JP4418263B2 - Microscope objective lens - Google Patents

Microscope objective lens Download PDF

Info

Publication number
JP4418263B2
JP4418263B2 JP2004070606A JP2004070606A JP4418263B2 JP 4418263 B2 JP4418263 B2 JP 4418263B2 JP 2004070606 A JP2004070606 A JP 2004070606A JP 2004070606 A JP2004070606 A JP 2004070606A JP 4418263 B2 JP4418263 B2 JP 4418263B2
Authority
JP
Japan
Prior art keywords
lens
convex
object side
concave
cemented
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004070606A
Other languages
Japanese (ja)
Other versions
JP2005258148A (en
Inventor
勝義 有澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitutoyo Corp
Original Assignee
Mitutoyo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitutoyo Corp filed Critical Mitutoyo Corp
Priority to JP2004070606A priority Critical patent/JP4418263B2/en
Publication of JP2005258148A publication Critical patent/JP2005258148A/en
Application granted granted Critical
Publication of JP4418263B2 publication Critical patent/JP4418263B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

本発明は、顕微鏡対物レンズに関し、特に、倍率が100x程度で、長作動距離と大きな開口数(NA)を併せ持ち、可視光領域から近紫外光領域まで良好に収差補正がなされた無限遠補正型顕微鏡対物レンズに関する。   The present invention relates to a microscope objective lens. In particular, the magnification is about 100 ×, a long working distance and a large numerical aperture (NA) are combined, and an infinite correction type in which aberrations are favorably corrected from the visible light region to the near ultraviolet light region. The present invention relates to a microscope objective lens.

近年、半導体や液晶技術の発展は目覚ましいものがあり、その集積度は益々上がってきている。   In recent years, the development of semiconductor and liquid crystal technologies has been remarkable, and the degree of integration has been increasing.

これらの観察、測定、リペアなどにおいては操作の便宜上、顕微鏡対物レンズの作動距離(WD)が大きいことが望ましい。また、観察時においてはより高分解能な観察、および顕微鏡対物レンズとレーザを使用したリペアなどの分野では、更なる精密な加工の要求が出始めている。そのため、高分解能、長作動距離を併せ持つ、レーザ加工にも使用可能な高性能顕微鏡対物レンズが必要になってきた。更に、使用するレーザもこれまでの近赤外、可視光領域にとどまらず、より波長が短く、精密加工、光化学反応による加工に適した近紫外レーザが一般的に使用されてきている。   In these observation, measurement, repair, etc., it is desirable that the working distance (WD) of the microscope objective lens is large for the convenience of operation. Further, at the time of observation, in the fields such as observation with higher resolution and repair using a microscope objective lens and a laser, there is a demand for further precise processing. Therefore, a high-performance microscope objective lens that has both high resolution and a long working distance and can be used for laser processing has become necessary. Further, the laser to be used is not limited to the near infrared and visible light regions so far, and a near ultraviolet laser having a shorter wavelength and suitable for precision machining and photochemical reaction has been generally used.

近年のこのような観察、測定、リペアなどの発展下において、市場からは、高分解能観察、近紫外レーザによる精密加工、光化学反応による加工などが実現できる可視光から近紫外光領域まで使用可能な、長作動距離と大きな開口数を併せ持つ顕微鏡対物レンズの要望が大きくなっている。   Under the recent development of such observation, measurement, and repair, the market can use from visible light to near-ultraviolet light region, which can realize high-resolution observation, precision processing by near-ultraviolet laser, processing by photochemical reaction, etc. There is a growing demand for microscope objective lenses having both a long working distance and a large numerical aperture.

これまでに、本願出願人は長作動距離の顕微鏡対物レンズとして、可視光領域用では特開昭63ー23119号、特許第2975905号を提案し、また、開口数は比較的小さいが可視光領域から近紫外光領域まで収差補正がなされた特開平7ー20385号、さらに可視光から近赤外光領域で使用可能な、長作動距離と大きな開口数を併せ持つ特開2003−167199号を提案した。   Up to now, the applicant of the present application has proposed Japanese Patent Laid-Open No. 63-23119 and Japanese Patent No. 2975905 as a microscope objective lens having a long working distance, and has a relatively small numerical aperture but a visible light region. Japanese Patent Laid-Open No. 7-20385 in which aberration correction is made from the near-ultraviolet light region, and Japanese Patent Laid-Open No. 2003-167199 that has a long working distance and a large numerical aperture that can be used in the visible to near-infrared light region are proposed. .

特開昭63−23119号公報JP 63-23119 A 特許第2975905号公報Japanese Patent No. 2975905 特開平7―20385号公報Japanese Patent Laid-Open No. 7-20385 特開2003−167199号公報JP 2003-167199 A

しかしながら、特開昭63ー23119号、特許第2975905号、特開2003ー167199号においては、前述のとおり長作動距離顕微鏡対物レンズではあるが、主に可視光領域のみ、あるいは可視光から近赤外光領域について収差補正がなされたものであった。したがって可視光、あるいは近赤外光での結像位置と近紫外光の結像位置とは一致せず、さらに短波長領域における透過率の影響を補正するものではなく、YAGレーザ第3高調波(波長355nm)などの近紫外光レーザを使用したリペア、および近紫外光による高分解能観察などを使用目的としたものではない。   However, in JP-A-63-23119, Japanese Patent No. 2975905, and JP-A-2003-167199, as described above, although it is a long working distance microscope objective lens, it is mainly only in the visible light region or from visible light to near-red. Aberration correction was performed for the outside light region. Therefore, the imaging position of visible light or near-infrared light does not coincide with the imaging position of near-ultraviolet light, and it does not correct the influence of transmittance in the short wavelength region. It is not intended for repair using a near-ultraviolet laser (wavelength 355 nm) or high-resolution observation using near-ultraviolet light.

また、特開平7−20385号の顕微鏡対物レンズは、長作動距離を有しかつ可視光領域から近紫外光領域まで良く収差補正がなされている。しかしながら、その実施例では100x対物レンズの開口数は0.5程度であり高分解能とは言い難く、また焦点深度も深くなる為、近年の近紫外レーザによる精密加工には物足りない面があった。   The microscope objective lens disclosed in Japanese Patent Application Laid-Open No. 7-20385 has a long working distance and is well corrected for aberrations from the visible light region to the near ultraviolet light region. However, in this embodiment, the numerical aperture of the 100 × objective lens is about 0.5, which is difficult to say high resolution, and the depth of focus becomes deep, so that there has been an unsatisfactory surface in recent precision processing with a near ultraviolet laser.

この様な近紫外レーザによる精密加工においては、顕微鏡対物レンズには高倍率、長作動距離と高開口数を併せ持ち、かつ可視光領域から近紫外光領域までの幅広い波長領域に渡って収差補正が良好になされていることが求められる。   In such precision processing using a near-ultraviolet laser, the microscope objective lens has a high magnification, a long working distance and a high numerical aperture, and can correct aberrations over a wide wavelength range from the visible light region to the near-ultraviolet light region. It is required to be done well.

本発明は、この様な問題点に鑑みてなされたものであり、その目的は、可視光領域から近紫外光領域までの幅広い波長領域に渡って色収差および諸収差の良く補正された、操作性のよい長作動距離と高開口数を併せ持った、倍率が100x程度の無限遠補正型顕微鏡対物レンズを提供することにある。   The present invention has been made in view of such problems, and its purpose is to improve the operability in which chromatic aberration and various aberrations are well corrected over a wide wavelength range from the visible light region to the near ultraviolet light region. It is an object of the present invention to provide an infinitely corrected microscope objective lens having a good long working distance and a high numerical aperture and a magnification of about 100x.

上記目的を達成するために、本発明は、
物体側から遠い順に、凸レンズおよび凹レンズの2枚接合レンズと、凸レンズおよび凹レンズからなる全体として物体側に凹面を向けたメニスカス状の2枚接合レンズとの、2組の2枚接合レンズからなり、全体として負の屈折力を持つ第1群と、物体側から遠い順に、物体側に凸面を向けた凸メニスカスレンズと、凹レンズおよび凸レンズの2枚接合レンズと、凸レンズ、凹レンズおよび凸レンズの3枚接合レンズと、凹レンズおよび凸レンズの2枚接合レンズと、凸レンズ、凹レンズおよび凸レンズの3枚接合レンズと、最も物体側には4枚の単独の凸レンズを配置し、これらの単独の凸レンズのうち、物体側にある3枚は物体側に凹面を向けた凸メニスカスレンズからなり、全体として正の屈折力を持つ第2群とを備える顕微鏡対物レンズにおいて、前記第1群の物体側から最も遠い側に位置する2枚接合レンズの物体側の面の曲率半径をr11r、前記第2群の物体側から最も遠い側に位置する凸メニスカスレンズの物体側の面の曲率半径をr21r、最も物体側に位置する凸メニスカスレンズの物体側の面の曲率半径をr2r、前記第1群中の全ての凸レンズのアッベ数をν1p、前記第2群中の全ての凹レンズのアッベ数をν2n、部分分散比をθig2n、当該顕微鏡対物レンズ全体の焦点距離をFとすると、次の(1)乃至(4)の各式、
In order to achieve the above object, the present invention provides:
In order from the object side, it consists of two sets of two-lens cemented lenses, a two-lens cemented lens consisting of a convex lens and a concave lens, and a meniscus two-lens cemented lens having a concave surface facing the object side as a whole. a first group having negative refracting power as a whole, the farthest from the object side, a convex meniscus lens having a convex surface directed toward the object side, a cemented doublet lens of a concave lens and a convex lens, a convex lens, a cemented triplet of concave and convex lens A lens, a cemented two-lens lens of a concave lens and a convex lens, a three-lens cemented lens of a convex lens, a concave lens and a convex lens, and four single convex lenses on the most object side, and among these single convex lenses, the object side The three objective lenses consist of a convex meniscus lens having a concave surface directed toward the object side, and a second objective having a positive refractive power as a whole. The radius of curvature of the object side surface of the double cemented lens located farthest from the object side of the first group is r11r, and the convex meniscus lens located farthest from the object side of the second group The radius of curvature of the object side surface is r21r, the radius of curvature of the object side surface of the convex meniscus lens located closest to the object side is r2r, the Abbe number of all the convex lenses in the first group is ν1p, and in the second group Assuming that the Abbe number of all concave lenses is ν2n, the partial dispersion ratio is θig2n, and the focal length of the entire microscope objective lens is F, the following equations (1) to (4)

を満たすことによって、前記課題を解決する。 The said subject is solved by satisfy | filling.

但し、アッベ数νとは、d線(587.56nm)、F線(486.13nm)、C線(656.27nm)、の各波長の屈折率をそれぞれ、nd、nF、nC、とすると   However, the Abbe number ν is the refractive index of each wavelength of the d-line (587.56 nm), F-line (486.13 nm), and C-line (656.27 nm), respectively, nd, nF, and nC.

であり、部分分散比θig とは、i線(365.01nm)、g線(435.84nm)の各波長の屈折率をそれぞれ、ni、ngとすると The partial dispersion ratio θig is defined as ni and ng, respectively, for the refractive index of each wavelength of i-line (365.01 nm) and g-line (435.84 nm).

で表される。 It is represented by

物体面の1点から出た発散する光線束は、第2群の物体側のレンズに入射し、収束されて第2群から出射し第1群に入射する。第1群に入射した光線束は第1群により平行光線束となり第1群より出射する。   The diverging light beam emitted from one point on the object surface is incident on the lens on the object side of the second group, converged, emitted from the second group, and incident on the first group. The light beam incident on the first group becomes a parallel light beam by the first group and is emitted from the first group.

次に各条件式について説明する。
(1)式は、
前記第1群の物体側から最も遠い側に位置する2枚接合レンズの物体側の面(以下、この面をr11r面と記す)の曲率半径r11rと、前記第2群の物体側から最も遠い側に位置する凸メニスカスレンズの物体側の面(以下、この面をr21r面と記す)の曲率半径r21rの値を規定するものである。
Next, each conditional expression will be described.
Equation (1) is
The radius of curvature r11r of the object-side surface (hereinafter referred to as the r11r surface) of the two-piece cemented lens located on the farthest side from the object side of the first group, and the farthest from the object side of the second group This defines the value of the radius of curvature r21r of the object side surface of the convex meniscus lens located on the side (hereinafter referred to as the r21r surface).

(1−1)式において、
この式の上限を越えてr11rの値が大きくなると、r11r面でのコマ収差および非点収差の補正量が小さくなり、その他の面でこれを補正しようとすると高次収差の発生が大きくなる。また、下限を越えて小さくなると、逆に、r11r面でのコマ収差および非点収差の発生が大きくなりすぎ、他の面ではこの収差を補正しきれなくなる。
In the formula (1-1),
If the value of r11r increases beyond the upper limit of this equation, the correction amount of coma and astigmatism on the r11r surface decreases, and higher-order aberrations increase when correction is made on other surfaces. On the other hand, when the value is smaller than the lower limit, converse aberration and astigmatism are excessively generated on the r11r surface, and this aberration cannot be corrected on the other surfaces.

(1−2)式は、
(1−1)式のr11rの値の範囲において、r21rの値を規定するものである。これは、r21r面において発生する負のコマ収差とr11r面で発生する正のコマ収差のバランスを取り、かつ、r21r面での3次および高次の球面収差の発生をコントロールするもので、顕微鏡対物レンズ全体の球面収差およびコマ収差の補正が、(1−2)式を実現することで可能となる。
Equation (1-2) is
In the range of the value of r11r in the expression (1-1), the value of r21r is specified. This balances the negative coma generated on the r21r surface and the positive coma generated on the r11r surface, and controls the generation of third-order and higher-order spherical aberrations on the r21r surface. Correction of spherical aberration and coma aberration of the entire objective lens can be performed by realizing the expression (1-2).

この式の上限を越えて大きくなると、r21r面での球面収差、コマ収差および非点収差の発生が顕著となり、r11r面およびその他の面での収差補正が困難となる。これを他の面で無理に収差補正をしようとすると高次収差が発生し、その結果、顕微鏡対物レンズとして大きな開口数を得ることができなくなる。   If the value exceeds the upper limit of this expression, spherical aberration, coma and astigmatism will occur remarkably on the r21r surface, and it will be difficult to correct aberrations on the r11r surface and other surfaces. If this is forcibly corrected for aberrations on another surface, higher-order aberrations occur, and as a result, a large numerical aperture cannot be obtained as a microscope objective lens.

また、逆に、この式の下限を越えると、主にr11r面で発生する正のコマ収差の補正が困難になると同時に、r21r面で発生する大きな3次の球面収差のため、顕微鏡対物レンズ全体として3次および高次の球面収差のバランスを取ることが不可能になり、同様に顕微鏡対物レンズとして大きな開口数を得ることができなくなる。
(1)式は、球面収差、コマ収差、非点収差、およびその高次収差をバランスよく補正し、顕微鏡対物レンズとして高開口数を得るために必要な条件である。
On the other hand, if the lower limit of this equation is exceeded, correction of positive coma that occurs mainly on the r11r surface becomes difficult, and at the same time, because of the large third-order spherical aberration that occurs on the r21r surface, the entire microscope objective lens As a result, it becomes impossible to balance the third-order and higher-order spherical aberrations, and similarly, a large numerical aperture cannot be obtained as a microscope objective lens.
Expression (1) is a condition necessary for correcting spherical aberration, coma aberration, astigmatism, and higher-order aberrations in a well-balanced manner and obtaining a high numerical aperture as a microscope objective lens.

(2)式は、
前記第2群の最も物体側に位置する凸メニスカスレンズの物体側の面(以下、この面をr2r面と記す)の曲率半径r2rを規定するためのものである。
Equation (2) is
This is for defining the radius of curvature r2r of the object side surface of the convex meniscus lens located closest to the object side in the second group (hereinafter, this surface will be referred to as the r2r surface).

(2)式の上限を越えると、r2r面での球面収差などの発生が少なくなり収差補正上は有利になるが、同時に作動距離が短くなり、本発明の目的である長作動距離を保つことができなくなる。また下限を越えると、r2r面で発生する球面収差、コマ収差およびその高次収差が大きくなり、これを他の面で補正することが困難となる。したがって、(2)式は、長作動距離と高開口数を同時に得るために必要な条件である。   If the upper limit of equation (2) is exceeded, the occurrence of spherical aberration and the like on the r2r surface is reduced, which is advantageous for aberration correction, but at the same time, the working distance is shortened, and the long working distance that is the object of the present invention is maintained. Can not be. If the lower limit is exceeded, spherical aberration, coma aberration, and higher-order aberration that occur on the r2r surface become large, and it is difficult to correct this on other surfaces. Therefore, equation (2) is a necessary condition for obtaining a long working distance and a high numerical aperture at the same time.

(3)式は、
前記第1群中の全ての凸レンズのアッベ数ν1p を規定するものである。
前記第1群中の凸レンズのアッベ数がこの式の下限を越えると倍率の色収差を補正するのが有利になり、また凹レンズとのアッベ数の差分が大きくできるため凹レンズそれぞれのパワーを小さくすることができ、諸収差の補正には都合がよくなるが、分散の大きい硝材を使用するため色の球面収差が発生する。
したがって、各波長ごとの球面収差の形状が異なるようになり、特に本発明の目的である可視光領域から近紫外領域までの幅広い波長領域に渡って収差補正をし、かつ高開口数を維持する事が困難になる。これを他の場所で補正することはできない。
Equation (3) is
It defines the Abbe number ν1p of all convex lenses in the first group.
If the Abbe number of the convex lens in the first group exceeds the lower limit of this formula, it becomes advantageous to correct chromatic aberration of magnification, and the difference in Abbe number from the concave lens can be increased, so that the power of each concave lens is reduced. This is convenient for correcting various aberrations, but since a glass material having a large dispersion is used, chromatic spherical aberration occurs.
Accordingly, the shape of the spherical aberration differs for each wavelength, and in particular, aberration correction is performed over a wide wavelength region from the visible light region to the near ultraviolet region, which is the object of the present invention, and a high numerical aperture is maintained. Things become difficult. This cannot be corrected elsewhere.

前記第1群中の凸レンズのアッベ数がこの式の上限を越えると、色の球面収差の補正に関しては都合がよいが、倍率の色収差の補正ができなくなるばかりでなく、凸レンズと凹レンズとのアッベ数の差分が小さくなるため、凸レンズおよび凹レンズそれぞれのパワーを大きくしなければならず、諸収差およびその高次収差の発生が顕著になりこれを他の場所で補正することができない。   If the Abbe number of the convex lens in the first group exceeds the upper limit of this formula, it is convenient for correcting the spherical aberration of the color, but not only the chromatic aberration of magnification cannot be corrected, but also the Abbe of the convex lens and the concave lens. Since the difference between the numbers becomes small, the power of each of the convex lens and the concave lens has to be increased, and various aberrations and their higher-order aberrations become prominent and cannot be corrected elsewhere.

(3)式は、顕微鏡対物レンズが可視光領域から近紫外領域までの幅広い波長領域に渡って収差補正がなされ、かつ高開口数の実現に必要な条件である。
(4)式は、
前記第2群中の全ての凹レンズのアッベ数と部分分散比を規定するものである。
(4−1)式の下限を越えたアッベ数の硝材を第2群中の凹レンズに使用すると、分散の大きい硝材を使用することになり、色の球面収差が発生する。したがって、前述の(3)式の説明と同様に幅広い波長領域に渡って収差補正をし、かつ高開口数を維持することができなくなる。
Equation (3) is a condition necessary for the microscope objective lens to correct aberrations over a wide wavelength region from the visible light region to the near ultraviolet region, and to realize a high numerical aperture.
Equation (4) is
It defines the Abbe number and partial dispersion ratio of all concave lenses in the second group.
If a glass material having an Abbe number exceeding the lower limit of the equation (4-1) is used for the concave lens in the second lens group, a glass material having a large dispersion is used, and chromatic spherical aberration occurs. Accordingly, it is impossible to correct aberrations over a wide wavelength region and maintain a high numerical aperture as in the description of the above-described equation (3).

(4−2)式の上限を越えた部分分散比の硝材を第2群中の凹レンズに使用すると、超色消しの条件から外れるようになり、所謂2次スペクトルの発生が顕著になる。特に本発明の目的である可視光領域から近紫外領域までの幅広い波長領域に対しては、2次スペクトルの色収差の発生はより顕著に現れる。   When a glass material having a partial dispersion ratio exceeding the upper limit of the expression (4-2) is used for the concave lens in the second lens group, it becomes out of the super-achromatic condition, and so-called secondary spectrum is remarkably generated. In particular, the occurrence of chromatic aberration of the secondary spectrum appears more prominently in a wide wavelength range from the visible light range to the near ultraviolet range, which is the object of the present invention.

(4)式は、可視光領域から近紫外領域までの幅広い波長領域に渡って色の球面収差の補正、および2次スペクトルの発生を防ぐために必要な条件である。すなわち、(1)乃至(4)の各式を満たすことにより可視光領域から近紫外領域までの幅広い波長領域で色収差が良好に補正され、かつ高開口数の無限遠補正型顕微鏡対物レンズが実現できる。   Equation (4) is a necessary condition for correcting the spherical aberration of color and preventing the generation of the secondary spectrum over a wide wavelength range from the visible light region to the near ultraviolet region. That is, by satisfying the formulas (1) to (4), a chromatic aberration can be corrected well in a wide wavelength range from the visible light region to the near ultraviolet region, and an infinitely corrected microscope objective lens having a high numerical aperture is realized. it can.

本発明は、上記のような構成にしたので、可視光領域から近紫外領域にいたるまでの幅広い波長領域に渡って、色収差やその他の諸収差を良好に補正した、高倍率(100x)でありながら、高開口数(高NA)、かつ長作動距離を併せ持つ無限遠補正型顕微鏡対物レンズを得ることができ、顕微鏡下での作業効率を著しく増大させることができる。   Since the present invention is configured as described above, it has a high magnification (100x) in which chromatic aberration and other various aberrations are well corrected over a wide wavelength range from the visible light region to the near ultraviolet region. However, an infinity-corrected microscope objective lens having a high numerical aperture (high NA) and a long working distance can be obtained, and the working efficiency under the microscope can be remarkably increased.

図1には、本発明による無限遠補正型顕微鏡対物レンズの実施例が示されている。この顕微鏡対物レンズは、物体側から遠い順に、全体として負の屈折力を持つ第1群と正の屈折力を持つ第2群とから構成されている。   FIG. 1 shows an embodiment of an infinitely corrected microscope objective lens according to the present invention. This microscope objective lens is composed of a first group having negative refractive power and a second group having positive refractive power as a whole in order from the object side.

第1群は凸レンズL1 および凹レンズL2の2枚接合レンズと、凸レンズL3 および凹レンズL4 からなる全体として物体側に凹面を向けたメニスカス状の2枚接合レンズとの、2組の2枚接合レンズから構成されている。   The first group is composed of two sets of two cemented lenses, a two-lens cemented lens composed of a convex lens L1 and a concave lens L2, and a meniscus two-lens cemented lens having a convex surface facing the object side as a whole. It is configured.

第2群は、物体側より遠い順に、物体側に凸面を向けた凸メニスカスレンズL5 と、凹レンズL6 および凸レンズL7 の2枚接合レンズと、凸レンズL8 、凹レンズL9 および凸レンズL10の3枚接合レンズと、凹レンズL11とおよび凸レンズL12の2枚接合レンズと、凸レンズL13、凹レンズL14および凸レンズL15の3枚接合レンズと、凸レンズL16と、物体側に凹面を向けた3枚の凸メニスカスレンズL17、L18およびL19とから構成されている。   The second group includes, in order from the object side, a convex meniscus lens L5 having a convex surface facing the object side, a double cemented lens of a concave lens L6 and a convex lens L7, and a triple cemented lens of a convex lens L8, a concave lens L9 and a convex lens L10. , A concave lens L11 and a convex lens L12, a cemented lens, a convex lens L13, a concave lens L14, a convex lens L15, a cemented lens L16, a convex lens L16, and three convex meniscus lenses L17, L18 having a concave surface facing the object side. L19.

このような構成において、焦点距離200mmの結像レンズで結像した時の倍率が100倍、物体側の開口数(NA)が0.67、焦点距離が2mmとなるように各レンズの光学定数を表1に示すように設定したところ、レンズ系の最も物体側に位置する凸メニスカスレンズL19の面の頂点から物体面までの距離である作動距離(WD)が、11.11mmとなり、長作動距離と高開口数(高NA)を併せ持つ、高性能の無限遠補正型顕微鏡対物レンズを実現することができた。   In such a configuration, the optical constants of the respective lenses are such that when the image is formed by an imaging lens having a focal length of 200 mm, the magnification is 100 times, the numerical aperture (NA) on the object side is 0.67, and the focal length is 2 mm. Is set as shown in Table 1, the working distance (WD), which is the distance from the apex of the surface of the convex meniscus lens L19 located closest to the object side of the lens system to the object surface, is 11.11 mm, which is a long operation. A high-performance infinity-corrected microscope objective lens that has both a distance and a high numerical aperture (high NA) has been realized.

なお、表1においてr1 〜r30は各レンズの各面の曲率半径である。d1 〜d29は各レンズの厚さおよびレンズ間隔である。単位はいずれも(mm)である。n1 〜n19は各レンズL1 〜L19に使用した硝材のd線における屈折率であり、ν1 〜ν19は各レンズL1〜L19に使用した硝材のアッベ数であり、θig6 、θig9 、θig11 、θig14はそれぞれのレンズL6 、L9 、L11、L14に使用した硝材の部分分散比θig
である。
In Table 1, r1 to r30 are the radius of curvature of each surface of each lens. d1 to d29 are the thickness of each lens and the lens interval. All units are (mm). n1 to n19 are refractive indexes at the d-line of the glass materials used for the lenses L1 to L19, ν1 to ν19 are Abbe numbers of the glass materials used for the lenses L1 to L19, and θig6, θig9, θig11, and θig14 are respectively Partial Dispersion Ratio θig of Glass Material Used for Lenses L6, L9, L11, and L14
It is.

表1の無限遠補正型顕微鏡対物レンズの仕様
倍率 100x
焦点距離 2.0 mm
開口数 (NA) 0.67
作動距離(WD) 11.11 mm
(倍率・・・・・焦点距離200mmの結像レンズを使用したときの倍率)
(作動距離・・・レンズ系の最も物体側の面の頂点から、物体面までの距離)

実施例における各条件式の値
Specified magnification of infinity corrected microscope objective in Table 1 100x
Focal length 2.0 mm
Numerical aperture (NA) 0.67
Working distance (WD) 11.11 mm
(Magnification: Magnification when using an imaging lens with a focal length of 200 mm)
(Working distance: Distance from the apex of the most object-side surface of the lens system to the object surface)

The value of each conditional expression in the example

上記の値は(1)の条件式を満たしている。   The above value satisfies the conditional expression (1).

上記の値は(2)の条件式を満たしている。   The above value satisfies the conditional expression (2).

上記の値は(3)の条件式を満たしている。   The above value satisfies the conditional expression (3).

上記の値は(4)の条件式を満たしている。   The above value satisfies the conditional expression (4).

一方、図2には本実施例の無限遠補正型顕微鏡対物レンズの球面収差(図2(A))、非点収差(図2(B))、および歪曲収差(図2(C))が示されている。球面収差には、d線、F線、C線および355nmの各波長における収差が示されている。   On the other hand, FIG. 2 shows spherical aberration (FIG. 2A), astigmatism (FIG. 2B), and distortion aberration (FIG. 2C) of the infinity-corrected microscope objective lens of this example. It is shown. Spherical aberration shows aberration at each wavelength of d-line, F-line, C-line and 355 nm.

また、非点収差にはサジタル面Sおよびメリディオナル面Mにおける収差が示されており、歪曲収差と同様にd線の値が示されている。ここで、Y´は焦点距離200mmの結像レンズによって結像されるときの像高(15mm)である。
これらの収差図から、本実施例の無限遠補正型顕微鏡対物レンズは可視光領域から近紫外領域まで良く収差補正がなされた、高倍率(100x)でありながら、高開口数、かつ長作動距離を併せ持つ、高性能顕微鏡対物レンズが実現できたことが理解できる。
Astigmatism shows aberrations on the sagittal surface S and the meridional surface M, and the value of the d-line is shown as in the case of distortion. Here, Y ′ is an image height (15 mm) when being imaged by an imaging lens having a focal length of 200 mm.
From these aberration diagrams, the infinity-corrected microscope objective lens of the present embodiment has been well corrected for aberrations from the visible light region to the near ultraviolet region, while having a high magnification (100 ×), a high numerical aperture, and a long working distance. It can be understood that a high-performance microscope objective lens having the above has been realized.

以上、本発明について好適な実施例を挙げて説明したが、本発明は、この実施例に限定されるものではなく、本発明の技術的思想の範囲において種々の改良並びに設計の変更が可能である。例えば、第1群と第2群のレンズ枚数の変更、凸レンズや凹レンズ、接合レンズの配列の変更も本発明の要旨の範囲を逸脱しない限り可能である。さらに上記実施例では無限遠補正型の顕微鏡対物レンズについて示したが、良く補正された小型の結像レンズを第1群の像面側に設けることで有限補正型顕微鏡対物レンズとして使用出来ることはいうまでもない。   The present invention has been described with reference to a preferred embodiment. However, the present invention is not limited to this embodiment, and various improvements and design changes can be made within the scope of the technical idea of the present invention. is there. For example, it is possible to change the number of lenses in the first group and the second group and to change the arrangement of convex lenses, concave lenses, and cemented lenses without departing from the scope of the gist of the present invention. Furthermore, although the infinity correction type microscope objective lens has been described in the above embodiment, it can be used as a finite correction type microscope objective lens by providing a small corrected image forming lens on the image plane side of the first group. Needless to say.

本実施例の顕微鏡対物レンズの構成断面図である。It is a structure sectional view of the microscope objective lens of a present Example. 本実施例の顕微鏡対物レンズの収差図である。It is an aberration diagram of the microscope objective lens of the present example.

符号の説明Explanation of symbols

G1 第1群
G2 第2群
L1〜L19 レンズ
r1〜r30 レンズの曲率半径
G1 1st group G2 2nd group L1-L19 Lens r1-r30 The curvature radius of a lens

Claims (1)

物体側から遠い順に、凸レンズおよび凹レンズの2枚接合レンズと、凸レンズおよび凹レンズからなる全体として物体側に凹面を向けたメニスカス状の2枚接合レンズとの、2組の2枚接合レンズからなり、全体として負の屈折力を持つ第1群と、物体側から遠い順に、物体側に凸面を向けた凸メニスカスレンズと、凹レンズおよび凸レンズの2枚接合レンズと、凸レンズ、凹レンズおよび凸レンズの3枚接合レンズと、凹レンズおよび凸レンズの2枚接合レンズと、凸レンズ、凹レンズおよび凸レンズの3枚接合レンズと、最も物体側には4枚の単独の凸レンズを配置し、これらの単独の凸レンズのうち、物体側にある3枚は物体側に凹面を向けた凸メニスカスレンズからなり、全体として正の屈折力を持つ第2群とを備える顕微鏡対物レンズにおいて、前記第1群の物体側から最も遠い側に位置する2枚接合レンズの物体側の面の曲率半径をr11r、前記第2群の物体側から最も遠い側に位置する凸メニスカスレンズの物体側の面の曲率半径をr21r、最も物体側に位置する凸メニスカスレンズの物体側の面の曲率半径をr2r、前記第1群中の全ての凸レンズのアッベ数をν1p、前記第2群中の全ての凹レンズのアッベ数をν2n、部分分散比をθig2n、当該顕微鏡対物レンズ全体の焦点距離をFとすると、次の(1)乃至(4)の各式、
であることを特徴とする顕微鏡対物レンズ。
In order from the object side, it consists of two sets of two-lens cemented lenses, a two-lens cemented lens consisting of a convex lens and a concave lens, and a meniscus two-lens cemented lens having a concave surface facing the object side as a whole. a first group having negative refracting power as a whole, the farthest from the object side, a convex meniscus lens having a convex surface directed toward the object side, a cemented doublet lens of a concave lens and a convex lens, a convex lens, a cemented triplet of concave and convex lens A lens, a cemented two-lens lens of a concave lens and a convex lens, a three-lens cemented lens of a convex lens, a concave lens and a convex lens, and four single convex lenses on the most object side, and among these single convex lenses, the object side The three objective lenses consist of a convex meniscus lens having a concave surface directed toward the object side, and a second objective having a positive refractive power as a whole. The radius of curvature of the object side surface of the double cemented lens located farthest from the object side of the first group is r11r, and the convex meniscus lens located farthest from the object side of the second group The radius of curvature of the object side surface is r21r, the radius of curvature of the object side surface of the convex meniscus lens located closest to the object side is r2r, the Abbe number of all the convex lenses in the first group is ν1p, and in the second group Assuming that the Abbe number of all concave lenses is ν2n, the partial dispersion ratio is θig2n, and the focal length of the entire microscope objective lens is F, the following equations (1) to (4)
Microscope objective lens characterized by being.
JP2004070606A 2004-03-12 2004-03-12 Microscope objective lens Expired - Lifetime JP4418263B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004070606A JP4418263B2 (en) 2004-03-12 2004-03-12 Microscope objective lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004070606A JP4418263B2 (en) 2004-03-12 2004-03-12 Microscope objective lens

Publications (2)

Publication Number Publication Date
JP2005258148A JP2005258148A (en) 2005-09-22
JP4418263B2 true JP4418263B2 (en) 2010-02-17

Family

ID=35083903

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004070606A Expired - Lifetime JP4418263B2 (en) 2004-03-12 2004-03-12 Microscope objective lens

Country Status (1)

Country Link
JP (1) JP4418263B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5087265B2 (en) * 2006-12-11 2012-12-05 オリンパス株式会社 Long working distance objective lens

Also Published As

Publication number Publication date
JP2005258148A (en) 2005-09-22

Similar Documents

Publication Publication Date Title
US7046451B2 (en) Immersion microscope objective lens
US8199408B2 (en) Immersion microscope objective lens
JP4496524B2 (en) Immersion microscope objective lens
JP6552436B2 (en) Immersion objective lens
JP2006259548A (en) Microscope objective lens
JP4418263B2 (en) Microscope objective lens
JP4987417B2 (en) Long working distance microscope objective
JP2019003001A (en) Objective lens
US11067782B2 (en) Microscope objective
JP3944099B2 (en) Immersion microscope objective lens
JP2011017978A (en) Eye-piece zoom optical system
JP6392947B2 (en) Immersion microscope objective lens and microscope using the same
JPH09222565A (en) Microscope objective
JP2002341259A (en) Ocular for endoscope
JP4258827B2 (en) Objective lens
JPH11316337A (en) Image-formation lens
JP5963121B2 (en) Eyepiece zoom optical system
JP7134685B2 (en) microscope objective lens
JP3960784B2 (en) Microscope objective lens
JP7214192B2 (en) Immersion microscope objective lens, imaging lens and microscope device
CN218158537U (en) Microscope objective
JP7194007B2 (en) dry objective lens
JP7107519B2 (en) microscope objective lens
WO2015107881A1 (en) Objective lens and microscope
JPH06250090A (en) Objective lens for microscope

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060710

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090910

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090925

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091118

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091127

R150 Certificate of patent or registration of utility model

Ref document number: 4418263

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121204

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151204

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250