JP4414287B2 - Absorber activation device - Google Patents

Absorber activation device Download PDF

Info

Publication number
JP4414287B2
JP4414287B2 JP2004182230A JP2004182230A JP4414287B2 JP 4414287 B2 JP4414287 B2 JP 4414287B2 JP 2004182230 A JP2004182230 A JP 2004182230A JP 2004182230 A JP2004182230 A JP 2004182230A JP 4414287 B2 JP4414287 B2 JP 4414287B2
Authority
JP
Japan
Prior art keywords
absorption liquid
absorbent
liquid
storage tank
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004182230A
Other languages
Japanese (ja)
Other versions
JP2006000805A (en
Inventor
伸策 大友
紀舟 細井
成久 杉田
真之 中道
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2004182230A priority Critical patent/JP4414287B2/en
Publication of JP2006000805A publication Critical patent/JP2006000805A/en
Application granted granted Critical
Publication of JP4414287B2 publication Critical patent/JP4414287B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)
  • Industrial Gases (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Description

本発明は、脱硫装置で不純物を吸収した吸収液を、イオン交換膜を備えた電気透析装置によって活性化する吸収液活性化装置に係り、特に、脱硫装置と電気透析装置とが管路によって連結されている吸収液活性化装置に関する。   The present invention relates to an absorbent activating device that activates an absorbing solution that has absorbed impurities in a desulfurizing device by an electrodialyzer equipped with an ion exchange membrane. In particular, the desulfurizing device and the electrodialyzer are connected by a pipe line. The present invention relates to an absorption liquid activation device.

通常、硫黄が含まれる石炭や重質油等の燃料をガス化した場合、その生成ガス中に前記硫黄が硫化水素等として含まれるために、脱硫装置によってこの硫化水素を除去することが行われている。この脱硫装置は、前記硫化水素と反応する塩基性水溶液を吸収液として用いて前記生成ガスの脱硫を行っている。   Normally, when fuel such as coal or heavy oil containing sulfur is gasified, the sulfur is contained in the generated gas as hydrogen sulfide, etc., and therefore this hydrogen sulfide is removed by a desulfurization unit. ing. This desulfurization apparatus desulfurizes the generated gas using a basic aqueous solution that reacts with the hydrogen sulfide as an absorbing liquid.

そして、前記硫化水素を吸収した吸収液は、再生手段によって分解再生させ、再度前記脱硫装置に戻して前記生成ガスの脱硫を行うようにしているが、前記吸収液を繰返して使用しているうちに、前記再生手段によって分解されない不純物が形成され、脱硫性能を低下させる問題がある。   Then, the absorption liquid that has absorbed the hydrogen sulfide is decomposed and regenerated by a regeneration means, and returned to the desulfurization apparatus to desulfurize the product gas. However, while the absorption liquid is repeatedly used, In addition, impurities that are not decomposed by the regeneration means are formed, and there is a problem that the desulfurization performance is lowered.

そこで、吸収液を活性化させて脱硫装置にて再度脱流が行えるようにするために、劣化した吸収液を電気透析装置に通過させて不純物を分離することが行われている。   Therefore, in order to activate the absorption liquid and allow desulfurization to be performed again in the desulfurization apparatus, the deteriorated absorption liquid is passed through an electrodialysis apparatus to separate impurities.

尚、上記従来の技術に関係すると思われる技術は、特許文献1に開示されている。   A technique that seems to be related to the above-described conventional technique is disclosed in Patent Document 1.

特開昭55−81782号公報(第2図及びその説明)Japanese Patent Laid-Open No. 55-81882 (FIG. 2 and explanation thereof)

上記従来技術は、温度低下による吸収液の粘度増加についての配慮がなされておらず、電気透析装置を損傷させる恐れがある。即ち、脱硫装置運転中にこの脱硫装置から電気透析装置に供給される吸収液は約40℃である。このような温度の吸収液が供給されることを前提に設計された電気透析装置は、脱硫装置の運転が停止して吸収液の温度が低下したり、環境温度の低下に伴って、吸収液の粘度が増加した場合、吸収液流路の圧力損失が高くなって活性化効率を低下させたり、電気透析装置のイオン交換膜を損傷する恐れがある。   In the above prior art, no consideration is given to an increase in the viscosity of the absorbent due to a decrease in temperature, and the electrodialyzer may be damaged. That is, the absorption liquid supplied from the desulfurizer to the electrodialyzer during the operation of the desulfurizer is about 40 ° C. An electrodialyzer designed on the premise that an absorbing liquid having such a temperature is supplied is the operation of the desulfurization apparatus is stopped, the temperature of the absorbing liquid is reduced, or the absorbing liquid is reduced as the environmental temperature decreases. When the viscosity of the liquid increases, the pressure loss in the absorption liquid channel increases, which may reduce the activation efficiency or damage the ion exchange membrane of the electrodialyzer.

他方、脱硫装置の運転停止時における吸収液の温度低下や環境温度の低下による吸収液の粘度の増加を見込んで、吸収液流路となる配管等の口径を増大させた電気透析装置を設計することも考えられる。このようにすると、吸収液流路の圧力損失が高くなることを防ぐことができるが、温度低下による吸収液の粘度増加に伴う電気透析装置のイオン交換膜の損傷は依然として防止することができない。   On the other hand, an electrodialyzer is designed with an increased diameter of piping, etc., serving as an absorption liquid flow path in anticipation of an increase in the viscosity of the absorption liquid due to a decrease in the temperature of the absorption liquid and a decrease in the environmental temperature when the desulfurization apparatus is stopped. It is also possible. In this way, it is possible to prevent an increase in pressure loss in the absorption liquid channel, but it is still impossible to prevent damage to the ion exchange membrane of the electrodialysis apparatus due to an increase in the viscosity of the absorption liquid due to a decrease in temperature.

本発明の目的は、温度の低下があっても電気透析装置のイオン交換膜を損傷させることなく吸収液を活性化できる吸収液活性化装置を提供することにある。   An object of the present invention is to provide an absorbent activating device that can activate an absorbent without damaging an ion exchange membrane of an electrodialyzer even when the temperature is lowered.

本発明は上記目的を達成するために、脱硫装置で不純物を吸収した吸収液を電気透析装置に供給するに際し、吸収液粘度調整手段によって吸収液の粘度を調整するようにしたのである。   In order to achieve the above object, the present invention adjusts the viscosity of the absorbing solution by the absorbing solution viscosity adjusting means when supplying the absorbing solution that has absorbed impurities by the desulfurizer to the electrodialyzer.

上記構成によれば、脱硫装置が運転を停止して吸収液の温度が低下して粘度が増加しても、あるいは周辺の環境温度の低下に伴う吸収液の温度低下により粘度が増加しても、電気透析装置に供給される吸収液の粘度は吸収液粘度調整手段によって昇温方向に調整されるので、電気透析装置のイオン交換膜を損傷させることなく吸収液の活性化を行うことができるのである。   According to the above configuration, even if the desulfurization apparatus stops operation and the temperature of the absorbing liquid decreases and the viscosity increases, or the viscosity increases due to a decrease in the temperature of the absorbing liquid accompanying a decrease in the surrounding environmental temperature. Since the viscosity of the absorbent supplied to the electrodialyzer is adjusted in the temperature rising direction by the absorbent viscosity adjusting means, the absorbent can be activated without damaging the ion exchange membrane of the electrodialyzer. It is.

本発明によれば、温度の低下があっても電気透析装置のイオン交換膜を損傷させることなく吸収液を活性化できる吸収液活性化装置を提供することができる。   According to the present invention, it is possible to provide an absorbent activating device that can activate an absorbent without damaging the ion exchange membrane of the electrodialyzer even when the temperature is lowered.

以下本発明による第1の実施の形態を図1に示す吸収液活性化装置に基づいて説明する。   A first embodiment according to the present invention will be described below based on an absorbent activation device shown in FIG.

本発明による吸収液活性化装置は、大きく分けて電気透析装置1と脱硫装置26とを備えている。   The absorbent activation device according to the present invention is roughly provided with an electrodialysis apparatus 1 and a desulfurization apparatus 26.

電気透析装置1は、陽イオン交換膜と陰イオン交換膜を交互に配列し、両端に直流電圧を印加するように構成した電気透析槽2を備えている。この電気透析槽2は、前記イオン交換膜によって脱塩室3と濃縮室4とに分けられている。   The electrodialysis apparatus 1 includes an electrodialysis tank 2 configured such that a cation exchange membrane and an anion exchange membrane are alternately arranged and a DC voltage is applied to both ends. The electrodialysis tank 2 is divided into a desalting chamber 3 and a concentration chamber 4 by the ion exchange membrane.

前記脱塩室3の入口には、脱塩液ポット5に接続され脱塩液ポンプ6を介在させた配管7a,7bが接続されている。前記脱塩室3の出口には、脱塩室出口配管8の一端が接続され、他端は脱塩液循環弁9及び脱塩液戻り配管10を経由して前記脱塩液ポット5に接続されている。前記脱塩室出口配管8は、脱塩室3と脱塩液循環弁9との間から分岐され、脱塩液排出弁12を設置した脱塩液排出配管11を経由して脱塩吸収液貯留タンク13に接続されている。また、前記脱塩液ポット5には、吸収液の濃度を低下させるための吸収液濃度低下手段となり純水供給手段でもある第1純水供給弁14を設けた第1純水供給配管15が接続されている。   Pipes 7 a and 7 b connected to a desalting solution pot 5 and having a desalting solution pump 6 interposed are connected to the inlet of the desalting chamber 3. One end of a desalting chamber outlet pipe 8 is connected to the outlet of the desalting chamber 3, and the other end is connected to the desalting solution pot 5 via a desalting solution circulation valve 9 and a desalting solution return pipe 10. Has been. The desalting chamber outlet pipe 8 is branched from between the desalting chamber 3 and the desalting liquid circulation valve 9, and passes through the desalting liquid discharge pipe 11 provided with the desalting liquid discharge valve 12. The storage tank 13 is connected. The desalted liquid pot 5 has a first pure water supply pipe 15 provided with a first pure water supply valve 14 which serves as an absorbent concentration reducing means for reducing the concentration of the absorbent and is also a pure water supply means. It is connected.

前記濃縮室4の入口には、濃縮液ポット16に接続され濃縮液ポンプ18を介在させた濃縮液配管17a,17bが接続されている。前記濃縮室4の出口には、前記濃縮液ポット16まで至る濃縮室出口配管19が接続されている。前記濃縮液ポット16には、第2純水供給弁20を設けた第2純水供給配管21が接続され、さらに廃液ピット23に至る濃縮液排出配管22が接続されている。廃液ピット23からは廃液排出配管24aが接続され、さらに廃液ポンプ25を経由して廃液排出配管24bにより外部に接続されている。   Concentrate pipes 17 a and 17 b connected to the concentrate pot 16 and having a concentrate pump 18 interposed are connected to the inlet of the concentrate chamber 4. To the outlet of the concentrating chamber 4, a concentrating chamber outlet pipe 19 extending to the concentrated liquid pot 16 is connected. A second pure water supply pipe 21 provided with a second pure water supply valve 20 is connected to the concentrate pot 16, and a concentrate discharge pipe 22 leading to the waste pit 23 is further connected. A waste liquid discharge pipe 24 a is connected from the waste liquid pit 23, and further connected to the outside via a waste liquid pump 25 by a waste liquid discharge pipe 24 b.

一方、前記脱硫装置26は、吸収塔27と再生塔28を備え、吸収塔27へは生成ガス供給配管29及び精製ガス排出配管30が接続されている。吸収塔27の底部からは再生塔吸収液供給配管31が吸収液熱交換器32及び再生塔吸収液供給弁33を経由して再生塔28に接続されている。再生塔28の上部には酸性ガス排出配管34が接続され、底部からは吸収液循環ポンプ35,吸収液熱交換器32,吸収液冷却器36及び吸収塔入口吸収液制御弁37を経由して吸収塔27に至る吸収塔吸収液供給配管38が接続されている。   On the other hand, the desulfurization device 26 includes an absorption tower 27 and a regeneration tower 28, and a production gas supply pipe 29 and a purified gas discharge pipe 30 are connected to the absorption tower 27. From the bottom of the absorption tower 27, a regeneration tower absorption liquid supply pipe 31 is connected to the regeneration tower 28 via an absorption liquid heat exchanger 32 and a regeneration tower absorption liquid supply valve 33. An acid gas discharge pipe 34 is connected to the top of the regeneration tower 28, and from the bottom via an absorption liquid circulation pump 35, an absorption liquid heat exchanger 32, an absorption liquid cooler 36, and an absorption tower inlet absorption liquid control valve 37. An absorption tower absorption liquid supply pipe 38 reaching the absorption tower 27 is connected.

脱硫装置26の吸収液冷却器36と吸収塔入口吸収液制御弁37の間には、電気透析装置供給遮断弁39を設けた吸収液供給配管40が分岐され、この吸収液供給配管40は前記脱塩吸収液貯留タンク13に接続されている。脱塩吸収液貯留タンク13は活性化前の吸収液と活性化後の吸収液を分離するように2室に仕切られている。また、脱塩吸収液貯留タンク13からは、処理液ポンプ41及び処理液制御弁42を設けた処理液戻り配管43が、再生塔28の底部から配管された吸収塔吸収液供給配管38に接続されている。   Between the absorption liquid cooler 36 of the desulfurization apparatus 26 and the absorption tower inlet absorption liquid control valve 37, an absorption liquid supply pipe 40 provided with an electrodialysis apparatus supply cutoff valve 39 is branched, and the absorption liquid supply pipe 40 is It is connected to the desalted absorption liquid storage tank 13. The desalted absorption liquid storage tank 13 is partitioned into two chambers so as to separate the absorption liquid before activation and the absorption liquid after activation. Further, from the desalted absorption liquid storage tank 13, a treatment liquid return pipe 43 provided with a treatment liquid pump 41 and a treatment liquid control valve 42 is connected to an absorption tower absorption liquid supply pipe 38 piped from the bottom of the regeneration tower 28. Has been.

前記脱塩吸収液貯留タンク13からは、原液ポンプ入口配管44,原液ポンプ45,原液フィルタ入口配管46,原液フィルタ47及び原液供給弁48を設けた原液供給配管49が電気透析装置1の脱塩液ポット5へ接続されている。   From the desalted absorption liquid storage tank 13, a stock solution supply pipe 49 provided with a stock solution pump inlet pipe 44, a stock solution pump 45, a stock solution filter inlet pipe 46, a stock solution filter 47 and a stock solution supply valve 48 is desalted of the electrodialysis apparatus 1. Connected to the liquid pot 5.

原液フィルタ47と原液供給弁48間からは原液フィルタ循環弁50を設置した原液循環配管51が分岐され、原液循環配管51は前記脱塩吸収液貯留タンク13に接続されている。原液ポンプ45の出口からは、原液加熱器入口配管52が分岐されて吸収液粘度調整手段の温度調節手段を構成する原液加熱器53へ接続されている。原液加熱器53の出口配管は、脱塩吸収液貯留タンク13に至る原液循環配管51に接続されている。   A stock solution circulation pipe 51 provided with a stock solution filter circulation valve 50 is branched between the stock solution filter 47 and the stock solution supply valve 48, and the stock solution circulation pipe 51 is connected to the desalted absorbent storage tank 13. From the outlet of the stock solution pump 45, a stock solution heater inlet pipe 52 is branched and connected to a stock solution heater 53 which constitutes a temperature adjusting means of the absorption liquid viscosity adjusting means. The outlet pipe of the stock solution heater 53 is connected to a stock solution circulation pipe 51 that reaches the desalted absorption liquid storage tank 13.

上記構成の吸収液活性化装置において、脱硫装置26では、硫化水素を含む生成ガスを、生成ガス供給配管29から吸収塔27に供給し、吸収塔27内で吸収塔入口吸収液制御弁37を通して供給される吸収液と接触させることにより前記硫化水素を吸収液に化学吸収させる。硫化水素を分離して脱硫された精製ガスは精製ガス排出配管30から外部に供給される。   In the absorption liquid activating apparatus having the above-described configuration, the desulfurization apparatus 26 supplies the product gas containing hydrogen sulfide to the absorption tower 27 from the production gas supply pipe 29 and passes through the absorption tower inlet absorption liquid control valve 37 in the absorption tower 27. The hydrogen sulfide is chemically absorbed by the absorbing liquid by contacting with the supplied absorbing liquid. The purified gas desulfurized by separating hydrogen sulfide is supplied to the outside through the purified gas discharge pipe 30.

硫化水素等を吸収した吸収液は、吸収塔27から再生塔吸収液供給配管31を通って排出され、吸収液熱交換器32で、再生塔28から排出された高温の吸収液との熱交換により昇温され、再生塔入口吸収液制御弁33で減圧され再生塔28に供給される。再生塔28では、減圧と外部からの加熱により吸収液温度がさらに上昇し、吸収液中の酸性ガスは吸収液から分離される。分離された酸性ガス排出配管34を通して外部処理装置へと排出される。酸性ガスが分離されて再生された吸収液は吸収塔吸収液供給配管38を通して再生塔28の底部から排出され、吸収液循環ポンプ35にて昇圧され、吸収液熱交換器32にて吸収塔27からの低温吸収液により冷却される。吸収液熱交換器32を通過した再生吸収液は、さらに吸収液冷却器36により冷却され、吸収塔入口吸収液制御弁37を通して吸収塔27に供給され、再度生成ガスの脱硫に供する。   The absorption liquid that has absorbed hydrogen sulfide and the like is discharged from the absorption tower 27 through the regeneration tower absorption liquid supply pipe 31 and is exchanged with the high-temperature absorption liquid discharged from the regeneration tower 28 by the absorption liquid heat exchanger 32. , The pressure is reduced by the regeneration tower inlet absorbing liquid control valve 33 and supplied to the regeneration tower 28. In the regeneration tower 28, the temperature of the absorbing solution is further increased by decompression and external heating, and the acidic gas in the absorbing solution is separated from the absorbing solution. It is discharged to an external processing device through the separated acid gas discharge pipe 34. The absorption liquid regenerated by separating the acid gas is discharged from the bottom of the regeneration tower 28 through the absorption tower absorption liquid supply pipe 38, boosted by the absorption liquid circulation pump 35, and absorbed by the absorption liquid heat exchanger 32. It is cooled by the low temperature absorption liquid from. The regenerated absorption liquid that has passed through the absorption liquid heat exchanger 32 is further cooled by an absorption liquid cooler 36, supplied to the absorption tower 27 through the absorption tower inlet absorption liquid control valve 37, and again used for desulfurization of the product gas.

一方、前記電気透析装置1の電気透析槽2では、濃縮液ポット16の濃縮液(純水)を濃縮液ポンプ18により濃縮液配管17a,17bを通して濃縮室4に送る。脱塩液ポット5内の吸収液を脱塩液ポンプ6により脱塩液配管7a,7bを通して、脱塩室3に送る。このように脱塩室3と濃縮室4とが満たされた状態で、電気透析槽2の両端に設置した電極に直流電圧を印加すると、電流により脱塩溶液中の陰イオン類と陽イオン類は選択的にイオン交換膜を透過し濃縮液に移動する。これにより、脱塩室3中の吸収液からイオン性不純物が除去され、不純物は濃縮室4中の濃縮液へ移動し、吸収液は活性化される。濃縮室4内の不純物を含む濃縮液は、濃縮室出口配管19から濃縮液ポット16に戻され、その一部は濃縮液ポット16から濃縮液排出配管22を通り廃液ピット23に排出され、一定量貯まった後に廃液排出配管24a,24bから廃液ポンプ25により外部に排出される。濃縮液ポット16には、排出された濃縮水を補うために第2純水供給弁20から第2純水供給配管21を通して純水を供給している。   On the other hand, in the electrodialysis tank 2 of the electrodialyzer 1, the concentrate (pure water) in the concentrate pot 16 is sent to the concentration chamber 4 through the concentrate pipes 17 a and 17 b by the concentrate pump 18. The absorbing solution in the desalting solution pot 5 is sent to the desalting chamber 3 through the desalting solution pipes 7 a and 7 b by the desalting solution pump 6. When a DC voltage is applied to the electrodes installed at both ends of the electrodialysis tank 2 in a state where the desalting chamber 3 and the concentration chamber 4 are filled in this way, the anions and cations in the desalting solution are caused by the current. Selectively permeates the ion exchange membrane and moves to the concentrate. Thereby, ionic impurities are removed from the absorption liquid in the desalting chamber 3, the impurities move to the concentrated liquid in the concentration chamber 4, and the absorption liquid is activated. The concentrated liquid containing impurities in the concentrating chamber 4 is returned from the concentrating chamber outlet pipe 19 to the concentrated liquid pot 16, and a part of the concentrated liquid is discharged from the concentrated liquid pot 16 through the concentrated liquid discharge pipe 22 to the waste liquid pit 23 and is constant. After the amount is stored, it is discharged to the outside by the waste liquid pump 25 from the waste liquid discharge pipes 24a and 24b. Pure water is supplied to the concentrate pot 16 from the second pure water supply valve 20 through the second pure water supply pipe 21 to supplement the discharged concentrated water.

前記脱硫装置26内で吸収、再生が繰返し行われ、吸収液中に熱安定アミン塩、イオン性不純物等の不純物が生成した場合、電気透析装置供給遮断弁39を開けて吸収液供給配管40を通して再生塔28内の吸収液を脱塩吸収液貯留タンク13に排出する。尚、脱硫装置26内から排出された吸収液の圧力と電気透析装置1の運転圧力が異なる場合には、脱塩吸収液貯留タンク13にて圧力の調整を行うことも可能である。   When absorption and regeneration are repeated in the desulfurization device 26 and impurities such as heat stable amine salts and ionic impurities are generated in the absorption liquid, the electrodialysis apparatus supply shut-off valve 39 is opened and the absorption liquid supply pipe 40 is passed through. The absorption liquid in the regeneration tower 28 is discharged to the desalted absorption liquid storage tank 13. When the pressure of the absorption liquid discharged from the desulfurization apparatus 26 and the operating pressure of the electrodialysis apparatus 1 are different, it is possible to adjust the pressure in the demineralized absorption liquid storage tank 13.

ところで、本実施の形態では、脱塩吸収液貯留タンク13は活性化前の吸収液と活性化後の吸収液を同一容器に貯め、分離するように2室に仕切っている。これにより活性化前の吸収液と活性化後の吸収液が混合する不利はあるが、電気透析装置1に供給される吸収液と回収される吸収液の均圧化ができる。   By the way, in this Embodiment, the desalination absorption liquid storage tank 13 is divided into two chambers so that the absorption liquid before activation and the absorption liquid after activation are stored in the same container and separated. Thus, although there is a disadvantage that the absorption liquid before activation and the absorption liquid after activation are mixed, it is possible to equalize the absorption liquid supplied to the electrodialyzer 1 and the collected absorption liquid.

前記脱塩吸収液貯留タンク13内の吸収液は、原液ポンプ入口配管44から排出され、原液ポンプ45により原液フィルタ入口配管46を通り、原液フィルタ47に送られ、ここで吸収液中の固形物を分離する。固形物を分離した吸収液は原液供給配管49を通り、原液供給弁48から脱塩液ポット5に供給される。   The absorption liquid in the desalted absorption liquid storage tank 13 is discharged from the raw liquid pump inlet pipe 44 and is sent by the raw liquid pump 45 to the raw liquid filter 47 through the raw liquid filter inlet pipe 46, where solid matter in the absorption liquid Isolate. The absorption liquid from which the solid matter has been separated passes through the stock solution supply pipe 49 and is supplied from the stock solution supply valve 48 to the desalted solution pot 5.

前記脱塩室3で脱塩され、活性化した吸収液は脱塩室3から脱塩室出口配管8,脱塩液排出配管11及び脱塩液排出弁12を通り脱塩吸収液貯留タンク13へ排出される。   The absorption liquid desalted and activated in the desalting chamber 3 passes through the desalting chamber 3, the desalting chamber outlet pipe 8, the desalting liquid discharge pipe 11, and the desalting liquid discharge valve 12. Is discharged.

吸収液の処理方法としては、電気透析装置1の脱塩室出口配管8へ吸収液を供給する方式で、連続式,部分循環式,回分式の3方法に分けられる。   The treatment method of the absorption liquid is a system in which the absorption liquid is supplied to the desalination chamber outlet pipe 8 of the electrodialysis apparatus 1 and is divided into three methods of a continuous type, a partial circulation type, and a batch type.

連続式処理方法では、脱塩液ポット5から脱塩室3に供給された吸収液が、脱塩された後直ちに脱塩吸収液貯留タンク13に回収されるように、脱塩液循環弁9を閉じ、脱塩液排出弁12を開ける。したがって、吸収液は脱塩室3を一回だけ通過し、脱塩される。   In the continuous processing method, the desalin solution circulation valve 9 is used so that the absorbent supplied from the desalin solution pot 5 to the desalting chamber 3 is recovered in the desalted solution storage tank 13 immediately after being desalted. Is closed and the desalinating liquid discharge valve 12 is opened. Therefore, the absorbing solution passes through the desalting chamber 3 only once and is desalted.

部分循環式処理方法では、脱塩室3を出た吸収液は、一部が脱塩液排出弁12を通して脱塩吸収液貯留タンク13に回収され、残る一部が脱塩液循環弁9を通り脱塩液ポット5に回収される。脱塩された一部の液は脱塩液ポット5内の未処理吸収液と混合し再び脱塩液ポンプ6により脱塩室3に供給され、これが繰返して行われる。   In the partial circulation type processing method, a part of the absorption liquid exiting the desalting chamber 3 is collected in the desalting absorption liquid storage tank 13 through the desalting liquid discharge valve 12, and the remaining part is passed through the desalting liquid circulation valve 9. Is recovered in the desalting solution pot 5. Part of the desalted liquid is mixed with the untreated absorption liquid in the desalting liquid pot 5 and supplied again to the desalting chamber 3 by the desalting liquid pump 6, which is repeated.

回分式処理方法では、脱塩液排出配管11の脱塩液排出弁12を閉じ、脱塩室3を出た吸収液の全量を、脱塩液循環弁9を通して脱塩液ポット5に回収し、再度脱塩液ポンプ6により脱塩室3に供給する循環運転を行う。その後、脱塩液循環弁9を閉じ、脱塩された吸収液を、脱塩液排出配管11の脱塩液排出弁12を通して脱塩吸収液貯留タンク13に回収する。   In the batch processing method, the desalin solution discharge valve 12 of the desalin solution discharge pipe 11 is closed, and the entire amount of the absorbing solution exiting the desalting chamber 3 is recovered in the desalin solution pot 5 through the desalin solution circulation valve 9. Then, a circulation operation is performed in which the desalting liquid pump 6 supplies the desalting chamber 3 again. Thereafter, the desalted liquid circulation valve 9 is closed, and the desalted absorbent is recovered in the desalted absorbent storage tank 13 through the desalted liquid discharge valve 12 of the desalted liquid discharge pipe 11.

本実施の形態においては、上記処理方法のいずれであっても適用することができる。   In the present embodiment, any of the above processing methods can be applied.

ところで、脱硫装置26が運転されている場合には、吸収液供給配管40を通して脱塩吸収液貯留タンク13に供給される吸収液の液温は約40℃であり、吸収液は粘度が低いため原液ポンプ45により原液フィルタ47,原液供給配管49,原液供給弁48を通して脱塩液ポット5に供給され、さらに脱塩液配管7a,7b及び脱塩液ポンプ6を介して容易に脱塩室3に供給でき、無理なく脱塩処理することができる。   By the way, when the desulfurization device 26 is in operation, the liquid temperature of the absorption liquid supplied to the demineralized absorption liquid storage tank 13 through the absorption liquid supply pipe 40 is about 40 ° C., and the absorption liquid has a low viscosity. The desalin chamber 3 is supplied by the stock solution pump 45 to the desalted solution pot 5 through the stock solution filter 47, the stock solution supply pipe 49, and the stock solution supply valve 48, and further easily passed through the desalin solution pipes 7 a and 7 b and the desalin solution pump 6. And can be desalted without difficulty.

しかし、脱硫装置26が停止して、吸収液の温度が低下している場合には、吸収液の粘性が高いため、この吸収液を脱塩室3に供給したのでは、イオン交換膜を損傷させることになる。この場合には、原液供給弁48及び原液フィルタ循環弁50を閉じて、脱塩吸収液貯留タンク13内の吸収液を原液ポンプ45により原液加熱器入口配管52を通して原液加熱器53に供給する。原液加熱器53では電気、蒸気等の外部熱源により吸収液を加熱する。加熱された吸収液は原液フィルタ循環弁50よりも脱塩吸収液貯留タンク13寄りの原液循環配管51を通って脱塩吸収液貯留タンク13に回収される。この吸収液加熱循環運転により、原液ポンプ入口配管44内の吸収液が昇温されるとともに、脱塩吸収液貯留タンク13及び原液ポンプ入口配管44を含む配管等が昇温される。そして吸収液が設定温度以上に昇温された後に原液フィルタ循環弁50を開け、昇温された吸収液の一部を原液フィルタ入口配管46及び原液フィルタ47を通過させて原液フィルタ47を昇温する。原液フィルタ47を出た吸収液は原液供給配管49,原液循環配管51を通り脱塩吸収液貯留タンク13に回収され、その過程で原液供給配管49,原液循環配管51を昇温する。   However, when the desulfurization device 26 is stopped and the temperature of the absorbing liquid is lowered, the viscosity of the absorbing liquid is high, and therefore, if this absorbing liquid is supplied to the demineralization chamber 3, the ion exchange membrane is damaged. I will let you. In this case, the stock solution supply valve 48 and the stock solution filter circulation valve 50 are closed, and the absorbent in the desalted absorbent storage tank 13 is supplied to the stock solution heater 53 through the stock solution heater inlet pipe 52 by the stock solution pump 45. In the stock solution heater 53, the absorbent is heated by an external heat source such as electricity or steam. The heated absorbent is recovered in the desalted absorbent storage tank 13 through the stock solution circulation pipe 51 closer to the desalted absorbent storage tank 13 than the stock filter circulation valve 50. By this absorption liquid heating and circulation operation, the temperature of the absorption liquid in the raw liquid pump inlet pipe 44 is raised, and the temperature of the pipes including the desalted absorption liquid storage tank 13 and the raw liquid pump inlet pipe 44 is raised. Then, after the temperature of the absorption liquid has risen above the set temperature, the stock solution filter circulation valve 50 is opened, and a portion of the rise in the temperature of the absorption liquid is passed through the stock solution filter inlet pipe 46 and the stock solution filter 47 to raise the temperature of the stock solution filter 47. To do. The absorbing solution exiting the stock solution filter 47 passes through the stock solution supply pipe 49 and the stock solution circulation pipe 51 and is collected in the desalted absorption liquid storage tank 13. In this process, the stock solution supply pipe 49 and the stock solution circulation pipe 51 are heated.

原液供給配管49の出口部の温度が十分に昇温された後、原液供給弁48を開けて昇温された吸収液を脱塩液ポット5に供給することにより、脱塩室3に供給される吸収液の温度を高くすることができる。   After the temperature of the outlet portion of the stock solution supply pipe 49 has been sufficiently raised, the stock solution supply valve 48 is opened and the heated absorbent is supplied to the desalting solution pot 5 to be supplied to the desalting chamber 3. The temperature of the absorbing liquid can be increased.

また、電気透析装置1が停止時には、脱塩液ポンプ6により吸収液を脱塩室3,配管8,脱塩液排出配管11を通して脱塩吸収液貯留タンク13に回収し、脱塩液ポット5内に残留する吸収液を最小にする。その後、第1純水供給弁14を開いて純水を脱塩液ポット5内に供給し、脱塩液ポンプ6から純水を脱塩室3に供給して系統内の吸収液を純水により補充しておく。   When the electrodialyzer 1 is stopped, the desalted solution pump 6 collects the absorbing solution in the desalted absorbing solution storage tank 13 through the desalting chamber 3, the pipe 8 and the desalted solution discharge pipe 11, and the desalted solution pot 5. Minimize the absorption liquid remaining inside. Thereafter, the first pure water supply valve 14 is opened to supply pure water into the desalting solution pot 5, and pure water is supplied from the desalting solution pump 6 to the desalting chamber 3, so that the absorbent in the system is purified water. Replenish with.

これによって、低温の吸収液が脱塩液ポット5に供給された場合でも、脱塩室3の系統内の純水との混合によって吸収液の濃度は低下し、吸収液の粘度は低く抑えられるので、電気透析装置1の運転再開時に脱塩室3へ吸収液を供給してもイオン交換膜が損傷されることはない。   Thereby, even when a low-temperature absorption liquid is supplied to the desalting liquid pot 5, the concentration of the absorption liquid is reduced by mixing with pure water in the system of the desalting chamber 3, and the viscosity of the absorption liquid can be kept low. Therefore, even if the absorbing solution is supplied to the desalting chamber 3 when the operation of the electrodialysis apparatus 1 is resumed, the ion exchange membrane is not damaged.

ところで、通常、脱塩吸収液貯留タンク13から昇温された吸収液が順次脱塩液ポット5に供給されると吸収液濃度が増加するが、吸収液温度も上昇するため吸収液の粘度を低く抑えることができる。   By the way, normally, when the absorption liquid heated from the desalination absorption liquid storage tank 13 is sequentially supplied to the desalination liquid pot 5, the concentration of the absorption liquid increases, but the absorption liquid temperature also rises, so the viscosity of the absorption liquid is increased. It can be kept low.

尚、本実施形態において、脱硫装置26から電気透析装置1に吸収液を供給する供給管路は、吸収液供給配管40−電気透析装置供給遮断弁39−脱塩吸収液貯留タンク13−原液ポンプ入口配管44−原液ポンプ45−原液フィルタ入口配管46−原液フィルタ47−原液供給配管49−原液供給弁48−脱塩液ポット5−脱塩液配管7a−脱塩液ポンプ6−脱塩液配管7bであり、電気透析装置1から脱硫装置26に吸収液を回収する回収管路は、脱塩室出口配管8−脱塩液排出配管11−脱塩液排出弁12−脱塩吸収液貯留タンク13−処理液ポンプ41−処理液制御弁42−処理液戻り配管43である
以上説明したように本実施の形態によれば、脱硫装置26が運転を停止して吸収液の温度が低下して粘度が増加しても、あるいは周辺の環境温度の低下に伴う吸収液の温度低下により粘度が増加しても、電気透析装置1に供給される吸収液の粘度は吸収液粘度調整手段である原液加熱器53によって昇温方向に調整される。また電気透析装置1の運転停止時には、純水を供給して吸収液の濃度を低下させて吸収液の粘度を低下させることができるので、電気透析装置1のイオン交換膜を損傷させることなく吸収液の活性化を行うことができる。
In the present embodiment, the supply line for supplying the absorption liquid from the desulfurization apparatus 26 to the electrodialysis apparatus 1 is the absorption liquid supply pipe 40 -the electrodialysis apparatus supply cutoff valve 39 -the desalted absorption liquid storage tank 13 -the stock solution pump. Inlet piping 44-Stock solution pump 45-Stock solution filter inlet piping 46-Stock solution filter 47-Stock solution supply piping 49-Stock solution supply valve 48-Desalted solution pot 5-Desalted solution pipe 7a-Desalted solution pump 6-Desalted solution piping 7b, and the recovery line for collecting the absorption liquid from the electrodialysis apparatus 1 to the desulfurization apparatus 26 is a desalination chamber outlet pipe 8-a desalination liquid discharge pipe 11-a desalination liquid discharge valve 12-a desalination absorption liquid storage tank. 13-Processing liquid pump 41-Processing liquid control valve 42-Processing liquid return pipe 43 As described above, according to the present embodiment, the desulfurization device 26 stops operating and the temperature of the absorbing liquid decreases. Even if the viscosity increases or Even if the viscosity increases due to a decrease in the temperature of the absorbent due to a decrease in the ambient temperature of the side, the viscosity of the absorbent supplied to the electrodialysis apparatus 1 is increased in the temperature rising direction by the stock solution heater 53 serving as the absorbent viscosity adjusting means. Adjusted. In addition, when the electrodialysis apparatus 1 is stopped, pure water can be supplied to reduce the concentration of the absorption liquid to reduce the viscosity of the absorption liquid, so that the ion exchange membrane of the electrodialysis apparatus 1 can be absorbed without damage. The liquid can be activated.

次に、本発明により第2の実施の形態を図2に基づいて説明する。本実施の形態において、第1の実施の形態と異なるのは、図1における脱塩液ポット5に接続される第1の純水供給弁14に替えて、純水供給手段を構成する純水加熱器54及び温水流量制御弁55を設置し、かつ温水流量制御弁55を電気透析槽2に設けた圧力検出手段である脱塩室圧力計56の検出圧力によって制御するようにした点である。尚、前記純水加熱器54は、吸収液粘度調整手段,吸収液濃度低下手段,純水供給手段及び吸収液の温度を調節する温度調節手段としても機能するものである。   Next, a second embodiment according to the present invention will be described with reference to FIG. In the present embodiment, the difference from the first embodiment is that pure water constituting pure water supply means is used in place of the first pure water supply valve 14 connected to the desalting solution pot 5 in FIG. The heater 54 and the hot water flow rate control valve 55 are installed, and the hot water flow rate control valve 55 is controlled by the detected pressure of the desalting chamber pressure gauge 56 which is a pressure detecting means provided in the electrodialysis tank 2. . The pure water heater 54 also functions as an absorbing liquid viscosity adjusting means, an absorbing liquid concentration reducing means, a pure water supplying means, and a temperature adjusting means for adjusting the temperature of the absorbing liquid.

本実施の形態においては第1の実施の形態と同様に、脱塩吸収液貯留タンク13に供給された吸収液は、原液ポンプ45により原液加熱器53を通して循環,昇温され、その後原液フィルタ入口配管46,原液フィルタ47,原液循環配管51及び原液フィルタ循環弁50を通して脱塩吸収液貯留タンク13に循環され、原液フィルタ47,原液フィルタ入口配管46を含めた配管を昇温する。その後、吸収液は原液供給弁48から脱塩液ポット5に供給され、脱塩液ポンプ6により脱塩室3に送られる。   In the present embodiment, as in the first embodiment, the absorption liquid supplied to the desalted absorption liquid storage tank 13 is circulated and heated by the raw liquid pump 45 through the raw liquid heater 53, and then the raw liquid filter inlet. The piping 46, the stock solution filter 47, the stock solution circulation piping 51, and the stock solution filter circulation valve 50 are circulated to the desalted absorption liquid storage tank 13, and the piping including the stock solution filter 47 and the stock solution filter inlet piping 46 is heated. Thereafter, the absorbing solution is supplied from the stock solution supply valve 48 to the desalting solution pot 5 and sent to the desalting chamber 3 by the desalting solution pump 6.

また、本実施の形態では、脱塩液ポット5に供給された吸収液が何らかの理由で温度が低下した場合、吸収液温度低下に伴い粘度が上昇し、圧力損失が増加するのを電気透析槽2に設けた脱塩室圧力計56の圧力で検知する。この脱塩室圧力計56の検知信号によって純水加熱器54及び温水流量制御弁55を制御し、第1の純水供給配管15からの純水を適度に昇温し、昇温された適量の純水を脱塩液ポット5に供給するのである。   Further, in the present embodiment, when the temperature of the absorbent supplied to the desalting solution pot 5 decreases for some reason, the viscosity increases as the temperature of the absorbent decreases and the pressure loss increases. 2 is detected by the pressure of the demineralization chamber pressure gauge 56 provided in FIG. The pure water heater 54 and the hot water flow rate control valve 55 are controlled by the detection signal of the desalination chamber pressure gauge 56, and the temperature of the pure water from the first pure water supply pipe 15 is raised appropriately. The pure water is supplied to the desalting solution pot 5.

昇温された適量の純水が脱塩液ポット5に供給されることにより、脱塩液ポット5内の吸収液濃度は適度に低下し、吸収液濃度低下により吸収液の粘度が低下すると同時に、昇温された純水によって吸収液の温度も上昇し、吸収液粘度は低下する。   By supplying an appropriate amount of pure water that has been heated to the desalting solution pot 5, the concentration of the absorbing solution in the desalting solution pot 5 is moderately reduced, and at the same time the viscosity of the absorbing solution is reduced due to the decrease in the concentration of the absorbing solution. The temperature of the absorbing liquid also increases due to the heated pure water, and the absorbing liquid viscosity decreases.

このように、本実施の形態によれば、第1の実施の形態と同じ効果を奏することができる上、脱塩液ポット5内の吸収液の温度低下に係らず電気透析装置1に適正粘度の吸収液を供給し、吸収液を活性化することができる。   As described above, according to the present embodiment, the same effect as that of the first embodiment can be obtained, and the appropriate viscosity can be applied to the electrodialysis apparatus 1 regardless of the temperature drop of the absorbent in the desalinating solution pot 5. The absorption liquid can be supplied to activate the absorption liquid.

図3は、本発明による第3の実施の形態を示すもので、第1の実施の形態と異なるのは、脱塩吸収液貯留タンク13に替えて脱塩液タンク57と処理後脱塩液タンク58とを設置した点である。そして、吸収液供給配管40を脱塩液タンク57に接続し、脱塩液排出配管11を処理後脱塩液タンク58に接続することにより、脱硫装置26から電気透析装置1に吸収液を供給する系統と回収する系統を分けたのである。   FIG. 3 shows a third embodiment according to the present invention, which is different from the first embodiment in that a desalted liquid tank 57 and a post-treatment desalted liquid are used instead of the desalted absorbent storage tank 13. This is the point where the tank 58 is installed. Then, the absorbent is supplied from the desulfurizer 26 to the electrodialyzer 1 by connecting the absorbent supply pipe 40 to the desalted liquid tank 57 and connecting the desalted liquid discharge pipe 11 to the desalted liquid tank 58 after processing. The system to be recovered and the system to be recovered were separated.

脱塩液タンク57には脱塩液加熱器59が備えられており、また脱塩液タンク57から原液ポンプ45及び原液フィルタ47を経由して脱塩液ポット5に至る原液供給配管49から原液循環配管51を分岐させ、この原液循環配管51を脱塩液タンク57に戻している。   The desalinating solution tank 57 is provided with a desalting solution heater 59, and the undiluted solution is fed from a undiluted solution supply pipe 49 extending from the desalting solution tank 57 through the undiluted solution pump 45 and the undiluted solution filter 47 to the desalted solution pot 5. The circulation pipe 51 is branched, and the stock solution circulation pipe 51 is returned to the desalted liquid tank 57.

また、脱塩室3の脱塩室出口配管8から分岐され脱塩液排出弁12を備えた脱塩液排出配管11は、処理後脱塩液タンク58に接続されている。   Further, the desalinating solution discharge pipe 11 branched from the desalting chamber outlet pipe 8 of the desalting chamber 3 and provided with the desalting solution discharge valve 12 is connected to a post-treatment desalting solution tank 58.

そして、活性化の必要のある吸収液は、脱硫装置26から吸収液供給配管40を通り脱塩液タンク57に供給される。脱塩液タンク57では脱塩液加熱器59により吸収液を昇温する。昇温された吸収液は原液ポンプ45により原液フィルタ47に送られ、原液フィルタ循環弁50を通り脱塩液タンク57に戻る循環運転を行う。このような循環運転によって原液ポンプ入口配管44,原液フィルタ入口配管46,原液供給配管49の管路等を昇温した後、電気透析装置1の脱塩液ポット5に送られる。電気透析装置1で活性化された吸収液は脱塩液排出配管11を通り処理後脱塩液タンク58に回収された後、処理液ポンプ41により脱硫装置26に回収される。   The absorbent that needs to be activated is supplied from the desulfurization device 26 to the desalted liquid tank 57 through the absorbent supply pipe 40. In the desalinating solution tank 57, the temperature of the absorbent is increased by a desalting solution heater 59. The absorption liquid whose temperature has been raised is sent to the stock solution filter 47 by the stock solution pump 45 and is circulated through the stock solution filter circulation valve 50 and returned to the desalted solution tank 57. The temperature of the stock solution pump inlet pipe 44, the stock solution filter inlet pipe 46, the stock solution supply pipe 49, etc. is raised by such a circulation operation, and then sent to the desalting solution pot 5 of the electrodialysis apparatus 1. The absorption liquid activated by the electrodialysis apparatus 1 passes through the desalting liquid discharge pipe 11 and is recovered in the desalting liquid tank 58 after being processed, and then recovered in the desulfurization apparatus 26 by the processing liquid pump 41.

本実施の形態によれば、第1の実施の形態と同じ効果を奏することができるほか、電気透析装置1に吸収液を供給するポンプ以前の配管も起動当初から昇温できる効果がある。また、吸収液の供給系と回収系を分けたことにより活性化前の吸収液と活性化後の吸収液が混合しないため活性化の効率が向上する効果がある。   According to the present embodiment, the same effects as those of the first embodiment can be obtained, and the piping before the pump that supplies the absorption liquid to the electrodialysis apparatus 1 can also be heated from the start. In addition, since the absorption liquid supply system and the recovery system are separated, the absorption liquid before activation and the absorption liquid after activation are not mixed, so that the efficiency of activation is improved.

本発明による吸収液活性化装置の第1の実施の形態を示す配管図。The piping diagram which shows 1st Embodiment of the absorption liquid activation apparatus by this invention. 本発明による吸収液活性化装置の第2の実施の形態を示す配管図。The piping diagram which shows 2nd Embodiment of the absorption liquid activation apparatus by this invention. 本発明による吸収液活性化装置の第3の実施の形態を示す配管図。The piping diagram which shows 3rd Embodiment of the absorption liquid activation apparatus by this invention.

符号の説明Explanation of symbols

1…電気透析装置、2…電気透析槽、3…脱塩湿、4…濃縮室、5…脱塩液ポット、6…脱塩液ポンプ、13…脱塩吸収液貯留タンク、14…第1純水供給弁、26…脱硫装置、53…現役加熱器、54…純水加熱器、59…脱塩液加熱器。
DESCRIPTION OF SYMBOLS 1 ... Electrodialysis apparatus, 2 ... Electrodialysis tank, 3 ... Desalination humidity, 4 ... Concentration chamber, 5 ... Desalination liquid pot, 6 ... Desalination liquid pump, 13 ... Desalination absorption liquid storage tank, 14 ... 1st Pure water supply valve, 26 ... desulfurization device, 53 ... active heater, 54 ... pure water heater, 59 ... desalted liquid heater.

Claims (9)

脱硫装置で不純物を吸収した吸収液を、イオン交換膜を備えた電気透析装置によって活性化する吸収液活性化装置において、前記電気透析装置に供給される吸収液の粘度を前記吸収液の温度変化に応じて調整する吸収液粘度調整手段を設けたことを特徴とする吸収液活性化装置。 In an absorbent activating device that activates an absorbent that has absorbed impurities in a desulfurizer using an electrodialyzer equipped with an ion exchange membrane, the viscosity of the absorbent supplied to the electrodialyzer changes the temperature change of the absorbent. An absorbent activating device, characterized in that an absorbent viscosity adjusting means for adjusting according to the above is provided. 脱硫装置で不純物を吸収した吸収液を、イオン交換膜を備えた電気透析装置によって活性化する吸収液活性化装置において、前記脱硫装置から不純物を吸収した吸収液を前記電気透析装置に供給する供給管路と、活性化した吸収液を前記電気透析装置から前記脱硫装置に戻す回収管路とを設け、かつ前記電気透析装置に供給される吸収液の粘度を前記吸収液の温度変化に応じて調整する吸収液粘度調整手段を設けたことを特徴とする吸収液活性化装置。 Supply of supplying absorption liquid absorbing impurities from the desulfurization apparatus to the electrodialysis apparatus in an absorption liquid activation apparatus that activates the absorption liquid that has absorbed impurities in the desulfurization apparatus by an electrodialysis apparatus equipped with an ion exchange membrane. A pipe and a recovery pipe for returning the activated absorption liquid from the electrodialysis apparatus to the desulfurization apparatus, and the viscosity of the absorption liquid supplied to the electrodialysis apparatus according to the temperature change of the absorption liquid An absorbent activation device comprising an absorbent viscosity adjusting means for adjusting. 前記吸収液粘度調整手段は、吸収液の温度を調節する温度調節手段であることを特徴とする請求項1又は2記載の吸収液活性化装置。   The absorbing liquid activation device according to claim 1 or 2, wherein the absorbing liquid viscosity adjusting means is a temperature adjusting means for adjusting the temperature of the absorbing liquid. 前記吸収液粘度調整手段は、前記電気透析装置に供給される吸収液の濃度を低下させる吸収液濃度低下手段であることを特徴とする請求項1又は2記載の吸収液活性化装置。   The absorption liquid activation device according to claim 1 or 2, wherein the absorption liquid viscosity adjusting means is absorption liquid concentration lowering means for reducing the concentration of the absorption liquid supplied to the electrodialyzer. 前記吸収液濃度低下手段は、前記電気透析装置に供給される吸収液に、純水を供給する純水供給手段であることを特徴とする請求項4記載の吸収液活性化装置。   5. The absorbent activation device according to claim 4, wherein the absorbent concentration reducing means is a pure water supply means for supplying pure water to the absorbent supplied to the electrodialyzer. 前記純水供給手段は、純水の昇温を調節する温度調節手段を備えていることを特徴とする請求項5記載の吸収液活性化装置。   6. The absorption liquid activating device according to claim 5, wherein the pure water supply means includes temperature adjusting means for adjusting a temperature rise of pure water. 脱硫装置で不純物を吸収した吸収液を、イオン交換膜を備えた電気透析装置によって活性化する吸収液活性化装置において、不純物を吸収した吸収液を前記脱硫装置から前記電気透析装置に供給する供給管路と、活性化した吸収液を前記電気透析装置から前記脱硫装置に戻す回収管路とを設け、かつ前記電気透析装置に供給される吸収液の圧力を検出する圧力検出手段を設けると共に、この圧力検出手段による検出値に基づいて前記吸収液の粘度を調整する吸収液粘度調整手段を設けたことを特徴とする吸収液活性化装置。   Supplying the absorption liquid that has absorbed impurities from the desulfurization apparatus to the electrodialysis apparatus in an absorption liquid activation apparatus that activates the absorption liquid that has absorbed impurities in the desulfurization apparatus by an electrodialysis apparatus equipped with an ion exchange membrane. A conduit and a recovery conduit for returning the activated absorbent from the electrodialyzer to the desulfurizer, and a pressure detector for detecting the pressure of the absorbent supplied to the electrodialyzer, An absorbent activation device comprising an absorbent viscosity adjusting means for adjusting the viscosity of the absorbent based on a value detected by the pressure detecting means. 脱硫装置で不純物を吸収した吸収液を、イオン交換膜を備えた電気透析装置によって活性化する吸収液活性化装置において、前記脱硫装置からの吸収液を前記電気透析装置に供給する供給路の途中に前記吸収液を一旦貯留する貯留タンクを設け、前記吸収液の温度変化に応じて、前記貯留タンク内の吸収液を貯留タンク外に送り出して再び貯留タンクに戻す吸収液昇温循環路を設けたことを特徴とする吸収液活性化装置。 In an absorption liquid activation device that activates an absorption liquid that has absorbed impurities by a desulfurization apparatus by an electrodialysis apparatus having an ion exchange membrane, the supply liquid that supplies the absorption liquid from the desulfurization apparatus to the electrodialysis apparatus is in the middle A storage tank for temporarily storing the absorption liquid, and an absorption liquid heating circuit for sending the absorption liquid in the storage tank out of the storage tank and returning it to the storage tank in response to a temperature change of the absorption liquid. An absorbent activation device characterized by that. 脱硫装置で不純物を吸収した吸収液を、イオン交換膜を備えた電気透析装置によって活性化する吸収液活性化装置において、前記脱硫装置からの吸収液を前記電気透析装置に供給する供給路の途中に前記吸収液を一旦貯留する貯留タンクを設け、前記吸収液の温度変化に応じて、前記貯留タンクの吸収液を貯留タンク外で昇温して貯留タンクに戻す吸収液昇温循環路を設けると共に、前記電気透析装置に供給される吸収液に、純水を供給する純水供給手段を設けたことを特徴とする吸収液活性化装置。 In an absorption liquid activation device that activates an absorption liquid that has absorbed impurities by a desulfurization apparatus by an electrodialysis apparatus having an ion exchange membrane, the supply liquid that supplies the absorption liquid from the desulfurization apparatus to the electrodialysis apparatus is in the middle A storage tank for temporarily storing the absorption liquid, and an absorption liquid temperature increasing circuit for raising the temperature of the absorption liquid in the storage tank outside the storage tank and returning it to the storage tank according to a temperature change of the absorption liquid. In addition, an absorbent activation device characterized by comprising pure water supply means for supplying pure water to the absorbent supplied to the electrodialyzer.
JP2004182230A 2004-06-21 2004-06-21 Absorber activation device Expired - Fee Related JP4414287B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004182230A JP4414287B2 (en) 2004-06-21 2004-06-21 Absorber activation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004182230A JP4414287B2 (en) 2004-06-21 2004-06-21 Absorber activation device

Publications (2)

Publication Number Publication Date
JP2006000805A JP2006000805A (en) 2006-01-05
JP4414287B2 true JP4414287B2 (en) 2010-02-10

Family

ID=35769636

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004182230A Expired - Fee Related JP4414287B2 (en) 2004-06-21 2004-06-21 Absorber activation device

Country Status (1)

Country Link
JP (1) JP4414287B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2900844B1 (en) * 2006-05-09 2008-08-01 Eurodia Ind Sa MEMBRANE EXCHANGE DEVICE, IN PARTICULAR ELECTRODIALYST, HAVING AT LEAST TWO COMPARTMENTS
CN104355473B (en) * 2014-10-28 2016-10-05 中国科学院过程工程研究所 A kind of method using electrodialytic technique to carry out power plant desulfurization waste water desalination zero discharge treatment

Also Published As

Publication number Publication date
JP2006000805A (en) 2006-01-05

Similar Documents

Publication Publication Date Title
US6149788A (en) Method and apparatus for preventing scaling in electrodeionization units
US9028654B2 (en) Method of treatment of amine waste water and a system for accomplishing the same
US8974676B2 (en) Treatment stages for selenium removal
JP2012192374A (en) Water treatment apparatus
JP5768961B2 (en) Water treatment equipment
JP2685247B2 (en) How to remove ammonia
JP5953726B2 (en) Ultrapure water production method and apparatus
JP5704439B2 (en) Method and apparatus for regenerating amine liquid
JP6011238B2 (en) Method and apparatus for regenerating amine liquid
JP4817046B2 (en) Operation method of membrane filtration system
JP2009192193A (en) Boiler system
JP4414287B2 (en) Absorber activation device
JP2011020029A (en) Pure water production system
CN114555534B (en) Water treatment system, ultrapure water production system, and water treatment method
JP2008135271A (en) Fuel cell device
JP2009192194A (en) Boiler system
JP4432583B2 (en) Ultrapure water production equipment
JP4970064B2 (en) Water treatment equipment
JP4338928B2 (en) Gas purification method, gas purification system and power generation system
JP4931107B2 (en) Electrodeionization device and secondary line water treatment device for pressurized water nuclear power plant using the same
JP4968432B2 (en) Method for adjusting flow rate of electrodeionization apparatus
JP2009268999A (en) Method and apparatus for treating water
JP4978593B2 (en) Pure water production system
JP7306074B2 (en) Ultrapure water production device and ultrapure water production method
JPH02303593A (en) Two-stage type reverse osmosis membrane device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061220

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070518

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090804

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091005

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20091005

TRDD Decision of grant or rejection written
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20091005

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091117

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091119

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121127

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121127

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131127

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees