JP4415105B2 - Hydrogen storage material - Google Patents

Hydrogen storage material Download PDF

Info

Publication number
JP4415105B2
JP4415105B2 JP2004155393A JP2004155393A JP4415105B2 JP 4415105 B2 JP4415105 B2 JP 4415105B2 JP 2004155393 A JP2004155393 A JP 2004155393A JP 2004155393 A JP2004155393 A JP 2004155393A JP 4415105 B2 JP4415105 B2 JP 4415105B2
Authority
JP
Japan
Prior art keywords
hydrogen
storage material
hydrogen storage
nah
naoh
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004155393A
Other languages
Japanese (ja)
Other versions
JP2005334739A (en
Inventor
鋭涛 王
強 徐
哲 清林
信宏 栗山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2004155393A priority Critical patent/JP4415105B2/en
Publication of JP2005334739A publication Critical patent/JP2005334739A/en
Application granted granted Critical
Publication of JP4415105B2 publication Critical patent/JP4415105B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Description

本発明は、水素貯蔵材料及び水素貯蔵方法に関する。   The present invention relates to a hydrogen storage material and a hydrogen storage method.

水素は、資源としての豊富さ、環境に対する優しさ等から、将来の理想的な燃料として注目されている。水素を燃料として利用する場合の主な難点は、水素貯蔵の問題である。水素の貯蔵方法としては、高圧を利用する方法(下記非特許文献1参照)、低温における水素貯蔵方法(下記非特許文献2参照)等が報告されている。しかしながら、これらの高圧や低温を利用する方法は、安全面、容積、コストなどの点で制約が大きく、自動車用燃料などの貯蔵方法としては実用的な方法ではない。このことは、自動車用燃料等の用途に有用な固体水素貯蔵材料に対する広範な研究開発を促進してきた大きな要因といえる。   Hydrogen is attracting attention as an ideal fuel in the future because of its abundance as a resource and environmental friendliness. The main difficulty in using hydrogen as a fuel is the problem of hydrogen storage. As a method for storing hydrogen, a method using high pressure (see Non-Patent Document 1 below), a hydrogen storage method at a low temperature (see Non-Patent Document 2 below), and the like have been reported. However, these high-pressure and low-temperature methods are severely limited in terms of safety, volume and cost, and are not practical methods for storing automobile fuel and the like. This is a major factor that has promoted extensive research and development on solid hydrogen storage materials useful for applications such as automotive fuel.

これまで、水素を貯蔵するための固体キャリアとして、金属水素化物(下記非特許文献3及び4参照)、活性炭及びカーボンナノチューブ(下記非特許文献5及び6参照)等が研究されてきた。更に、最近、化学的水素貯蔵材料として、アラネート(下記非特許文献7参照)、リチウム−窒素系材料(下記非特許文献8参照)等が報告されている。   Heretofore, metal hydrides (see Non-Patent Documents 3 and 4 below), activated carbon, carbon nanotubes (see Non-Patent Documents 5 and 6 below), and the like have been studied as solid carriers for storing hydrogen. Furthermore, recently, as a chemical hydrogen storage material, alanate (refer to the following non-patent document 7), lithium-nitrogen-based material (refer to the following non-patent document 8), and the like have been reported.

この様に、水素貯蔵材料については、各種の研究が進められているが、高い重量水素密度と十分な水素解離エネルギーを有し、且つ、自動車用燃料等の用途で要求される高い安全性、低コスト、十分な水素放出・充填速度、取り扱い安さなどの条件を満たす材料は、いまだ見出されていないのが現状である。
F. Mitlitsky, A. H. Weisberg and B. Myers; Proc. of the 2000 U. S. DOE Hydrogen Program Review, NREL/CP-570-28890 (2001) 古浜庄一、太田時男監修、水素エネルギー最先端技術(1995)、エヌ・テイー・エス 上原斎、田村英雄監修、水素吸蔵合金−基礎から最先端技術まで,(1998)、エヌ・テイー・エス 太田時男監修、水素エネルギー最先端技術(1995)、エヌ・テイー・エス C. Zandonella, Nature, 410 (2001), 734; A. Zuttel, S. Orimo, MRS Bull, (2002), 705. B. Bogdanovic, M. Schwictrardi, J. Alloys Comp., 253-254, (1997), 1 P. Chen, Z. Xiong, J. Luo, J. Lin, K.L. Tan, Nature, 420 (2002), 302
As described above, various studies have been conducted on the hydrogen storage material, which has a high weight hydrogen density and sufficient hydrogen dissociation energy, and has high safety required for applications such as automobile fuel, At present, no material that satisfies the requirements of low cost, sufficient hydrogen release / filling speed, and ease of handling has been found.
F. Mitlitsky, AH Weisberg and B. Myers; Proc. Of the 2000 US DOE Hydrogen Program Review, NREL / CP-570-28890 (2001) Supervised by Shoichi Furuhama and Tokio Ota, Advanced Hydrogen Energy Technology (1995), NTS Supervised by Sae Uehara and Hideo Tamura, Hydrogen storage alloys-from basic to advanced technology, (1998), NT Supervised by Tokio Ota, Advanced Hydrogen Energy Technology (1995), NTS C. Zandonella, Nature, 410 (2001), 734; A. Zuttel, S. Orimo, MRS Bull, (2002), 705. B. Bogdanovic, M. Schwictrardi, J. Alloys Comp., 253-254, (1997), 1 P. Chen, Z. Xiong, J. Luo, J. Lin, KL Tan, Nature, 420 (2002), 302

本発明は、上記した従来技術の現状に鑑みてなされたものであり、その主な目的は、豊富に存在する低コストの物質を有効成分とする可逆的な水素貯蔵材料であって、高い安全性を有し、且つ十分な水素放出・充填速度と取り扱い安さなどの条件を満足できる新規な水素貯蔵材料を提供することである。   The present invention has been made in view of the current state of the prior art described above, and its main object is a reversible hydrogen storage material containing an abundant low-cost substance as an active ingredient, which is highly safe. It is an object of the present invention to provide a novel hydrogen storage material that has the characteristics and satisfies the conditions such as sufficient hydrogen release / filling speed and ease of handling.

本発明者は、上記した目的を達成すべく鋭意研究を重ねてきた。その結果、安全性が高く入手の容易な物質であるNa2Oは、一定の条件下において水素を吸収して水酸化ナト
リウムと水素化ナトリウムに変化し、更に、形成された水酸化ナトリウムと水素化ナトリ
ウムの混合物は、水素吸収の際の条件と比較して低い水素圧力又は高温度とすることによって、水素を放出して再度Na2Oとなり、可逆的な水素の吸収と放出が可能であるとい
う、従来全く知られていないNa2Oの新規な特性を見出した。そして、斯かるNa2Oの特性を利用することによって、安全で、取り扱いの容易な新規な水素貯蔵材料が得られることを見出し、ここに本発明を完成するに至った。
The present inventor has intensively studied to achieve the above-described object. As a result, Na 2 O, which is a highly safe and easily available material, absorbs hydrogen under certain conditions and changes into sodium hydroxide and sodium hydride. The mixture of sodium hydride releases hydrogen and becomes Na 2 O again by setting the hydrogen pressure or temperature lower than the conditions for hydrogen absorption, so that reversible absorption and release of hydrogen is possible. The inventors have found a novel characteristic of Na 2 O that has never been known. The inventors have found that a novel hydrogen storage material that is safe and easy to handle can be obtained by utilizing such characteristics of Na 2 O, and the present invention has been completed here.

即ち、本発明は、下記の水素貯蔵材料及び水素貯蔵方法を提供するものである。
1. Na2Oを有効成分として含有することを特徴とする水素貯蔵材料。
2. 更に、NaHとNaOHを含有する上記項1に記載の水素貯蔵材料。
3. 更に、Si、Ti、Zr、Fe、Ni、Cr及びこれらの元素を含有する化合物からなる群から選ばれた少なくとも一種の成分を含有する上記項1又は2に記載の水素貯蔵材料。
4. 上記項1〜3のいずれかに記載の水素貯蔵材料を水素と接触させることを特徴とする水素貯蔵方法。
5. −50℃以上、500℃未満の温度範囲、1.3Pa〜50MPaの水素圧力下で、水素貯蔵材料と水素とを接触させることを特徴とする上記項4に記載の水素貯蔵方法。6. 上記項1〜3のいずれかに記載の水素貯蔵材料を水素と接触させて該水素貯蔵材料に水素を吸収させることによる水素貯蔵と、この反応によって形成されるNaHとNaOHから水素を発生させることによる水素放出を可逆的に行うことを特徴とする水素の貯蔵及び放出方法。
7. 水素貯蔵材料への水素吸収反応を、1.3Pa〜50MPaの水素圧下において、−50℃以上500℃未満の温度範囲で行い、水素放出反応を水素吸収反応より高い温度条件下及び/又は低い水素圧下で行う上記項6に記載の水素の貯蔵及び放出方法。

本発明の水素貯蔵材料は、Na2Oを有効成分とするものである。本発明者の研究によ
れば、Na2Oは、下記(1)式に従って水素を吸収して、NaHとNaOHに変化する
ことが明らかとなった。これは、従来全く知られていないNa2Oの特性である。
That is, the present invention provides the following hydrogen storage material and hydrogen storage method.
1. A hydrogen storage material comprising Na 2 O as an active ingredient.
2. Item 2. The hydrogen storage material according to Item 1, further comprising NaH and NaOH.
3. Item 3. The hydrogen storage material according to Item 1 or 2, further comprising at least one component selected from the group consisting of Si, Ti, Zr, Fe, Ni, Cr, and compounds containing these elements.
4). A hydrogen storage method according to any one of Items 1 to 3, wherein the hydrogen storage material is brought into contact with hydrogen.
5). 5. The hydrogen storage method according to item 4, wherein the hydrogen storage material and hydrogen are brought into contact under a temperature range of −50 ° C. or higher and lower than 500 ° C. under a hydrogen pressure of 1.3 Pa to 50 MPa. 6). Hydrogen storage by bringing the hydrogen storage material according to any one of Items 1 to 3 into contact with hydrogen and allowing the hydrogen storage material to absorb hydrogen, and generating hydrogen from NaH and NaOH formed by this reaction A method for storing and releasing hydrogen, characterized in that hydrogen release by reversible is performed reversibly.
7). The hydrogen absorption reaction to the hydrogen storage material is performed in a temperature range of −50 ° C. or more and less than 500 ° C. under a hydrogen pressure of 1.3 Pa to 50 MPa, and the hydrogen release reaction is performed under higher temperature conditions and / or lower hydrogen than the hydrogen absorption reaction. Item 7. The method for storing and releasing hydrogen according to Item 6, which is performed under pressure.

The hydrogen storage material of the present invention contains Na 2 O as an active ingredient. According to the study by the present inventor, it has become clear that Na 2 O absorbs hydrogen according to the following formula (1) and changes into NaH and NaOH. This is a characteristic of Na 2 O which has not been known at all.

Na2O + H2 → NaH + NaOH (1)
本発明の水素貯蔵材料の有効成分であるNa2Oは、公知化合物であり、密度2.3g
/cm3の無色物質である。本発明の水素貯蔵材料では、有効成分として用いるNa2Oの種類について特に限定はなく、一般に市販されているものをそのまま使用できる。また、ボールミルなどを用いて、適度な大きさに粉砕したものを用いても良い。
Na 2 O + H 2 → NaH + NaOH (1)
Na 2 O which is an active ingredient of the hydrogen storage material of the present invention is a known compound and has a density of 2.3 g.
/ Cm 3 colorless material. The hydrogen storage material of the present invention is not particularly limited about the kind of Na 2 O is used as an active ingredient, generally those that are commercially available can be used as it is. Moreover, you may use what was grind | pulverized to the moderate magnitude | size using a ball mill etc.

また、後述する様に、Na2Oの水素の吸収・放出は可逆的であり、Na2Oの水素吸収によって形成されるNaHとNaOHの混合物は、加熱や減圧によって水素を放出して、Na2Oに変化する。従って、本発明では、NaHとNaOHを原料として、この混合物
から水素を放出して形成されるNa2Oを水素貯蔵材料の有効成分として用いても良い。
Further, as will be described later, the absorption and release of Na 2 O hydrogen is reversible, and the mixture of NaH and NaOH formed by the absorption of Na 2 O hydrogen releases hydrogen by heating or reduced pressure, and Na Change to 2 O. Therefore, in the present invention, Na 2 O formed by releasing hydrogen from this mixture using NaH and NaOH as raw materials may be used as an active ingredient of the hydrogen storage material.

本発明の水素貯蔵材料は、有効成分であるNa2Oを含有すればよく、水素貯蔵性能に
悪影響の無い限りその他の成分が同時に含まれていても良い。通常は、水素の吸収反応が進行することにより、上記(1)式によってNaHとNaOHが形成されるので、水素の貯蔵過程では、Na2O、NaH及びNaOHが同時に存在することになる。また、有効
成分として存在するNa2Oが完全に水素を吸収した場合には、Na2Oは、全てNaHとNaOHに変換された状態となる。理論的には、Na2Oが完全に水素を吸収した場合に
は、吸収された水素とNa2O の合計量を100重量部として、3.13重量部の水素を貯蔵することが可能である。
Hydrogen storage material of the present invention may be contained Na 2 O as an active ingredient, other ingredients may be included at the same time unless adverse effect on hydrogen storage capacity. Normally, when the hydrogen absorption reaction proceeds, NaH and NaOH are formed according to the above equation (1), so that Na 2 O, NaH, and NaOH exist simultaneously in the hydrogen storage process. Further, when Na 2 O present as an active ingredient has completely absorbed hydrogen, Na 2 O is converted into NaH and NaOH. Theoretically, when Na 2 O has completely absorbed hydrogen, it is possible to store 3.13 parts by weight of hydrogen, with the total amount of absorbed hydrogen and Na 2 O being 100 parts by weight. is there.

本発明の水素貯蔵材料による水素吸収(充填)時の温度は、通常、500℃未満とすればよい。水素吸収温度の下限については、特に限定的ではなく、例えば、−50℃程度の
温度においても水素吸収(貯蔵)が可能であるが、15℃程度以上とすることにより、水素の吸収速度を上昇させることができる。特に、60〜350℃程度とすることにより、適度な速度で水素の吸収反応を進行させることができる。
The temperature at the time of hydrogen absorption (filling) by the hydrogen storage material of the present invention may be usually less than 500 ° C. The lower limit of the hydrogen absorption temperature is not particularly limited. For example, hydrogen absorption (storage) is possible even at a temperature of about −50 ° C., but by increasing the temperature to about 15 ° C. or higher, the hydrogen absorption rate is increased. Can be made. In particular, by setting the temperature to about 60 to 350 ° C., the hydrogen absorption reaction can proceed at an appropriate rate.

水素吸収(充填)時の水素圧についても特に限定的ではなく、例えば、1.3Pa〜50MPa程度の水素圧において水素の吸収反応を進行させることが可能であるが、適度な速度で水素吸収反応を進行させるためには、0.1MPa〜10MPa程度の水素圧とすることが好ましく、0.5MPa〜5MPa程度の水素圧とすることがより好ましい。   The hydrogen pressure at the time of hydrogen absorption (filling) is not particularly limited. For example, the hydrogen absorption reaction can proceed at a hydrogen pressure of about 1.3 Pa to 50 MPa, but the hydrogen absorption reaction at an appropriate rate. In order to proceed, the hydrogen pressure is preferably about 0.1 MPa to 10 MPa, more preferably about 0.5 MPa to 5 MPa.

図1は、本発明の水素貯蔵材料の有効成分であるNa2O及びその水素吸収過程におけ
る生成物の粉末X線回折(XRD)パターンを示す図面である。図1aは、Na2OのX
線回折パターンであり、図1bは、Na2Oを60℃で10MPaの水素と48時間接触
させた試料のX線回折パターンである。図1bからは、NaHとNaOHに帰属する回折ピークが観察され、約50%の転化率でNaHとNaOHに変化したことが判る。
FIG. 1 is a diagram showing a powder X-ray diffraction (XRD) pattern of Na 2 O, which is an active ingredient of the hydrogen storage material of the present invention, and a product in the hydrogen absorption process. FIG. 1a shows the X of Na 2 O
FIG. 1b is an X-ray diffraction pattern of a sample obtained by contacting Na 2 O with 10 MPa hydrogen at 60 ° C. for 48 hours. From FIG. 1b, it can be seen that diffraction peaks attributed to NaH and NaOH were observed, and that they changed to NaH and NaOH at a conversion of about 50%.

図1cは、Na2Oを150℃で10MPaの水素と60時間接触させた試料のX線回
折パターンである。また、図1dは、NaHとNaOHの1:1(モル比)混合物のX線回折パターンである。図1cでは、Na2Oに帰属する回折ピークがほとんど消失し、N
aHとNaOHに帰属する回折ピークのみが観察される。これから、約100%の添加率でNaHとNaOHに変化したことが判る。また、水素吸収量測定から、吸収された水素とNa2Oの合計量を100重量部として約3重量部の水素が吸収されたことがわかる。
FIG. 1c is an X-ray diffraction pattern of a sample obtained by contacting Na 2 O with 10 MPa hydrogen at 150 ° C. for 60 hours. FIG. 1d is an X-ray diffraction pattern of a 1: 1 (molar ratio) mixture of NaH and NaOH. In FIG. 1c, the diffraction peak attributed to Na 2 O almost disappears, and N
Only diffraction peaks attributed to aH and NaOH are observed. From this, it can be seen that the concentration changed to NaH and NaOH at an addition rate of about 100%. Further, from the hydrogen absorption measurement, it is understood that about 3 parts by weight of hydrogen was absorbed with the total amount of absorbed hydrogen and Na 2 O being 100 parts by weight.

更に、本発明者の研究によれば、上記(1)式に従ってNa2Oが水素を吸収して形成
されるNaHとNaOHは、下記(2)式に従って、水素を放出して、再度Na2Oに変
化することが明らかになった。
Further, according to the research of the present inventor, NaH and NaOH formed by Na 2 O absorbing hydrogen according to the above formula (1) release hydrogen according to the following formula (2), and again Na 2. It became clear that it changed to O.

NaH + NaOH → Na2O + H2 (2)
図2は、NaHとNaOHのモル比1:1混合物を、昇温速度2℃/分で昇温した場合の熱重量測定(TG)の結果を示すグラフである。図2から、NaHとNaOHの混合物を加熱した場合に、160℃から重量が徐々に減少し、220℃付近から重量減少が著しくなることが判る。また、重量減少はNaHとNaOHの合計量を基準として3.1重量%に達し、理論値におけるすべての水素が放出されたことが確認できた。
NaH + NaOH → Na 2 O + H 2 (2)
FIG. 2 is a graph showing the results of thermogravimetry (TG) when a 1: 1 mixture of NaH and NaOH is heated at a heating rate of 2 ° C./min. From FIG. 2, it can be seen that when a mixture of NaH and NaOH is heated, the weight gradually decreases from 160 ° C., and the weight decrease becomes remarkable from around 220 ° C. Moreover, the weight reduction reached 3.1% by weight based on the total amount of NaH and NaOH, and it was confirmed that all the hydrogen in the theoretical value was released.

図3は、質量分析(MS)−TPD(Temperature Programmed Desorption)法による脱
水素測定の結果を示すグラフである。図3aは、NaHとNaOHのモル比1:1の混合物を、昇温速度2℃/分で昇温した場合についての測定結果を示すものであり、160℃付近からH2放出が顕著になり、273℃でH2の放出がピークに達することが確認できた。また、NaHとNaOHのモル比1:1混合物を340℃で、ポンプ(約13.3Pa)を用いて24時間排気したのち、XRDを測定した結果、NaH及びNaOHに帰属する回折ピークが消失し、Na2Oに帰属するピークが観測された。この結果からは、Na
H及びNaOHの混合物は、水素を放出してNa2Oに変化することが確認できた。
FIG. 3 is a graph showing the results of dehydrogenation measurement by mass spectrometry (MS) -TPD (Temperature Programmed Desorption) method. FIG. 3a shows the measurement result when a mixture of NaH and NaOH having a molar ratio of 1: 1 is heated at a heating rate of 2 ° C./min, and H 2 release becomes remarkable from around 160 ° C. It was confirmed that the release of H 2 reached a peak at 273 ° C. Further, as a result of measuring XRD after evacuating a mixture of NaH and NaOH at a molar ratio of 1: 1 at 340 ° C. for 24 hours using a pump (about 13.3 Pa), diffraction peaks attributed to NaH and NaOH disappeared. , A peak attributed to Na 2 O was observed. From this result, Na
It was confirmed that the mixture of H and NaOH changed into Na 2 O by releasing hydrogen.

上記した(1)式と(2)式より、Na2Oを水素貯蔵材料とする場合に、下記(3)
式に従って水素の吸収と放出反応が可逆的に進行することが判る。
From the above formulas (1) and (2), when Na 2 O is used as a hydrogen storage material, the following (3)
It can be seen that the hydrogen absorption and release reactions proceed reversibly according to the equation.

Na2O + H2 ⇔ NaH + NaOH (3)
本発明の水素貯蔵材料では、水素の放出反応させる際の温度については、特に限定的ではなく、例えば、−50℃程度以上、500℃程度未満の温度範囲において、水素を放出させることが可能であり、特に、15℃〜400℃程度、好ましくは80℃〜350℃程度の温度範囲において、十分な速度で水素を放出することができる。
Na 2 O + H 2 ⇔ NaH + NaOH (3)
In the hydrogen storage material of the present invention, the temperature at which hydrogen is released is not particularly limited. For example, hydrogen can be released in a temperature range of about −50 ° C. or more and less than about 500 ° C. In particular, hydrogen can be released at a sufficient rate in a temperature range of about 15 ° C to 400 ° C, preferably about 80 ° C to 350 ° C.

尚、上記(3)式に示す様に、Na2Oの水素吸収・放出反応は可逆反応であることか
ら、水素吸収反応の際の条件より、高い温度及び低い水素圧のいずれか一方又は両方の条件を満足することによって、水素の放出反応を円滑且つ迅速に進行させることができる。
As shown in the above formula (3), since the hydrogen absorption / release reaction of Na 2 O is a reversible reaction, either one or both of a higher temperature and a lower hydrogen pressure than the conditions during the hydrogen absorption reaction. By satisfying this condition, the hydrogen release reaction can proceed smoothly and quickly.

本発明の水素貯蔵材料は、Na2Oに加えて、更に、Si、Ti、Zr、Fe、Ni、
Cr及びこれらの元素を含有する化合物からなる群から選ばれた少なくとも一種の成分(以下、「添加成分」ということがある)を含有することができる。これらの添加成分を含む水素貯蔵材料は、特に優れた水素吸収性能を有するものとなり、Na2Oのみを有効成
分とする水素貯蔵材料と比較して、より低温度において、より急速な水素吸収が可能となる。
In addition to Na 2 O, the hydrogen storage material of the present invention further includes Si, Ti, Zr, Fe, Ni,
It can contain at least one component selected from the group consisting of Cr and compounds containing these elements (hereinafter sometimes referred to as “additional components”). The hydrogen storage material containing these additional components has particularly excellent hydrogen absorption performance, and more rapid hydrogen absorption at a lower temperature compared to a hydrogen storage material containing only Na 2 O as an active ingredient. It becomes possible.

また、Na2Oの水素吸収により形成されるNaHとNaOHの混合物中に、上記した
添加成分が存在する場合には、水素の放出反応が著しく促進され、添加成分を含有しない場合と比較して、より低温度での急速な水素放出が可能となる。
In addition, when the above-described additive component is present in the mixture of NaH and NaOH formed by hydrogen absorption of Na 2 O, the hydrogen release reaction is remarkably accelerated, compared to the case where no additive component is contained. Rapid hydrogen release at lower temperatures is possible.

添加成分としては、Si、Ti、Zr、Fe、Ni若しくはCrの金属単体、又はこれらの金属元素の少なくとも一種を含む化合物を用いることができる。添加成分は、一種単独又は二種以上混合して用いることができる。添加成分として用いる化合物の種類については、特に限定的ではなく、例えば、酸化物、塩化物、アルコキシド化合物、配位子を含む化合物等を用いることができる。特に、添加成分の内で、SiO2、TiCl3、TiO2、Ti(OBu)4、ZrO2、Zr(OPr)4,Fe23、Fe(acac)2、Ni
O, Ni(1,5-COD)2, Cr23(上記式中、acacはアセチルアセトネート、Bu
はブチル、Prはプロピル、CODはシクロオクタジエンを表す)等を用いる場合には、水素の吸収・放出が著しく促進される。
As the additive component, a simple substance of Si, Ti, Zr, Fe, Ni, or Cr, or a compound containing at least one of these metal elements can be used. An additive component can be used individually by 1 type or in mixture of 2 or more types. The type of the compound used as the additive component is not particularly limited, and for example, an oxide, chloride, alkoxide compound, a compound containing a ligand, or the like can be used. In particular, among the additive components, SiO 2 , TiCl 3 , TiO 2 , Ti (OBu) 4 , ZrO 2 , Zr (OPr) 4 , Fe 2 O 3 , Fe (acac) 2 , Ni
O, Ni (1,5-COD) 2 , Cr 2 O 3 (wherein acac is acetylacetonate, Bu
When butyl is used, Pr is propyl, COD is cyclooctadiene, etc., the absorption and release of hydrogen is remarkably accelerated.

添加成分は、単に、Na2Oと混合するだけでも良いが、Na2Oと添加成分とを混合し、ボールミルを用いて十分に撹拌することによって、Na2Oと添加成分が均一に混合さ
れて、水素の吸収・放出が著しく促進される。
The additive component may be simply mixed with Na 2 O, but by mixing Na 2 O and the additive component and thoroughly stirring using a ball mill, the Na 2 O and additive component are uniformly mixed. Thus, the absorption and release of hydrogen is significantly accelerated.

また、Na2Oと添加成分を混合することに代えて、NaHとNaOHの混合物に上記
した添加成分を加えても良い。この様にして得られるNaH、NaOH及び添加成分の混合物は、上記式(2)による水素放出反応が著しく促進されており、低温度における水素放出が可能である。更に、水素放出によって形成されるNa2Oは、添加成分を含有する
ものとなり、非常に優れた水素吸収特性を有するものとなる。
Also, instead of mixing the added ingredients and Na 2 O, it may be added components described above to a mixture of NaH and NaOH. In the mixture of NaH, NaOH and additive components obtained in this way, the hydrogen releasing reaction according to the above formula (2) is remarkably accelerated, and hydrogen releasing at a low temperature is possible. Further, Na 2 O formed by hydrogen release contains an additive component and has very excellent hydrogen absorption characteristics.

上記した添加成分の添加量は、Na2O 100 モルに対して0.01〜100モルの
程度とすることが好ましく、0.1〜10モルの程度とすることがより好ましい。
The addition amount of the above-described additive component is preferably about 0.01 to 100 mol, more preferably about 0.1 to 10 mol, relative to 100 mol of Na 2 O.

図1eは、NaHとNaOHのモル比1:1の混合物にNaH100モルに対して5モルのSiO2を添加した試料を、340℃においてポンプで排気して13.3Paの圧力
下に3時間維持して得られた試料についての粉末X線回折パターンである。図1eからは、Na2Oに帰属する回折ピークが観察され、NaHとNaOHの混合物から、水素が放
出されてNa2Oが形成されたことが確認できる。また、図1fは、NaHとNaOHの
モル比1:1の混合物にNaH100モルに対して5モルのSiO2を添加した試料を、
340℃においてポンプで排気して13.3Paの圧力下に3時間維持し、その後150℃、水素圧4MPaで水素を吸収させる操作を2回繰り返して得られた試料についての粉末X線回折パターンである。図1fからは、NaHとNaOHに帰属する回折ピークが観察され、水素の放出と吸収が可逆的に進行していることが確認できる。
FIG. 1e shows a sample in which 5 mol of SiO 2 is added to a mixture of NaH and NaOH at a molar ratio of 1: 1 to 100 mol of NaH and is pumped at 340 ° C. and maintained at a pressure of 13.3 Pa for 3 hours. It is a powder X-ray-diffraction pattern about the sample obtained by doing this. From FIG. 1e, a diffraction peak attributed to Na 2 O is observed, and it can be confirmed that hydrogen was released from the mixture of NaH and NaOH to form Na 2 O. FIG. 1 f shows a sample in which 5 mol of SiO 2 is added to 100 mol of NaH to a mixture of NaH and NaOH at a molar ratio of 1: 1.
A powder X-ray diffraction pattern of a sample obtained by evacuating with a pump at 340 ° C. and maintaining it under a pressure of 13.3 Pa for 3 hours and then absorbing hydrogen at 150 ° C. and a hydrogen pressure of 4 MPa twice. is there. From FIG. 1f, diffraction peaks attributed to NaH and NaOH are observed, and it can be confirmed that the release and absorption of hydrogen proceed reversibly.

図3bは、NaHとNaOHのモル比1:1の混合物にNaH100モルに対して5モルのSiO2を添加した添加した試料を、昇温速度2℃/分で昇温した場合について、M
S−TPD法による脱水素測定の結果を示すグラフである。このグラフから、H2の放出
ピークが243℃に観察され、NaHとNaOHのモル比1:1の混合物のみを用いる場合(曲線a)と比較して、水素放出温度が約30℃低温にシフトしたことが確認できる。
FIG. 3b shows a case where a sample prepared by adding 5 moles of SiO 2 to 100 moles of NaH in a 1: 1 mixture of NaH and NaOH is heated at a heating rate of 2 ° C./min.
It is a graph which shows the result of the dehydrogenation measurement by S-TPD method. From this graph, the H 2 release peak is observed at 243 ° C., and the hydrogen release temperature is shifted to about 30 ° C. lower than when only a 1: 1 mixture of NaH and NaOH is used (curve a). It can be confirmed.

本発明の水素貯蔵材料は、安価で豊富に存在し、安全性の高いNa2Oを有効成分とす
るものであり、更に、Na2Oの水素吸収によって形成されるNaHとNaOHも安全性
が高く、取り扱いが容易な物質である。また、本発明の水素貯蔵材料は、水素の吸収と放出を繰り返し行っても、殆ど水素貯蔵性能が低下せず、高いリサイクル性を持つ材料である。
The hydrogen storage material of the present invention is inexpensive and abundant, and has high safety Na 2 O as an active ingredient. Further, NaH and NaOH formed by hydrogen absorption of Na 2 O are also safe. It is high and easy to handle. In addition, the hydrogen storage material of the present invention is a material having a high recyclability with little deterioration in hydrogen storage performance even when hydrogen absorption and release are repeated.

従って、本発明の水素貯蔵材料は、低コストで、安全性が高く取り扱いが容易な、非常に有用性の高い水素貯蔵材料である。   Therefore, the hydrogen storage material of the present invention is a highly useful hydrogen storage material that is low in cost, safe and easy to handle.

本発明の水素貯蔵材料は、水素が必要とされる広範囲の環境下において使用することができる。例えば、自動車、船舶、航空機、ミサイル用等のオンボード水素貯蔵等の水素貯蔵器として有効に利用することができる。また、水素燃料電池への水素供給用水素貯蔵器としての応用も可能である。   The hydrogen storage material of the present invention can be used in a wide range of environments where hydrogen is required. For example, it can be effectively used as a hydrogen storage device for onboard hydrogen storage for automobiles, ships, aircraft, missiles, and the like. Further, it can be applied as a hydrogen reservoir for supplying hydrogen to a hydrogen fuel cell.

更に、本発明の水素貯蔵材料を容器中に収納することによって、容易に水素貯蔵器を得ることができる。この様な水素貯蔵器は、例えば、エネルギー運搬の用途に利用することもできる。   Furthermore, by storing the hydrogen storage material of the present invention in a container, a hydrogen storage device can be easily obtained. Such a hydrogen storage can be used for, for example, energy transportation.

以下、実施例を挙げて本発明を更に詳細に説明する。   Hereinafter, the present invention will be described in more detail with reference to examples.

実施例1
Na2O 248 mg (4 mmol)を容積2.3 mlの試料セルに入れ、水素吸収・放出量測定装置に接続し、60℃で10 MPaの水素を導入した。48時間後に、吸収された水素とNa2Oの合計量を基準として1.5 wt%の水素吸収が観測された。粉末XRDを測定した結果、Na2O に帰属するピークの他、NaHとNaOHに帰属するピークが観測され、約50%のNa2Oが未反応のままで残り、約50%のNa2OがNaHとNaOHに変化したことがわかった。
Example 1
Na 2 O 248 mg (4 mmol) was placed in a sample cell with a volume of 2.3 ml, connected to a hydrogen absorption / release measurement device, and 10 MPa hydrogen was introduced at 60 ° C. After 48 hours, 1.5 wt% hydrogen absorption was observed based on the total amount of absorbed hydrogen and Na 2 O. As a result of measuring powder XRD, a peak attributed to Na 2 O was observed in addition to a peak attributed to Na 2 O, and about 50% Na 2 O remained unreacted, and about 50% Na 2 O Turned out to be NaH and NaOH.

実施例2
Na2O 248 mg (4 mmol)を容積2.3 mlの試料セルに入れ、水素吸収・放出量測定装置に接続し、150℃で10 MPaの水素を導入した。60時間後に、吸収された水素とNa2Oの合計量を基
準として、3.0 wt%の水素が吸収された。粉末XRDを測定した結果、Na2O に帰属するピークが殆ど消失し、NaHとNaOHに帰属するピークが観測され、Na2Oがほぼ100%の転化率でNaHとNaOHに変化したことがわかった。
Example 2
Na 2 O 248 mg (4 mmol) was put in a sample cell with a volume of 2.3 ml, connected to a hydrogen absorption / release measurement apparatus, and 10 MPa hydrogen was introduced at 150 ° C. After 60 hours, 3.0 wt% hydrogen was absorbed based on the total amount of absorbed hydrogen and Na 2 O. As a result of measuring powder XRD, it was found that most of the peaks attributed to Na 2 O disappeared, peaks attributed to NaH and NaOH were observed, and Na 2 O changed to NaH and NaOH at a conversion rate of almost 100%. It was.

実施例3
実施例2における水素吸収後の試料を340℃でポンプ(約13.3Pa)を用いて3時間排
気したのち、再び150℃で10 MPaの水素を導入した。60時間後に、吸収された水素とNa2O
の合計量を基準として、2.3 wt%の水素が再吸収されたことが確認できた。
Example 3
The sample after absorbing hydrogen in Example 2 was evacuated at 340 ° C. using a pump (about 13.3 Pa) for 3 hours, and 10 MPa of hydrogen was again introduced at 150 ° C. After 60 hours, absorbed hydrogen and Na 2 O
It was confirmed that 2.3 wt% of hydrogen was reabsorbed based on the total amount of hydrogen.

実施例4
Na2OとSiO2の混合物(Na2O:SiO2(モル比)=100:5)をボールミルに入れ、回転速度300rpm、回転時間10分間、停止時間10分間の繰り返し条件で3時間混合した。このよう
に調製した試料260 mgを2.3 mlの試料セルに入れ、水素吸収・放出量測定装置に接続し、150℃で4.0 MPaの水素を導入した。3時間後に、吸収された水素とNa2O/SiO2混合物の合計量を基準として2.9 wt%の水素が吸収されたことが確認できた。次いで、340℃でポンプ(
約13.3Pa)を用いて3時間排気したのち、再び150℃で4.0 MPaの水素を導入した。3時間後に、2.9 wt%の水素が再吸収されたことが確認できた。
Example 4
A mixture of Na 2 O and SiO 2 (Na 2 O: SiO 2 (molar ratio) = 100: 5) was placed in a ball mill and mixed for 3 hours under a repetition condition of a rotation speed of 300 rpm, a rotation time of 10 minutes, and a stop time of 10 minutes. . 260 mg of the sample thus prepared was placed in a 2.3 ml sample cell, connected to a hydrogen absorption / release measurement apparatus, and hydrogen at 4.0 MPa was introduced at 150 ° C. After 3 hours, it was confirmed that 2.9 wt% of hydrogen was absorbed based on the total amount of absorbed hydrogen and Na 2 O / SiO 2 mixture. Next, the pump (
After evacuating for 3 hours using about 13.3 Pa), 4.0 MPa of hydrogen was again introduced at 150 ° C. After 3 hours, it was confirmed that 2.9 wt% of hydrogen was reabsorbed.

実施例5
回転速度300rpm、回転時間10分間、停止時間10分間の繰り返し条件で、NaHとNaOHのモル比1:1混合物を3時間ボールミルで混合した。このように調製した試料256 mgを容積2.3 mlの試料セルに入れ、水素吸収・放出量測定装置に接続した。340℃でポンプ(約13.3Pa)を用いて3時間排気したのち、150℃で10 MPaの水素を導入した。60時間後に、用いたNaHとNaOHの合計量を基準として2.2wt%の水素が再吸収されたことが確認できた。
Example 5
Under a repetition condition of a rotation speed of 300 rpm, a rotation time of 10 minutes, and a stop time of 10 minutes, a 1: 1 molar ratio mixture of NaH and NaOH was mixed with a ball mill for 3 hours. 256 mg of the sample thus prepared was placed in a sample cell having a volume of 2.3 ml and connected to a hydrogen absorption / release amount measuring apparatus. After evacuating for 3 hours at 340 ° C. using a pump (about 13.3 Pa), 10 MPa hydrogen was introduced at 150 ° C. After 60 hours, it was confirmed that 2.2 wt% of hydrogen was reabsorbed based on the total amount of NaH and NaOH used.

実施例6
NaHとNaOHのモル比1:1混合物に、NaH100モルに対して5モルの割合でSiO2を添加し、この混合物をボールミルに入れ、回転速度300rpm、回転時間10分間、停
止時間10分間の繰り返し条件で3時間混合した。
Example 6
NaH and NaOH molar ratio of 1: 1 mixture was added SiO 2 at a ratio of 5 moles relative NaH100 mol, the mixture was put into a ball mill, the rotational speed 300 rpm, rotation time 10 minutes, repeating the stopping time 10 minutes The mixture was mixed for 3 hours.

このように調製した試料268 mgを容積2.3 mlの試料セルに入れ、水素吸収・放出量測定装置に接続した。340℃でポンプ(約13.3Pa)を用いて3時間排気したのち、150℃で4.0 MPaの水素を導入した。3時間後に、用いたNaH、NaOH及びSiO2の合計量を
基準として2.9wt%の水素吸収が観測された。
268 mg of the sample prepared in this way was placed in a sample cell having a volume of 2.3 ml and connected to a hydrogen absorption / release amount measuring device. After evacuating for 3 hours at 340 ° C. using a pump (about 13.3 Pa), hydrogen at 4.0 MPa was introduced at 150 ° C. After 3 hours, 2.9 wt% hydrogen absorption was observed based on the total amount of NaH, NaOH and SiO 2 used.

実施例7
NaHとNaOHのモル比1:1混合物に、NaH100モルに対して3モルの割合でTiCl3を添加し、この混合物をボールミルに入れ、回転速度300rpm、回転時間10分間、停止
時間10分間の繰り返し条件で3時間混合した。
Example 7
TiCl 3 was added to a 1: 1 mixture of NaH and NaOH at a ratio of 3 moles with respect to 100 moles of NaH, and this mixture was placed in a ball mill. The rotation speed was 300 rpm, the rotation time was 10 minutes, and the stop time was 10 minutes. The mixture was mixed for 3 hours.

このように調製した試料275 mgを容積2.3 mlの試料セルに入れ、水素吸収・放出量測定装置に接続した。340℃でポンブ(約13.3Pa)を用いて3時間排気したのち、150℃で4.0 MPaの水素を導入した。3時間後に、用いたNaH、NaOH及びTiCl3の合計量
を基準として2.8wt%の水素吸収が観測された。
275 mg of the sample thus prepared was placed in a sample cell having a volume of 2.3 ml and connected to a hydrogen absorption / release amount measuring device. After evacuating using a pump (about 13.3 Pa) at 340 ° C. for 3 hours, 4.0 MPa of hydrogen was introduced at 150 ° C. After 3 hours, 2.8 wt% hydrogen absorption was observed based on the total amount of NaH, NaOH and TiCl 3 used.

実施例8
NaHとNaOHのモル比1:1混合物に、NaH100モルに対して5モルの割合でNiを添加し、この混合物をボールミルに入れ、回転速度300rpm、回転時間10分間、停止時間10分間の繰り返し条件で3時間混合した。
Example 8
Ni was added to a 1: 1 mixture of NaH and NaOH at a ratio of 5 moles with respect to 100 moles of NaH, and this mixture was placed in a ball mill, and the conditions were repeated at a rotational speed of 300 rpm, a rotational time of 10 minutes, and a stop time of 10 minutes. For 3 hours.

このように調製した試料267 mgを容積2.3 mlの試料セルに入れ、水素吸収・放出量測定装置に接続した。340℃でポンブ(約13.3Pa)を用いて3時間排気したのち、150℃で4.0 MPaの水素を導入した。3時間後に、 用いたNaH、NaOH及びNiの合計量を基
準として、2.7wt%の水素吸収が観測された。
267 mg of the sample thus prepared was placed in a sample cell having a volume of 2.3 ml and connected to a hydrogen absorption / release measurement apparatus. After evacuating using a pump (about 13.3 Pa) at 340 ° C. for 3 hours, 4.0 MPa of hydrogen was introduced at 150 ° C. After 3 hours, 2.7 wt% hydrogen absorption was observed based on the total amount of NaH, NaOH and Ni used.

実施例9
実施例4において水素を再吸収させた試料について、340℃でのポンプ(約13.3Pa)
を用いた排気(3時間)と、150℃、4.0 MPaでの水素吸収(3時間)を3回繰り返した結果、吸収された水素とNa2O/SiO2混合物の合計量を基準として、それぞれの水素吸収量は2.9, 2.8, 2.9 wt%であった。
Example 9
For the sample in which hydrogen was reabsorbed in Example 4, the pump at 340 ° C. (about 13.3 Pa)
As a result of repeated exhaust (3 hours) using hydrogen and hydrogen absorption (3 hours) at 150 ° C and 4.0 MPa three times, respectively, based on the total amount of absorbed hydrogen and Na 2 O / SiO 2 mixture The hydrogen absorption of 2.9, 2.8 and 2.9 wt%.

実施例10
実施例6において水素を吸収させた試料について、340℃でのポンプ(約13.3Pa)を
用いた排気(3時間)と、150℃、4.0 MPaでの水素再吸収(3時間)を4回繰り返した結
果、用いたNaH、NaOH及びSiO2の合計量を基準として、それぞれの水素吸収量
は2.9, 2.8, 2.9, 2.9 wt%であった。
Example 10
For the sample in which hydrogen was absorbed in Example 6, exhaust (3 hours) using a pump (about 13.3 Pa) at 340 ° C. and hydrogen reabsorption (3 hours) at 150 ° C. and 4.0 MPa were performed four times. As a result of repetition, the hydrogen absorption amounts were 2.9, 2.8, 2.9, and 2.9 wt% based on the total amount of NaH, NaOH, and SiO 2 used.

実施例11
実施例7において水素を吸収させた試料について、340℃でのポンプ(約13.3Pa)を
用いた排気(3時間)と、150℃、4.0 MPaでの水素再吸収(3時間)を4回繰り返した結
果、用いたNaH、NaOH及びSiO2の合計量を基準として、それぞれの水素吸収量
は2.8, 2.7, 2.8, 2.7 wt%であった。
Example 11
For the sample in which hydrogen was absorbed in Example 7, exhaust (3 hours) using a pump (approximately 13.3 Pa) at 340 ° C. and hydrogen reabsorption (3 hours) at 150 ° C. and 4.0 MPa were performed four times. As a result of repetition, the respective hydrogen absorption amounts were 2.8, 2.7, 2.8, and 2.7 wt% based on the total amount of NaH, NaOH, and SiO 2 used.

本発明の水素貯蔵材料の有効成分であるNa2O及びその水素貯蔵過程における生成物の粉末X線回折(XRD)パターン。Powder X-ray diffraction (XRD) pattern of the product in Na 2 O and its hydrogen storage process is the active ingredient of the hydrogen storage material of the present invention. NaHとNaOHのモル比1:1混合物の熱重量測定(TG)の結果を示すグラフ。The graph which shows the result of the thermogravimetry (TG) of the molar ratio 1: 1 mixture of NaH and NaOH. 質量分析(MS)−TPD(Temperature Programmed Desorption)法による脱水素測定の結果を示すグラフ。The graph which shows the result of the dehydrogenation measurement by mass spectrometry (MS) -TPD (Temperature Programmed Desorption) method.

Claims (7)

Na2Oを有効成分として含有することを特徴とする水素貯蔵材料(但し、ホウ素酸化物
及びその誘導体からなる群から選ばれた少なくとも一種の化合物を含む水素吸蔵材料を除く)
A hydrogen storage material containing Na 2 O as an active ingredient (however, boron oxide)
And a hydrogen storage material containing at least one compound selected from the group consisting of derivatives thereof) .
更に、NaHとNaOHを含有する請求項1に記載の水素貯蔵材料。 The hydrogen storage material according to claim 1, further comprising NaH and NaOH. 更に、Si、Ti、Zr、Fe、Ni、Cr及びこれらの元素を含有する化合物からなる群から選ばれた少なくとも一種の成分を含有する請求項1又は2に記載の水素貯蔵材料。 The hydrogen storage material according to claim 1 or 2, further comprising at least one component selected from the group consisting of Si, Ti, Zr, Fe, Ni, Cr, and compounds containing these elements. 請求項1〜3のいずれかに記載の水素貯蔵材料を水素と接触させることを特徴とする水素貯蔵方法。 A hydrogen storage method comprising contacting the hydrogen storage material according to any one of claims 1 to 3 with hydrogen. −50℃以上、500℃未満の温度範囲、1.3Pa〜50MPaの水素圧力下で、水素貯蔵材料と水素とを接触させることを特徴とする請求項4に記載の水素貯蔵方法。 The hydrogen storage method according to claim 4, wherein the hydrogen storage material and hydrogen are brought into contact with each other under a temperature range of −50 ° C. or more and less than 500 ° C. and a hydrogen pressure of 1.3 Pa to 50 MPa. 請求項1〜3のいずれかに記載の水素貯蔵材料を水素と接触させて該水素貯蔵材料に水素を吸収させることによる水素貯蔵と、この反応によって形成されるNaHとNaOHから水素を発生させることによる水素放出を可逆的に行うことを特徴とする水素の貯蔵及び放出方法。 Hydrogen storage by bringing the hydrogen storage material according to any one of claims 1 to 3 into contact with hydrogen and allowing the hydrogen storage material to absorb hydrogen, and generating hydrogen from NaH and NaOH formed by the reaction A method for storing and releasing hydrogen, characterized in that hydrogen release by reversible is performed reversibly. 水素貯蔵材料への水素吸収反応を、1.3Pa〜50MPaの水素圧下において、−50℃以上500℃未満の温度範囲で行い、水素放出反応を水素吸収反応より高い温度条件下及び/又は低い水素圧下で行う請求項6に記載の水素の貯蔵及び放出方法。 The hydrogen absorption reaction to the hydrogen storage material is performed in a temperature range of −50 ° C. or more and less than 500 ° C. under a hydrogen pressure of 1.3 Pa to 50 MPa, and the hydrogen release reaction is performed under higher temperature conditions and / or lower hydrogen than the hydrogen absorption reaction. The method for storing and releasing hydrogen according to claim 6 performed under pressure.
JP2004155393A 2004-05-26 2004-05-26 Hydrogen storage material Expired - Fee Related JP4415105B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004155393A JP4415105B2 (en) 2004-05-26 2004-05-26 Hydrogen storage material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004155393A JP4415105B2 (en) 2004-05-26 2004-05-26 Hydrogen storage material

Publications (2)

Publication Number Publication Date
JP2005334739A JP2005334739A (en) 2005-12-08
JP4415105B2 true JP4415105B2 (en) 2010-02-17

Family

ID=35488875

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004155393A Expired - Fee Related JP4415105B2 (en) 2004-05-26 2004-05-26 Hydrogen storage material

Country Status (1)

Country Link
JP (1) JP4415105B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2924707B1 (en) * 2007-12-10 2010-12-24 Centre Nat Rech Scient HYDROGEN STORAGE MATERIAL BASED ON MAGNESIUM HYDRIDE
US8097235B2 (en) * 2009-06-22 2012-01-17 Toyota Motor Engineering & Manufacturing North America, Inc. Bronsted acid destabilization of complex metal hydrides

Also Published As

Publication number Publication date
JP2005334739A (en) 2005-12-08

Similar Documents

Publication Publication Date Title
Christensen et al. Metal ammine complexes for hydrogen storage
Kalisvaart et al. Hydrogen storage in binary and ternary Mg-based alloys: A comprehensive experimental study
US7837976B2 (en) Activated aluminum hydride hydrogen storage compositions and uses thereof
Zhai et al. Significantly improved dehydrogenation of LiAlH4 destabilized by MnFe2O4 nanoparticles
Bobet et al. Hydrogen sorption of Mg-based mixtures elaborated by reactive mechanical grinding
US7927507B1 (en) Hydrogen storage compositions
CN110155940B (en) Magnesium-based hydrogen storage material capable of absorbing hydrogen at room temperature and preparation method thereof
Mao et al. Combined effects of hydrogen back-pressure and NbF5 addition on the dehydrogenation and rehydrogenation kinetics of the LiBH4–MgH2 composite system
US8440100B1 (en) Method of generating hydrogen-storing hydride complexes
JP2006205148A (en) Hydrogen storage material and production method thereof, hydrogen storage material of alkali metal-aluminum nitride and production method thereof, and alkali metal-aluminum nitride
US20130266878A1 (en) Hydrogen storage system including a lithium conductor
JP4986101B2 (en) Hydrogen storage material and method for producing the same
Chong et al. Reversible hydrogen sorption in NaBH 4 at lower temperatures
US20070264182A1 (en) Reversible hydrogen storage systems
Guo et al. High‐loading LiBH4 Confined in Structurally Tunable Ni Catalyst‐decorated Porous Carbon Scaffold for Fast Hydrogen Desorption
Huang et al. Reversible hydrogen sorption behaviors of the 3NaBH4-(x) YF3-(1-x) GdF3 system: The effect of double rare earth metal cations
US20070280869A1 (en) Methods for reversibly storing hydrogen
JP4415105B2 (en) Hydrogen storage material
JP2007117989A (en) Hydrogen storage material and its production method
JP2008013375A (en) Composite material of hydride, and hydrogen storage material
US20090311171A1 (en) Hydrogen Storage in a Combined MxAlH6/M'y(NH2)z System and Methods of Making and Using the Same
JP4793900B2 (en) Hydrogen storage material and method for producing the same
JP4762579B2 (en) Hydrogen storage material, production method thereof, and hydrogen storage method
JP6670082B2 (en) Hydrogen storage material and method for producing the same
Bidabadi et al. Mechano-chemical activation of the (3LiBH 4+ TiF 3) system, its dehydrogenation behavior and the effects of ultrafine filamentary Ni and graphene additives

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090623

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090730

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091020

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091021

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121204

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121204

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121204

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121204

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131204

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131204

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131204

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131204

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees