに直交する平面と前記搬送器の頂
端縁及びその内側面との交線の形状を計測する二次元ス
キャナ、及び前記走行レール上の二次元スキャナの走行
位置と走行位置毎の前記交線形状とから前記搬送器の頂
端縁及びその内側面の形状の三次元座標を算出する座標
算出手段を含めてなるシールド掘進時の排土量計測方
法。
4. The measuring method according to claim 1, wherein the three-dimensional shape measuring device extends in the direction of the passage with a length equal to or more than the length in the traveling direction of the transporter and is fixed above the passage. A traveling rail, a two-dimensional scanner which is mounted on the traveling rail so as to be able to travel freely, and measures a shape of an intersection line between a plane perpendicular to the traveling rail and a top end edge and an inner surface thereof, and the traveling rail Discharge at the time of shield excavation including coordinate calculation means for calculating three-dimensional coordinates of the shape of the top edge of the transporter and the inner surface thereof from the travel position of the above two-dimensional scanner and the intersection line shape at each travel position. How to measure soil volume.
【請求項5】請求項4の計測方法において、前記走行レ
ールの切羽側端を排土積込位置に臨ませてなるシールド
掘進時の排土量計測方法。
5. The method according to claim 4, wherein the end of the running rail facing the cutting face faces the discharge loading position, and the amount of discharged soil is measured during shield excavation.
【請求項6】シールド掘進時に切羽から頂面開放搬送器
に積載して排出される排土量を計測するシステムにおい
て、搬送器の通路上方に下向きに設けられ且つ搬送器の
頂端縁及びその内側面の形状の三次元座標を計測する三
次元形状計測装置、前記三次元座標から頂端縁に対する
その内側面の形状の相対三次元座標を算出する相対座標
算出手段、及び空荷の搬送器の積載土受面の前記相対三
次元座標と排土積載後の搬送器の積載土表面の前記相対
三次元座標とから搬送器毎の積載排土の体積を算出する
排土体積算出手段を備えてなるシールド掘進時の排土量
計測システム。
6. A system for measuring the amount of soil removed from a cutting face loaded onto a top-opening transporter when excavating a shield, provided downward above a passageway of the transporter, and a top end edge of the transporter and the inside thereof. A three-dimensional shape measuring device for measuring the three-dimensional coordinates of the shape of the side surface, a relative coordinate calculating means for calculating the relative three-dimensional coordinates of the shape of the inner side surface with respect to the top edge from the three-dimensional coordinates, and loading of an empty cargo transporter A discharge volume calculating means for calculating a volume of the loaded soil for each transporter from the relative three-dimensional coordinates of the soil receiving surface and the relative three-dimensional coordinates of the loaded soil surface of the transported material after loading. Measurement system for earth removal during shield excavation.
【請求項7】請求項6のシステムにおいて、前記空荷及
び排土積載後の搬送器の重量を計測する重量計測装置を
設け、前記空荷及び排土積載後の搬送器の重量差から前
記搬送器毎の積載排土の重量を算出する排土重量算出手
段を設けてなるシールド掘進時の排土量計測システム。
7. The system according to claim 6, further comprising a weight measuring device for measuring a weight of the transporter after the empty load and the discharge of the earth are loaded, wherein the weight measuring device measures the weight of the transporter after the empty load and the discharge of the earth is loaded. An earth removal amount measurement system at the time of shield excavation provided with an earth removal weight calculating means for calculating the weight of the loaded earth discharging for each transporter.
【請求項8】請求項7のシステムにおいて、前記積載排
土の体積と重量とから前記搬送器毎の積載排土の比重を
算出する比重算出手段を設けてなるシールド掘進時の排
土量計測システム。
8. The system according to claim 7, further comprising a specific gravity calculating means for calculating a specific gravity of the loaded soil for each of the transporters based on a volume and a weight of the loaded soil, and measuring an amount of unloaded soil during the excavation of the shield. system.
【請求項9】請求項6から8の何れかのシステムにおい
て、前記三次元形状計測装置に、搬送器の進行方向長さ
以上の長さで前記通路方向に延在し且つ通路上方に固定
の走行レール、前記走行レール上に走行自在に取り付け
られ且つ該走行レールに直交する平面と前記搬送器の頂
端縁及びその内側面との交線の形状を計測する二次元ス
キャナ、及び前記走行レール上の二次元スキャナの走行
位置と走行位置毎の前記交線形状とから前記搬送器の頂
端縁及びその内側面の形状の三次元座標を算出する座標
算出手段を含めてなるシールド掘進時の排土量計測シス
テム。
9. The system according to claim 6, wherein the three-dimensional shape measuring device extends in the direction of the passage with a length not less than the length in the traveling direction of the transporter and is fixed above the passage. A traveling rail, a two-dimensional scanner attached to the traveling rail so as to be able to travel freely and measuring a shape of an intersection line between a plane perpendicular to the traveling rail and a top end edge and an inner surface of the transporter; From the traveling position of the two-dimensional scanner and the intersection line shape at each traveling position, including the coordinate calculating means for calculating the three-dimensional coordinates of the shape of the top end edge and the inner side surface of the transporter, and unloading during shield excavation. Quantity measurement system.
JP2001079951A 2001-03-21 2001-03-21 Method and system for measuring amount of earth removal in shield excavation Pending JP2002277222A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001079951A JP2002277222A (en) 2001-03-21 2001-03-21 Method and system for measuring amount of earth removal in shield excavation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001079951A JP2002277222A (en) 2001-03-21 2001-03-21 Method and system for measuring amount of earth removal in shield excavation

Publications (1)

Publication Number Publication Date
JP2002277222A true JP2002277222A (en) 2002-09-25

Family

ID=18936316

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001079951A Pending JP2002277222A (en) 2001-03-21 2001-03-21 Method and system for measuring amount of earth removal in shield excavation

Country Status (1)

Country Link
JP (1) JP2002277222A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007532929A (en) * 2004-04-19 2007-11-15 シック アイヴィピー エービー Measuring device and method in distribution system
JP2009025066A (en) * 2007-07-18 2009-02-05 Taisei Corp Conveyance amount estimation device
JP2015158045A (en) * 2014-02-21 2015-09-03 鹿島建設株式会社 Excavation sediment weight measuring device of shield machine
CN107356203A (en) * 2017-08-09 2017-11-17 顺丰科技有限公司 One kind loads measuring device and measuring method
CN107607058A (en) * 2017-09-26 2018-01-19 中铁第四勘察设计院集团有限公司 A kind of remaining coal automatic checkout system and detection method
JP2019184534A (en) * 2018-04-17 2019-10-24 大成建設株式会社 Volumetric measurement system of object to be transported stored in moving body
US11062061B2 (en) 2015-03-30 2021-07-13 Volvo Construction Equipment Ab System and method for determining the material loading condition of a bucket of a material moving machine

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS612007A (en) * 1984-06-15 1986-01-08 Kajima Corp Method for measuring volume of earth and sand in earth carrying ship
JPH0193503U (en) * 1987-12-14 1989-06-20
JPH03261809A (en) * 1990-03-09 1991-11-21 Rijks Inst Voor Fisherijonderzoek Method and apparatus for measuring material body volume
JPH03273118A (en) * 1990-03-23 1991-12-04 Daitoo:Kk Method and system for measuring sediment loadage on vehicle
JPH07157051A (en) * 1993-12-08 1995-06-20 Penta Ocean Constr Co Ltd Capacity measuring device for conveyed object on belt conveyor
JPH0988067A (en) * 1995-09-22 1997-03-31 Fudo Constr Co Ltd Placement device of bubble-contained light weight soil
JPH11211438A (en) * 1998-01-22 1999-08-06 Komatsu Ltd Load carrying platform load volume measuring device
JPH11292249A (en) * 1998-04-06 1999-10-26 Ohbayashi Corp Management system for conveying amount by belt conveyor
JP2000304511A (en) * 1999-04-23 2000-11-02 Kajima Corp Soil volume measuring method and apparatus

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS612007A (en) * 1984-06-15 1986-01-08 Kajima Corp Method for measuring volume of earth and sand in earth carrying ship
JPH0193503U (en) * 1987-12-14 1989-06-20
JPH03261809A (en) * 1990-03-09 1991-11-21 Rijks Inst Voor Fisherijonderzoek Method and apparatus for measuring material body volume
JPH03273118A (en) * 1990-03-23 1991-12-04 Daitoo:Kk Method and system for measuring sediment loadage on vehicle
JPH07157051A (en) * 1993-12-08 1995-06-20 Penta Ocean Constr Co Ltd Capacity measuring device for conveyed object on belt conveyor
JPH0988067A (en) * 1995-09-22 1997-03-31 Fudo Constr Co Ltd Placement device of bubble-contained light weight soil
JPH11211438A (en) * 1998-01-22 1999-08-06 Komatsu Ltd Load carrying platform load volume measuring device
JPH11292249A (en) * 1998-04-06 1999-10-26 Ohbayashi Corp Management system for conveying amount by belt conveyor
JP2000304511A (en) * 1999-04-23 2000-11-02 Kajima Corp Soil volume measuring method and apparatus

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007532929A (en) * 2004-04-19 2007-11-15 シック アイヴィピー エービー Measuring device and method in distribution system
JP2009025066A (en) * 2007-07-18 2009-02-05 Taisei Corp Conveyance amount estimation device
JP2015158045A (en) * 2014-02-21 2015-09-03 鹿島建設株式会社 Excavation sediment weight measuring device of shield machine
US11062061B2 (en) 2015-03-30 2021-07-13 Volvo Construction Equipment Ab System and method for determining the material loading condition of a bucket of a material moving machine
CN107356203A (en) * 2017-08-09 2017-11-17 顺丰科技有限公司 One kind loads measuring device and measuring method
CN107607058A (en) * 2017-09-26 2018-01-19 中铁第四勘察设计院集团有限公司 A kind of remaining coal automatic checkout system and detection method
CN107607058B (en) * 2017-09-26 2023-09-26 中铁第四勘察设计院集团有限公司 Automatic residual coal detection system and detection method
JP2019184534A (en) * 2018-04-17 2019-10-24 大成建設株式会社 Volumetric measurement system of object to be transported stored in moving body
JP7093668B2 (en) 2018-04-17 2022-06-30 大成建設株式会社 Volume measurement system for objects to be transported contained in a moving object

Similar Documents

Publication Publication Date Title
US20240084529A1 (en) Determining milled volume or milled area of a milled surface
JP4369419B2 (en) Guided travel control device for unmanned vehicles
CN104838072B (en) Reclaimer three-D volumes rate control device and its control method
JP5779713B2 (en) Method and apparatus for determining an area to be cut with a cutting roller by at least one construction machine or excavation machine
US20080005938A1 (en) Method and apparatus for determining the loading of a bucket
US9938674B2 (en) Cold planer transport payload monitoring system
WO2020026507A1 (en) System and method for controlling work machine
JP6757749B2 (en) Work machine management system, work machine, work machine management method
CN110520889B (en) Job site management device and job site management method
KR101080961B1 (en) Measuring Method for Mass of Loaded Soil on Dump Truck and Calculating Method of Soil Volume Conversion Factor
JP2002277222A (en) Method and system for measuring amount of earth removal in shield excavation
US11933017B2 (en) Work machine
FI111836B (en) Method and apparatus for automatic loading of a dumper
JP2022061028A (en) Loading amount management system
JPH09297023A (en) Measuring apparatus for relative position of unloader excavating part to hull
CN211446515U (en) Anti-collision device and milling machine
US20220186446A1 (en) Truck measurement of a milling machine
JPH10338356A (en) Bulk material stack shape measuring method and bulk material stack storage quantity computing method
JP2021173722A (en) Soil amount measuring method
JP3533537B2 (en) Earth removal volume measuring device
JP7227871B2 (en) material handling machine
JPH0977470A (en) Position detecting method of cylindrical object and device thereof
JP7093668B2 (en) Volume measurement system for objects to be transported contained in a moving object
KR20230051846A (en) Vehicle weight detection system using LiDAR
CN110846991A (en) Anti-collision device, milling machine and milling machine control method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070703

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091030

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091104

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100302