JP4418705B2 - バイオセンサー - Google Patents

バイオセンサー Download PDF

Info

Publication number
JP4418705B2
JP4418705B2 JP2004130593A JP2004130593A JP4418705B2 JP 4418705 B2 JP4418705 B2 JP 4418705B2 JP 2004130593 A JP2004130593 A JP 2004130593A JP 2004130593 A JP2004130593 A JP 2004130593A JP 4418705 B2 JP4418705 B2 JP 4418705B2
Authority
JP
Japan
Prior art keywords
substance
biosensor
physiologically active
metal film
active substance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004130593A
Other languages
English (en)
Other versions
JP2005315588A (ja
Inventor
利秀 江副
利昭 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2004130593A priority Critical patent/JP4418705B2/ja
Priority to US11/020,254 priority patent/US7501289B2/en
Publication of JP2005315588A publication Critical patent/JP2005315588A/ja
Application granted granted Critical
Publication of JP4418705B2 publication Critical patent/JP4418705B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/55Specular reflectivity
    • G01N21/552Attenuated total reflection
    • G01N21/553Attenuated total reflection and using surface plasmons

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

本発明は、バイオセンサー及びそれを用いた生体分子間の相互作用を分析する方法に関する。特に本発明は、表面プラズモン共鳴バイオセンサーに用いるためのバイオセンサー及びそれを用いた生体分子間の相互作用を分析する方法に関する。
現在、臨床検査等で免疫反応など分子間相互作用を利用した測定が数多く行われているが、従来法では煩雑な操作や標識物質を必要とするため、標識物質を必要とすることなく、測定物質の結合量変化を高感度に検出することのできるいくつかの技術が使用されている。例えば、表面プラズモン共鳴(SPR)測定技術、水晶発振子マイクロバランス(QCM)測定技術、金のコロイド粒子から超微粒子までの機能化表面を使用した測定技術である。SPR測定技術はチップの金属膜に接する有機機能膜近傍の屈折率変化を反射光波長のピークシフト又は一定波長における反射光量の変化を測定して求めることにより、表面近傍に起こる吸着及び脱着を検知する方法である。QCM測定技術は水晶発振子の金電極(デバイス)上の物質の吸脱着による発振子の振動数変化から、ngレベルで吸脱着質量を検出できる技術である。また、金の超微粒子(nmレベル)表面を機能化させて、その上に生理活性物質を固定して、生理活性物質間の特異認識反応を行わせることによって、金微粒子の沈降、配列から生体関連物質の検出ができる。
上記した技術においては、いずれの場合も、生理活性物質を固定化する表面が重要である。以下、当技術分野で最も使われている表面プラズモン共鳴(SPR)を例として、説明する。
一般に使用される測定チップは、透明基板(例えば、ガラス)、蒸着された金属膜、及びその上に生理活性物質を固定化できる官能基を有する薄膜からなり、その官能基を介し、金属表面に生理活性物質を固定化する。該生理活性物質と検体物質間の特異的な結合反応を測定することによって、生体分子間の相互作用を分析する。
生理活性物質を固定化できる官能基を有する薄膜としては、金属と結合する官能基、鎖長の原子数が10以上のリンカー、及び生理活性物質と結合できる官能基を有する化合物を用いて、生理活性物質を固定化した測定チップが報告されている(特許文献1を参照)。また、金属膜と、該金属膜の上に形成されたプラズマ重合膜からなる測定チップが報告されている(特許文献2を参照)。
生理活性物質と検体物質間の特異的な結合反応を測定する場合、検体物質は必ずしも単一成分ではなく、例えば細胞抽出液中などのような不均一系で検体物質を測定することも要求される。その場合、種々の蛋白質、脂質などの夾雑物が検出表面に非特異的な吸着を起こすと、測定検出感度が著しく低下する。上記の検出表面では、非特異吸着が極めて起こりやすく問題があった。この問題を解決するためにいくつかの方法が検討されている。例えば、金属表面にリンカーを介し、親水性のハイドロゲルを固定化することで、物理吸着を抑制する方法も使用されてきた(特許文献1、特許文献3及び特許文献4を参照)。しかしながら、この方法でも非特異吸着の抑制性は十分なレベルではなかった。
一方、上記のようなバイオセンサーにおいて、生理活性物質と検体物質間の特異的な結合反応を測定するための測定部と、このような結合反応を行わない対照部とは、同一平面に存在し、かつ、できるだけ近接していることが、測定上の外乱(温度変化、濃度変化、圧力変化)の影響を除去してベースライン変動を少なくする上で好ましい。そのためには、ポリマー薄膜を用いたSPRセンサー表面に参照部と測定部を共存させる必要が出てきた。
特許文献5には、生物学的リガンドをポリマー表面にマイクロスタンピングする方法であって、少なくとも、加水分解、還元、光開始的グラフト重合、アミノ化、ポリエチレンオキサイドの表面交差重合、末端水酸基の化学反応、コロナ放電、プラズマエッチング、レーザー処理、イオンビーム処理のうちひとつから選ばれた方法によってポリマー表面に第一の官能基を形成し、その表面に少なくとも第二の官能基を持つ一つの生物学的リガンドを吸着させたスタンプを接触させてポリマー表面の第一の官能基と共有結合を形成させ、そして、スタンプをポリマー表面から分離することにより生化学的なリガンドを直接共有結合的にポリマー表面に固定する方法が記載されている。上記方法においては、ポリマーフイルムに固体(PDMS)を接触させてパターニングしている。しかしながら、SPR用途のセンサーは、金属薄膜の上にポリマー薄膜を付けた表面であるために物理的な強度が小さく、固体の接触はセンサー表面を傷つけることになることから、上記方法はSPR用途には適さない。
特許第2815120号 特開平9−264843号 米国特許第5436161号 特開平8−193948号公報 米国特許第6,444,254号公報
本発明は上記した問題点を解消することを解決すべき課題とした。特に、本発明は、低濃度の生理活性物質を含む溶液を用いて該生理活性物質をバイオセンサーに固定化した場合でも、該生理活性物質と相互作用する物質の結合を良好に検出することができ、また、生理活性物質の結合量、及び該生理活性物質と相互作用する物質の結合量のバラツキが低いバイオセンサーを提供することを解決すべき課題とした。
本発明者らは上記課題を解決するために鋭意検討を重ねた結果、基板の表面を疎水性高分子化合物でコーティングすることによって非特異吸着を抑制したバイオセンサーにおいて、疎水性高分子化合物でコーティングされた領域上にインクジェットプリントにより少なくとも2種類以上の表面をパターニングすることによって所望のバイオセンサーを提供できることを見出し、本発明を完成するに至った。
即ち、本発明によれば、疎水性高分子化合物でコーティングした基板から成り、疎水性高分子化合物でコーティングされた領域上にインクジェットプリントにより少なくとも2種類以上の表面がパターニングされている、バイオセンサーが提供される。
好ましくは、疎水性高分子化合物で被覆された基板の表面に、少なくとも1種類以上のリンカーがパターニングされている。
好ましくは、リンカーは一般式(1)で表される。
一般式(1):X―L―Y
(式中、Xは疎水性高分子化合物の官能基と反応しうる基を示し、Lは2価の連結基を示し、Yは生理活性物質を固定化できる基を示す。)
好ましくは、基板は金属表面あるいは金属膜である。
好ましくは、金属表面あるいは金属膜は、金、銀、銅、白金又はアルミニウムからなる群より選ばれる自由電子金属からなるものである。
好ましくは、金属膜の厚さは1オングストローム以上5000オングストローム以下である。
好ましくは、疎水性高分子化合物の被覆厚さは1オングストローム以上、5000オングストローム以下である。
好ましくは、本発明のバイオセンサーは非電気化学的検出に使用され、特に好ましくは表面プラズモン共鳴分析に使用される。
本発明の別の側面によれば、誘電体ブロックと、この誘電体ブロックの一面に形成された金属膜と、光ビームを発生させる光源と、前記光ビームを前記誘電体ブロックに対して、該誘電体ブロックと金属膜との界面で全反射条件が得られるように、かつ、種々の入射角成分を含むようにして入射させる光学系と、前記界面で全反射した光ビームの強度を測定して表面プラズモン共鳴の状態を検出する光検出手段とを備えてなる表面プラズモン共鳴測定装置に用いられるための測定チップであって、上記誘電体ブロックと上記金属膜とから構成され、上記誘電体ブロックが、前記光ビームの入射面、出射面および前記金属膜が形成される一面の全てを含む1つのブロックとして形成され、前記金属膜に上記した本発明のバイオセンサーの表面が形成されている測定チップが提供される。
本発明のさらに別の側面によれば、生理活性物質が共有結合により表面に結合している、上記した本発明のバイオセンサーが提供される。
好ましくは、同一面内に少なくとも、生理活性物質又はそれと相互作用する物質を結合させた測定部と、生理活性物質又はそれと相互作用する物質を有さない参照部とが存在する。
本発明のさらに別の側面によれば、上記した本発明のバイオセンサーと生理活性物質とを接触させて、該バイオセンサーの表面に該生理活性物質を共有結合により結合させる工程を含む、バイオセンサーに生理活性物質を固定化する方法が提供される。
本発明のさらに別の側面によれば、生理活性物質が共有結合により表面に結合している上記した本発明のバイオセンサーと被験物質とを接触させる工程を含む、該生理活性物質と相互作用する物質を検出または測定する方法が提供される。
好ましくは、生理活性物質と相互作用する物質を非電気化学的方法により検出または測定し、さらに好ましくは、生理活性物質と相互作用する物質を表面プラズモン共鳴分析により検出または測定する。
本発明により、低濃度の生理活性物質を含む溶液を用いて該生理活性物質をバイオセンサーに固定化した場合でも、該生理活性物質と相互作用する物質の結合を良好に検出することができ、また、生理活性物質の結合量、及び該生理活性物質と相互作用する物質の結合量のバラツキが低いバイオセンサーを提供することが可能になった。
以下、本発明の実施の形態について説明する。
本発明のバイオセンサーは、疎水性高分子化合物でコーティングした基板から成り、疎水性高分子化合物でコーティングされた領域上にインクジェットプリントにより少なくとも2種類以上の表面がパターニングされていることを特徴とする。
本発明では、疎水性高分子化合物で被覆されたバイオセンサー表面に、インクジェットプリントにより少なくとも2種類以上の表面をパターニングする。パターニングは、下記の目的を達成するために行われる。
(1)生理活性物質を固定化する部分と、生理活性物質を固定化しない部分をパターニングする。
(2)少なくとも2種以上の生理活性物質をパターニングして固定化する。
インクジェットプリントによる膜表面のパターニングは、疎水性高分子膜表面に生理活性物質を固定化するプロセスのいかなる段階においても適用できるが、好ましくは生理活性物質を固定化するリンカーを導入する段階で用いられる。
本発明では、インクジェットの記録方式に制限はなく、公知の方式、例えば静電誘引力を利用してインクを吐出させる電荷制御方式、ピエゾ素子の振動圧力を利用するドロップオンデマンド方式(圧力パルス方式)、電気信号を音響ビームに変えインクに照射して放射圧を利用してインクを吐出させる音響インクジェット方式、及びインクを加熱して気泡を形成し、生じた圧力を利用するサーマルインクジェット(バブルジェット(登録商標))方式等に用いられる。
インクジェット記録方式には、フォトインクと称する濃度の低いインクを小さい体積で多数射出する方式、実質的に同じ色相で濃度の異なる複数のインクを用いて画質を改良する方式や無色透明のインクを用いる方式が含まれる。インクの打滴体積の制御は主にプリントヘッドにより行われる。
例えばサーマルインクジェット方式の場合、プリントヘッドの構造で打滴体積を制御することが可能である。すなわち、インク室、加熱部、ノズルの大きさを変えることにより、所望のサイズで打滴することができる。またサーマルインクジェット方式であっても、加熱部やノズルの大きさが異なる複数のプリントヘッドを持たせることで、複数サイズの打滴を実現することも可能である。
ピエゾ素子を用いたドロップオンデマンド方式の場合、サーマルインクジェット方式と同様にプリントヘッドの構造上打滴体積を変えることも可能であるが、後述するようにピエゾ素子を駆動する駆動信号の波形を制御することにより、同じ構造のプリントヘッドで複数のサイズの打滴を行うことができる。
同一面内に作る少なくとも2種類以上の表面としては、例えば、生理活性物質又はそれと相互作用する物質を結合させた測定部と、生理活性物質又はそれと相互作用する物質を有さない参照部との組み合わせが挙げられる。また、測定部としては、結合する物質として異なる物質を使用することにより、複数の測定部を設けることもできる。
本発明においては、上記のように同一面内に測定部と参照部とを設けることにより外乱によるベースライン変動を相殺し、実質的に安定化することが可能となる。
本発明で言うバイオセンサーとは最も広義に解釈され、生体分子間の相互作用を電気的信号等の信号に変換して、対象となる物質を測定・検出するセンサーを意味する。通常のバイオセンサーは、検出対象とする化学物質を認識するレセプター部位と、そこに発生する物理的変化又は化学的変化を電気信号に変換するトランスデューサー部位とから構成される。生体内には、互いに親和性のある物質として、酵素/基質、酵素/補酵素、抗原/抗体、ホルモン/レセプターなどがある。バイオセンサーでは、これら互いに親和性のある物質の一方を基板に固定化して分子認識物質として用いることによって、対応させるもう一方の物質を選択的に計測するという原理を利用している。
本発明で用いる疎水性高分子化合物は、吸水性を有しない高分子化合物であり、水への溶解度(25℃)が10%以下、より好ましくは1%以下、最も好ましくは0.1%以下である。
疎水性高分子化合物を形成する疎水性単量体としては、ビニルエステル類、アクリル酸エステル類、メタクリル酸エステル類、オレフィン類、スチレン類、クロトン酸エステル類、イタコン酸ジエステル類、マレイン酸ジエステル類、フマル酸ジエステル類、アリル化合物類、ビニルエーテル類、ビニルケトン類等から任意に選ぶことができる。疎水性高分子化合物としては、1種類のモノマーから成るホモポリマーでも、2種類以上のモノマーから成るコポリマーでもよい。
本発明で好ましく用いられる疎水性高分子化合物としては、ポリスチレン、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、ポリビニルクロライド、ポリメチルメタクリレート、ポリエステル、ナイロンなどが挙げられる。
疎水性高分子化合物の基板へのコーティングは常法によって行うことができ、例えば、スピン塗布、エアナイフ塗布、バー塗布、ブレード塗布、スライド塗布、カーテン塗布、さらにはスプレー法、蒸着法、キャスト法、浸漬法等によって行うことができる。
浸漬法は、基板を疎水性高分子化合物溶液に接触させた後に、前記疎水性高分子化合物溶液を含まない液に接触させる方法でコーティングを行う。好ましくは、疎水性高分子化合物溶液の溶剤と疎水性高分子化合物を含まない液の溶剤とは、同一の溶剤である。
浸漬法では、疎水性高分子化合物のコーティング用溶剤を適切に選択することで、基板の凹凸、曲率、形状などに依らず基板表面に均一なコーティング厚みの疎水性高分子化合物層が得られる。
浸漬法のコーティング用溶剤は特に限定されず、疎水性高分子化合物の一部を溶解すれものであれば任意の溶剤を用いることができる。例えば、N,N−ジメチルホルムアミド等のホルムアミド系溶剤、アセトニトリル等のニトリル系溶剤、フェノキシエタノール等のアルコール系溶剤、2−ブタノン等のケトン系溶剤、トルエン等のベンゼン系溶剤などを使用することができるが、これらに限定されない。
基板に接触させる疎水性高分子化合物の溶液は、疎水性高分子化合物が完全に溶解しても、疎水性高分子化合物の不溶解成分を含む懸濁液でもよい。液温は、疎水性高分子化合物の一部が溶解する液体状態であれば特に制限はないが、−20℃以上100℃以下が好ましい。基板を疎水性高分子化合物の溶液に接触させている間に液温を変動させても良い。溶液の疎水性高分子化合物濃度に特に制限はないが、好ましくは0.01%以上30%以下、さらに好ましくは0.1%以上10%以下である。
固体基板を疎水性高分子化合物溶液に接触させる時間は特に制限されないが、好ましくは1秒以上24時間以下、さらに好ましくは3秒以上1時間以下である。
疎水性高分子化合物を含まない液としては、溶剤自身のSP値(単位:(J/cm3)1/2)と疎水性高分子化合物のSP値との差が、1以上20以下であることが好ましく、3以上15以下であることがさらに好ましい。SP値は、分子間の凝集エネルギー密度の平方根で表され、溶解度パラメーターとも呼ばれる。SP値δは下記式で算出できる。各官能基の凝集エネルギーEcohとモル容積Vは、Fedorsが規定した値を使用できる(R.F.Fedors、Polym.Eng.Sci.、14(2)、P147、P472(1974))。
δ=(ΣEcoh/ΣV)1/2
基板を、疎水性高分子化合物を含まない液に接触させる時間は特に制限されないが、好ましくは1秒以上24時間以下、さらに好ましくは3秒以上1時間以下である。液温は、溶剤が液体状態であれば特に制限はないが、−20℃以上100℃以下が好ましい。基板を溶剤に接触させている間に液温を変動させてもよい。揮発させにくい溶剤を使用する場合、溶剤を除去する目的で、該溶媒に接触させた後、互いに溶解する揮発性溶剤で置換してもよい。
疎水性高分子化合物のコーティング厚さは特に限定されないが、好ましくは1オングストローム以上5000オングストローム以下であり、特に好ましくは10オングストローム以上3000オングストローム以下である。
本発明のバイオセンサーは、金属表面又は金属膜を疎水性高分子化合物でコーティングしたものである。金属表面あるいは金属膜を構成する金属としては、例えば、表面プラズモン共鳴バイオセンサー用を考えた場合、表面プラズモン共鳴が生じ得るようなものであれば特に限定されない。好ましくは金、銀、銅、アルミニウム、白金等の自由電子金属が挙げられ、特に金が好ましい。それらの金属は単独又は組み合わせて使用することができる。また、上記基板への付着性を考慮して、基板と金属からなる層との間にクロム等からなる介在層を設けてもよい。
金属膜の膜厚は任意であるが、例えば、表面プラズモン共鳴バイオセンサー用を考えた場合、1オングストローム以上5000オングストローム以下であるのが好ましく、特に10オングストローム以上2000オングストローム以下であるのが好ましい。5000オングストロームを超えると、媒質の表面プラズモン現象を十分検出することができない。また、クロム等からなる介在層を設ける場合、その介在層の厚さは、1オングストローム以上、100オングストローム以下であるのが好ましい。
金属膜の形成は常法によって行えばよく、例えば、スパッタ法、蒸着法、イオンプレーティング法、電気めっき法、無電解めっき法等によって行うことができる。
金属膜は好ましくは基板上に配置されている。ここで、「基板上に配置される」とは、金属膜が基板上に直接接触するように配置されている場合のほか、金属膜が基板に直接接触することなく、他の層を介して配置されている場合をも含む意味である。本発明で使用することができる基板としては例えば、表面プラズモン共鳴バイオセンサー用を考えた場合、一般的にはBK7等の光学ガラス、あるいは合成樹脂、具体的にはポリメチルメタクリレート、ポリエチレンテレフタレート、ポリカーボネート、シクロオレフィンポリマーなどのレーザー光に対して透明な材料からなるものが使用できる。このような基板は、好ましくは、偏光に対して異方性を示さずかつ加工性の優れた材料が望ましい。
本発明の疎水性高分子化合物でコーティングした基板から成るバイオセンサーにおいては、基板の最表面に生理活性物質を固定化することができる官能基を有することが好ましい。ここで言う「基板の最表面」とは、「基板から最も遠い側」という意味であり、さらに具体的には、「基板上にコーティングした疎水性高分子化合物中の基板から最も遠い側」という意味である。
好ましい官能基としては−OH、−SH、−COOH、−NR12(式中、R1及びR2は互いに独立に水素原子又は低級アルキル基を示す)、−CHO、−NR3NR12(式中、R1、R2及びR3は互いに独立に水素原子又は低級アルキル基を示す)、−NCO、−NCS、エポキシ基、またはビニル基などが挙げられる。ここで、低級アルキル基における炭素数は特に限定されないが、一般的にはC1〜C10程度であり、好ましくはC1〜C6である。
最表面にそれらの官能基を導入する方法としては、それらの官能基の前駆体を含有する疎水性高分子を金属表面あるいは金属膜上にコーティングした後、化学処理により最表面に位置する前駆体からそれらの官能基を生成させる方法が挙げられる。例えば−COOCH3基を含有する疎水性高分子化合物であるポリメチルメタクリレートを金属膜上にコーティングした後、その表面をNaOH水溶液(1N)に40℃16時間接触させると、最表面に−COOH基が生成する。
上記のようにして得られたバイオセンサー用表面において、上記の官能基を介して生理活性物質を共有結合させることによって、金属表面又は金属膜に生理活性物質を固定化することができる。
本発明の好ましい態様によれば、 疎水性高分子化合物で被覆された基板の表面に、少なくとも1種類以上のリンカーがパターニングされている。以下、本発明で使用することができるリンカーについて説明する。
本発明で使用するリンカーは、生理活性物質と疎水性高分子化合物を間接的に固定化できるものを言う。固定化する方法としては、静電的相互作用を用いる方法、疎水性相互作用を用いる方法、化学結合を用いる方法などが挙げられるが、化学結合を用いる方法が好ましく用いられる。化学結合には、共有結合、イオン結合、配位結合、水素結合などがあるが、共有結合が最も好ましく用いられる。
本発明で使用するリンカーの具体例としては下記一般式(1)で表される化合物が挙げられる。
一般式(1):X―L―Y
(式中、Xは疎水性高分子化合物の官能基と反応しうる基を示し、Lは2価の連結基を示し、Yは生理活性物質を固定化できる基を示す。)
一般式(1)において、Xは疎水性高分子化合物の官能基と反応しうる基を表し、好ましくは、ハロゲン原子、アミノ基、もしくは保護基により保護されたアミノ基、カルボキシル基、もしくは脱離基を有するカルボニル基、水酸基、保護基により保護された水酸基、アルデヒド基、-NHNH2、-N=C=O、-N=C=S、エポキシ基、又はビニル基である。
ここでいう保護基とは、反応系内で脱保護して官能基を形成させる事のできる基であり、例えばアミノ基の保護基としては、tertブチルオキシカルボニル基(Boc)、9-フルオレニルメチルオキシカルボニル基(Fmoc)、ニトロフェニルスルフェニル基(Nps)、ジチアスクシニル基(Dts)等が挙げられる。
また、水酸基の保護基としては、アシル基等が挙げられる。
ここでいう脱離基は、ハロゲン原子、アルコキシ基、アリールオキシ基、アルキルカルボニルオキシ基、アリールカルボニルオキシ基、ハロゲン化アルキルカルボニルオキシ基、アルキルスルホニルオキシ基、ハロゲン化アルキルスルホニルオキシ基、アリールスルホニルオキシ基等を挙げることができる。
また、脱離基としては、カルボン酸と既知の脱水縮合試薬(例えばカルボジイミド類)とN-ヒドロキシ化合物を組み合わせて生成されるエステル基も好ましく用いられる。
一般式(1)において、Lは2価の連結基を表し、Lの総原子数は、2〜1000であることが好ましい。さらに、置換もしくは無置換のアルキル基、置換もしくは無置換のアルキレンオキシ基、置換もしくは無置換のアリーレンオキシ基、もしくは一般式(1)のXと別の分子のYが結合し、構成が連続する2価の連結基であることが好ましい。
一般式(1)において、Yは生理活性物質を固定化できる基を表し、好ましくは、ハロゲン原子、アミノ基、もしくは保護基により保護されたアミノ基、カルボキシル基、もしくは脱離基を有するカルボニル基、水酸基、保護基により保護された水酸基、アルデヒド基、-NHNH2、-N=C=O、-N=C=S、エポキシ基、又はビニル基である。
保護基、脱離基は、前述のものと同様なものを用いることができる。
以下に一般式(1)の化合物の具体例を示すが、本発明で使用できる一般式(1)の化合物はこれらに限定されるものではない。
Figure 0004418705
本発明のバイオセンサーは、疎水性高分子化合物でコーティングした基板にリンカーをインクジェットプリントにより塗布して反応させる工程によって製造することができる。これにより製造されたバイオセンサーは、基板の最表面にリンカーを有し、そのリンカーは生理活性物質を固定化できる基を有していることが好ましい。ここで言う「基板の最表面」とは、「基板から最も遠い側」という意味であり、さらに具体的には、「基板上にコーティングした疎水性高分子化合物中の基板から最も遠い側」という意味である。
上記のようにして得られた、リンカーを有するバイオセンサー用表面に上記の生理活性物質を固定化できる基を介して生理活性物質を固定化させることによって、金属表面又は金属膜に生理活性物質を固定化することができる。
本発明のバイオセンサー用表面上に固定される生理活性物質としては、測定対象物と相互作用するものであれば特に限定されず、例えば免疫蛋白質、酵素、微生物、核酸、低分子有機化合物、非免疫蛋白質、免疫グロブリン結合性蛋白質、糖結合性蛋白質、糖を認識する糖鎖、脂肪酸もしくは脂肪酸エステル、あるいはリガンド結合能を有するポリペプチドもしくはオリゴペプチドなどが挙げられる。
免疫蛋白質としては、測定対象物を抗原とする抗体やハプテンなどを例示することができる。抗体としては、種々の免疫グロブリン、即ちIgG、IgM、IgA、IgE、IgDを使用することができる。具体的には、測定対象物がヒト血清アルブミンであれば、抗体として抗ヒト血清アルブミン抗体を使用することができる。また、農薬、殺虫剤、メチシリン耐性黄色ブドウ球菌、抗生物質、麻薬、コカイン、ヘロイン、クラック等を抗原とする場合には、例えば抗アトラジン抗体、抗カナマイシン抗体、抗メタンフェタミン抗体、あるいは病原性大腸菌の中でO抗原26、86、55、111 、157 などに対する抗体等を使用することができる。
酵素としては、測定対象物又は測定対象物から代謝される物質に対して活性を示すものであれば、特に限定されることなく、種々の酵素、例えば酸化還元酵素、加水分解酵素、異性化酵素、脱離酵素、合成酵素等を使用することができる。具体的には、測定対象物がグルコースであれば、グルコースオキシダーゼを、測定対象物がコレステロールであれば、コレステロールオキシダーゼを使用することができる。また、農薬、殺虫剤、メチシリン耐性黄色ブドウ球菌、抗生物質、麻薬、コカイン、ヘロイン、クラック等を測定対象物とする場合には、それらから代謝される物質と特異的反応を示す、例えばアセチルコリンエステラーゼ、カテコールアミンエステラーゼ、ノルアドレナリンエステラーゼ、ドーパミンエステラーゼ等の酵素を使用することができる。
微生物としては、特に限定されることなく、大腸菌をはじめとする種々の微生物を使用することができる。
核酸としては、測定の対象とする核酸と相補的にハイブリダイズするものを使用することができる。核酸は、DNA(cDNAを含む)、RNAのいずれも使用できる。DNAの種類は特に限定されず、天然由来のDNA、遺伝子組換え技術により調製した組換えDNA、又は化学合成DNAの何れでもよい。
低分子有機化合物としては通常の有機化学合成の方法で合成することができる任意の化合物が挙げられる。
非免疫蛋白質としては、特に限定されることなく、例えばアビジン(ストレプトアビジン)、ビオチン又はレセプターなどを使用できる。
免疫グロブリン結合性蛋白質としては、例えばプロテインAあるいはプロテインG、リウマチ因子(RF)等を使用することができる。
糖結合性蛋白質としては、レクチン等が挙げられる。
脂肪酸あるいは脂肪酸エステルとしては、ステアリン酸、アラキジン酸、ベヘン酸、ステアリン酸エチル、アラキジン酸エチル、ベヘン酸エチル等が挙げられる。
生理活性物質が抗体や酵素などの蛋白質又は核酸である場合、その固定化は、生理活性物質のアミノ基、チオール基等を利用し、金属表面の官能基に共有結合させることで行うことができる。
上記のようにして生理活性物質を固定化したバイオセンサーは、当該生理活性物質と相互作用する物質の検出及び/又は測定のために使用することができる。
即ち、本発明によれば、生理活性物質が固定化された本発明のバイオセンサーを用いて、これに被験物質を接触させることにより、該バイオセンサーに固定化されている生理活性物質と相互作用する物質を検出及び/又は測定する方法が提供される。
被験物質としては例えば、上記した生理活性物質と相互作用する物質を含む試料などを使用することができる。
本発明では、バイオセンサー用表面に固定化されている生理活性物質と被験物質との相互作用を非電気化学的方法により検出及び/又は測定することが好ましい。非電気化学的方法としては、表面プラズモン共鳴(SPR)測定技術、水晶発振子マイクロバランス(QCM)測定技術、金のコロイド粒子から超微粒子までの機能化表面を使用した測定技術などが挙げられる。
本発明の好ましい態様によれば、本発明のバイオセンサーは、例えば、透明基板上に配置される金属膜を備えていることを特徴とする表面プラズモン共鳴用バイオセンサーとして用いることができる。
表面プラズモン共鳴用バイオセンサーとは、表面プラズモン共鳴バイオセンサーに使用されるバイオセンサーであって、該センサーより照射された光を透過及び反射する部分、並びに生理活性物質を固定する部分とを含む部材を言い、該センサーの本体に固着されるものであってもよく、また脱着可能なものであってもよい。
表面プラズモン共鳴の現象は、ガラス等の光学的に透明な物質と金属薄膜層との境界から反射された単色光の強度が、金属の出射側にある試料の屈折率に依存することによるものであり、従って、反射された単色光の強度を測定することにより、試料を分析することができる。
表面プラズモンが光波によって励起される現象を利用して、被測定物質の特性を分析する表面プラズモン測定装置としては、Kretschmann配置と称される系を用いるものが挙げられる(例えば特開平6−167443号公報参照)。上記の系を用いる表面プラズモン測定装置は基本的に、例えばプリズム状に形成された誘電体ブロックと、この誘電体ブロックの一面に形成されて試料液などの被測定物質に接触させられる金属膜と、光ビームを発生させる光源と、上記光ビームを誘電体ブロックに対して、該誘電体ブロックと金属膜との界面で全反射条件が得られるように種々の角度で入射させる光学系と、上記界面で全反射した光ビームの強度を測定して表面プラズモン共鳴の状態、つまり全反射減衰の状態を検出する光検出手段とを備えてなるものである。
本発明のバイオセンサーは、誘電体ブロックと、この誘電体ブロックの一面に形成された金属膜と、光ビームを発生させる光源と、前記光ビームを前記誘電体ブロックに対して、該誘電体ブロックと金属膜との界面で全反射条件が得られるように、かつ、種々の入射角成分を含むようにして入射させる光学系と、前記界面で全反射した光ビームの強度を測定して表面プラズモン共鳴の状態を検出する光検出手段とを備えてなる表面プラズモン共鳴測定装置に用いられるための測定チップが好ましく、上記誘電体ブロックと上記金属膜とから構成され、上記誘電体ブロックが、前記光ビームの入射面、出射面および前記金属膜が形成される一面の全てを含む1つのブロックとして形成され、この誘電体ブロックに前記金属膜が一体化されている上記の測定チップ中に形成して、使用することができる。
なお上述のように種々の入射角を得るためには、比較的細い光ビームを入射角を変化させて上記界面に入射させてもよいし、あるいは光ビームに種々の角度で入射する成分が含まれるように、比較的太い光ビームを上記界面に収束光状態であるいは発散光状態で入射させてもよい。前者の場合は、入射した光ビームの入射角の変化に従って、反射角が変化する光ビームを、上記反射角の変化に同期して移動する小さな光検出器によって検出したり、反射角の変化方向に沿って延びるエリアセンサによって検出することができる。一方後者の場合は、種々の反射角で反射した各光ビームを全て受光できる方向に延びるエリアセンサによって検出することができる。
上記構成の表面プラズモン測定装置において、光ビームを金属膜に対して全反射角以上の特定入射角で入射させると、該金属膜に接している被測定物質中に電界分布をもつエバネッセント波が生じ、このエバネッセント波によって金属膜と被測定物質との界面に表面プラズモンが励起される。エバネッセント光の波数ベクトルが表面プラズモンの波数と等しくて波数整合が成立しているとき、両者は共鳴状態となり、光のエネルギーが表面プラズモンに移行するので、誘電体ブロックと金属膜との界面で全反射した光の強度が鋭く低下する。この光強度の低下は、一般に上記光検出手段により暗線として検出される。なお上記の共鳴は、入射ビームがp偏光のときにだけ生じる。したがって、光ビームがp偏光で入射するように予め設定しておく必要がある。
この全反射減衰(ATR)が生じる入射角、すなわち全反射減衰角(θSP)より表面プラズモンの波数が分かると、被測定物質の誘電率が求められる。この種の表面プラズモン測定装置においては、全反射減衰角(θSP)を精度良く、しかも大きなダイナミックレンジで測定することを目的として、特開平11−326194号公報に示されるように、アレイ状の光検出手段を用いることが考えられている。この光検出手段は、複数の受光素子が所定方向に配設されてなり、前記界面において種々の反射角で全反射した光ビームの成分をそれぞれ異なる受光素子が受光する向きにして配設されたものである。
そしてその場合は、上記アレイ状の光検出手段の各受光素子が出力する光検出信号を、該受光素子の配設方向に関して微分する微分手段が設けられ、この微分手段が出力する微分値に基づいて全反射減衰角(θSP)を特定し、被測定物質の屈折率に関連する特性を求めることが多い。
また、全反射減衰(ATR)を利用する類似の測定装置として、例えば「分光研究」第47巻 第1号(1998)の第21〜23頁および第26〜27頁に記載がある漏洩モード測定装置も知られている。この漏洩モード測定装置は基本的に、例えばプリズム状に形成された誘電体ブロックと、この誘電体ブロックの一面に形成されたクラッド層と、このクラッド層の上に形成されて、試料液に接触させられる光導波層と、光ビームを発生させる光源と、上記光ビームを上記誘電体ブロックに対して、該誘電体ブロックとクラッド層との界面で全反射条件が得られるように種々の角度で入射させる光学系と、上記界面で全反射した光ビームの強度を測定して導波モードの励起状態、つまり全反射減衰状態を検出する光検出手段とを備えてなるものである。
上記構成の漏洩モード測定装置において、光ビームを誘電体ブロックを通してクラッド層に対して全反射角以上の入射角で入射させると、このクラッド層を透過した後に光導波層においては、ある特定の波数を有する特定入射角の光のみが導波モードで伝搬するようになる。こうして導波モードが励起されると、入射光のほとんどが光導波層に取り込まれるので、上記界面で全反射する光の強度が鋭く低下する全反射減衰が生じる。そして導波光の波数は光導波層の上の被測定物質の屈折率に依存するので、全反射減衰が生じる上記特定入射角を知ることによって、被測定物質の屈折率や、それに関連する被測定物質の特性を分析することができる。
なおこの漏洩モード測定装置においても、全反射減衰によって反射光に生じる暗線の位置を検出するために、前述したアレイ状の光検出手段を用いることができ、またそれと併せて前述の微分手段が適用されることも多い。
また、上述した表面プラズモン測定装置や漏洩モード測定装置は、創薬研究分野等において、所望のセンシング物質に結合する特定物質を見いだすランダムスクリーニングへ使用されることがあり、この場合には前記薄膜層(表面プラズモン測定装置の場合は金属膜であり、漏洩モード測定装置の場合はクラッド層および光導波層)上に上記被測定物質としてセンシング物質を固定し、該センシング物質上に種々の被検体が溶媒に溶かされた試料液を添加し、所定時間が経過する毎に前述の全反射減衰角(θSP)の角度を測定している。
試料液中の被検体が、センシング物質と結合するものであれば、この結合によりセンシング物質の屈折率が時間経過に伴って変化する。したがって、所定時間経過毎に上記全反射減衰角(θSP)を測定し、該全反射減衰角(θSP)の角度に変化が生じているか否か測定することにより、被検体とセンシング物質の結合状態を測定し、その結果に基づいて被検体がセンシング物質と結合する特定物質であるか否かを判定することができる。このような特定物質とセンシング物質との組み合わせとしては、例えば抗原と抗体、あるいは抗体と抗体が挙げられる。具体的には、ウサギ抗ヒトIgG抗体をセンシング物質として薄膜層の表面に固定し、ヒトIgG抗体を特定物質として用いることができる。
なお、被検体とセンシング物質の結合状態を測定するためには、全反射減衰角(θSP)の角度そのものを必ずしも検出する必要はない。例えばセンシング物質に試料液を添加し、その後の全反射減衰角(θSP)の角度変化量を測定して、その角度変化量の大小に基づいて結合状態を測定することもできる。前述したアレイ状の光検出手段と微分手段を全反射減衰を利用した測定装置に適用する場合であれば、微分値の変化量は、全反射減衰角(θSP)の角度変化量を反映しているため、微分値の変化量に基づいて、センシング物質と被検体との結合状態を測定することができる(本出願人による特願2000−398309号参照)。このような全反射減衰を利用した測定方法および装置においては、底面に予め成された薄膜層上にセンシング物質が固定されたカップ状あるいはシャーレ状の測定チップに、溶媒と被検体からなる試料液を滴下供給して、上述した全反射減衰角(θSP)の角度変化量の測定を行っている。
さらに、ターンテーブル等に搭載された複数個の測定チップの測定を順次行うことにより、多数の試料についての測定を短時間で行うことができる全反射減衰を利用した測定装置が、特開2001−330560号公報に記載されている。
本発明のバイオセンサーを表面プラズモン共鳴分析に使用する場合、上記したような各種の表面プラズモン測定装置の一部として適用することができる。
以下の実施例により本発明を更に具体的に説明するが、本発明の範囲はこれらの実施例に限定されるものではない。
図1に記載の装置(本発明の表面プラズモン共鳴測定装置)を実験に用いた。なお、図1に記載の装置の詳細は、特開2003−254906号公報に記載されている。二分割表面の評価と2カップによる測定は、ビームスプリッタ以降の光路の幅を調整して、同一条件で行った。
実施例1
(1)本発明の測定チップの作成
(1−1)ポリメチルメタクリレート(以下、PMMAと呼ぶ)膜の作成
50nmの金が蒸着された本発明の誘電体ブロックをModel-208UV−オゾンクリーニングシステム(TECHNOVISION INC.)で30分間クリーニング処理した後、1mg/mlのPMMAのメチルエチルケトン溶液5μlを金属膜に接触するように添加し、25℃で15分間静置した。得られたPMMA膜の厚さは20nmであった。
(1−2)PMMA膜の加水分解処理
1N NaOH水溶液を前記PMMA膜に接触するように添加し、60℃5時間静置した後、水で3回洗浄した。本処理によりPMMA膜表面にカルボキシル基を導入した。
(1−3)カルボキシル基の活性化
400mMの1−エチル−2,3−ジメチルアミノプロピルカルボジイミドのエタノール溶液と、100mMのペンタフルオロフェノールのエタノール溶液を1:1で混合し、その混合液100μlを前記のカルボキシル基を導入したPMMA膜表面に接触させ、25℃で30分静置した。その後、エタノールで5回洗浄した。
(1−4)インクジェットプリントを用いたパターニング(本発明)
12ピコリットル、180dpiのノズルヘッド(セイコーインスツルメンツ社製)を搭載したインクジェット装置を用いて、10mMビオチン-LC-アミン(PIERCE社製)のエタノール溶液を、前記の活性化されたカルボキシル基を導入したPMMA膜表面の半面にインクジェットプリントした。ここで用いたビオチン-LC-アミンが、本発明において生理活性物質を固定化するリンカーに相当する。また、本操作によりPMMA膜の半面のみリンカーを導入したことが、本発明でいうところのパターニングに相当する。
(1−5)ブロッキング
前記(2−4)で得られたPMMA膜全面に、1Mエタノールアミンのエタノール溶液40μlを接触させ、25℃20分静置した。その後、エタノールで5回、エタノール/水混合溶媒で1回、水で5回洗浄を行った。
(2)比較例の測定チップの作成
前記した本発明の測定チップの作成に対して、(1−4)に記載されたリンカーのパターニングの操作のみ以下の方法に換えて実施し、比較例の測定チップを作成した。
(2−1)スタンプを用いたパターニング(比較例)
測定で使用する誘電体ブロックの測定部の半分に接触する形のスタンプをPDMSにて作成し、表面をプラズマオゾン処理により親水化した。このスタンプを10mMビオチン-LC-アミン(PIERCE社製)のエタノール溶液に1分間浸した後、(1−3)に記載の活性化されたカルボキシル基を導入したPMMA膜表面の半面に20分間押し付けた。
(3)測定チップの評価
上記(1)及び(2)で作成した本発明および比較例の測定チップを添付の図1に記載の表面プラズモン共鳴測定装置に装着し、以下の手順でビオチン化IL−8抗体(Techne社製)を固定化した。
(3−1)ビオチン化IL−8抗体の固定化
HBS-Nバッファー(pH7.4、ビアコア社製)100μlを添加しベースラインとした。なお、HBS-Nバッファーの組成は、HEPES(N-2-Hydroxyethylpiperazine-N'-2-ethanesulfonicAcid)0.01mol/l(pH7.4)、NaCl0.15mol/lである。次に100μlのビオチン化IL−8抗体溶液(50μg/ml、HBS-Nバッファー(pH7.4))で置き換え、10分間静置した。その後、100μl のHBS-Nバッファーで洗浄し、ベースラインからの共鳴シグナル(RU値)変化量をビオチン化IL−8抗体の固定化量(RU値)とした。また、ビオチン化IL−8抗体溶液の濃度を500μg/mlにして、同様の固定化操作を行った。
(3−2)ビオチン化IL−8抗体固定化量の再現性
本発明および比較例の測定チップをそれぞれ20個作成し、前記の方法でビオチン化IL−8抗体の固定化量を測定し、その平均値とCV値を算出した。ここでCV値は以下の式で算出した。
CV値(%)=(標準偏差/平均値)×100
(3−3)IL−8の結合測定
前記のビオチン化IL−8抗体を固定化した本発明および比較例の測定チップを用いてHuman IL−8(Pepro Tech EC社製)の結合測定を行った。まず、HBS-Nバッファー(pH7.4、ビアコア社製)100μlを添加しベースラインとした。次に100μlのIL−8溶液(10ng/ml、HBS-Nバッファー(pH7.4))で置き換え、10分間静置した。その後、100μl のHBS-Nバッファーで洗浄し、ベースラインからの共鳴シグナル(RU値)変化量をIL−8の結合量(RU値)とした。
(3−4)IL−8結合量の再現性
前記(3−2)で作成した、本発明および比較例の各20個のビオチン化IL−8抗体を固定化した測定チップを用いて、(3−3)の方法でIL−8の結合量を測定し、その平均値とCV値を算出した。
(評価結果)
測定結果を表1に示す。
Figure 0004418705
表1の結果から、本発明の構成により、低濃度の抗体溶液を用いた場合でも、抗原の結合検出性が良好な抗体固定化表面を提供できることがわかる。また、本発明により作成した測定チップは抗体固定化量、抗原結合量の再現性が極めて良好であることがわかる。
図1は、実施例で使用した表面プラズモン共鳴測定装置を示す。
符号の説明
9 測定チップ
10 誘電体ブロック
10a 試料保持部
10b 界面
11 液体試料
12 金属膜
13 光ビーム
14 レーザ光源
15 光学系
15a コリメーターレンズ
15b 集光レンズ
16 コリメーターレンズ
17 フォトダイオードアレイ
18 差動アンプアレイ
19 ドライバ
20 信号処理部
21 表示部
30 センシング物質
31 テーブル
31a チップ保持孔
50 流路ユニット
51 流路ホルダ
52 供給路
53 排出路
54 シール部
55 測定流路
56 ポンプ
57 液溜部

Claims (14)

  1. 疎水性高分子化合物でコーティングした基板から成り、疎水性高分子化合物で被覆された基板の表面に、一般式(1)で表される少なくとも1種類以上のリンカーがインクジェットプリントによりパターニングされている、バイオセンサー。
    一般式(1):X―L―Y
    (式中、Xは疎水性高分子化合物の官能基と反応しうる基を示し、Lは2価の連結基を示し、Yは生理活性物質を固定化できる基を示す。)
  2. 基板が金属表面あるいは金属膜である、請求項に記載のバイオセンサー。
  3. 金属表面あるいは金属膜が、金、銀、銅、白金又はアルミニウムからなる群より選ばれる自由電子金属からなるものである、請求項に記載のバイオセンサー。
  4. 金属膜の厚さが1オングストローム以上5000オングストローム以下である、請求項2又は3に記載のバイオセンサー。
  5. 疎水性高分子化合物の被覆厚さが1オングストローム以上、5000オングストローム以下であることを特徴とする、請求項1からの何れかに記載のバイオセンサー表面。
  6. 非電気化学的検出に使用される、請求項1からの何れかに記載のバイオセンサー。
  7. 表面プラズモン共鳴分析に使用される、請求項1からの何れかに記載のバイオセンサー。
  8. 誘電体ブロックと、この誘電体ブロックの一面に形成された金属膜と、光ビームを発生させる光源と、前記光ビームを前記誘電体ブロックに対して、該誘電体ブロックと金属膜との界面で全反射条件が得られるように、かつ、種々の入射角成分を含むようにして入射させる光学系と、前記界面で全反射した光ビームの強度を測定して表面プラズモン共鳴の状態を検出する光検出手段とを備えてなる表面プラズモン共鳴測定装置に用いられるための測定チップであって、上記誘電体ブロックと上記金属膜とから構成され、上記誘電体ブロックが、前記光ビームの入射面、出射面および前記金属膜が形成される一面の全てを含む1つのブロックとして形成され、前記金属膜に請求項1からの何れかに記載のバイオセンサーの表面が形成されている測定チップ。
  9. 生理活性物質が共有結合により表面に結合している、請求項1からの何れかに記載のバイオセンサー。
  10. 同一面内に少なくとも、生理活性物質又はそれと相互作用する物質を結合させた測定部と、生理活性物質又はそれと相互作用する物質を有さない参照部とが存在する、請求項に記載のバイオセンサー。
  11. 請求項1からの何れかに記載のバイオセンサーと生理活性物質とを接触させて、該バイオセンサーの表面に該生理活性物質を共有結合により結合させる工程を含む、バイオセンサーに生理活性物質を固定化する方法。
  12. 生理活性物質が共有結合により表面に結合している請求項1からの何れかに記載のバイオセンサーと被験物質とを接触させる工程を含む、該生理活性物質と相互作用する物質を検出または測定する方法。
  13. 生理活性物質と相互作用する物質を非電気化学的方法により検出または測定する、請求項12に記載の方法。
  14. 生理活性物質と相互作用する物質を表面プラズモン共鳴分析により検出または測定する、請求項12又は13に記載の方法。
JP2004130593A 2003-12-25 2004-04-27 バイオセンサー Expired - Lifetime JP4418705B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2004130593A JP4418705B2 (ja) 2004-04-27 2004-04-27 バイオセンサー
US11/020,254 US7501289B2 (en) 2003-12-25 2004-12-27 Biosensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004130593A JP4418705B2 (ja) 2004-04-27 2004-04-27 バイオセンサー

Publications (2)

Publication Number Publication Date
JP2005315588A JP2005315588A (ja) 2005-11-10
JP4418705B2 true JP4418705B2 (ja) 2010-02-24

Family

ID=35443188

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004130593A Expired - Lifetime JP4418705B2 (ja) 2003-12-25 2004-04-27 バイオセンサー

Country Status (1)

Country Link
JP (1) JP4418705B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060141527A1 (en) * 2004-12-29 2006-06-29 Caracci Stephen J Method for creating a reference region and a sample region on a biosensor and the resulting biosensor
JP4806699B2 (ja) * 2008-08-01 2011-11-02 日本電信電話株式会社 マイクロチップ及び該マイクロチップを用いた抗体固定化方法
JP5967756B2 (ja) * 2012-04-27 2016-08-10 学校法人 東洋大学 分光用基板

Also Published As

Publication number Publication date
JP2005315588A (ja) 2005-11-10

Similar Documents

Publication Publication Date Title
US7501289B2 (en) Biosensor
US20060073521A1 (en) Method for forming a film by spin coating
JP4580291B2 (ja) バイオセンサーを用いた測定方法
JP4418705B2 (ja) バイオセンサー
JP4287737B2 (ja) バイオセンサー
US7425454B2 (en) Biosensor
JP2005189061A (ja) バイオセンサー
JP3893445B2 (ja) バイオセンサー
JP4484562B2 (ja) バイオセンサー
US20060068424A1 (en) Biosensor
Kubo et al. Biosensor
JP2006053092A (ja) バイオセンサー
JP2005283143A (ja) バイオセンサー
JP2004317295A (ja) バイオセンサー
JP4484626B2 (ja) バイオセンサー
JP2005189222A (ja) センサー用固体基板
JP2006214937A (ja) バイオセンサーを用いた分析方法
JP3942547B2 (ja) バイオセンサーを用いた検出又は測定方法
JP2006231262A (ja) スピンコート製膜法
JP3942551B2 (ja) 表面プラズモン共鳴測定装置に用いられる測定チップ
US7740908B2 (en) Method for forming a film by spin coating
JP3942548B2 (ja) バイオセンサー
JP2006078213A (ja) バイオセンサー
JP2005189062A (ja) バイオセンサー
JP4369295B2 (ja) バイオセンサーを用いた測定方法

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20061212

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090306

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091130

R150 Certificate of patent or registration of utility model

Ref document number: 4418705

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121204

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121204

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131204

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250