JP2000304511A - Soil volume measuring method and apparatus - Google Patents

Soil volume measuring method and apparatus

Info

Publication number
JP2000304511A
JP2000304511A JP11720399A JP11720399A JP2000304511A JP 2000304511 A JP2000304511 A JP 2000304511A JP 11720399 A JP11720399 A JP 11720399A JP 11720399 A JP11720399 A JP 11720399A JP 2000304511 A JP2000304511 A JP 2000304511A
Authority
JP
Japan
Prior art keywords
soil
dimensional coordinates
volume
dimensional
transporter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11720399A
Other languages
Japanese (ja)
Other versions
JP3544630B2 (en
Inventor
Yoshikazu Miyauchi
良和 宮内
Tsutomu Hayazaki
勉 早崎
Satoru Miura
悟 三浦
Izuru Kuronuma
出 黒沼
Shozo Aoki
省三 青木
Yuji Ota
裕士 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Original Assignee
Kajima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp filed Critical Kajima Corp
Priority to JP11720399A priority Critical patent/JP3544630B2/en
Publication of JP2000304511A publication Critical patent/JP2000304511A/en
Application granted granted Critical
Publication of JP3544630B2 publication Critical patent/JP3544630B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To directly and accurately measure the volume of soil. SOLUTION: Soil 1 is loaded onto an upper-end-opened carrying vessel 2 whose three-dimensional shape is known, and the three-dimensional coordinates of an upper end edge 3a of the carrying vessel 2 and the surface of the load earth 1 are measured by a downward three-dimensional image measuring apparatus 5. The three-dimensional coordinates of a shape of the carrying vessel 2 is determined from the three-dimensional coordinates of the upper end edge 3a of the carrying vessel 2, and the volume of the soil 1 is calculated from the three-dimensional coordinates of the surface of the loaded soil 1 and the three-dimensional coordinates of the shape of the carrying vessel 2. It is preferable that a light projector 10 projecting a group of slit lights combined in a lattice type and a stereo type image sensing devices 12R, 12L measuring three- dimensional coordinates of each cross point of a lattice pattern formed by the projection of the group of the slit lights are contained in the measuring apparatus 5, and the three-dimensional coordinates are measured by a stereo image sensing method.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は土量計測方法及び装
置に関し、とくに土工事現場において掘削土や搬出土の
容積(以下、土量という。)を正確に計測する方法及び
装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for measuring soil volume, and more particularly to a method and an apparatus for accurately measuring the volume of excavated soil or unloaded soil (hereinafter referred to as soil volume) at an earthworks site.

【0002】[0002]

【従来の技術】例えば土工事で地山の掘削により発生し
た土(土及び砂を含む。以下同じ。)は、ダンプトラッ
ク等に積載して工事現場から搬出し、他の工事現場の埋
め立てなどに供される。従来、施工管理の観点からこれ
らの掘削土量や搬出土量を計測する場合は、次のような
方法によることが多い。
2. Description of the Related Art For example, soil (including soil and sand; the same applies hereinafter) generated by excavation of ground in earthworks is carried out from a construction site by loading it on a dump truck or the like and reclaimed at another construction site. To be served. Conventionally, when measuring the amount of excavated soil or the amount of unloaded soil from the viewpoint of construction management, the following method is often used.

【0003】(1)掘削前と掘削後の地山の形状を測量
し、掘削前後の地山形状の差から掘削土量を求める。 (2)掘削土をトラック等で搬出する場合、土積載前の
トラック重量と土積載後のトラック重量をロードセル利
用のトラックスケール等の測定装置で測定し、積載前後
の重量差を地山における土の単位体積重量で除算するこ
とにより、間接的に搬出土量を求める。
(1) The shape of the ground before and after excavation is measured, and the amount of excavated soil is determined from the difference between the ground shapes before and after excavation. (2) When the excavated soil is carried out by a truck or the like, the weight of the truck before and after loading the soil is measured by a measuring device such as a truck scale using a load cell, and the difference in weight before and after the loading is measured in the soil at the ground. By indirectly dividing by the unit volume weight of, the amount of excavated soil is obtained indirectly.

【0004】[0004]

【発明が解決しようとする課題】しかし従来の(1)掘
削前後の地山形状差から土量を求める方法は、地山の状
態からほぐされた土は土量変化率に従って体積が変化す
ること及び土量変化率自体も土の性状によって異なって
くることから、「搬出・運搬した土量は何m3であるか」
という基準で土量管理をする場合に正確な土量が求めら
れない問題点がある。
However, the conventional method of (1) determining the soil volume from the difference in ground shape before and after excavation is that the volume of the soil loosened from the ground condition changes according to the soil volume change rate. and from the fact that also soil the amount of the rate of change itself differs depending on the nature of the soil, "carry-out and transport the soil amount or What is the m 3"
There is a problem that accurate soil volume cannot be obtained when managing soil volume based on the standard.

【0005】また従来の(2)積載前後の重量差から間
接的に土量を求める方法も、地山における土の単位体積
重量は均一でないこと及び除算により間接的に土量を算
出する方法であることから、誤差が累積して必ずしも正
確な土量を求めることができない問題点がある。
The conventional method of (2) indirectly calculating the soil volume from the weight difference before and after loading is also a method in which the unit volume weight of the soil in the ground is not uniform and the volume is indirectly calculated by division. For this reason, there is a problem that an error is accumulated and an accurate soil volume cannot always be obtained.

【0006】他方、施工管理の情報化の進展に応じ、正
確な土量管理による質の高い施工管理が求められてい
る。
On the other hand, with the progress of computerization of construction management, high-quality construction management by accurate soil volume management is required.

【0007】そこで本発明の目的は、土の容積を直接且
つ正確に計測する土量計測方法及び装置を提供するにあ
る。
It is an object of the present invention to provide a soil volume measuring method and apparatus for directly and accurately measuring the volume of soil.

【0008】[0008]

【課題を解決するための手段】図1及び図2の実施例を
参照するに、本発明の土量計測方法は、土の容積を計測
する方法において、三次元形状が既知の上端開放搬送器
2内に土1を積載し、下向き三次元画像計測装置5によ
り搬送器2の上端縁3a及び積載土1の表面の三次元座標
を計測し、上端縁3aの三次元座標から搬送器2の形状の
三次元座標を定め、積載土1の表面の三次元座標と搬送
器2の形状の三次元座標とから土1の容積を算出してな
るものである。
Referring to the embodiments of FIGS. 1 and 2, a method for measuring the volume of soil according to the present invention is a method for measuring the volume of soil. The soil 1 is loaded in the container 2, the three-dimensional coordinates of the upper edge 3 a of the transporter 2 and the surface of the loaded soil 1 are measured by the downward three-dimensional image measurement device 5, and the three-dimensional coordinates of the upper edge 3 a of the transporter 2 are measured. The three-dimensional coordinates of the shape are determined, and the volume of the soil 1 is calculated from the three-dimensional coordinates of the surface of the loading soil 1 and the three-dimensional coordinates of the shape of the carrier 2.

【0009】また図1及び図2を参照するに、本発明の
土量計測装置は、土の容積を計測する装置において、土
積載用の上端開放搬送器2の三次元形状を記憶する記憶
手段6、土積載後の搬送器2が進入可能な計測室17、計
測室17上部に下向きに取り付けられ搬送器2の上端縁3a
及び積載土1の表面の三次元座標を計測する三次元画像
計測装置5、上端縁3aの三次元座標から搬送器2の形状
の三次元座標を定める座標割付手段7、及び積載土1の
表面の三次元座標と搬送器2の形状の三次元座標とから
土1の容積を算出する容積算出手段8を備えてなるもの
である。
Referring to FIGS. 1 and 2, a soil volume measuring device according to the present invention is a device for measuring the volume of soil, which is a storage means for storing a three-dimensional shape of an upper end open conveyor 2 for loading soil. 6. The measuring chamber 17 into which the transporter 2 after soil loading can enter, and the upper edge 3a of the transporter 2 which is mounted downward on the upper part of the measuring chamber 17
And a three-dimensional image measuring device 5 for measuring the three-dimensional coordinates of the surface of the loading soil 1, coordinate assigning means 7 for determining three-dimensional coordinates of the shape of the transporter 2 from the three-dimensional coordinates of the upper edge 3a, and the surface of the loading soil 1. And a volume calculating means 8 for calculating the volume of the soil 1 from the three-dimensional coordinates of the carrier 2 and the three-dimensional coordinates of the shape of the carrier 2.

【0010】[0010]

【発明の実施の形態】図1は本発明の土量計測装置のシ
ステムブロック図の一例を示し、図2は例えばトラック
等の荷台(以下、ベッセルということがある。)を上端
開放搬送器2とし、ベッセル上に積載した土量を図1の
装置で計測する実施例を示す。図1の三次元画像計測装
置5は、例えばCCDカメラ装置である一対のステレオ
式撮像装置12R、12Lと、格子状に組み合わせた可視スリ
ット光の群(以下、メッシュ光という。)を投光する投
光器10と、撮像装置12R、12Lによる一対の二次元画像か
ら三次元座標を算出する座標算出手段15を有し、三次元
画像計測法の一例であるステレオ画像法に基づき計測対
象の三次元座標を計測するものである。座標算出手段15
の一例はコンピュータ16に内蔵のプログラムであり、図
中の符号14はコンピュータ16に接続した画像入力ボード
を示す。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows an example of a system block diagram of a soil volume measuring device of the present invention, and FIG. An example in which the amount of soil loaded on the vessel is measured by the apparatus shown in FIG. The three-dimensional image measurement device 5 in FIG. 1 projects a group of visible slit light (hereinafter, referred to as mesh light) combined with a pair of stereo image pickup devices 12R and 12L, for example, a CCD camera device, in a grid pattern. The projector 10 has coordinate calculation means 15 for calculating three-dimensional coordinates from a pair of two-dimensional images by the imaging devices 12R and 12L, and three-dimensional coordinates of a measurement target based on a stereo image method which is an example of a three-dimensional image measurement method. Is to measure. Coordinate calculation means 15
One example is a program built in the computer 16, and reference numeral 14 in the figure denotes an image input board connected to the computer 16.

【0011】ステレオ画像法とは、図7に示すように、
異なる位置に設けた一対の撮像装置12R、12Lにより計測
対象19を異なる向きから撮影し、各撮像装置12R、12Lの
二次元画像IwR、IwLにおける対象19の像の二次元座標
(像に対応する水平画素及び垂直画素の画像上での位置
座標をいう。以下同じ。)から対象19の三次元座標を求
める画像計測法である。同図を参照してステレオ画像法
の原理を簡単に説明すると、計測対象19上の点Pの三次
元座標を(X、Y、Z)、撮像装置12Rの画像IwRの座標系に
おける点Pの像Paの二次元座標を(Xa、Ya)、撮像装置12
Lの画像IwLの座標系における点Pの像Pbの二次元座標を
(Xb、Yb)とした場合、点Pから像Pa及び像Pbへの変換式
は各座標の同次座標系表現を用いて下記式(1)(2)のよう
に表わすことができる。ここで、(X、Y、Z、1)T、(Xa、
Ya、1)T、(Xb、Yb、1)Tは同次座標系表現による点P、
像Pa、像Pbの座標を表し、肩書のTは転置行列を示す。
The stereo image method is, as shown in FIG.
A pair of imaging devices 12R provided at different positions, 12L by photographing the measurement target 19 from different directions, the imaging devices 12R, the two-dimensional image Iw R of 12L, the two-dimensional coordinates (the images of the object 19 in Iw L This is an image measurement method for obtaining the three-dimensional coordinates of the object 19 from the position coordinates of the corresponding horizontal and vertical pixels on the image. Briefly explaining the principle of the stereo image method with reference to the figure, the three-dimensional coordinates of the point P on the measurement object 19 (X, Y, Z) , a point in the coordinate system of the image Iw R of the imaging device 12R P The two-dimensional coordinates of the image Pa of (Xa, Ya), the imaging device 12
The two-dimensional coordinates of the image Pb of the point P in the coordinate system of the image Iw L of L
When (Xb, Yb) is used, the conversion formula from the point P to the image Pa and the image Pb can be expressed as the following formulas (1) and (2) using the homogeneous coordinate system expression of each coordinate. Where (X, Y, Z, 1) T , (Xa,
Ya, 1) T , (Xb, Yb, 1) T are points P in homogeneous coordinate system representation,
The coordinates of the image Pa and the image Pb are shown, and the title T indicates a transposed matrix.

【0012】各撮像装置12R、12Lの画像IwR、IwLから座
標(Xa、Ya)及び(Xb、Yb)を求めて式(1)(2)に代入し、式
(3)(4)で表されるHa及びHbを用いて式(1)(2)を展開・整
理すると式(5)〜(8)が得られる。式(9)で定義する行列
F、Q、Vを用いて式(5)〜(8)を纏めるとF=QV(式(10))
となるので、逆行列Q-1の存在を条件に、式(11)から三
次元座標(X、Y、Z)が算出できる。すなわちステレオ画
像法では、式(1)(2)の行列A及びB等の変換パラメータ
が定まれば、一対の二次元画像IwR、IwLから複数の像の
三次元座標を同時に求めることが可能である。なお3台
以上の撮像装置12によるステレオ画像計測も可能であ
り、撮像装置12の台数に応じて行列F、Qの行数が増え
る。
The coordinates (Xa, Ya) and (Xb, Yb) are obtained from the images Iw R and Iw L of the image pickup devices 12R and 12L, and are substituted into equations (1) and (2).
By expanding and rearranging equations (1) and (2) using Ha and Hb expressed by (3) and (4), equations (5) to (8) are obtained. Matrix defined by equation (9)
Formulas (5) to (8) are summarized using F, Q, and V, and F = QV (Formula (10))
Therefore, the three-dimensional coordinates (X, Y, Z) can be calculated from Expression (11) on condition that the inverse matrix Q −1 exists. That is, in the stereo image method, if the conversion parameters such as the matrices A and B in the equations (1) and (2) are determined, it is possible to simultaneously obtain the three-dimensional coordinates of a plurality of images from the pair of two-dimensional images Iw R and Iw L. It is possible. Note that stereo image measurement by three or more imaging devices 12 is also possible, and the number of rows of the matrices F and Q increases according to the number of imaging devices 12.

【0013】[0013]

【数1】 (Equation 1)

【0014】ただしステレオ画像法では、一対の二次元
画像IwR、IwL上の対応点Pa、Pbの検出(以下、マッチン
グという。)が難しいことがある。図1及び2では、計
測対象へメッシュ光を投光し、メッシュ光の投影により
計測対象上に形成された格子模様(以下、メッシュとい
う。)を一対の撮像装置12R、12Lで撮影し、二次元画像
IwR、IwL上のメッシュ像の交点(以下、メッシュ交点と
いう。)を検出することによりマッチングの容易化、高
精度化を図っている。メッシュ光は、光の散乱を防ぐた
めスリットレーザー光の組み合わせとすることができ
る。図1の符号13はコンピュータ16に接続したメッシュ
光制御回路を示し、メッシュ光の間隔をコンピュータ16
及び制御回路13により調整する。ただしマッチングのた
めの対応点は、メッシュ光の投影に限らず、多数のスポ
ット光の投影など他の方法で形成してもよい。
However, in the stereo image method, it may be difficult to detect the corresponding points Pa and Pb on the pair of two-dimensional images Iw R and Iw L (hereinafter, referred to as matching). In FIGS. 1 and 2, a mesh light is projected onto a measurement target, and a lattice pattern (hereinafter, referred to as a mesh) formed on the measurement target by projecting the mesh light is photographed by a pair of imaging devices 12R and 12L. Dimensional image
Detecting intersections of mesh images on Iw R and Iw L (hereinafter referred to as mesh intersections) facilitates matching and increases accuracy. The mesh light can be a combination of slit laser light to prevent light scattering. Reference numeral 13 in FIG. 1 indicates a mesh light control circuit connected to the computer 16, and the interval between mesh lights is set to the computer 16.
And adjustment by the control circuit 13. However, the corresponding points for matching are not limited to the projection of the mesh light, but may be formed by other methods such as projection of a large number of spot lights.

【0015】以下、図2を参照して、図1の三次元画像
計測装置5によりトラック・ベッセルに積載した土量を
計測する場合について説明する。ただし、本発明で用い
る搬送器2はトラック・ベッセルに限定されない。また
本発明で用いる三次元画像計測装置5は、ステレオ画像
法に基づくものに限定されず、スポット光投影法、スリ
ット光投影法、パターン光投影法、モアレトポグラフィ
ーなどに基づくものとすることができる。
Referring now to FIG. 2, a description will be given of a case where the volume of soil loaded on the truck / vessel is measured by the three-dimensional image measuring device 5 of FIG. However, the transporter 2 used in the present invention is not limited to a track vessel. The three-dimensional image measuring device 5 used in the present invention is not limited to the one based on the stereo image method, but may be based on a spot light projection method, a slit light projection method, a pattern light projection method, a moire topography, or the like. it can.

【0016】図2では、土工事現場の任意場所に搬送器
2が進入可能な計測室17を画成する支持枠4を設置し、
計測室17の上部の支持枠4に三次元画像計測装置5を下
向きに取り付けている。図示例の支持枠4は、所定間隔
で搬送機2を跨ぐ一対の門型部材4a、4bと、門型部材4
a、4bの頂部の間を連結する梁部材4cとを有する。一対
の門型部材4a、4bで画成した計測室にトラックを進入さ
せ、下向き計測装置5によりベッセル積載の土量を計測
する。
In FIG. 2, a support frame 4 that defines a measurement room 17 into which the transporter 2 can enter is installed at an arbitrary place on the earth work site,
The three-dimensional image measurement device 5 is attached to the support frame 4 above the measurement room 17 downward. The illustrated support frame 4 includes a pair of portal members 4a and 4b that straddle the transporter 2 at predetermined intervals,
a and a beam member 4c connecting between the tops of 4b. The truck enters the measuring room defined by the pair of portal members 4a, 4b, and the downward measuring device 5 measures the volume of the vessel loaded on the vessel.

【0017】なお図示例は2台の撮像装置12R、12Lを有
する計測装置5を示すが、測定精度向上のため3台以上
の撮像装置12を使用してもよい。また支持枠4上の計測
装置5の取付位置は、各撮像装置12R、12Lの撮像範囲に
トラック・ベッセル全体が収まり且つメッシュ光がベッ
セル全体に満遍なく投光されるように検討のうえ決定す
ることができ、図示例に限定されない。
Although the illustrated example shows the measuring device 5 having two image pickup devices 12R and 12L, three or more image pickup devices 12 may be used to improve measurement accuracy. The mounting position of the measuring device 5 on the support frame 4 should be determined after examination so that the entire track vessel and the mesh light can be uniformly projected on the entire vessel in the imaging range of each of the imaging devices 12R and 12L. Is not limited to the illustrated example.

【0018】図2における土量計測の流れ図の一例を図
5に示す。先ずステップ501において、搬送器2の三次
元形状を計測して記憶手段6(図1)に記憶する。搬送
器2がトラック・ベッセルである場合は、図3(B)に
示すベッセル2の積載面3b及び上端縁3aの三次元形状を
計測し、例えば図3(C)に示すように三次元グラフィ
ック画像Ig3b、Ig3aとして記憶手段6に記憶する。搬送
器2の積載面3b及び上端縁3aの三次元形状は、例えば土
積載前に三次元画像計測装置5で求めてもよく、またC
AD等で作成した搬送器2の三次元設計形状としてもよ
い。一旦搬送器2の三次元座標を計測して記憶すれば、
次回の土量計測からは記憶データを読み出せば足りるの
で、ステップ501は省略可能である。
FIG. 5 shows an example of a flow chart of the soil volume measurement in FIG. First, in step 501, the three-dimensional shape of the transporter 2 is measured and stored in the storage means 6 (FIG. 1). When the transporter 2 is a truck vessel, the three-dimensional shape of the loading surface 3b and the upper edge 3a of the vessel 2 shown in FIG. 3B is measured, and for example, a three-dimensional graphic as shown in FIG. Images Ig 3b and Ig 3a are stored in the storage means 6. The three-dimensional shape of the loading surface 3b and the upper end edge 3a of the transporter 2 may be obtained by, for example, the three-dimensional image measuring device 5 before loading the soil.
A three-dimensional design shape of the transporter 2 created by AD or the like may be used. Once the three-dimensional coordinates of the transporter 2 are measured and stored,
Since it is sufficient to read the stored data from the next soil volume measurement, step 501 can be omitted.

【0019】ステップ502で土積載後の搬送器2を計測
室に進入させて停止させ、ステップ503でステレオ画像
法の変換パラメータを較正する。変換パラメータには前
記式(1)(2)の行列A及びB等が含まれる。変換パラメー
タの較正(以下、キャリブレーションということがあ
る。)は、例えば撮像装置12R、12Lの撮像範囲に予め三
次元座標(式(1)(2)の(X、Y、Z))が既知の6以上の基
準点(図示せず)を設置し、各基準点について撮像装置
12R、12Lの各画像上の二次元座標(式(1)(2)の(Xa、Y
a)、(Xb、Yb))を検出することにより行なうことができ
る。ステレオ画像法のキャリブレーションについては、
本発明者が掘削地山等の変位計測管理システムを開示し
た特開平8-219783号公報に詳述されている。
At step 502, the transporter 2 after loading the soil is moved into the measurement room and stopped, and at step 503, the conversion parameters of the stereo image method are calibrated. The conversion parameters include the matrices A and B in the above equations (1) and (2). For calibration of the conversion parameter (hereinafter, sometimes referred to as calibration), for example, three-dimensional coordinates ((X, Y, Z) of the equations (1) and (2)) are known in advance in the imaging range of the imaging devices 12R and 12L. 6 or more reference points (not shown) are set, and an imaging device is provided for each of the reference points.
Two-dimensional coordinates on each image of 12R and 12L ((Xa, Y in equations (1) and (2)
a), (Xb, Yb)). For calibration of the stereo image method,
The present inventor has disclosed in detail Japanese Patent Application Laid-Open No. Hei 8-219783, which disclosed a displacement measurement management system for excavation ground and the like.

【0020】なお、ステレオ画像法の変換パラメータを
一旦較正すれば、撮像装置12R及び12Lの位置・姿勢・レ
ンズの焦点距離等が一定である限り次回以降の土量計測
でも同じ変換パラメータが使用できるので、ステップ50
3は省略可能である。
Once the conversion parameters of the stereo image method are calibrated, the same conversion parameters can be used in the subsequent soil volume measurement as long as the positions, postures, lens focal lengths, etc. of the imaging devices 12R and 12L are constant. So step 50
3 can be omitted.

【0021】ステップ504及び505において投光器10から
搬送器2上へメッシュ光を投光し、撮像装置12R及び12L
により搬送器上端縁3a及び積載土1表面を撮影する。図
3(A)はトラック後方から見た積載土表面のメッシュ
交点18を表し、図4は撮像装置12R及び12Lで撮影した二
次元画像IwR、IwLを示す。同図に示すように、二次元画
像IwR、IwLにおいてメッシュ交点18は像18R、18Lとして
観察できるので、二次元画像IwR、IwLにおける対応点が
容易に検出できる。画像IwR、IwLはコンピュータ16の表
示装置(図示せず)に映し出して確認することができ
る。なお図3及び4では支持枠4を省略している。
In steps 504 and 505, the mesh light is projected from the light projector 10 onto the carrier 2, and the image pickup devices 12R and 12L
Photograph the upper edge 3a of the transporter and the surface of the loading soil 1. FIG. 3A shows the mesh intersection 18 on the surface of the loaded soil viewed from the back of the truck, and FIG. 4 shows two-dimensional images Iw R and Iw L taken by the imaging devices 12R and 12L. As shown in the drawing, the mesh intersection 18 in a two-dimensional image Iw R, Iw L so can be observed as an image 18R, 18L, can corresponding points easily detected in the two-dimensional image Iw R, Iw L. The images Iw R and Iw L can be displayed on a display device (not shown) of the computer 16 and can be confirmed. 3 and 4, the support frame 4 is omitted.

【0022】ステップ506では、座標算出手段15により
二次元画像IwR、IwLの各メッシュ交点像18R、18Lの二次
元座標(式(1)(2)の(Xa、Ya)、(Xb、Yb))を求め、ステ
ップ503で較正した変換パラメータA、Bを用い、前記
式(11)に基づき各メッシュ交点18の三次元座標(式(1)
(2)の(X、Y、Z))を算出する。メッシュ光の間隔を十分
細かくすれば、実質上、メッシュ交点18の三次元座標の
集合を搬送器上端縁3a及び積載土1表面の三次元座標と
みなすことができる。メッシュ交点18の三次元座標の集
合により作成したベッセル2の上端縁3a及び積載土1表
面の三次元グラフィック画像Ig3a、Ig1の一例を図3
(C)に示す。
[0022] At step 506, the two-dimensional image Iw R by the coordinate calculation unit 15, each mesh intersection image 18R of Iw L, 18L of the two-dimensional coordinates (Equation (1) (2) (Xa, Ya), (Xb, Yb)), and using the conversion parameters A and B calibrated in step 503, the three-dimensional coordinates (Eq. (1)) of each mesh intersection 18 based on Eq.
(2) (X, Y, Z)) is calculated. If the mesh light interval is made sufficiently small, a set of the three-dimensional coordinates of the mesh intersection 18 can be regarded as the three-dimensional coordinates of the upper edge 3a of the transporter and the surface of the loading soil 1 substantially. FIG. 3 shows an example of three-dimensional graphic images Ig 3a and Ig 1 of the upper edge 3a of the vessel 2 and the surface of the loading soil 1 created by a set of three-dimensional coordinates of the mesh intersection 18.
It is shown in (C).

【0023】例えば図3(A)のように搬送器2の上端
縁3aが積載土1の表面の周縁に存在する場合は、ステッ
プ506で求めたメッシュ交点18の三次元座標の集合のう
ち、周縁部分のメッシュ交点18の三次元座標を搬送器上
端縁3aの三次元座標と考えることができる。搬送器上端
縁3aの三次元座標を一層容易且つ確実に求めるため、図
3及び4に示すように、メッシュ交点18と識別可能な視
標20a〜20dを搬送器上端縁3aに取り付けてもよい。この
場合はステップ506において、二次元画像IwR、IwLから
メッシュ交点像18R、18Lと共に視標像20R、20Lの二次元
座標を求め、メッシュ交点18と共に指標20の三次元座標
を算出する。例えばベッセル2の上端縁3aが同一平面上
にあるときは、上端縁3aに取り付けた3以上の指標20の
三次元座標から上端縁3aの三次元座標を求めることがで
きる。
For example, as shown in FIG. 3A, when the upper edge 3a of the transporter 2 is present on the peripheral edge of the surface of the loading soil 1, in the set of three-dimensional coordinates of the mesh intersection 18 obtained in step 506, The three-dimensional coordinates of the mesh intersection 18 in the peripheral portion can be considered as the three-dimensional coordinates of the upper edge 3a of the transporter. In order to more easily and reliably determine the three-dimensional coordinates of the upper edge 3a of the transporter, optotypes 20a to 20d that can be distinguished from the mesh intersection 18 may be attached to the upper edge 3a of the transporter as shown in FIGS. . In this case, in step 506, the two-dimensional coordinates of the optotype images 20R and 20L together with the mesh intersection images 18R and 18L are obtained from the two-dimensional images Iw R and Iw L, and the three-dimensional coordinates of the index 20 are calculated together with the mesh intersection 18. For example, when the upper edge 3a of the vessel 2 is on the same plane, the three-dimensional coordinates of the upper edge 3a can be obtained from the three-dimensional coordinates of three or more indices 20 attached to the upper edge 3a.

【0024】ステップ507において、図1の座標割付手
段7により、ステップ506で求めた搬送器上端縁3aの三
次元座標から搬送器2の形状の三次元座標を定める。例
えば搬送器上端縁3aの三次元座標と搬送器2の設計寸法
とから、搬送器2の載置面3bの三次元座標を定めること
ができる。本ステップで定まる搬送器2の積載面3bの三
次元座標は、ベッセル2と接する積載土1の底側表面の
三次元座標である。すなわち図3(C)に示すように、
ステップ506及び507により積載土表面の三次元座標と搬
送器2の形状の三次元座標とから積載土1の全表面の三
次元座標が定まる。座標割付手段7の一例は、コンピュ
ータ16内蔵の画像処理プログラムである。
In step 507, the three-dimensional coordinates of the shape of the transporter 2 are determined from the three-dimensional coordinates of the upper edge 3a of the transporter obtained in step 506 by the coordinate allocating means 7 in FIG. For example, the three-dimensional coordinates of the mounting surface 3b of the transporter 2 can be determined from the three-dimensional coordinates of the upper edge 3a of the transporter and the design dimensions of the transporter 2. The three-dimensional coordinates of the loading surface 3b of the transporter 2 determined in this step are the three-dimensional coordinates of the bottom surface of the loading soil 1 in contact with the vessel 2. That is, as shown in FIG.
In steps 506 and 507, the three-dimensional coordinates of the entire surface of the loading soil 1 are determined from the three-dimensional coordinates of the surface of the loading soil and the three-dimensional coordinates of the shape of the transporter 2. One example of the coordinate allocating means 7 is an image processing program built in the computer 16.

【0025】なお図3(C)は積載土表面が搬送器2の
上端縁3aより上方にある場合を示すが、図6のように積
載土表面が搬送器2の上端縁3aより下方にある場合も、
積載土表面の三次元座標と搬送器2の形状の三次元座標
とから積載土1の全表面の三次元座標を定めることがで
きる。
FIG. 3C shows a case where the loading soil surface is above the upper edge 3a of the transporter 2, but the loading soil surface is below the upper edge 3a of the transporter 2 as shown in FIG. Also,
The three-dimensional coordinates of the entire surface of the loading soil 1 can be determined from the three-dimensional coordinates of the surface of the loading soil and the three-dimensional coordinates of the shape of the transporter 2.

【0026】積載土1の全表面の三次元座標が定まれ
ば、ステップ508において、図1の容積算出手段8によ
り積載土1の容積が算出できる。容積算出方法の一例
は、積載土1の全表面の三次元座標から、例えばメッシ
ュの縦方向断面又は横方向断面毎に平均断面計算法を用
いて積載土1の容積を算出するものである。容積算出手
段8の一例は、立体表面の三次元座標から平均断面計算
法により容積を算出するコンピュータ16内蔵のプログラ
ムである。ただし、容積算出方法は平均断面計算法に限
定されず、立体表面の三次元座標から容積を求める他の
従来技術を用いることができる。
When the three-dimensional coordinates of the entire surface of the loading soil 1 are determined, in step 508, the volume of the loading soil 1 can be calculated by the volume calculating means 8 in FIG. An example of the volume calculation method is to calculate the volume of the loading soil 1 from the three-dimensional coordinates of the entire surface of the loading soil 1 using, for example, an average cross-section calculation method for each of the vertical and horizontal cross sections of the mesh. One example of the volume calculating means 8 is a program built in the computer 16 for calculating the volume from the three-dimensional coordinates of the three-dimensional surface by the average sectional calculation method. However, the volume calculation method is not limited to the average cross-section calculation method, and other conventional techniques for obtaining the volume from the three-dimensional coordinates of the three-dimensional surface can be used.

【0027】ステップ509において積載土1の容積を累
積したのち、ステップ510で土量計測の終了を判断し、
ステップ502へ戻り土量計測を継続するか又は計測を終
了する。土工事現場では、搬出トラックのベッセル積載
土量の累積により、搬出土量が管理できる。累積土量
は、随時コンピュータ16の表示装置又は印刷装置に出力
して施工管理に供することができる。
After accumulating the volume of the loaded soil 1 in step 509, it is determined in step 510 that the soil volume measurement has been completed.
Return to step 502 to continue soil volume measurement or end the measurement. At the earth work site, the amount of unloaded soil can be managed by accumulating the volume of soil loaded on the vessel of the unloading truck. The accumulated soil volume can be output to a display device or a printing device of the computer 16 at any time and used for construction management.

【0028】本発明によれば、掘削土量及び搬出土量を
土量変化率や土の単位体積重量に拘わらず直接的に且つ
正確に計測することができ、土量管理のレベル向上を図
ることができる。また搬送器識別システム等との組み合
わせにより土量の自動計測も可能であり、施工管理の簡
易化、コスト低減への寄与も期待できる。
According to the present invention, the amount of excavated soil and the amount of unloaded soil can be directly and accurately measured irrespective of the rate of change in soil volume and the unit weight of soil, thereby improving the level of soil volume management. be able to. In addition, automatic measurement of soil volume is possible by combination with a carrier identification system, etc., which can contribute to simplification of construction management and cost reduction.

【0029】こうして本発明の目的である「土の容積を
直接且つ正確に計測する土量計測方法及び装置」の提供
が達成できる。
Thus, the object of the present invention, that is, the "method and apparatus for measuring soil volume directly and accurately measuring the volume of soil" can be achieved.

【0030】なお図5の流れ図では搬送器2を停止した
のち土量計測を行なうが(ステップ502)、本発明の土
量計測は搬送器上端縁3a及び積載土表面の三次元座標が
計測できれば足りるので、搬送器2の停止は必須ではな
い。
In the flowchart of FIG. 5, the soil amount is measured after stopping the transporter 2 (step 502). However, the soil volume measurement of the present invention is performed if the three-dimensional coordinates of the upper edge 3a of the transporter and the surface of the loaded soil can be measured. Stopping the transporter 2 is not essential because it is sufficient.

【0031】[0031]

【実施例】図2に示す支持枠4を土工事現場に設置する
場合は、三次元画像計測装置5の投光器10から投光する
メッシュ光の輝度が太陽光で弱まり、二次元画像IwR、I
wLにおける対応点の検出が困難になるおそれがある。図
2の実施例では、計測室17に外部から不所望な光が進入
して搬送器10上に投影したメッシュ像がかき消されてし
まうことのないように、必要に応じて計測室を覆う暗幕
を支持枠4に取り付けることができる。
When the support frame 4 shown in FIG. 2 is installed on an earthwork site, the brightness of the mesh light projected from the projector 10 of the three-dimensional image measuring device 5 is weakened by sunlight, and the two-dimensional image Iw R , I
w It may be difficult to detect the corresponding point in L. In the embodiment shown in FIG. 2, a dark curtain that covers the measurement room as necessary so that undesired light enters the measurement room 17 from the outside and the mesh image projected on the carrier 10 is not erased. Can be attached to the support frame 4.

【0032】以上、搬送器2が土1の積載で変形しない
場合について説明したが、例えば土1の積載により搬送
器2が変形し得る場合でも、搬送器2の三次元形状の変
形量が予め予想できる場合は、本発明の適用が可能であ
る。例えば搬送器2の三次元形状の変形量が載積重量の
みに依存するような場合は、予め積載重量に応じた搬送
器2の変形量を計測して図1の記憶手段6に記憶し、積
載土の重量を測定する重量測定装置9を設け、座標割付
手段7により搬送器2の上端縁3aの三次元座標と積載重
量に応じた搬送器2の変形量とに基づき搬送器2の形状
の三次元座標を定めることも可能である。さらに土の積
載位置に応じた搬送器2の変形量を考慮することによ
り、例えばベルトコンベア上の積載土量の計測に本発明
を適用することも期待できる。
The case where the carrier 2 is not deformed by the loading of the soil 1 has been described above. For example, even when the carrier 2 can be deformed by the loading of the soil 1, the deformation amount of the three-dimensional shape of the If foreseeable, the present invention can be applied. For example, when the deformation amount of the three-dimensional shape of the transporter 2 depends only on the load weight, the deformation amount of the transporter 2 according to the load weight is measured in advance and stored in the storage unit 6 of FIG. A weight measuring device 9 for measuring the weight of the loaded soil is provided, and the coordinate allocating means 7 determines the shape of the transporter 2 based on the three-dimensional coordinates of the upper edge 3a of the transporter 2 and the deformation amount of the transporter 2 according to the loaded weight. It is also possible to determine the three-dimensional coordinates of Further, by taking into account the amount of deformation of the transporter 2 according to the soil loading position, the present invention can be expected to be applied to, for example, measurement of the amount of soil loaded on a belt conveyor.

【0033】[0033]

【発明の効果】以上説明したように、本発明の土量計測
方法及び装置は、三次元形状が既知の上端開放搬送器内
に土を積載し、下向き三次元画像計測装置により搬送器
上端縁及び積載土表面の三次元座標を計測し且つ搬送器
上端縁の三次元座標から搬送器形状の三次元座標を定
め、積載土表面の三次元座標と搬送器形状の三次元座標
とから土の容積を算出するので、次の顕著な効果を奏す
る。
As described above, the method and apparatus for measuring soil volume according to the present invention load soil in a top-open carrier having a known three-dimensional shape and use a downward three-dimensional image measuring device to measure the top edge of the carrier. And measuring the three-dimensional coordinates of the loading soil surface and determining the three-dimensional coordinates of the transporter shape from the three-dimensional coordinates of the upper edge of the transporter, and determining the soil from the three-dimensional coordinates of the loading soil surface and the three-dimensional coordinates of the transporter shape. Since the volume is calculated, the following remarkable effects are obtained.

【0034】(イ)土量変化率や土の単位体積重量に拘
わらず、掘削土量、搬出土量を直接的に且つ正確に計測
できる。 (ロ)正確な土量計測により、施工管理の質及びレベル
の向上が期待できる。 (ハ)従来の測量等による計測方法に比し、簡易、迅速
な土量計測が可能となるので、土量管理コストの低減が
図れる。 (ニ)メッシュ光投光器及びステレオ式撮像装置が利用
でき、メッシュ光の間隔の調整により計測精度の向上が
図れる。 (ホ)搬送器識別システム等との組み合わせにより土量
計測の自動化ヘの寄与が期待できる。 (ヘ)土量自動計測システムの構築により、施工管理の
簡易化、管理コストの低減が期待できる。
(A) Excavated soil volume and unloaded soil volume can be measured directly and accurately regardless of the soil volume change rate and the unit volume of soil. (B) Improvement of the quality and level of construction management can be expected by accurate soil volume measurement. (C) Compared to the conventional measurement method using surveying or the like, simple and quick soil volume measurement can be performed, so that soil volume management costs can be reduced. (D) Mesh light projectors and stereo imaging devices can be used, and measurement accuracy can be improved by adjusting mesh light intervals. (E) Contribution to automation of soil volume measurement can be expected by combination with a carrier identification system and the like. (F) The construction of an automatic soil volume measurement system can be expected to simplify construction management and reduce management costs.

【図面の簡単な説明】[Brief description of the drawings]

【図1】は、本発明のシステムブロック図である。FIG. 1 is a system block diagram of the present invention.

【図2】は、本発明の一実施例の説明図である。FIG. 2 is an explanatory diagram of one embodiment of the present invention.

【図3】は、本発明による土量計測の説明図である。FIG. 3 is an explanatory diagram of soil volume measurement according to the present invention.

【図4】は、一対のステレオ画像の説明図である。FIG. 4 is an explanatory diagram of a pair of stereo images.

【図5】は、本発明による土量計測の流れ図の一例であ
る。
FIG. 5 is an example of a flowchart of soil volume measurement according to the present invention.

【図6】は、本発明による土量計測の他の説明図であ
る。
FIG. 6 is another explanatory diagram of soil volume measurement according to the present invention.

【図7】は、ステレオ画像法による三次元画像計測法の
説明図である。
FIG. 7 is an explanatory diagram of a three-dimensional image measurement method using a stereo image method.

【符号の説明】 1…土 2…搬送器 3a…搬送器上端縁 3b…搬送器積載面 4…支持枠 4a、4b…門型部材 4c…梁部材 5…三次元画像計測装置 6…記憶手段 7…座標割付手段 8…容積算出手段 9…重量測定装置 10…投光器 11…メッシュ光 12R、12L…撮像装置 13…メッシュ光制御回路 14…映像入力ボード 15…座標算出手段 16…コンピュータ 17…計測室 18…メッシュ交点 19…計測対象 20…視標 Iw…二次元画像 Ig…三次元グラフィック画像[Description of Signs] 1 soil 2 transporter 3a transporter upper edge 3b transporter loading surface 4 support frame 4a, 4b portal member 4c beam member 5 three-dimensional image measuring device 6 storage means 7 Coordinate allocating means 8 Volume calculating means 9 Weight measuring device 10 Projector 11 Mesh light 12R, 12L Imaging device 13 Mesh light control circuit 14 Image input board 15 Coordinate calculating means 16 Computer 17 Measurement Room 18… Mesh intersection 19… Measurement target 20… Target Iw… 2D image Ig… 3D graphic image

───────────────────────────────────────────────────── フロントページの続き (72)発明者 三浦 悟 東京都調布市飛田給二丁目19番1号 鹿島 建設株式会社技術研究所内 (72)発明者 黒沼 出 東京都調布市飛田給二丁目19番1号 鹿島 建設株式会社技術研究所内 (72)発明者 青木 省三 東京都港区元赤坂一丁目2番7号 鹿島建 設株式会社内 (72)発明者 太田 裕士 東京都港区元赤坂一丁目2番7号 鹿島建 設株式会社内 Fターム(参考) 2F014 FA04 2F065 AA04 AA53 AA59 CC00 DD12 DD15 FF01 FF04 FF05 HH06 HH13 JJ03 JJ05 JJ08 JJ26 PP01 QQ23 QQ31 SS06 SS11 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Satoru Miura 2-191-1, Tobita-Ki, Chofu-shi, Tokyo Kashima Construction Co., Ltd. (72) Inventor Izumi Kuronuma 2-9-1-1, Tobita-Kibito, Chofu-shi, Tokyo Kashima Construction Co., Ltd.Technical Research Institute (72) Inventor Shozo Aoki 1-2-7 Moto Akasaka, Minato-ku, Tokyo Kashima Construction Co., Ltd. (72) Inventor Yuji Ota 1-2-Chome Moto-Akasaka, Minato-ku, Tokyo No. 7 Kashima Construction Co., Ltd. F term (reference) 2F014 FA04 2F065 AA04 AA53 AA59 CC00 DD12 DD15 FF01 FF04 FF05 HH06 HH13 JJ03 JJ05 JJ08 JJ26 PP01 QQ23 QQ31 SS06 SS11

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】土の容積を計測する方法において、三次元
形状が既知の上端開放搬送器内に土を積載し、下向き三
次元画像計測装置により前記搬送器上端縁及び前記積載
土表面の三次元座標を計測し、前記上端縁の三次元座標
から前記搬送器の形状の三次元座標を定め、前記積載土
表面の三次元座標と前記搬送器形状の三次元座標とから
土の容積を算出してなる土量計測方法。
1. A method for measuring the volume of soil, comprising loading soil in an upper-end open carrier having a known three-dimensional shape, and using a downward three-dimensional image measuring device to measure a third order of the upper edge of the transporter and the surface of the loaded soil. The original coordinates are measured, the three-dimensional coordinates of the shape of the transporter are determined from the three-dimensional coordinates of the upper edge, and the volume of soil is calculated from the three-dimensional coordinates of the loading soil surface and the three-dimensional coordinates of the transporter shape. Soil volume measurement method.
【請求項2】請求項1の計測方法において、前記搬送器
の三次元形状を、土積載前に前記搬送器の上端縁及び積
載面の形状を前記計測装置で計測することにより求めて
なる土量計測方法。
2. The measuring method according to claim 1, wherein the three-dimensional shape of the transporter is obtained by measuring the shape of the upper edge and the loading surface of the transporter with the measuring device before loading the soil. Quantity measurement method.
【請求項3】請求項1又は2の計測方法において、前記
三次元画像計測装置に、格子状に組み合わせたスリット
光の群を投光する投光器と前記スリット光の群の投影に
より形成された格子模様の各交点の三次元座標を計測す
るステレオ式撮像装置とを含めてなる土量計測方法。
3. The measuring method according to claim 1, wherein the three-dimensional image measuring device projects a group of slit lights combined in a grid pattern and a grid formed by projecting the group of slit lights. A soil volume measuring method including a stereo-type imaging device for measuring three-dimensional coordinates of each intersection of a pattern.
【請求項4】請求項1から3の何れかの計測方法におい
て、前記搬送器をダンプトラックの荷台としてなる土量
計測方法。
4. A soil volume measuring method according to claim 1, wherein said carrier is used as a carrier of a dump truck.
【請求項5】土の容積を計測する装置において、土積載
用の上端開放搬送器の三次元形状を記憶する記憶手段、
土積載後の搬送器が進入可能な計測室、前記計測室上部
に下向きに取り付けられ前記搬送器上端縁及び積載土表
面の三次元座標を計測する三次元画像計測装置、前記上
端縁の三次元座標から前記搬送器の形状の三次元座標を
定める座標割付手段、及び前記積載土表面の三次元座標
と前記搬送器形状の三次元座標とから土の容積を算出す
る容積算出手段を備えてなる土量計測装置。
5. An apparatus for measuring the volume of soil, comprising: storage means for storing a three-dimensional shape of an upper end open transporter for loading soil;
A measuring chamber into which the transporter after soil loading can enter, a three-dimensional image measuring device attached downward to the upper part of the measuring chamber and measuring three-dimensional coordinates of the upper edge of the transporter and the surface of the loaded soil, three-dimensional of the upper edge It is provided with coordinate allocating means for determining three-dimensional coordinates of the shape of the transporter from coordinates, and volume calculating means for calculating the volume of soil from the three-dimensional coordinates of the surface of the loading soil and the three-dimensional coordinates of the shape of the transporter. Soil volume measurement device.
【請求項6】請求項5の計測装置において、前記三次元
画像計測装置に、格子状に組み合わせたスリット光の群
を投光する投光器と前記スリット光の群の投影により形
成された格子模様の各交点の三次元座標を計測するステ
レオ式撮像装置とを含めてなる土量計測装置。
6. A measuring device according to claim 5, wherein the three-dimensional image measuring device has a light projector for projecting a group of slit lights combined in a grid and a lattice pattern formed by projecting the group of slit lights. A soil volume measuring device including a stereo-type imaging device that measures three-dimensional coordinates of each intersection.
【請求項7】請求項5又は6の計測装置において、前記
計測室に外部からの光の進入を防ぐ暗幕を設けてなる土
量計測装置。
7. The soil volume measuring device according to claim 5, wherein a dark curtain for preventing light from entering from outside is provided in the measuring room.
JP11720399A 1999-04-23 1999-04-23 Soil volume measurement method and device Expired - Fee Related JP3544630B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11720399A JP3544630B2 (en) 1999-04-23 1999-04-23 Soil volume measurement method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11720399A JP3544630B2 (en) 1999-04-23 1999-04-23 Soil volume measurement method and device

Publications (2)

Publication Number Publication Date
JP2000304511A true JP2000304511A (en) 2000-11-02
JP3544630B2 JP3544630B2 (en) 2004-07-21

Family

ID=14705948

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11720399A Expired - Fee Related JP3544630B2 (en) 1999-04-23 1999-04-23 Soil volume measurement method and device

Country Status (1)

Country Link
JP (1) JP3544630B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002277222A (en) * 2001-03-21 2002-09-25 Kajima Corp Method and system for measuring amount of earth removal in shield excavation
JP2007285704A (en) * 2006-04-12 2007-11-01 Penta Ocean Constr Co Ltd Method for measuring soil quantity loaded in earth and sand carrying vessel
JP2010249553A (en) * 2009-04-13 2010-11-04 Kajima Corp System for controlling particle size quality of granular material and program
KR101087171B1 (en) 2010-02-05 2011-11-25 한국해양연구원 Displacement compensation apparatus for calculating rate of drift ice and displacement compensation method for using the same
JP2012057967A (en) * 2010-09-06 2012-03-22 Nippon Signal Co Ltd:The Camera calibration device
KR101286298B1 (en) 2012-06-27 2013-07-19 안양대학교 산학협력단 Appartus and method for calculating volume of rubbish
KR101286297B1 (en) * 2012-06-27 2013-07-19 안양대학교 산학협력단 Appartus and method for calculating volume of rubbish
JP2014095644A (en) * 2012-11-11 2014-05-22 Kajima Corp Method, system, and program for measuring grain size of deposited granular material
JP2019184534A (en) * 2018-04-17 2019-10-24 大成建設株式会社 Volumetric measurement system of object to be transported stored in moving body

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002277222A (en) * 2001-03-21 2002-09-25 Kajima Corp Method and system for measuring amount of earth removal in shield excavation
JP2007285704A (en) * 2006-04-12 2007-11-01 Penta Ocean Constr Co Ltd Method for measuring soil quantity loaded in earth and sand carrying vessel
JP2010249553A (en) * 2009-04-13 2010-11-04 Kajima Corp System for controlling particle size quality of granular material and program
KR101087171B1 (en) 2010-02-05 2011-11-25 한국해양연구원 Displacement compensation apparatus for calculating rate of drift ice and displacement compensation method for using the same
JP2012057967A (en) * 2010-09-06 2012-03-22 Nippon Signal Co Ltd:The Camera calibration device
KR101286298B1 (en) 2012-06-27 2013-07-19 안양대학교 산학협력단 Appartus and method for calculating volume of rubbish
KR101286297B1 (en) * 2012-06-27 2013-07-19 안양대학교 산학협력단 Appartus and method for calculating volume of rubbish
JP2014095644A (en) * 2012-11-11 2014-05-22 Kajima Corp Method, system, and program for measuring grain size of deposited granular material
JP2019184534A (en) * 2018-04-17 2019-10-24 大成建設株式会社 Volumetric measurement system of object to be transported stored in moving body
JP7093668B2 (en) 2018-04-17 2022-06-30 大成建設株式会社 Volume measurement system for objects to be transported contained in a moving object

Also Published As

Publication number Publication date
JP3544630B2 (en) 2004-07-21

Similar Documents

Publication Publication Date Title
Sapirstein Accurate measurement with photogrammetry at large sites
CA2907047C (en) Method for generating a panoramic image
US8244023B2 (en) Shape measuring device and shape measuring method
JP3867955B2 (en) Load volume measuring method and apparatus
JP6502525B2 (en) Object measuring apparatus and object measuring method
US20120195466A1 (en) Image-based surface tracking
US20060017938A1 (en) Three-dimensional surveying instrument and electronic storage medium
JP3766518B2 (en) Camera with built-in sensor
US11898875B2 (en) Method and apparatus for single camera optical measurements
JP2000304511A (en) Soil volume measuring method and apparatus
CN104604214A (en) Method and apparatus for generating photograph image
TW201836891A (en) Vehicle-mounted device, station-side device, and calibration method
CN115104075A (en) System and method for controlling implement on work machine using machine vision
JP2018205062A (en) Method for evaluation and evaluation system
JP2004125452A (en) Method and system of topography measurement
Burkhard et al. Stereovision mobile mapping: System design and performance evaluation
JP6823719B2 (en) Image composition method, image composition device, and recording medium
JPH11211438A (en) Load carrying platform load volume measuring device
JP2018116004A (en) Data compression apparatus, control method, program and storage medium
JP6281014B1 (en) Particle size measurement method for granular materials
US20210041543A1 (en) Laser calibration device, calibration method therefor, and image input device including laser calibration device
US20230308777A1 (en) Image capturing device, data acquisition unit, image capturing system, and image capturing method
KR101172873B1 (en) 3d image photographing apparatus for tunnel surveying
Briese et al. Analysis of mobile laser scanning data and multi-view image reconstruction
CN113593026A (en) Lane line marking auxiliary map generation method and device and computer equipment

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040302

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20040315

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040405

R150 Certificate of patent or registration of utility model

Ref document number: 3544630

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160416

Year of fee payment: 12

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees