JP4415592B2 - Membrane separation method and apparatus - Google Patents

Membrane separation method and apparatus Download PDF

Info

Publication number
JP4415592B2
JP4415592B2 JP2003277056A JP2003277056A JP4415592B2 JP 4415592 B2 JP4415592 B2 JP 4415592B2 JP 2003277056 A JP2003277056 A JP 2003277056A JP 2003277056 A JP2003277056 A JP 2003277056A JP 4415592 B2 JP4415592 B2 JP 4415592B2
Authority
JP
Japan
Prior art keywords
cleaning
cation exchanger
membrane
liquid
separation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003277056A
Other languages
Japanese (ja)
Other versions
JP2005034816A (en
Inventor
信博 織田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2003277056A priority Critical patent/JP4415592B2/en
Publication of JP2005034816A publication Critical patent/JP2005034816A/en
Application granted granted Critical
Publication of JP4415592B2 publication Critical patent/JP4415592B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Treatment Of Water By Ion Exchange (AREA)

Description

本発明は、逆浸透膜、UF膜等の分離膜を用いて膜分離を行い、透過流速が低下した分離膜をアルカリ性の洗浄液で洗浄して性能を回復する膜分離方法および装置に関し、特にイオン交換体を用いて効率よく分離膜を洗浄する膜分離方法および装置に関するものである。   The present invention relates to a membrane separation method and apparatus for carrying out membrane separation using a separation membrane such as a reverse osmosis membrane, a UF membrane, etc., and recovering the performance by washing the separation membrane with a reduced permeation flow rate with an alkaline washing liquid. The present invention relates to a membrane separation method and apparatus for efficiently washing a separation membrane using an exchanger.

ボイラー用水、産業用水、洗浄用水、飲用水処理等の分野では、逆浸透膜、UF膜等の分離膜を用いて膜分離を行い、ボイラー用水、産業用水、洗浄用水、飲用水等を得ている。このような膜分離処理を行う膜分離装置では、給水中の微粒子や溶存有機物、微生物などで分離膜が汚染を受け、透過流束(水量)が経時的に低下するため、適宜、薬品洗浄することは一般的に行われている。この洗浄剤としては、アルカリ剤、洗剤、酵素、希薄な酸化剤などが用いられてきた。   In the fields of boiler water, industrial water, washing water, drinking water treatment, etc., membrane separation is performed using separation membranes such as reverse osmosis membranes and UF membranes to obtain boiler water, industrial water, washing water, drinking water, etc. Yes. In a membrane separation apparatus that performs such a membrane separation treatment, the separation membrane is contaminated with fine particles, dissolved organic substances, microorganisms, etc. in the feed water, and the permeation flux (water amount) decreases with time. Things are generally done. As this cleaning agent, alkaline agents, detergents, enzymes, dilute oxidizing agents and the like have been used.

非特許文献1には、pH11の希薄水酸化ナトリウム水溶液を用いて逆浸透膜を洗浄する例が記載されている。このpHではMgは水酸化物として析出し、Caも炭酸カルシウムとして析出するため、水酸化ナトリウム希釈液は軟化水、純水、逆浸透膜処理水などを用いたものと推測され、また洗浄排液についての記述がないため、洗浄排液は総合排水処理施設で処理されたものと推測されるが、これらは別々に処理されるので効率が悪い。   Non-Patent Document 1 describes an example in which a reverse osmosis membrane is washed using a dilute aqueous sodium hydroxide solution having a pH of 11. At this pH, Mg precipitates as hydroxide and Ca also precipitates as calcium carbonate. Therefore, it is assumed that the diluted sodium hydroxide used softened water, pure water, reverse osmosis membrane treated water, etc. Since there is no description about the liquid, it is estimated that the cleaning wastewater was processed at the general wastewater treatment facility, but these are processed separately, which is inefficient.

特許文献1には、蛋白含有液を処理して透過流束が低下した透過膜を淡水で洗浄するのに先立って、静止または流動状態のアルカリ液に浸漬して洗浄することが記載されている。しかしアルカリ液に浸漬する場合、汚染の度合いが激しいと短時間で透過流束を回復させることは困難であり、また透過流束の回復率も100%には至らない。   Patent Document 1 describes that a permeation membrane having a reduced permeation flux by treating a protein-containing liquid is washed by immersing it in a static or fluid alkaline solution prior to washing with fresh water. . However, when immersed in an alkaline liquid, if the degree of contamination is severe, it is difficult to recover the permeation flux in a short time, and the permeation flux recovery rate does not reach 100%.

特許文献2には、珪酸と硬度成分を含有する洗浄用水を軟化処理し、pH8以上で逆浸透膜により膜分離して脱塩する方法において、脱塩工程よりも高pHの洗浄液で逆浸透膜を洗浄するために、洗浄液にアルカリを添加して洗浄し、膜面に付着した珪酸をアルカリで溶解して洗い流す方法が記載されている。しかしこの方法では洗浄液にアルカリを添加する必要があり、また洗浄廃液は別途中和等の処理を行う必要がある。   Patent Document 2 discloses a method of softening a washing water containing silicic acid and a hardness component and separating the membrane with a reverse osmosis membrane at a pH of 8 or higher, and desalting the reverse osmosis membrane with a washing solution having a pH higher than that in the desalting step. In order to clean the surface, a method is described in which an alkali is added to the cleaning solution for cleaning, and the silicic acid adhering to the film surface is dissolved in the alkali and washed away. However, in this method, it is necessary to add an alkali to the cleaning liquid, and the cleaning waste liquid needs to be separately treated such as neutralization.

以上のように、従来の洗浄方法では、洗浄薬剤は比較的高濃度のアルカリ、洗剤などを含んでおり、これを排出するためには、中和や活性炭吸着処理などの水処理が必要であった。また、アルカリ性の洗浄剤は、カルシウム、マグネシウムなどを析出させることから、これらを除去した純水や軟水を使用する必要があった。これらの場合、洗浄液の脱カルシウムやアルカリの添加、ならびに洗浄廃液の中和などは別々に行われており、薬剤が無駄に消費され、処理工程も多いなどの問題点があった。
ケミカル・エンジニアリング2000年8月号p34−39 特開昭54−99783号公報 特開昭60−125208号公報
As described above, in the conventional cleaning method, the cleaning chemical contains a relatively high concentration of alkali, detergent and the like, and water treatment such as neutralization and activated carbon adsorption treatment is necessary to discharge this. It was. Further, since the alkaline cleaning agent precipitates calcium, magnesium, etc., it is necessary to use pure water or soft water from which these have been removed. In these cases, the decalcification of the cleaning liquid, the addition of alkali, and the neutralization of the cleaning waste liquid are performed separately, and there are problems such as waste of chemicals and many processing steps.
Chemical Engineering August 2000 issue p34-39 Japanese Patent Laid-Open No. 54-99783 JP-A-60-125208

本発明の課題は、洗浄液の脱カルシウムやpH調整、ならびに洗浄排液の中和などを効率的に行い、薬剤の使用量や処理工程も少なくでき、安全かつ経済的に分離膜の洗浄を行い、効率よく膜分離性能を回復することができる膜分離方法および装置を提供することである。   The object of the present invention is to efficiently perform decalcification and pH adjustment of the cleaning liquid, neutralization of the cleaning waste liquid, etc., reduce the amount of chemicals used and processing steps, and clean the separation membrane safely and economically. An object of the present invention is to provide a membrane separation method and apparatus that can efficiently recover membrane separation performance.

本発明は次の膜分離方法および装置である。
(1) 被処理液を分離膜に供給して膜分離する膜分離工程、
洗浄用水をアルカリ金属形の第1の陽イオン交換体に接触させてイオン交換処理するとともに、アルカリ性にpH調整する洗浄液調製工程、
調製された洗浄液を分離膜に供給して洗浄する洗浄工程、および
排出された洗浄排液を酸形の第2の陽イオン交換体に接触させて中和する中和工程
を含み、
中和によりアルカリ金属形となった第2の陽イオン交換体を第1の陽イオン交換体として用いる分離膜の洗浄方法。
(2) 第1または第2の陽イオン交換体が弱酸性陽イオン交換体である上記(1)記載の方法。
(3) 分離膜を備え膜分離を行う膜モジュール、
膜モジュールの濃縮液側に被処理液を供給する被処理液供給路、
膜モジュールの透過液側から処理液を取り出す処理液取出路、
膜モジュールの濃縮液側に洗浄液を供給する洗浄液供給路、
膜モジュールの透過液側から洗浄排液を取り出す洗浄排液取出路、
洗浄液供給路に設けられたアルカリ金属形の第1の陽イオン交換体槽、および
洗浄排液取出路に設けられた酸形の第2の陽イオン交換体槽を含み、
洗浄液供給路は、第2の陽イオン交換体槽にも連絡され、また洗浄排液取出路は第1の陽イオン交換体槽にも連絡され、第1の陽イオン交換体槽と第2の陽イオン交換体槽とが切り換わり、中和によりアルカリ金属形となった第2の陽イオン交換体を第1の陽イオン交換体として用いるように構成された膜分離装置。
(4) 第1または第2の陽イオン交換体が弱酸性イオン交換体である上記(3)記載の装置。
The present invention is the following membrane separation method and apparatus.
(1) A membrane separation step of supplying a liquid to be treated to a separation membrane and performing membrane separation,
A cleaning liquid preparation step of bringing the cleaning water into contact with the alkali metal type first cation exchanger and performing an ion exchange treatment, and adjusting the pH to be alkaline.
A cleaning step of supplying the prepared cleaning liquid to the separation membrane for cleaning, and a neutralizing step of neutralizing the discharged cleaning drainage by contacting with the second cation exchanger in the acid form,
A method for cleaning a separation membrane, wherein a second cation exchanger that has become an alkali metal form by neutralization is used as the first cation exchanger.
(2) The method according to (1) above, wherein the first or second cation exchanger is a weakly acidic cation exchanger.
(3) A membrane module that includes a separation membrane and performs membrane separation,
A treatment liquid supply path for supplying a treatment liquid to the concentrate side of the membrane module,
A treatment liquid take-out path for removing the treatment liquid from the permeate side of the membrane module,
A cleaning liquid supply path for supplying a cleaning liquid to the concentrate side of the membrane module;
A cleaning drainage passage for removing the cleaning drainage from the permeate side of the membrane module;
An alkali metal type first cation exchanger tank provided in the cleaning liquid supply path; and an acid type second cation exchanger tank provided in the cleaning drainage path,
The cleaning liquid supply path is also connected to the second cation exchanger tank, and the cleaning drainage discharge path is also connected to the first cation exchanger tank, and the first cation exchanger tank and the second cation exchanger tank are connected to each other. Ri drop-in replacement Ri switch and a cation exchanger tank, configured membrane separation device to use a second cation exchanger became alkali metal form by neutralization as the first cation exchanger.
(4) The apparatus according to (3) above, wherein the first or second cation exchanger is a weakly acidic ion exchanger.

本発明で膜分離に用いる分離膜は、広くボイラー用水、産業用水、洗浄用水、飲用水処理、その他の分野において膜分離に使用される分離膜であり、逆浸透膜、UF膜、MF膜など、一般的な分離膜が含まれる。膜分離の対象となる被処理液も、用水、排水などの水の他、飲食物、原料、中間品、製品などが含まれる。このような分離膜は、濃縮液側と透過液側を区分するように構成された膜モジュールの形で用いられることが多いが、分離膜が独立した状態で用いられてもよい。   The separation membrane used for membrane separation in the present invention is a separation membrane widely used for membrane separation in boiler water, industrial water, washing water, drinking water treatment and other fields, such as reverse osmosis membrane, UF membrane, MF membrane, etc. A general separation membrane is included. The liquid to be treated for membrane separation includes food and drink, raw materials, intermediate products, products, etc. in addition to water such as irrigation water and waste water. Such a separation membrane is often used in the form of a membrane module configured to separate the concentrate side and the permeate side, but the separation membrane may be used independently.

上記の分離膜を用いる膜分離装置は、分離膜により濃縮液側と透過液側に区画された膜モジュールを備え、膜モジュールの濃縮液側に被処理液供給路から加圧下に被処理液を供給し、分離膜を通して一部を透過させ、透過しない濃縮液は排棄するか循環させ、透過液は処理液として膜モジュールの透過液側から処理液取出路を通して取り出し、膜分離処理を行うように構成される。膜分離の継続により透過流束等の膜分離性能が経時的に低下するので、分離膜の洗浄を行い、膜分離性能を回復する。   A membrane separation apparatus using the above separation membrane includes a membrane module partitioned by a separation membrane on the concentrated liquid side and the permeate side, and the liquid to be treated is applied to the concentrated liquid side of the membrane module under pressure from the liquid supply path to be treated. Supply, partially permeate through the separation membrane, discard the non-permeated concentrate or circulate it, and remove the permeate from the permeate side of the membrane module as the treatment liquid through the treatment liquid take-out path to perform the membrane separation process Configured. Since the membrane separation performance such as the permeation flux decreases with time by continuing the membrane separation, the separation membrane is washed to recover the membrane separation performance.

本発明の膜分離方法では、膜分離工程において被処理液を分離膜に供給して膜分離し、洗浄液調製工程において洗浄用水をアルカリ金属形の第1の陽イオン交換体に接触させてイオン交換処理するとともに、アルカリ性にpH調整し洗浄液を調製し、調製された洗浄液を洗浄工程において分離膜に供給して分離膜を洗浄し、洗浄工程から排出された洗浄排液を中和工程において酸形の第2の陽イオン交換体に接触させて中和する。被処理液と洗浄用水は同じものでもよいが、異なる場合には、必要により被処理液と洗浄液の入れ替えを行う。   In the membrane separation method of the present invention, the liquid to be treated is supplied to the separation membrane in the membrane separation step to perform membrane separation, and in the cleaning liquid preparation step, the cleaning water is brought into contact with the first alkali metal cation exchanger to perform ion exchange. In addition to the treatment, the pH is adjusted to alkaline to prepare a cleaning liquid, the prepared cleaning liquid is supplied to the separation membrane in the cleaning process to clean the separation membrane, and the cleaning waste liquid discharged from the cleaning process is converted to the acid form in the neutralization process. In contact with the second cation exchanger. The liquid to be treated and the cleaning water may be the same, but if they are different, the liquid to be treated and the cleaning liquid are exchanged as necessary.

上記のような洗浄を行うために、本発明の膜分離装置は、膜モジュールの濃縮液側に洗浄液を供給する洗浄液供給路を連絡し、膜モジュールの透過液側に洗浄排液を取り出す洗浄排液取出路を連絡し、洗浄液供給路にアルカリ金属形の第1の陽イオン交換体を設け、洗浄排液取出路に酸形の第2の陽イオン交換体を設けた構成とする。第1の陽イオン交換体と第2の陽イオン交換体はメリーゴーラウンド式に切り換えて、中和によりアルカリ金属形となった第2の陽イオン交換体を第1の陽イオン交換体として用いるように構成される。 In order to perform the above-described cleaning, the membrane separation apparatus of the present invention communicates a cleaning liquid supply path for supplying a cleaning liquid to the concentrated liquid side of the membrane module and takes out a cleaning waste liquid to the permeate side of the membrane module. The liquid take-out path is connected, the alkali metal type first cation exchanger is provided in the cleaning liquid supply path, and the acid type second cation exchanger is provided in the cleaning drain liquid take-out path. The first cation exchanger and the second cation exchanger are switched to the merry-go-round system, and the second cation exchanger that has become an alkali metal form by neutralization is used as the first cation exchanger. Configured.

第1または第2の陽イオン交換体は、強酸性イオン交換体でもよいが、弱酸性陽イオン交換体を用いると、洗浄用水をイオン交換処理して硬度成分を高選択性で除去するとともに、アルカリ性にpH調整してアルカリ性の洗浄液を調製することができ、また再生も容易であるため好ましい。イオン交換体としては、イオン交換樹脂、イオン交換繊維、イオン交換膜、ゼオライト、IXE(東亜合成(株)製 無機イオン交換体)などがあるが、イオン交換樹脂が好ましい。第1の陽イオン交換体はナトリウム形等のアルカリ金属形、第2の陽イオン交換体は酸形すなわちH形として用いられる。   The first or second cation exchanger may be a strong acid ion exchanger, but if a weak acid cation exchanger is used, the water for washing is ion-exchanged to remove hardness components with high selectivity, An alkaline cleaning solution can be prepared by adjusting the pH to be alkaline, and it is preferable because it can be easily regenerated. Examples of the ion exchanger include an ion exchange resin, an ion exchange fiber, an ion exchange membrane, zeolite, IXE (inorganic ion exchanger manufactured by Toa Gosei Co., Ltd.), and the ion exchange resin is preferable. The first cation exchanger is used in alkali metal form such as sodium form, and the second cation exchanger is used in acid form, that is, H form.

洗浄液調製工程では、洗浄用水をアルカリ金属形の第1の陽イオン交換体に接触させることにより、イオン交換処理してカルシウム、マグネシウム等の硬度成分を除去して軟化するとともに、アルカリ性にpH調整してアルカリ性の洗浄液を調製する。洗浄用水は洗浄液の調製に適したものであれば制限はなく、被処理液と同じものでも、異なる用水でもよく、また処理液でもよい。洗浄用水はカルシウム、マグネシウム等の硬度成分を含んでいてもよく、これらはイオン交換処理により除去されるが、目詰まりの原因となる粒子、有機物等は含まないのが好ましく、この点から処理液が好ましい。   In the cleaning liquid preparation step, the cleaning water is brought into contact with the alkali metal type first cation exchanger, thereby performing ion exchange treatment to remove hardness components such as calcium and magnesium and softening, and to adjust the pH to alkaline. Prepare an alkaline cleaning solution. The cleaning water is not limited as long as it is suitable for the preparation of the cleaning liquid, and may be the same as the liquid to be processed, may be different water, or may be a processing liquid. The washing water may contain hardness components such as calcium and magnesium, which are removed by ion exchange treatment, but preferably do not contain particles or organic substances that cause clogging. Is preferred.

pH調整は、第1の陽イオン交換体がアルカリ金属形の弱酸性陽イオン交換体の場合は、イオン交換処理と同時に加水分解によりアルカリ金属が溶出し、アルカリ性にpH調整されてアルカリ性の洗浄液が得られるが、強酸性陽イオン交換体の場合など、別にアルカリ液を加えてpH調整してもよい。pH調整後の洗浄液は、pH9〜12、好ましくはpH9〜11のものが好ましい。   In the pH adjustment, when the first cation exchanger is a weakly acidic cation exchanger of the alkali metal type, the alkali metal is eluted by hydrolysis simultaneously with the ion exchange treatment, and the pH is adjusted to alkalinity so that an alkaline cleaning solution is prepared. Although it can be obtained, the pH may be adjusted by adding an alkaline solution separately in the case of a strongly acidic cation exchanger. The pH of the cleaning liquid after pH adjustment is preferably 9 to 12, and more preferably 9 to 11.

洗浄工程では、上記により調製された洗浄液を加圧下に分離膜に供給して、分離膜を洗浄し、膜分離性能を回復する。この場合、洗浄液を分離膜に沿って流して、膜面に付着した付着物を洗い流すと同時に、分離膜を通して洗浄液の一部を透過させ、分離膜の内部に入り込んだ付着物も洗い流す。アルカリ性の洗浄液で洗浄することにより、付着した付着物は剥離し、あるいは洗浄液に溶解して除去され、透過流束等の膜分離性能が回復する。   In the washing step, the washing liquid prepared as described above is supplied to the separation membrane under pressure to wash the separation membrane and restore the membrane separation performance. In this case, the cleaning liquid is caused to flow along the separation membrane to wash away the adhering matter adhering to the membrane surface, and at the same time, a part of the cleaning liquid is permeated through the separation membrane, and the adhering matter that has entered the inside of the separation membrane is also washed away. By washing with an alkaline washing liquid, the attached deposits are peeled off or dissolved and removed in the washing liquid, and the membrane separation performance such as permeation flux is recovered.

前記の膜分離装置を洗浄する場合は、膜モジュールの濃縮液側に洗浄液供給路から加圧下に洗浄液を供給し、洗浄液を分離膜に沿って流して膜面に付着した付着物を洗い流すと同時に、分離膜を通して洗浄液の一部を透過させて分離膜の内部に入り込んだ付着物も洗い流し、透過しない洗浄液はそのまま排棄するか濃縮液側に循環させ、分離膜の洗浄を行う。   When cleaning the membrane separation device, supply the cleaning liquid under pressure from the cleaning liquid supply path to the concentrated liquid side of the membrane module, and flush the adhering matter adhering to the membrane surface by flowing the cleaning liquid along the separation membrane. Then, a part of the cleaning liquid is permeated through the separation membrane, and the adhering matter that has entered the inside of the separation membrane is also washed away, and the non-permeated cleaning liquid is discarded as it is or circulated to the concentrated liquid side to wash the separation membrane.

洗浄の際の分離膜に沿って流す洗浄液と、分離膜を通して透過させる洗浄液の割合は任意であるが、分離膜に沿って流す洗浄液1に対して、分離膜を通して透過させる洗浄液0.1〜0.9、好ましくは0.6〜0.8の容量比で洗浄を行うことができる。分離膜に沿って流れる洗浄液および分離膜を透過した洗浄液は、そのまま洗浄排液として取り出してもよいが、それぞれ濃縮液側に循環させて洗浄を行うこともできる。洗浄時間は汚染の度合い、洗浄液の性状等によって変わるが、一般的には10〜120分間、好ましくは20〜60分間とすることができる。   The ratio of the cleaning liquid that flows along the separation membrane during cleaning and the ratio of the cleaning liquid that permeates through the separation membrane is arbitrary, but the cleaning liquid 0.1 to 0 that permeates through the separation membrane with respect to the cleaning liquid 1 that flows along the separation membrane. .9, preferably with a volume ratio of 0.6 to 0.8. The cleaning liquid flowing along the separation membrane and the cleaning liquid that has permeated the separation membrane may be taken out as they are as the cleaning waste liquid, but can also be circulated to the concentrate side for cleaning. The cleaning time varies depending on the degree of contamination, the properties of the cleaning liquid, and the like, but is generally 10 to 120 minutes, preferably 20 to 60 minutes.

洗浄排液は、分離膜に沿って流れる洗浄液および分離膜を透過した洗浄液を別々に取り出し、またはこれらを混合した状態で、酸形の第2の陽イオン交換体に接触させて中和して排出する。洗浄排液はアルカリ性であるため、弱酸性陽イオン交換体の場合でも容易にイオン交換が行われ、洗浄排液中のナトリウム等のアルカリ金属イオンは陽イオン交換体に交換吸着され、洗浄の繰り返しにより第2の陽イオン交換体はアルカリ金属形になる。中和後の洗浄排液はpH6〜8であるのが好ましい。   The washing waste liquid is neutralized by separately taking out the washing liquid flowing along the separation membrane and the washing liquid permeating the separation membrane, or bringing them into a mixed state and bringing them into contact with the second cation exchanger in the acid form. Discharge. Since the washing effluent is alkaline, ion exchange is easily performed even in the case of a weakly acidic cation exchanger, and alkali metal ions such as sodium in the washing effluent are exchanged and adsorbed on the cation exchanger, and washing is repeated. Thus, the second cation exchanger becomes an alkali metal form. It is preferable that the neutralized washing drainage has a pH of 6-8.

アルカリ金属形になった第2の陽イオン交換体は、メリーゴーラウンド式に第1の陽イオン交換体として用いることができ、これにより再生剤としてのアルカリの使用量を少なくして、効率よく処理を行うことができる。カルシウム、マグネシウム等の硬度成分を交換吸着した第1の陽イオン交換体は、塩酸等の酸で酸形に再生して第2の陽イオン交換体として用いることができる。洗浄の繰り返しにより第2の陽イオン交換体のアルカリ金属形となる量が減少した場合は、その陽イオン交換体をアルカリで再生してアルカリ金属形にすることもできる。   The second cation exchanger in the alkali metal form can be used as a first cation exchanger in a merry-go-round manner, thereby reducing the amount of alkali used as a regenerant and efficiently treating it. It can be performed. The first cation exchanger having exchanged and adsorbed hardness components such as calcium and magnesium can be regenerated into an acid form with an acid such as hydrochloric acid and used as the second cation exchanger. If the amount of the second cation exchanger in the alkali metal form is reduced by repeated washing, the cation exchanger can be regenerated with alkali to form the alkali metal form.

本発明では、アルカリ性の洗浄液を通過または透過させることにより、分離膜の膜面または内部に吸着した汚染物質を剥離、溶出させて、分離膜の性能を回復させる。一般的にはアルカリ性にすることによって硬度成分が析出し、目詰まり原因となるが、本発明ではアルカリ金属形の第1の陽イオン交換体でイオン交換処理することにより、析出、目詰まりの原因となる硬度成分を除去することができる。これによりアルカリ性下での硬度成分の析出を防いで分離膜の洗浄を行い、効率よく膜分離性能を回復することが可能となる。   In the present invention, by passing or permeating an alkaline cleaning liquid, contaminants adsorbed on or in the membrane surface of the separation membrane are peeled off and eluted to restore the performance of the separation membrane. Generally, the hardness component is precipitated due to alkalinity and causes clogging. However, in the present invention, the ion exchange treatment with the alkali metal type first cation exchanger causes precipitation and clogging. The hardness component that becomes can be removed. As a result, precipitation of hardness components under alkalinity can be prevented, and the separation membrane can be washed to efficiently recover the membrane separation performance.

このとき第1の陽イオン交換体としてアルカリ金属形弱酸性陽イオン交換体を用いると、硬度成分に対する選択性が高く、また加水分解によりアルカリ金属イオンが溶出するため、NaOH等のアルカリを添加しないでも洗浄液をアルカリ性とすることができるので好ましい。また弱酸性陽イオン交換体は再生が容易なため、少ない再生剤量で酸形にして第2の陽イオン交換体として用いることができる。第2の陽イオン交換体は、硬度成分は除去されているのが好ましいが、アルカリ金属イオンが残留し、部分的に酸形となっていても良い。   At this time, when an alkali metal weakly acidic cation exchanger is used as the first cation exchanger, the selectivity to the hardness component is high, and alkali metal ions are eluted by hydrolysis, so an alkali such as NaOH is not added. However, it is preferable because the cleaning liquid can be made alkaline. Moreover, since a weakly acidic cation exchanger can be easily regenerated, it can be converted into an acid form with a small amount of a regenerant and used as a second cation exchanger. In the second cation exchanger, it is preferable that the hardness component is removed, but alkali metal ions may remain and may be partially in an acid form.

アルカリ金属形イオン交換体として強酸性イオン交換体を用いる場合は、軟化処理により硬度成分は除去されるが、加水分解が起こらないためpHを上げる効果は殆どない。これに対してアルカリ金属形弱酸性イオン交換体を用いる場合は、交換基についたアルカリ金属が溶離しやすいため、加水分解によりアルカリ金属イオンが溶出してアルカリ性となる。一方弱酸性樹脂の方がCa、Mgの選択性が高いため、より硬度成分の低い処理水が得られる。   When a strongly acidic ion exchanger is used as the alkali metal ion exchanger, the hardness component is removed by the softening treatment, but there is almost no effect of raising the pH because hydrolysis does not occur. On the other hand, when an alkali metal weakly acidic ion exchanger is used, the alkali metal attached to the exchange group is easily eluted, so that the alkali metal ion is eluted by hydrolysis and becomes alkaline. On the other hand, since the weakly acidic resin has higher selectivity for Ca and Mg, treated water having a lower hardness component can be obtained.

上記のように本発明では、アルカリ金属形イオン交換体を通して洗浄液を調製することにより、処理水で置換してアルカリ添加により洗浄液を調製する場合に比較して、微量のCaCO3、Ca(OH)2、Mg(OH)2などが目詰まりしないため、洗浄効果が高くなる。また洗浄排液を酸形の第2の陽イオン交換体で中和して排出することにより、別の洗浄排液の中和処理工程が不要となり、装置が簡素化できる。 As described above, in the present invention, a trace amount of CaCO 3 , Ca (OH) is prepared by preparing a cleaning liquid through an alkali metal ion exchanger, as compared with the case of preparing a cleaning liquid by replacing with treated water and adding an alkali. 2 , Mg (OH) 2 and the like are not clogged, so that the cleaning effect is enhanced. Further, by neutralizing and discharging the cleaning effluent with the acid-type second cation exchanger, there is no need for another neutralizing treatment step for the cleaning effluent, and the apparatus can be simplified.

このように本発明では、第1および第2の陽イオン交換体を用いることにより、アルカリ洗浄液の調製とアルカリ洗浄排液の処理を系統的に、効率よく行うことができる。なお上記の処理では、アルカリ性の洗浄排液を、酸形の第2の陽イオン交換体に接触させる前に、活性炭などで前処理することもできる。また洗浄用水としては、逆浸透膜などの膜分離処理水を採用した方がイオン交換体では除去できない膜のファウリング物質が除去されているためより好ましい。     As described above, in the present invention, by using the first and second cation exchangers, the preparation of the alkaline cleaning liquid and the treatment of the alkaline cleaning waste liquid can be performed systematically and efficiently. In the above-described treatment, the alkaline washing effluent can be pretreated with activated carbon or the like before being brought into contact with the acid-form second cation exchanger. Further, as the washing water, it is more preferable to employ a membrane separation treated water such as a reverse osmosis membrane because the fouling substance of the membrane that cannot be removed by the ion exchanger is removed.

本発明によれば、洗浄液の脱カルシウムやpH調整、ならびに洗浄排液の中和などを効率的に行い、薬剤の使用量や処理工程も少なくでき、安全かつ経済的に分離膜の洗浄を行い、効率よく膜分離性能を回復することができる膜分離方法および装置が得られる。     According to the present invention, the decalcification and pH adjustment of the cleaning liquid and the neutralization of the cleaning waste liquid can be performed efficiently, the amount of chemicals used and the processing steps can be reduced, and the separation membrane can be cleaned safely and economically. Thus, a membrane separation method and apparatus capable of efficiently recovering the membrane separation performance can be obtained.

以下、本発明の実施の形態を図面により説明する。図1は逆浸透膜分離装置に適用した実施形態の膜分離方法および装置を示すフロー図であり、(a)は膜分離工程、(b)、(c)は洗浄工程を示す。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a flowchart showing a membrane separation method and apparatus according to an embodiment applied to a reverse osmosis membrane separation apparatus, wherein (a) shows a membrane separation step, and (b) and (c) show a washing step.

図1において、膜分離装置は、分離膜2により濃縮液側1aおよび透過液側1bに区画された膜モジュール1を備え、膜分離を行うようにされている。膜モジュール1の濃縮液側1aには、被処理液を供給する被処理液供給路11および濃縮液を取り出す濃縮液取出路12が連絡している。膜モジュール1の透過液側1bには処理液を取り出す処理液取出路13が連絡している。被処理液供給路11には、膜モジュール1の濃縮液側1aに洗浄液を供給する洗浄液供給路14が連絡している。濃縮液取出路12および処理液取出路13は、膜モジュール1の濃縮液側1aおよび透過液側1bから洗浄排液を取り出す洗浄排液取出路15に切換可能に連絡している。洗浄液供給路14には、アルカリ金属形の第1の弱酸性陽イオン交換体21を内蔵する第1陽イオン交換槽22が設けられている。洗浄排液取出路15には、酸形の第2の弱酸性陽イオン交換体23を内蔵する第2陽イオン交換槽24が設けられている。Pはポンプ、25は洗浄液貯槽である。   In FIG. 1, the membrane separation apparatus includes a membrane module 1 partitioned into a concentrate side 1a and a permeate side 1b by a separation membrane 2 and performs membrane separation. To the concentrated liquid side 1a of the membrane module 1, there are communicated a liquid supply path 11 for supplying a liquid to be processed and a liquid extraction path 12 for extracting the concentrated liquid. A processing liquid extraction path 13 for extracting the processing liquid communicates with the permeate side 1b of the membrane module 1. A cleaning liquid supply path 14 for supplying a cleaning liquid to the concentrated liquid side 1 a of the membrane module 1 communicates with the liquid supply path 11 to be processed. The concentrated liquid extraction path 12 and the processing liquid extraction path 13 communicate with a cleaning drainage extraction path 15 that extracts the cleaning drainage from the concentrated liquid side 1a and the permeate side 1b of the membrane module 1 in a switchable manner. The cleaning liquid supply path 14 is provided with a first cation exchange tank 22 containing a first weakly acidic cation exchanger 21 of an alkali metal type. The washing drainage discharge passage 15 is provided with a second cation exchange tank 24 containing an acid-form second weakly acidic cation exchanger 23. P is a pump and 25 is a cleaning liquid storage tank.

図1の膜分離装置における膜分離方法は、膜分離工程として図1(a)に示すように、被処理液供給路11からポンプPにより被処理液を膜モジュール1の濃縮液側1aに加圧供給し、分離膜2により膜分離を行い、透過液側1bから処理液取出路13を通して処理液を取り出す。膜モジュール1の濃縮液側1aから濃縮液取出路12を通して濃縮液を取り出す。   The membrane separation method in the membrane separation apparatus of FIG. 1 adds the liquid to be processed to the concentrated liquid side 1a of the membrane module 1 by the pump P from the liquid supply path 11 as shown in FIG. The pressure is supplied, membrane separation is performed by the separation membrane 2, and the processing liquid is taken out from the permeate side 1 b through the processing liquid outlet 13. The concentrated liquid is taken out from the concentrated liquid side 1 a of the membrane module 1 through the concentrated liquid extraction path 12.

洗浄工程はまず図1(b)に示すように、洗浄液供給路14から洗浄用水として被処理液を第1陽イオン交換槽22に供給してアルカリ金属形の第1の弱酸性陽イオン交換体21と接触させ、イオン交換により硬度成分を除去して軟化するとともに、アルカリを溶出させてアルカリ性の洗浄液を調製する。調製された洗浄液は、ポンプPにより被処理液供給路11を通して膜モジュール1の濃縮液側1aに加圧供給し、一部を分離膜2に透過させ、一部を分離膜2に沿って流し、分離膜2に付着した汚染物を除去する。洗浄用水として処理液を用いる場合は、処理液取出路13を通して取り出す処理液をライン31から洗浄液貯槽25に貯留し、ライン32から第1の陽イオン交換槽22に供給してアルカリ性の洗浄液を調製する。   First, as shown in FIG. 1B, the cleaning process supplies the liquid to be treated as cleaning water from the cleaning liquid supply path 14 to the first cation exchange tank 22 to form the first weakly acidic cation exchanger in the alkali metal form. 21, the hardness component is removed and softened by ion exchange, and the alkali is eluted to prepare an alkaline cleaning solution. The prepared cleaning liquid is pressurized and supplied to the concentrated liquid side 1 a of the membrane module 1 through the liquid supply path 11 to be processed by the pump P, partly permeates the separation membrane 2, and partly flows along the separation membrane 2. Then, contaminants attached to the separation membrane 2 are removed. When using the processing liquid as the cleaning water, the processing liquid taken out through the processing liquid extraction path 13 is stored in the cleaning liquid storage tank 25 from the line 31 and supplied to the first cation exchange tank 22 from the line 32 to prepare an alkaline cleaning liquid. To do.

膜モジュール1の濃縮液側1aから取り出す濃縮液および透過液側1bから取り出す透過液は、濃縮液取出路12および処理液取出路13から洗浄排液として洗浄排液取出路15に取り出し、循環して洗浄する場合は、ライン31からライン32またはライン33を通して循環し、洗浄を繰り返す。洗浄工程を終了するとき、または洗浄液を排出するときは、洗浄排液を洗浄排液取出路15から第2陽イオン交換槽24に供給して酸形の第2の弱酸性陽イオン交換体23と接触させ、イオン交換によりをアルカリ中和して系外に排出する。   The concentrated liquid taken out from the concentrated liquid side 1a of the membrane module 1 and the permeated liquid taken out from the permeated liquid side 1b are taken out from the concentrated liquid take-out path 12 and the treatment liquid take-out path 13 to the wash waste liquid take-out path 15 as a wash drain and circulate. In the case of washing, circulation is performed from line 31 through line 32 or line 33, and washing is repeated. When the cleaning process is completed or when the cleaning liquid is discharged, the cleaning waste liquid is supplied from the cleaning drain liquid discharge path 15 to the second cation exchange tank 24 to be in the acid form of the second weakly acidic cation exchanger 23. And then neutralized by ion exchange and discharged out of the system.

洗浄の繰り返しにより第1陽イオン交換槽22の第1の弱酸性陽イオン交換体21が硬度成分形となり、また第2陽イオン交換槽24の第2の弱酸性陽イオン交換体23がアルカリ金属形となったときは、図1(c)に示すように、第1陽イオン交換槽22と第2陽イオン交換槽24を切り換えて洗浄を行う。この場合、第2陽イオン交換槽24の第2の弱酸性陽イオン交換体23をアルカリ金属形の第1の弱酸性陽イオン交換体21として用い、第1陽イオン交換槽22の第1の弱酸性陽イオン交換体21を酸で再生して、酸形の第2の弱酸性陽イオン交換体23として用い、洗浄液供給路14、洗浄排液取出路15およびライン31、32、33を切り換えて洗浄を行う。   By repeating the washing, the first weakly acidic cation exchanger 21 of the first cation exchange tank 22 becomes a hardness component form, and the second weakly acidic cation exchanger 23 of the second cation exchange tank 24 becomes an alkali metal. When it becomes a shape, as shown in FIG.1 (c), it wash | cleans by switching the 1st cation exchange tank 22 and the 2nd cation exchange tank 24. FIG. In this case, the second weakly acidic cation exchanger 23 of the second cation exchange tank 24 is used as the first weakly acidic cation exchanger 21 of the alkali metal type, and the first cation exchanger 22 of the first cation exchange tank 22 is used. The weakly acidic cation exchanger 21 is regenerated with acid and used as the second weakly acidic cation exchanger 23 in the acid form, and the cleaning liquid supply path 14, the cleaning drainage path 15 and the lines 31, 32, 33 are switched. Wash.

実施例1:
日東電工社製8インチ逆浸透膜モジュール(NTR759HR)12本を備えた逆浸透膜装置に、電気伝導率200mS/m、pH7.2の工場排水を生物処理した後に凝集、MFろ過した被処理水を、運転圧力1.2Mpa、流速15m3/hで供給して膜分離を行い、電気伝導率1.8mS/m、pH6.9の透過水(処理水)12m3/hと、電気伝導率960mS/m、pH7.3の濃縮水3m3/hを得た。
Example 1:
Nitto Denko's 12-inch reverse osmosis membrane module (NTR759HR) equipped with 12 reverse osmosis membrane devices, treated wastewater treated with MF and filtered after biological treatment of industrial wastewater with electrical conductivity of 200mS / m and pH7.2 Is supplied at an operating pressure of 1.2 Mpa and a flow rate of 15 m 3 / h to conduct membrane separation, with an electric conductivity of 1.8 mS / m, pH 6.9 permeated water (treated water) of 12 m 3 / h, and an electric conductivity of 960 mS. 3 m 3 / h of concentrated water having a pH of 7.3 was obtained.

洗浄工程として、1日1回上記工場排水を生物処理した後に凝集、MFろ過した洗浄用水を第1の陽イオン交換樹脂に通してpH10に調整した洗浄液を、運転圧力1.2Mpa、流速15m3/hで30分間透過させてアルカリ洗浄し、洗浄排液を第2の陽イオン交換樹脂で中和した。第1および第2の陽イオン交換樹脂として弱酸性陽イオン交換樹脂BAYER社製レバチットCNP80を用い、それぞれ25%水酸化ナトリウムおよび5%塩酸でNa形およびH形に再生して用いた。なお、上記洗浄工程を実施しない場合には、処理水流量は1日後には8.5m3/h(低下率29%)、2日後には5.2m3/h(低下率56%)であった。 As a washing step, a washing liquid obtained by biologically treating the factory wastewater once a day and then aggregating and MF-filtering washing water through a first cation exchange resin to adjust the pH to 10 is used as an operating pressure of 1.2 Mpa and a flow rate of 15 m 3. Permeated at / h for 30 minutes to wash with alkali, and the washing effluent was neutralized with a second cation exchange resin. As the first and second cation exchange resins, weak acid cation exchange resin BAYER Levacit CNP80 was used and regenerated to Na form and H form with 25% sodium hydroxide and 5% hydrochloric acid, respectively. In addition, when not performing the said washing | cleaning process, the treated water flow rate is 8.5 m < 3 > / h (reduction rate 29%) after 1 day, and 5.2 m < 3 > / h (reduction rate 56%) after 2 days. there were.

5回の洗浄に1回の割合で、第1の陽イオン交換樹脂を塩酸でH形に再生して酸形の第2の陽イオン交換樹脂として用い、Na形となった第2の陽イオン交換樹脂はそのままアルカリ金属形の第1の陽イオン交換樹脂として用い、メリーゴーラウンド式に切り換えて洗浄を繰り返した。さらに第1の陽イオン交換樹脂のH形への再生5回に1回の割合で、第2の陽イオン交換樹脂を水酸化ナトリウムでNa形に再生した。   The first cation exchange resin is regenerated into H form with hydrochloric acid and used as the second cation exchange resin in the acid form at a rate of once every 5 washes. The exchange resin was used as it was as the first alkali metal type cation exchange resin, and the washing was repeated by switching to the merry-go-round type. Further, the second cation exchange resin was regenerated to Na form with sodium hydroxide at a rate of once per 5 times of regeneration of the first cation exchange resin to the H form.

このときのNa形樹脂塔入口水は電気伝導率200mS/m、pH7.2、全硬度50mg as CaCO3/L、Na形樹脂塔出口水は電気伝導率320mS/m、pH11.2、全硬度0.5mg as CaCO3/L以下、逆浸透膜出口水およびH形樹脂塔入口水は電気伝導率320mS/m、pH11.0、全硬度0.5mg asCaCO3/L以下、H形樹脂塔出口水は電気伝導率230mS/m、pH6.8、全硬度0.5mg asCaCO3/L以下であった。
比較例1:
比較例1として逆浸透膜の処理水に水酸化ナトリウムを添加してpH10に調製した洗浄液により同様に洗浄した。
At this time, Na-type resin tower inlet water has an electric conductivity of 200 mS / m, pH 7.2, total hardness 50 mg as CaCO 3 / L, Na-type resin tower outlet water has an electric conductivity of 320 mS / m, pH 11.2, total hardness. 0.5 mg as CaCO 3 / L or less, reverse osmosis membrane outlet water and H-shaped resin tower inlet water are conductivity 320 mS / m, pH 11.0, total hardness 0.5 mg asCaCO 3 / L or less, H-shaped resin tower outlet water is The electric conductivity was 230 mS / m, pH 6.8, and the total hardness was 0.5 mg asCaCO 3 / L or less.
Comparative Example 1:
As Comparative Example 1, washing was performed in the same manner with a washing solution prepared by adding sodium hydroxide to the treated water of the reverse osmosis membrane to pH 10.

実施例1および比較例1における各洗浄回数後の逆浸透膜の透過流束の低下率(%)を表1に示す。表1より明らかなように、実施例1では逆浸透膜の目詰まりを低減する効果が確認できた。   Table 1 shows the reduction rate (%) of the permeation flux of the reverse osmosis membrane after each washing in Example 1 and Comparative Example 1. As apparent from Table 1, in Example 1, the effect of reducing clogging of the reverse osmosis membrane was confirmed.

Figure 0004415592
Figure 0004415592

実施形態の膜分離方法および装置を示すフロー図である。(a)は膜分離工程、(b)、(c)は洗浄工程を示す。It is a flowchart which shows the membrane separation method and apparatus of embodiment. (A) shows a membrane separation step, and (b) and (c) show a washing step.

符号の説明Explanation of symbols

1 膜モジュール
1a 濃縮液側
1b 透過液側
2 分離膜
11 被処理液供給路
12 濃縮液取出路
13 処理液取出路
14 洗浄液供給路
15 洗浄排液取出路
21 第1の弱酸性陽イオン交換体
22 第1陽イオン交換槽
23 第2の弱酸性陽イオン交換体
24 第2陽イオン交換槽
25 洗浄液貯槽
31、32、33 ライン
DESCRIPTION OF SYMBOLS 1 Membrane module 1a Concentrated liquid side 1b Permeated liquid side 2 Separation membrane 11 To-be-processed liquid supply path 12 Concentrated liquid extraction path 13 Processing liquid extraction path 14 Cleaning liquid supply path 15 Cleaning waste liquid extraction path 21 1st weakly acidic cation exchanger 22 1st cation exchange tank 23 2nd weak acid cation exchanger 24 2nd cation exchange tank 25 Cleaning liquid storage tank 31, 32, 33 line

Claims (4)

被処理液を分離膜に供給して膜分離する膜分離工程、
洗浄用水をアルカリ金属形の第1の陽イオン交換体に接触させてイオン交換処理するとともに、アルカリ性にpH調整する洗浄液調製工程、
調製された洗浄液を分離膜に供給して洗浄する洗浄工程、および
排出された洗浄排液を酸形の第2の陽イオン交換体に接触させて中和する中和工程を含み、
中和によりアルカリ金属形となった第2の陽イオン交換体を第1の陽イオン交換体として用いる分離膜の洗浄方法。
A membrane separation step of supplying a liquid to be treated to the separation membrane and separating the membrane;
A cleaning liquid preparation step of bringing the cleaning water into contact with the alkali metal type first cation exchanger and performing an ion exchange treatment, and adjusting the pH to be alkaline.
A cleaning step of supplying the prepared cleaning liquid to the separation membrane for cleaning, and a neutralization step of neutralizing the discharged cleaning drainage by contacting with the second cation exchanger in the acid form,
A method for cleaning a separation membrane, wherein a second cation exchanger that has become an alkali metal form by neutralization is used as the first cation exchanger.
第1または第2の陽イオン交換体が弱酸性陽イオン交換体である請求項1記載の方法。   The method of claim 1, wherein the first or second cation exchanger is a weakly acidic cation exchanger. 分離膜を備え膜分離を行う膜モジュール、
膜モジュールの濃縮液側に被処理液を供給する被処理液供給路、
膜モジュールの透過液側から処理液を取り出す処理液取出路、
膜モジュールの濃縮液側に洗浄液を供給する洗浄液供給路、
膜モジュールの透過液側から洗浄排液を取り出す洗浄排液取出路、
洗浄液供給路に設けられたアルカリ金属形の第1の陽イオン交換体槽、および
洗浄排液取出路に設けられた酸形の第2の陽イオン交換体槽を含み、
洗浄液供給路は、第2の陽イオン交換体槽にも連絡され、また洗浄排液取出路は第1の陽イオン交換体槽にも連絡され、第1の陽イオン交換体槽と第2の陽イオン交換体槽とが切り換わり、中和によりアルカリ金属形となった第2の陽イオン交換体を第1の陽イオン交換体として用いるように構成された膜分離装置。
A membrane module having a separation membrane for membrane separation,
A treatment liquid supply path for supplying a treatment liquid to the concentrate side of the membrane module,
A treatment liquid take-out path for removing the treatment liquid from the permeate side of the membrane module,
A cleaning liquid supply path for supplying a cleaning liquid to the concentrate side of the membrane module;
A cleaning drainage passage for removing the cleaning drainage from the permeate side of the membrane module;
An alkali metal type first cation exchanger tank provided in the cleaning liquid supply path; and an acid type second cation exchanger tank provided in the cleaning drainage path,
The cleaning liquid supply path is also connected to the second cation exchanger tank, and the cleaning drainage discharge path is also connected to the first cation exchanger tank, and the first cation exchanger tank and the second cation exchanger tank are connected to each other. Ri drop-in replacement Ri switch and a cation exchanger tank, configured membrane separation device to use a second cation exchanger became alkali metal form by neutralization as the first cation exchanger.
第1または第2の陽イオン交換体が弱酸性イオン交換体である請求項3記載の装置。   4. An apparatus according to claim 3, wherein the first or second cation exchanger is a weakly acidic ion exchanger.
JP2003277056A 2003-07-18 2003-07-18 Membrane separation method and apparatus Expired - Fee Related JP4415592B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003277056A JP4415592B2 (en) 2003-07-18 2003-07-18 Membrane separation method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003277056A JP4415592B2 (en) 2003-07-18 2003-07-18 Membrane separation method and apparatus

Publications (2)

Publication Number Publication Date
JP2005034816A JP2005034816A (en) 2005-02-10
JP4415592B2 true JP4415592B2 (en) 2010-02-17

Family

ID=34213169

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003277056A Expired - Fee Related JP4415592B2 (en) 2003-07-18 2003-07-18 Membrane separation method and apparatus

Country Status (1)

Country Link
JP (1) JP4415592B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5320778B2 (en) * 2008-03-07 2013-10-23 栗田エンジニアリング株式会社 Regeneration method of amine liquid
CN111672326A (en) * 2020-06-24 2020-09-18 安徽中烟工业有限责任公司 Method for cleaning membrane pollution in process of treating paper-making reconstituted tobacco extract liquor by electrodialysis

Also Published As

Publication number Publication date
JP2005034816A (en) 2005-02-10

Similar Documents

Publication Publication Date Title
KR100976903B1 (en) Method and apparatus for fluid treatment by reverse osmosis under acidic conditions
JP3909793B2 (en) Method and apparatus for treating organic wastewater containing high-concentration salts
KR102047155B1 (en) Method and device for treating boron-containing water
WO2013023282A1 (en) High recovery drinking water process
TWI438153B (en) Method and apparatus for purifying metal-containing water purifying
JP2007130523A (en) Membrane washing method for water treatment system
JP2005087887A (en) Membrane washing method
KR20080012888A (en) Membrane filtration of a product
JP3137831B2 (en) Membrane processing equipment
JP4415592B2 (en) Membrane separation method and apparatus
JP2000070933A (en) Production of pure water
JPH08150400A (en) Device for treating waste water containing organic matter
WO2021215099A1 (en) Waste water treatment method, ultrapure water production method, and waste water treatment apparatus
JP4635414B2 (en) Cleaning method for reverse osmosis membrane device
JP4110604B2 (en) Fluorine-containing water treatment method
JP2005238135A (en) Washing method of membrane separation device
JP3944973B2 (en) Reverse osmosis membrane treatment method
KR101711516B1 (en) Apparatus and method for cleaning membrane module using steam
KR20140044548A (en) A water treatment apparatus using nano membrane for softening water and method using the same
JPH07148423A (en) Method for cleaning membrane separator
JP5640825B2 (en) Water treatment method and water treatment system
CN111670165A (en) Method for treating produced water
JP2002113336A (en) Method of cleaning membrane filtration device and water treatment apparatus
CN108341527A (en) High-recovery removal bitter and fishiness
JP7236313B2 (en) Membrane deaerator cleaning method and ultrapure water production system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060518

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090526

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090716

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090811

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091008

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091104

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091117

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121204

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121204

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131204

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees