JP4415445B2 - Ultrasonic transducer - Google Patents

Ultrasonic transducer Download PDF

Info

Publication number
JP4415445B2
JP4415445B2 JP2000064946A JP2000064946A JP4415445B2 JP 4415445 B2 JP4415445 B2 JP 4415445B2 JP 2000064946 A JP2000064946 A JP 2000064946A JP 2000064946 A JP2000064946 A JP 2000064946A JP 4415445 B2 JP4415445 B2 JP 4415445B2
Authority
JP
Japan
Prior art keywords
piezoelectric
ultrasonic transducer
expansion coefficient
linear expansion
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000064946A
Other languages
Japanese (ja)
Other versions
JP2001258098A (en
Inventor
親史 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2000064946A priority Critical patent/JP4415445B2/en
Publication of JP2001258098A publication Critical patent/JP2001258098A/en
Application granted granted Critical
Publication of JP4415445B2 publication Critical patent/JP4415445B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Transducers For Ultrasonic Waves (AREA)
  • Apparatuses For Generation Of Mechanical Vibrations (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Description

【0001】
【発明の属する技術分野】
本願発明はたとえば超音波センサなどの電子部品の要素として用いられる超音波トランスジューサに関する。
【0002】
【従来の技術】
従来、たとえば実開平3−59798号公報に開示されているように、圧電振動体の節点近傍に円錐漏斗状の共振子を固着して形成された超音波トランスジューサがある。この圧電振動体は、圧電体板と金属板とを接着剤で貼り合わせてなるものである。圧電体としては、たとえば圧電セラミックスが用いられ、金属としてはたとえば42アロイが用いられ、接着剤としてはたとえばエポキシ系接着剤が用いられる。
【0003】
【発明が解決しようとする課題】
しかしながら、42アロイの線膨張係数は、一般的に圧電セラミックスの線膨張係数よりも大きい。また、合成樹脂を主成分とする接着剤の線膨張係数は、一般的に42アロイなどの金属や圧電セラミックスなどの圧電体よりもさらに大きい。そのため、これらの材料を貼り合わせてなる従来の圧電振動体は、圧電セラミックスの一方面側が一方向に大きく伸びようとするので、温度変化した際に厚み方向の一方に反ろうとする応力が圧電セラミックスに加わりやすく、その結果、温度変化の際の共振周波数変化が大きくなりやすかった。圧電振動体の温度による共振周波数変化が大きいと、該圧電振動体を用いた超音波トランスジューサの温度−感度変化特性や温度−音圧変化特性が悪化する不都合がある。
【0004】
それゆえに、本願発明の主たる目的は、温度−感度特性や温度−音圧変化特性の良い超音波トランスジューサを提供することである。
【0005】
【課題を解決するための手段】
本願発明にかかる超音波トランスジューサは、圧電体と金属とを接着剤で貼り合わせてなる圧電振動体と、圧電振動体に固着される漏斗状の共振子とを含む超音波トランスジューサであって、接着剤は圧電体よりも大きい線膨張係数を有し、かつ、金属は圧電体よりも小さい線膨張係数を有するものである。また、この超音波トランスジューサは電子部品の要素として用いることができる。
本願発明にかかる超音波トランスジューサでは、圧電体よりも線膨張係数の大きい接着剤で、該圧電体と該圧電体よりも線膨張係数の小さい金属とを一体に貼り合わしてなることにより、温度変化による接着剤の伸びが金属によって抑制され、結果として圧電体を反らそうとする応力が低減される。この結果、超音波トランスジューサの温度による周波数変化量が低減され、温度−感度特性や温度−音圧変化特性が改善される。
【0006】
本願発明の上述の目的,その他の目的,特徴および利点は、図面を参照して行う以下の発明の実施の形態の詳細な説明から一層明らかとなろう。
【0007】
【発明の実施の形態】
本願発明にかかる超音波トランスジューサは、障害物探知などのための超音波センサや医療用エコー装置などの電子部品の要素として用いることができるが、以下に超音波センサに用いた実施例を説明する。
【0008】
図1は本願発明にかかる超音波トランスジューサを用いた超音波センサの一実施例を示す断面図解図である。
この超音波センサ10はベース部材12を含む。ベース部材12はたとえば合成樹脂などの絶縁材料から形成される。ベース部材12上には圧電振動体の振動をできるだけ妨げないようにするための緩衝材14を介して超音波トランスジューサ16が固定される。緩衝材14としては、たとえばシリコーン樹脂が用いられる。
【0009】
超音波トランスジューサ16は、圧電振動体24を含む。圧電振動体24は、圧電体板18と金属板20とを接着剤22で貼り合わせてなるものである。圧電体板18は、たとえば圧電セラミックスで形成される。金属板20は、圧電体板18の線膨張係数よりも小さい線膨張係数を有する金属で形成される。かかる金属としては、たとえばインバーなどが選択される。接着剤22としては、一般的な合成樹脂系接着剤を用いることができ、たとえばエポキシ系接着剤を用いることができる。さらに、金属板20には円錐漏斗状の共振子(ホーン)26が圧電振動体24の節点近傍に固着される。
【0010】
ベース部材12には入出力端子28a,28bが取り付けられる。一方の入出力端子28aはリード線を介して金属板20に電気的に接続され、他方の入出力端子28bはリード線を介して圧電体板18に接続される。さらに、ベース部材12上には超音波トランスジューサ16を保護するためのカバー部材30が取り付けられる。
【0011】
図2は、圧電振動体の温度と共振周波数変化量との関係を示すグラフである。図2において、本願実施例とは、線膨張係数2.0ppm/℃の当社セラミックスを5.6×5.6×0.2mmの大きさの板状に加工し、該セラミックス板を線膨張係数60ppm/℃のエポキシ系接着剤で線膨張係数1.2ppm/℃、直径8.4mm、厚さ0.3mmの円盤状のインバーに貼り付けてなる圧電振動体24である。
また、セラミックス単体とは、線膨張係数2.0ppm/℃の当社セラミックスを5.6×5.6×0.2mmの大きさの板状に加工してなるものである。
さらに、従来例とは、線膨張係数2.0ppm/℃の当社セラミックスを5.6×5.6×0.2mmの大きさの板状に加工し、該セラミックス板を線膨張係数60ppm/℃のエポキシ系接着剤で線膨張係数4.0〜4.7ppm/℃、直径8.4mm、厚さ0.3mmの円盤状の42アロイに貼り付けてなる圧電振動体である。
【0012】
図2から明らかなように、110℃においてセラミックス単体の共振周波数の変化量は−1%であるが、金属板として42アロイを用いた従来例の圧電振動体の共振周波数の変化量は−2%という大きな値を示す。これは、圧電セラミックス板の線膨張係数(2.0ppm/℃)よりも42アロイの線膨張係数(4.0〜4.7ppm/℃)の方が大きいことに加えて、エポキシ系接着剤が42アロイよりもさらに1ケタ大きい線膨張係数(60ppm/℃)を有することの影響であると考えられる。
それに対して本願実施例の圧電振動体24の110℃における共振周波数変化量は、−1.5%であり、従来例の圧電振動体よりも共振周波数変化量が低減される。これは本願実施例の圧電振動体24では、温度変化時のエポキシ系接着剤の伸びが圧電セラミックスよりも線膨張係数の小さいインバーによって抑制され、結果として圧電セラミックスを反らそうとする応力が低減されるからであると考えられる。
【0013】
図3は超音波センサの温度と感度変化との関係を示すグラフである。図3において、本願実施例とは、図2のデータを測定するために用いた上述の本願実施例の圧電振動体24を用いた超音波トランスジューサ16を備えた超音波センサ10である。一方、従来例とは、図2のデータを測定するために用いた上述の従来例の圧電振動体を用いた超音波センサである。図3から明らかなように、本願実施例の超音波センサ10は従来例の超音波センサに比べて、たとえば110℃で感度変化が2dB改善される。
【0014】
図4は超音波センサの温度と音圧変化との関係を示すグラフである。図4において、本願実施例および比較例とはそれぞれ図3のデータを測定するために用いたものと同じである。図4から明らかなように、本願実施例の超音波センサ10は従来例の超音波センサに比べて、たとえば110℃で音圧変化が2dB改善される。
【0015】
【発明の効果】
本願発明によれば、温度変化による圧電振動体の共振周波数変化が低減されるので、温度−感度特性や温度−音圧変化特性の良い超音波トランスジューサおよびそれを備えた超音波センサなどの電子部品を得ることができる。
【図面の簡単な説明】
【図1】本願発明にかかる超音波トランスジューサを用いた超音波センサの一例を示す断面図解図である。
【図2】圧電振動体の温度と共振周波数変化量との関係を示すグラフである。
【図3】超音波センサの温度と感度変化との関係を示すグラフである。
【図4】超音波センサの温度と音圧変化との関係を示すグラフである。
【符号の説明】
10 超音波センサ
12 ベース部材
14 緩衝材
16 超音波トランスジューサ
18 圧電体板
20 金属板
22 接着剤
24 圧電振動体
26 共振子
28a,28b 入出力端子
30 カバー部材
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an ultrasonic transducer used as an element of an electronic component such as an ultrasonic sensor.
[0002]
[Prior art]
Conventionally, for example, as disclosed in Japanese Utility Model Laid-Open No. 3-59798, there is an ultrasonic transducer formed by fixing a conical funnel-shaped resonator in the vicinity of a node of a piezoelectric vibrator. This piezoelectric vibrator is formed by bonding a piezoelectric plate and a metal plate with an adhesive. As the piezoelectric body, for example, piezoelectric ceramics are used, as the metal, for example, 42 alloy is used, and as the adhesive, for example, an epoxy adhesive is used.
[0003]
[Problems to be solved by the invention]
However, the linear expansion coefficient of 42 alloy is generally larger than that of piezoelectric ceramics. Further, the linear expansion coefficient of an adhesive mainly composed of a synthetic resin is generally larger than that of a metal such as 42 alloy or a piezoelectric body such as piezoelectric ceramic. For this reason, the conventional piezoelectric vibrator made by laminating these materials tends to stretch greatly in one direction on one side of the piezoelectric ceramic, so that when the temperature changes, the stress that tends to warp in one direction in the thickness direction is reduced. As a result, the change in the resonance frequency when the temperature changes is likely to increase. If the resonance frequency change due to the temperature of the piezoelectric vibrator is large, there is a disadvantage that the temperature-sensitivity change characteristic and the temperature-sound pressure change characteristic of an ultrasonic transducer using the piezoelectric vibrator deteriorate.
[0004]
Therefore, the main object of the present invention is to provide an ultrasonic transducer having good temperature-sensitivity characteristics and temperature-sound pressure change characteristics.
[0005]
[Means for Solving the Problems]
Ultrasonic transducer according to the present invention, an ultrasonic transducer comprising a piezoelectric transducer formed by bonding a piezoelectric element and a metal with an adhesive, and a funnel-shaped resonator is secured to the piezoelectric transducer, the adhesive The agent has a larger linear expansion coefficient than that of the piezoelectric body, and the metal has a smaller linear expansion coefficient than that of the piezoelectric body. The ultrasonic transducer can be used as an element of an electronic component.
In the ultrasonic transducer according to the present invention, an adhesive having a linear expansion coefficient larger than that of the piezoelectric body is formed by integrally bonding the piezoelectric body and a metal having a smaller linear expansion coefficient than the piezoelectric body, thereby changing the temperature. The elongation of the adhesive due to is suppressed by the metal, and as a result, the stress that tends to warp the piezoelectric body is reduced. As a result, the amount of frequency change due to the temperature of the ultrasonic transducer is reduced, and the temperature-sensitivity characteristics and temperature-sound pressure change characteristics are improved.
[0006]
The above object, other objects, features, and advantages of the present invention will become more apparent from the following detailed description of the embodiments of the present invention with reference to the drawings.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
The ultrasonic transducer according to the present invention can be used as an element of an electronic component such as an ultrasonic sensor for detecting an obstacle or a medical echo device. Examples used for the ultrasonic sensor will be described below. .
[0008]
FIG. 1 is a cross-sectional view showing an embodiment of an ultrasonic sensor using an ultrasonic transducer according to the present invention.
The ultrasonic sensor 10 includes a base member 12. Base member 12 is formed of an insulating material such as synthetic resin. An ultrasonic transducer 16 is fixed on the base member 12 via a buffer material 14 for preventing the vibration of the piezoelectric vibrating body from being disturbed as much as possible. As the buffer material 14, for example, a silicone resin is used.
[0009]
The ultrasonic transducer 16 includes a piezoelectric vibrator 24. The piezoelectric vibrating body 24 is formed by bonding a piezoelectric plate 18 and a metal plate 20 with an adhesive 22. The piezoelectric plate 18 is made of, for example, piezoelectric ceramics. The metal plate 20 is formed of a metal having a linear expansion coefficient smaller than that of the piezoelectric plate 18. As such a metal, for example, Invar is selected. As the adhesive 22, a general synthetic resin adhesive can be used, and for example, an epoxy adhesive can be used. Further, a conical funnel-shaped resonator (horn) 26 is fixed to the metal plate 20 in the vicinity of the node of the piezoelectric vibrating body 24.
[0010]
Input / output terminals 28 a and 28 b are attached to the base member 12. One input / output terminal 28a is electrically connected to the metal plate 20 via a lead wire, and the other input / output terminal 28b is connected to the piezoelectric plate 18 via a lead wire. Further, a cover member 30 for protecting the ultrasonic transducer 16 is attached on the base member 12.
[0011]
FIG. 2 is a graph showing the relationship between the temperature of the piezoelectric vibrating body and the amount of change in resonance frequency. In FIG. 2, the example of the present application means that our ceramics having a linear expansion coefficient of 2.0 ppm / ° C. is processed into a plate shape having a size of 5.6 × 5.6 × 0.2 mm, and the ceramic plate is linearly expanded The piezoelectric vibrator 24 is bonded to a disc-shaped invar having a linear expansion coefficient of 1.2 ppm / ° C., a diameter of 8.4 mm, and a thickness of 0.3 mm with an epoxy adhesive of 60 ppm / ° C.
The ceramic alone is obtained by processing our ceramics having a linear expansion coefficient of 2.0 ppm / ° C. into a plate shape having a size of 5.6 × 5.6 × 0.2 mm.
Furthermore, in the conventional example, our ceramics having a linear expansion coefficient of 2.0 ppm / ° C. are processed into a plate shape having a size of 5.6 × 5.6 × 0.2 mm, and the ceramic plate is subjected to a linear expansion coefficient of 60 ppm / ° C. The piezoelectric vibration member is bonded to a disk-shaped 42 alloy having a linear expansion coefficient of 4.0 to 4.7 ppm / ° C., a diameter of 8.4 mm, and a thickness of 0.3 mm.
[0012]
As is clear from FIG. 2, the change amount of the resonance frequency of the ceramic alone at 110 ° C. is −1%, but the change amount of the resonance frequency of the conventional piezoelectric vibrator using 42 alloy as the metal plate is −2%. It shows a large value of%. This is because the linear expansion coefficient (4.0 to 4.7 ppm / ° C.) of 42 alloy is larger than the linear expansion coefficient (2.0 ppm / ° C.) of the piezoelectric ceramic plate. This is considered to be due to the fact that it has a linear expansion coefficient (60 ppm / ° C.) that is one digit larger than 42 alloys.
On the other hand, the resonance frequency change amount at 110 ° C. of the piezoelectric vibrating body 24 of the embodiment of the present application is −1.5%, and the resonance frequency change amount is reduced as compared with the piezoelectric vibrating body of the conventional example. This is because in the piezoelectric vibrating body 24 of the present embodiment, the elongation of the epoxy adhesive at the time of temperature change is suppressed by the invar having a smaller linear expansion coefficient than that of the piezoelectric ceramic, and as a result, the stress that tries to warp the piezoelectric ceramic is reduced. It is thought that it is because.
[0013]
FIG. 3 is a graph showing the relationship between the temperature of the ultrasonic sensor and the sensitivity change. In FIG. 3, the embodiment of the present application is the ultrasonic sensor 10 including the ultrasonic transducer 16 using the piezoelectric vibrator 24 of the above-described embodiment of the present invention used for measuring the data of FIG. 2. On the other hand, the conventional example is an ultrasonic sensor using the above-described conventional piezoelectric vibrator used for measuring the data of FIG. As is apparent from FIG. 3, the sensitivity change of the ultrasonic sensor 10 of the present embodiment is improved by 2 dB at 110 ° C., for example, as compared with the conventional ultrasonic sensor.
[0014]
FIG. 4 is a graph showing the relationship between the temperature of the ultrasonic sensor and the change in sound pressure. In FIG. 4, the examples of the present application and the comparative example are the same as those used for measuring the data of FIG. As is apparent from FIG. 4, the ultrasonic sensor 10 of this embodiment has an improvement in sound pressure change of 2 dB at 110 ° C., for example, compared to the conventional ultrasonic sensor.
[0015]
【The invention's effect】
According to the present invention, since the resonance frequency change of the piezoelectric vibrating body due to temperature change is reduced, an ultrasonic transducer having good temperature-sensitivity characteristics and temperature-sound pressure change characteristics, and an electronic component such as an ultrasonic sensor equipped with the ultrasonic transducer Can be obtained.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing an example of an ultrasonic sensor using an ultrasonic transducer according to the present invention.
FIG. 2 is a graph showing the relationship between the temperature of a piezoelectric vibrating body and the amount of change in resonance frequency.
FIG. 3 is a graph showing the relationship between temperature and sensitivity change of an ultrasonic sensor.
FIG. 4 is a graph showing the relationship between the temperature of an ultrasonic sensor and sound pressure change.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Ultrasonic sensor 12 Base member 14 Buffer material 16 Ultrasonic transducer 18 Piezoelectric board 20 Metal plate 22 Adhesive 24 Piezoelectric vibrator 26 Resonator 28a, 28b Input / output terminal 30 Cover member

Claims (2)

圧電体と金属とを接着剤で貼り合わせてなる圧電振動体、および
前記圧電振動体に固着される漏斗状の共振子を含む超音波トランスジューサであって、
前記接着剤は前記圧電体よりも大きい線膨張係数を有し、かつ、前記金属は前記圧電体よりも小さい線膨張係数を有する、超音波トランスジューサ。
An ultrasonic transducer including a piezoelectric vibrator formed by bonding a piezoelectric body and a metal with an adhesive, and a funnel-shaped resonator fixed to the piezoelectric vibrator,
The ultrasonic transducer, wherein the adhesive has a larger linear expansion coefficient than the piezoelectric body, and the metal has a smaller linear expansion coefficient than the piezoelectric body.
請求項1に記載の超音波トランスジューサを備えた、電子部品。An electronic component comprising the ultrasonic transducer according to claim 1.
JP2000064946A 2000-03-09 2000-03-09 Ultrasonic transducer Expired - Lifetime JP4415445B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000064946A JP4415445B2 (en) 2000-03-09 2000-03-09 Ultrasonic transducer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000064946A JP4415445B2 (en) 2000-03-09 2000-03-09 Ultrasonic transducer

Publications (2)

Publication Number Publication Date
JP2001258098A JP2001258098A (en) 2001-09-21
JP4415445B2 true JP4415445B2 (en) 2010-02-17

Family

ID=18584560

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000064946A Expired - Lifetime JP4415445B2 (en) 2000-03-09 2000-03-09 Ultrasonic transducer

Country Status (1)

Country Link
JP (1) JP4415445B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103703794B (en) 2011-08-03 2017-03-22 株式会社村田制作所 Ultrasound transducer
JP2013078017A (en) * 2011-09-30 2013-04-25 Taiheiyo Cement Corp Ultrasonic sounding body for parametric speaker
JP2023028692A (en) 2021-08-20 2023-03-03 日本特殊陶業株式会社 ultrasonic transducer

Also Published As

Publication number Publication date
JP2001258098A (en) 2001-09-21

Similar Documents

Publication Publication Date Title
US4984498A (en) Percussion transducer
JP3238492B2 (en) Piezoelectric sensor
JP3721798B2 (en) Ultrasonic sensor
JP3401790B2 (en) Acceleration sensor and acceleration device using this acceleration sensor
JP3233041B2 (en) Piezoelectric acoustic transducer
US8134283B2 (en) Vibrating element and vibrator
JPH06508498A (en) Mechanical vibration canceling piezoceramic microphone
US4422055A (en) Strain relief technique for surface acoustic wave devices
JP4415445B2 (en) Ultrasonic transducer
JPS61150499A (en) Separate type piezoelectric diaphragm
JPH06101879B2 (en) Aerial ultrasonic transducer
JPS6133508B2 (en)
JPS6358384B2 (en)
JPH0862242A (en) Acceleration sensor
JPH07160265A (en) Piezoelectric converter for guitar
JP7048474B2 (en) Ultrasonic sensor
JPS59128813A (en) Piezoelectric oscillator
JP2672378B2 (en) Music box pickup device
JPS60187799A (en) Piezoelectric fan
JPH05251980A (en) Surface acoustic wave device and its mount structure
JPH05180865A (en) Acceleration sensor
JPH01233372A (en) Piezoelectric acceleration sensor
JPS59218098A (en) Ultrasonic wave ceramic microphone
JPS5842400A (en) Ultrasonic wave ceramic microphone
JP2004056450A (en) Ultrasonic sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090811

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091002

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091104

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4415445

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121204

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131204

Year of fee payment: 4

EXPY Cancellation because of completion of term