JP4415819B2 - Camshaft bearing structure - Google Patents

Camshaft bearing structure Download PDF

Info

Publication number
JP4415819B2
JP4415819B2 JP2004304619A JP2004304619A JP4415819B2 JP 4415819 B2 JP4415819 B2 JP 4415819B2 JP 2004304619 A JP2004304619 A JP 2004304619A JP 2004304619 A JP2004304619 A JP 2004304619A JP 4415819 B2 JP4415819 B2 JP 4415819B2
Authority
JP
Japan
Prior art keywords
cylinder
camshaft
bearing
cylinders
bearing structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004304619A
Other languages
Japanese (ja)
Other versions
JP2006118379A (en
Inventor
伸一 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2004304619A priority Critical patent/JP4415819B2/en
Publication of JP2006118379A publication Critical patent/JP2006118379A/en
Application granted granted Critical
Publication of JP4415819B2 publication Critical patent/JP4415819B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、多気筒内燃機関の気筒毎に設けられた弁を駆動するカム軸の軸受構造に関する。   The present invention relates to a bearing structure for a camshaft that drives a valve provided for each cylinder of a multi-cylinder internal combustion engine.

カム軸の軸受構造として、カム軸を支持するカムジャーナル部のうち、タイミングベルト又はチェーンが配置される内燃機関の前端側から1番目と2番目のカムジャーナル部のクリアランスを、他のカムジャーナル部のクリアランスよりも狭くして、タイミングベルト又はチェーンの張力によるカム軸の振れを防止したものがある(特許文献1)。また、カム軸の両端の軸受を転がり軸受とし、かつ転がり軸受のクリアランスを他の軸受のクリアランスよりも狭くして、低速回転時におけるフリクションロスの低減と高速回転時におけるカム軸の撓みの抑制とを図るものもある(特許文献2)。その他、本発明に関連する先行技術文献として特許文献3が存在する。   As the cam shaft bearing structure, among the cam journal portions supporting the cam shaft, the clearances of the first and second cam journal portions from the front end side of the internal combustion engine where the timing belt or the chain is disposed are set to other cam journal portions. There is one in which the cam shaft is prevented from swinging due to the timing belt or chain tension (see Patent Document 1). Also, the bearings at both ends of the camshaft are rolling bearings, and the clearance of the rolling bearing is narrower than the clearance of other bearings, reducing friction loss at low speed rotation and suppressing camshaft deflection at high speed rotation. There is also a thing which aims at (patent document 2). In addition, there is Patent Document 3 as a prior art document related to the present invention.

特開2004−124773号公報JP 2004-124773 A 特許2927360号公報Japanese Patent No. 2927360 実開昭61−49004号公報Japanese Utility Model Publication No. 61-49004

これらの文献に記載された軸受構造は、互いに隣接する気筒間及びカム軸の両端のそれぞれに軸受が設けられ、これらの軸受によってカム軸が支持されているため、軸受構造全体のフリクションロスが依然として大きい。   In the bearing structures described in these documents, since the bearings are provided between the cylinders adjacent to each other and at both ends of the cam shaft, and the cam shaft is supported by these bearings, the friction loss of the entire bearing structure is still maintained. large.

そこで、本発明は軸受構造全体のフリクションロスを低減できるカム軸の軸受構造を提供することを目的とする。   Accordingly, an object of the present invention is to provide a camshaft bearing structure that can reduce the friction loss of the entire bearing structure.

本発明の軸受構造は、多気筒内燃機関の気筒毎に設けられた吸気弁又は排気弁のいずれか一方の弁手段を駆動するカム軸と、前記内燃機関のシリンダヘッドに形成されたカムジャーナル部とカムキャップとを含んで構成され、かつ前記カム軸を回転可能に支持する軸受手段と、を具備するカム軸の軸受構造において、前記軸受手段は、弁手段から反力を受ける期間が重ならず、かつ互いに隣接する気筒、の間におけるカム軸の支持剛性が、他の気筒間におけるカム軸の支持剛性よりも小さくなるように構成されていることにより、上述した課題を解決する(請求項1)。
A bearing structure according to the present invention includes a cam shaft that drives either one of an intake valve and an exhaust valve provided for each cylinder of a multi-cylinder internal combustion engine, and a cam journal portion formed on a cylinder head of the internal combustion engine. A camshaft bearing structure comprising a cam cap and a bearing means for rotatably supporting the camshaft, wherein the bearing means has a period during which it receives a reaction force from the valve means. In addition, the above-described problem is solved by the configuration in which the support rigidity of the cam shaft between the cylinders adjacent to each other is smaller than the support rigidity of the cam shaft between the other cylinders. 1).

カム軸には、気筒毎に設けられた弁手段からの反力が作用し、その反力を受ける期間が互いに隣接する気筒間において重ならない場合が存在する。このような気筒のそれぞれは、一方の気筒の弁手段が完全に閉じられた後に他方の気筒の弁手段が開かれる関係にあるから、隣接する気筒間のカム軸の支持においては、それぞれの弁手段からの反力が同時に作用しない。このため、カム軸の支持の強さ(支持剛性)を他の気筒間の支持剛性より相対的に弱めることができる。この発明によれば、隣接する気筒間におけるカム軸の支持剛性が他の気筒間よりも小さくなるように構成された軸受手段にてカム軸が支持されるので、軸受手段とカム軸との摩擦抵抗力を支持剛性を小さくしただけ低減できる。その結果、軸受構造全体のフリクションロスを低減できる。   A reaction force from the valve means provided for each cylinder acts on the camshaft, and there is a case where the period for receiving the reaction force does not overlap between adjacent cylinders. Each of such cylinders is in a relationship in which the valve means of the other cylinder is opened after the valve means of one cylinder is completely closed. The reaction force from the means does not work at the same time. For this reason, the support strength (support rigidity) of the camshaft can be relatively weaker than the support rigidity between the other cylinders. According to the present invention, the cam shaft is supported by the bearing means configured such that the support rigidity of the cam shaft between the adjacent cylinders is smaller than that between the other cylinders, so the friction between the bearing means and the cam shaft The resistance can be reduced by reducing the support rigidity. As a result, the friction loss of the entire bearing structure can be reduced.

本発明の軸受構造において、前記軸受手段の構成要素として、前記カム軸の支持剛性が小さくされた前記気筒間に配置されるとともに前記弁手段から受ける反力方向への前記カム軸の変位を規制する変位規制部材が設けられ、前記変位規制部材は、前記カム軸の静止時又は所定回転数以下での回転時において前記変位規制部材と前記カム軸とが非接触状態になる大きさのクリアランスが前記変位規制部材と前記カム軸との間に形成されるようにして設けられてもよい(請求項2)。この形態によれば、カム軸の支持剛性が相対的に小さくされた気筒間におけるカム軸の変形を抑えることができるので、例えば高速回転するカム軸の捩れや振動を防止できる。しかも、カム軸との間にクリアランスが形成されているので、変位がそのクリアランスの大きさを超えない限り変位規制部材とカム軸とが非接触状態に保持される。従って、摩擦抵抗力の増加を極力抑えつつ軸受構造全体のフリクションロスの低減効果を維持できる。   In the bearing structure of the present invention, as a component of the bearing means, the camshaft is disposed between the cylinders whose support rigidity of the camshaft is reduced, and restricts displacement of the camshaft in a reaction force direction received from the valve means. A displacement restricting member, and the displacement restricting member has a clearance of a size such that the displacement restricting member and the cam shaft are not in contact with each other when the cam shaft is stationary or rotated at a predetermined rotation speed or less. It may be provided so as to be formed between the displacement regulating member and the cam shaft. According to this embodiment, it is possible to suppress deformation of the camshaft between the cylinders in which the camshaft support rigidity is relatively small, and thus, for example, torsion and vibration of the camshaft rotating at high speed can be prevented. Moreover, since a clearance is formed between the cam shaft and the cam shaft, the displacement regulating member and the cam shaft are held in a non-contact state unless the displacement exceeds the clearance. Therefore, the effect of reducing the friction loss of the entire bearing structure can be maintained while suppressing an increase in the frictional resistance as much as possible.

また、本発明の軸受構造を適用する多気筒内燃機関としては、一方向に並べられた4つの気筒を備えるとともに、前記カム軸の一端側から1番目の気筒、3番目の気筒、4番目の気筒、2番目の気筒、の順、又は前記1番目の気筒、前記2番目の気筒、前記4番目の気筒、前記3番目の気筒、の順に前記弁手段が開閉駆動されるように構成されていてもよく、前記軸受手段は、前記2番目の気筒と前記3番目の気筒との間における前記カム軸の支持剛性が他の気筒間における前記カム軸の支持剛性よりも小さくなるように構成されていてもよい(請求項3)。更にこの形態の多気筒内燃機関において、前記軸受手段は、前記カム軸の前記1番目の気筒側の一端、前記1番目の気筒と前記2番目の気筒との間、前記3番目の気筒と前記4番目の気筒との間、及び前記カム軸の前記4番目の気筒側の他端のみに軸受部が配置されて構成されてもよい(請求項4)。これらの形態においても、上述した本発明の効果を奏することができる。   The multi-cylinder internal combustion engine to which the bearing structure of the present invention is applied includes four cylinders arranged in one direction, and the first cylinder, the third cylinder, the fourth cylinder from the one end side of the camshaft. The valve means is configured to be opened and closed in the order of cylinder, second cylinder, or in the order of the first cylinder, the second cylinder, the fourth cylinder, and the third cylinder. The bearing means may be configured such that a support rigidity of the cam shaft between the second cylinder and the third cylinder is smaller than a support rigidity of the cam shaft between other cylinders. (Claim 3). Furthermore, in the multi-cylinder internal combustion engine of this aspect, the bearing means includes one end of the camshaft on the first cylinder side, between the first cylinder and the second cylinder, the third cylinder, and the A bearing portion may be arranged between the fourth cylinder and only at the other end of the cam shaft on the fourth cylinder side. Also in these forms, the effects of the present invention described above can be achieved.

なお、本発明において、カム軸の支持剛性が「小さくなる」とは、支持剛性が低減されることを意味し、支持剛性がゼロ、つまり支持を省略した場合も含まれる。   In the present invention, “the support rigidity of the cam shaft is“ small ”” means that the support rigidity is reduced, and includes the case where the support rigidity is zero, that is, the support is omitted.

以上説明したように、本発明によれば、弁手段から反力を受ける期間が重ならず、かつ互いに隣接する気筒間におけるカム軸の支持剛性が他の気筒間におけるカム軸の支持剛性よりも小さくなるように軸受手段が構成されているので、軸受構造全体のフリクションロスを低減できる。   As described above, according to the present invention, the periods during which the reaction force is received from the valve means do not overlap, and the camshaft support stiffness between adjacent cylinders is greater than the camshaft support stiffness between other cylinders. Since the bearing means is configured to be small, the friction loss of the entire bearing structure can be reduced.

(第1の実施形態)
図1は本発明の軸受構造を4サイクル内燃機関に適用した第1の実施形態を示している。内燃機関1は4つの気筒2を有し、これらの気筒が一方向に並べられた直列4気筒のエンジンである。なお、各気筒2には、内燃機関1の前方Aから順に#1〜#4の気筒番号を付して互いに区別する。各気筒2には弁手段としての吸気弁3が2本ずつ設けられている。各吸気弁3はバルブスプリング4により上方(閉方向)に付勢されており、カム軸11によってバルブリフタ5を介して開閉駆動される。
(First embodiment)
FIG. 1 shows a first embodiment in which the bearing structure of the present invention is applied to a four-cycle internal combustion engine. The internal combustion engine 1 has four cylinders 2 and is an in-line four-cylinder engine in which these cylinders are arranged in one direction. Each cylinder 2 is given a cylinder number # 1 to # 4 in order from the front A of the internal combustion engine 1 to be distinguished from each other. Each cylinder 2 is provided with two intake valves 3 as valve means. Each intake valve 3 is biased upward (in the closing direction) by a valve spring 4 and is driven to open and close by a cam shaft 11 via a valve lifter 5.

カム軸11には、複数(図1では8個)のカム12A〜12Dがカム軸11と一体回転可能に設けられている。カム12A〜12D(符号12で代表される場合がある)は、内燃機関1のクランク軸(不図示)の回転に応じて#1〜#4の各気筒2の吸気弁3が#1、#3、#4、#2の順序で開閉駆動されるようにカム軸11に設けられている。また、カム12は、各気筒2に設けられた2本の吸気弁3が略同じ動作をするようにカム軸11に設けられている。例えば、カム12A,12Aは、#1の気筒2のバルブリフタ5,5に同時期にノーズが接触するようにカム軸11に設けられている。カム軸11の一端側には、スプロケット6が設けられており、スプロケット6に巻き掛けられたチェーン(不図示)を介してクランク軸の回転がカム軸11に伝達される。   A plurality of (eight in FIG. 1) cams 12 </ b> A to 12 </ b> D are provided on the cam shaft 11 so as to be integrally rotatable with the cam shaft 11. Cams 12 </ b> A to 12 </ b> D (which may be represented by reference numeral 12) have the intake valves 3 of # 1 to # 4 corresponding to the rotation of a crankshaft (not shown) of the internal combustion engine 1 being # 1, # 3, the camshaft 11 is provided to be opened and closed in the order of # 4, # 2. The cam 12 is provided on the camshaft 11 so that the two intake valves 3 provided in each cylinder 2 perform substantially the same operation. For example, the cams 12A and 12A are provided on the camshaft 11 so that the nose contacts the valve lifters 5 and 5 of the cylinder # 2 at the same time. A sprocket 6 is provided on one end side of the camshaft 11, and the rotation of the crankshaft is transmitted to the camshaft 11 via a chain (not shown) wound around the sprocket 6.

カム軸11は、複数(図1では4つ)の軸受部13〜16により回転可能に支持されている。各軸受部13〜16は、詳しい図示は省略したがシリンダヘッドに形成されたカムジャーナル部とカムキャップとを含んで構成される。カム軸11の一端側には、軸受部13が、他端側には軸受部16がそれぞれ配置され、カム12Aとカム12Bとの間(#1と#2の気筒2の間)には軸受部14が、カム12Cとカム12Dとの間(#3と#4の気筒2の間)には軸受部15がそれぞれ配置されている。この形態では、カム12Bとカム12Cとの間(#2と#3の気筒2の間)においてカム軸11の支持が省略されているため、この箇所におけるカム軸11の支持剛性が他の気筒2間における支持剛性よりも小さくされている。本実施形態では、以上の軸受部13〜16によって本発明の軸受手段が構成される。   The cam shaft 11 is rotatably supported by a plurality (four in FIG. 1) of bearing portions 13 to 16. Each bearing part 13-16 is comprised including the cam journal part and cam cap which were formed in the cylinder head although detailed illustration was abbreviate | omitted. A bearing portion 13 is disposed on one end side of the cam shaft 11 and a bearing portion 16 is disposed on the other end side, and a bearing is provided between the cam 12A and the cam 12B (between the cylinders # 1 and # 2). The bearing portion 15 is disposed between the cam 12C and the cam 12D (between the cylinders # 3 and # 4). In this embodiment, since the support of the cam shaft 11 is omitted between the cam 12B and the cam 12C (between the cylinders # 2 and # 3), the support rigidity of the cam shaft 11 at this point is the other cylinder. It is made smaller than the support rigidity between two. In this embodiment, the bearing means of this invention is comprised by the above bearing parts 13-16.

図2はクランク角度(°CA)に対する駆動反力の変化を、軸受部13,14間、軸受部14,15間、軸受部15,16間のそれぞれについて模式的に示している。この図から明らかなように、軸受部13,14間にはカム12Aの駆動反力が、軸受部14,15間にはカム12B及びカム12Cの駆動反力が、軸受部15,16間にはカム12Dの駆動反力がそれぞれ作用する。各カム12には、上述の吸気弁3が開閉駆動される順序(#1、#3、#4、#2)で駆動反力が作用する。ここで、互いに隣接する気筒2のうち、#1,#2間及び#3,#4間のそれぞれには、カム12が駆動反力を同時に受ける期間Tが存在するが、#2,#3間では、駆動反力を受ける期間が重ならない。つまり、カム12B及びカム12Cのそれぞれに作用する駆動反力が軸受部14又は軸受部15に同時に作用することがない。このため、#2,#3間の支持を省略してこの間の荷重を軸受部14と軸受部15によって受ける構造とした。この場合でもカム軸11全体の支持剛性が必要以上に低下することがない。   FIG. 2 schematically shows changes in the driving reaction force with respect to the crank angle (° CA) between the bearing portions 13 and 14, between the bearing portions 14 and 15, and between the bearing portions 15 and 16. As is clear from this figure, the drive reaction force of the cam 12A is between the bearing portions 13 and 14, and the drive reaction force of the cam 12B and the cam 12C is between the bearing portions 15 and 16. The driving reaction force of the cam 12D acts respectively. A driving reaction force acts on each cam 12 in the order (# 1, # 3, # 4, # 2) in which the intake valve 3 is driven to open and close. Here, among the cylinders 2 adjacent to each other, there are periods T during which the cam 12 receives the driving reaction force simultaneously between # 1, # 2 and between # 3, # 4. There is no overlap between the periods for receiving the driving reaction force. That is, the driving reaction force acting on each of the cam 12B and the cam 12C does not act on the bearing portion 14 or the bearing portion 15 at the same time. For this reason, the support between # 2 and # 3 is omitted, and the load between these is received by the bearing portion 14 and the bearing portion 15. Even in this case, the support rigidity of the entire camshaft 11 is not lowered more than necessary.

以上の軸受構造によれば、#2,#3間の支持の省略に応じ軸受構造全体のフリクションロスを低減できる。また、#2,#3間を支持する形態と比べて、カム軸11の全長、及び#2と#3の気筒2の間隔を短縮できるので、内燃機関の全長を短縮できる。更に、軸受部に関する給油量を少なくとも1/5削減できるのでオイルポンプの容量を低減できオイルポンプの駆動損失を低減できる。更にまた、部品点数を削減でき内燃機関を軽量化できる。   According to the above bearing structure, the friction loss of the entire bearing structure can be reduced according to omission of support between # 2 and # 3. Further, since the overall length of the camshaft 11 and the interval between the cylinders # 2 and # 3 can be shortened as compared with the configuration in which the space between # 2 and # 3 is supported, the overall length of the internal combustion engine can be shortened. Furthermore, since the amount of oil supply related to the bearing portion can be reduced by at least 1/5, the capacity of the oil pump can be reduced and the drive loss of the oil pump can be reduced. Furthermore, the number of parts can be reduced and the internal combustion engine can be reduced in weight.

(第2の実施形態)
次に、本発明の第2の実施形態を図3及び図4を参照して説明する。第1の実施形態と共通する構成については、図3及び図4に同一の符号を付して重複する説明を省略する。図3に示したように、この形態の軸受構造では、本発明の軸受手段の構成要素として、#2,#3の気筒間に変位規制部材としてのストッパ20が設けられている。ストッパ20は、図4に示したように、カム軸11の上側(駆動反力の方向側)に沿うようにして配置され、ストッパ20とカム軸11との間にクリアランスCが形成されている。クリアランスCはカム軸11の静止時又は低速回転時(所定回転数以下での回転時)においてこれらが互いに非接触状態に保持される大きさに適宜に設定される。ストッパ20は金属よりも摩擦係数が小さい樹脂材料で形成され、強制的な潤滑を必要としない。
(Second Embodiment)
Next, a second embodiment of the present invention will be described with reference to FIGS. About the structure which is common in 1st Embodiment, the same code | symbol is attached | subjected to FIG.3 and FIG.4, and the overlapping description is abbreviate | omitted. As shown in FIG. 3, in this type of bearing structure, a stopper 20 as a displacement regulating member is provided between the # 2 and # 3 cylinders as a component of the bearing means of the present invention. As shown in FIG. 4, the stopper 20 is arranged along the upper side of the cam shaft 11 (the direction of the driving reaction force), and a clearance C is formed between the stopper 20 and the cam shaft 11. . The clearance C is appropriately set to a size that allows the camshaft 11 to be held in a non-contact state when the camshaft 11 is stationary or rotated at a low speed (when rotating at a predetermined rotation speed or less). The stopper 20 is made of a resin material having a smaller coefficient of friction than metal and does not require forced lubrication.

この形態によれば、低速回転時には、カム軸11とストッパ20とが非接触状態となり#2,#3間の支持を省略した形態と同等である。このため、#2,#3間におけるカム軸11の支持剛性は他の気筒2の間よりも小さくなり、結果として、軸受構造全体のフリクションロスが低減する。そして、高速回転時には、駆動反力方向へのカム軸11の変位がストッパ20により規制されるため、カム軸11の変形を抑制でき、カム軸11の捩れや振動を防止できる。   According to this form, at the time of low speed rotation, the cam shaft 11 and the stopper 20 are in a non-contact state, which is equivalent to a form in which the support between # 2 and # 3 is omitted. For this reason, the support rigidity of the camshaft 11 between # 2 and # 3 is smaller than that between the other cylinders 2, and as a result, the friction loss of the entire bearing structure is reduced. During high-speed rotation, the displacement of the cam shaft 11 in the driving reaction force direction is restricted by the stopper 20, so that deformation of the cam shaft 11 can be suppressed, and twisting and vibration of the cam shaft 11 can be prevented.

本発明は、以上の実施形態に限定されず、種々の形態で実施してよい。多気筒内燃機関として、気筒数は特に制限されず、また、直列型、V型、水平対向型等の気筒の配列方向についても特に制限はない。要は弁手段から反力を受ける期間が重ならず、かつ互いに隣接する気筒が存在する内燃機関であれば本発明を適用できる。   The present invention is not limited to the above embodiment, and may be implemented in various forms. As a multi-cylinder internal combustion engine, the number of cylinders is not particularly limited, and there is no particular limitation on the arrangement direction of cylinders such as in-line type, V type, and horizontally opposed type. In short, the present invention can be applied to any internal combustion engine in which the periods of receiving the reaction force from the valve means do not overlap and there are adjacent cylinders.

また、内燃機関1の各気筒2の燃焼順序(吸気弁3の開閉駆動順序)は、#1、#2、#4、#3でもよい。上述した実施形態では、カム軸11として、吸気弁3を開閉するカム軸を例示したが、排気弁を開閉駆動するカム軸でもよい。この場合には排気弁が本発明の弁手段に相当する。   Further, the combustion order of each cylinder 2 of the internal combustion engine 1 (the opening / closing drive order of the intake valve 3) may be # 1, # 2, # 4, and # 3. In the embodiment described above, the cam shaft that opens and closes the intake valve 3 is illustrated as the cam shaft 11, but a cam shaft that opens and closes the exhaust valve may be used. In this case, the exhaust valve corresponds to the valve means of the present invention.

本発明の軸受構造を適用した第1の実施形態を示した図。The figure which showed 1st Embodiment to which the bearing structure of this invention is applied. クランク角度に対する駆動反力の変化を、各軸受部間のそれぞれについて模式的に示した説明図。Explanatory drawing which showed typically the change of the driving reaction force with respect to a crank angle about each between each bearing parts. 本発明の第2の実施形態を示した図。The figure which showed the 2nd Embodiment of this invention. 図3のIII−III線に関する断面概略図。Sectional schematic regarding the III-III line | wire of FIG.

符号の説明Explanation of symbols

1 内燃機関
2 気筒
3 吸気弁(弁手段)
11 カム軸
13〜16 軸受部(軸受手段)
20 ストッパ(変位規制部材)
C クリアランス
1 Internal combustion engine 2 Cylinder 3 Intake valve (valve means)
11 Camshaft 13-16 Bearing part (bearing means)
20 Stopper (Displacement restricting member)
C Clearance

Claims (4)

多気筒内燃機関の気筒毎に設けられた吸気弁又は排気弁のいずれか一方の弁手段を駆動するカム軸と、前記内燃機関のシリンダヘッドに形成されたカムジャーナル部とカムキャップとを含んで構成され、かつ前記カム軸を回転可能に支持する軸受手段と、を具備するカム軸の軸受構造において、
前記軸受手段は、弁手段から反力を受ける期間が重ならず、かつ互いに隣接する気筒、の間におけるカム軸の支持剛性が、他の気筒間におけるカム軸の支持剛性よりも小さくなるように構成されていることを特徴とするカム軸の軸受構造。
A camshaft that drives either one of an intake valve or an exhaust valve provided for each cylinder of the multi-cylinder internal combustion engine ; a cam journal portion formed on a cylinder head of the internal combustion engine; and a cam cap. A bearing structure for a camshaft comprising: bearing means configured to rotatably support the camshaft;
The bearing means is configured so that the periods for receiving the reaction force from the valve means do not overlap, and the support rigidity of the camshaft between the cylinders adjacent to each other is smaller than the support rigidity of the camshaft between the other cylinders. A camshaft bearing structure characterized by being configured.
前記軸受手段の構成要素として、前記カム軸の支持剛性が小さくされた前記気筒間に配置されるとともに前記弁手段から受ける反力方向への前記カム軸の変位を規制する変位規制部材が設けられ、前記変位規制部材は、前記カム軸の静止時又は所定回転数以下での回転時において前記変位規制部材と前記カム軸とが非接触状態になる大きさのクリアランスが前記変位規制部材と前記カム軸との間に形成されるようにして設けられていることを特徴とする請求項1に記載のカム軸の軸受構造。   As a component of the bearing means, there is provided a displacement regulating member that is disposed between the cylinders in which the support rigidity of the camshaft is reduced and that regulates the displacement of the camshaft in the reaction force direction received from the valve means. The displacement regulating member has a clearance large enough to cause the displacement regulating member and the cam shaft to be in a non-contact state when the cam shaft is stationary or rotated at a predetermined rotation speed or less. The camshaft bearing structure according to claim 1, wherein the camshaft bearing structure is provided between the shaft and the shaft. 前記多気筒内燃機関は、一方向に並べられた4つの気筒を備えるとともに、前記カム軸の一端側から1番目の気筒、3番目の気筒、4番目の気筒、2番目の気筒、の順、又は前記1番目の気筒、前記2番目の気筒、前記4番目の気筒、前記3番目の気筒、の順に前記弁手段が開閉駆動されるように構成されており、
前記軸受手段は、前記2番目の気筒と前記3番目の気筒との間における前記カム軸の支持剛性が他の気筒間における前記カム軸の支持剛性よりも小さくなるように構成されていることを特徴とする請求項1又は2に記載のカム軸の軸受構造。
The multi-cylinder internal combustion engine includes four cylinders arranged in one direction, and in order of the first cylinder, the third cylinder, the fourth cylinder, and the second cylinder from one end side of the camshaft. Alternatively, the valve means is configured to be opened and closed in the order of the first cylinder, the second cylinder, the fourth cylinder, and the third cylinder.
The bearing means is configured such that the support rigidity of the cam shaft between the second cylinder and the third cylinder is smaller than the support rigidity of the cam shaft between other cylinders. 3. A bearing structure for a camshaft according to claim 1, wherein the bearing structure is a camshaft.
前記軸受手段は、前記カム軸の前記1番目の気筒側の一端、前記1番目の気筒と前記2番目の気筒との間、前記3番目の気筒と前記4番目の気筒との間、及び前記カム軸の前記4番目の気筒側の他端のみに軸受部が配置されて構成されることを特徴とする請求項3に記載のカム軸の軸受構造。   The bearing means includes one end of the camshaft on the first cylinder side, between the first cylinder and the second cylinder, between the third cylinder and the fourth cylinder, and The camshaft bearing structure according to claim 3, wherein a bearing portion is arranged only at the other end of the camshaft on the fourth cylinder side.
JP2004304619A 2004-10-19 2004-10-19 Camshaft bearing structure Expired - Fee Related JP4415819B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004304619A JP4415819B2 (en) 2004-10-19 2004-10-19 Camshaft bearing structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004304619A JP4415819B2 (en) 2004-10-19 2004-10-19 Camshaft bearing structure

Publications (2)

Publication Number Publication Date
JP2006118379A JP2006118379A (en) 2006-05-11
JP4415819B2 true JP4415819B2 (en) 2010-02-17

Family

ID=36536498

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004304619A Expired - Fee Related JP4415819B2 (en) 2004-10-19 2004-10-19 Camshaft bearing structure

Country Status (1)

Country Link
JP (1) JP4415819B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6494440B2 (en) * 2015-06-08 2019-04-03 キヤノン株式会社 Image reading apparatus and image forming apparatus

Also Published As

Publication number Publication date
JP2006118379A (en) 2006-05-11

Similar Documents

Publication Publication Date Title
JP4741541B2 (en) Engine valve gear
EP1772597A2 (en) Valve train apparatus for 4-stroke internal combustion engine
JP5218305B2 (en) Crankshaft of an internal combustion engine having a multi-link type piston-crank mechanism
KR101110993B1 (en) Variable valve device for internal combustion engine
JP4415819B2 (en) Camshaft bearing structure
JP2007085293A (en) Valve gear for engine
JP4091709B2 (en) Variable valve operating device for internal combustion engine
JP4006160B2 (en) Variable valve operating device for internal combustion engine
US6712031B2 (en) Support device for rocker arm
US20010027764A1 (en) Valve operating system in internal combustion engine
EP2136049B1 (en) Link type variable stroke engine
JP4131233B2 (en) Tappet guide
JP2006064140A (en) Idler
JP2007138795A (en) Cam cap, and camshaft support structure using same
JP2010236456A (en) Reciprocating internal combustion engine
JP2010084526A (en) Valve gear device for internal combustion engine
JPH0450404Y2 (en)
JPH0412102A (en) Supporting mechanism of cam shaft
JP3189594B2 (en) Bearing structure of camshaft in internal combustion engine
JPH0245444Y2 (en)
JPH0627763Y2 (en) Valve drive for internal combustion engine
JP4516452B2 (en) Valve operating device for internal combustion engine
JP2007192102A (en) Manufacturing method for camshaft support structure of internal combustion engine, and camshaft support structure of internal combustion engine
JP4555270B2 (en) Variable valve opening characteristics internal combustion engine
JP2624165B2 (en) Rocker arm support structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070712

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090324

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090522

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090616

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090910

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090925

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091104

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121204

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131204

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees