JP4413308B2 - Control method of quick charger - Google Patents

Control method of quick charger Download PDF

Info

Publication number
JP4413308B2
JP4413308B2 JP08174699A JP8174699A JP4413308B2 JP 4413308 B2 JP4413308 B2 JP 4413308B2 JP 08174699 A JP08174699 A JP 08174699A JP 8174699 A JP8174699 A JP 8174699A JP 4413308 B2 JP4413308 B2 JP 4413308B2
Authority
JP
Japan
Prior art keywords
charging
battery voltage
charging current
set value
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP08174699A
Other languages
Japanese (ja)
Other versions
JP2000277166A (en
Inventor
春夫 田畑
聡 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamaha Motor Co Ltd
Original Assignee
Yamaha Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaha Motor Co Ltd filed Critical Yamaha Motor Co Ltd
Priority to JP08174699A priority Critical patent/JP4413308B2/en
Publication of JP2000277166A publication Critical patent/JP2000277166A/en
Application granted granted Critical
Publication of JP4413308B2 publication Critical patent/JP4413308B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【0001】
【発明の属する技術分野】
本発明は、充電可能な2次電池を短時間で充電する急速充電器の制御方法に関する。
【0002】
【従来の技術】
例えば、電動自転車や電動車椅子等の電動車両には駆動電源としてNi−Cd、Ni−MH電池等の充電可能な2次電池が用いられている。
【0003】
ところで、ユーザーの利便性を考慮して2次電池を短時間で充電することができる急速充電器が用いられるが、この急速充電器においては或る程度高い一定電流値で充電が行われていた。
【0004】
【発明が解決しようとする課題】
ところが、上述のように高い一定電流値で充電を行うと、大きなパワーが必要となって充電器本体の表面温度が高くなるため、充電器本体が大型化するという問題があった。
【0005】
本発明は上記問題に鑑みてなされたもので、その目的とする処は、充電器本体の大型化を招くことなく、2次電池の充電を短時間に行うことができる急速充電器の制御方法を提供することにある。
【0006】
【課題を解決するための手段】
上記目的を達成するため、請求項1記載の発明は、検出し記憶した最大電池電圧からの電圧低下量が所定値に達したとき充電終了と判定するようにした急速充電器の制御方法において、第1の充電電流で充電を開始し、検出し記憶した最大電池電圧が第1の設定値に達すると前記第1の充電電流より小さい第2の充電電流に切り換えて充電し、検出し記憶した最大電池電圧が前記第1の設定値より大きい第2の設定値に達すると、前記第2の充電電流よりさらに小さい第3の充電電流で充電し、前記充電電流の切り換えの度に、前記記憶している最大電池電圧をリセットすることを特徴とする。
【0009】
従って、請求項1記載の発明によれば、充電中の電池電圧が第1の設定値、これより大きい第2の設定値に達するとそれぞれ充電開始時より小さい第2の充電電流値、これより小さい第3の充電電流値に変化させるようにしたため、充電器本体の表面温度の上昇を低く抑えることができ、充電器本体の大型化を招くことなく、2次電池の充電を短時間に行うことができる。
【0010】
請求項1記載の発明によれば、充電終了を電池電圧の低下量によって判定する場合、記憶している最大電池電圧を充電電流の変更時にリセットするようにしたため、充電電流の変更時の電池電圧の低下を充電終了と誤検知して充電途中で充電を終了してしまう不具合が発生することがない。
【0011】
【発明の実施の形態】
以下に本発明の実施の形態を添付図面に基づいて説明する。
【0012】
図1は本発明に係る急速充電器の制御方法を実施するためのシステム構成を示すブロック図、図2は急速充電器の制御手順を示すフローチャート、図3は本発明に係る急速充電器の制御方法における電池電圧と充電電流との関係を示す図である。
【0013】
先ず、本発明に係る急速充電器の制御方法を実施するためのシステム構成を図1に基づいて説明すると、図中、1は商用電源であり、この商用電源1には充電用電源部2が接続され、2次電池(バッテリ)3の充電に際しては充電用電源部2には2次電池3の+端子と−端子がそれぞれ接続される。
【0014】
又、4は充電中の2次電池3の電圧(電池電圧)を検出するための電圧検出部、5は前記充電用電源部2から出力される充電電流を検出するための充電電流検出部、6は充電用電源部2から出力される充電電流を制御するための充電電流制御部、7は前記電圧検出部4と前記充電電流検出部5からの検出信号に基づいて前記充電電流制御部6に対して制御信号を出力するためのコントロール用マイクロコンピュータ(以下、CPUと略称する)である。
【0015】
而して、本発明に係る急速充電器の制御方法は、充電中の2次電池3の電圧(電池電圧)を前記電圧検出部4によって検出し、充電用電源部2から出力される充電電流を電池電圧の値に応じて変化させることを特徴とする。
【0016】
以下、本発明方法の具体例を図2及び図3に基づいて説明する。
【0017】
本実施の形態においては、充電中の電池電圧の増加に応じて充電電流を3段階に切り替えてこれを段階的に下げるようにしており、2次電池3の充電終了を電池電圧の低下量によって判定する方式を採用している。
【0018】
前記CPU7のプログラムがスタートすると(図のステップS1)、該CPU7のデータメモリがクリアされ(ステップS2)、図3に示す時間t0 において2次電池3の充電が開始される(ステップS3)。尚、図3に示すように充電初期の充電電流Ib は初期値a(=2A)に設定されている。
【0019】
上述のように2次電池3の充電が開始されると、該2次電池3の電圧Vb は図3に示すように急激に立ち上がった後に緩やかに上昇するが、充電中においては電池電圧Vb は前記電圧検出部4によって検出され、この検出された電池電圧Vb はCPU7に読み込まれ(ステップS4)、この読み込まれた電池電圧Vb はデータD01としてCPU7のデータメモリに格納されて記憶される(ステップS5)。
【0020】
その後、充電電流Ib の変更があったか否かが判定される(ステップS6)と同時に、検出された電池電圧Vb (D01)が設定値A(=29V)より小さいか否か(D01<A)が判定される(ステップS11)。検出された電池電圧Vb (D01)が設定値A(=29V)未満である間(図3に示す時間t0 〜t1 の間)は図3に示すように充電電流Ib は初期値a(=2A)に維持される(ステップS12)。このとき、充電電流Ib に変更がないため、検出された電池電圧Vb (D01)が今までに検出された電池電圧Vb の最大値D02以上であるか否か(D01≧D02)、つまり、電池電圧Vb が上昇中であるか否かが判定される(ステップS7)。図3に示す時間t0 〜t1 の間においては電池電圧Vb は上昇中であるため、電池電圧Vb の直近の検出値D01が最大値としてデータD02が書き換えられてデータメモリに格納され、電池電圧Vb の最大値D02が更新される(ステップS8)。
【0021】
而して、図3に示す時間t1 において電池電圧Vb (D01)が設定値A(=29V)に達すると、CPU7は充電電流制御部6に制御信号を発信し、充電電流制御部6は充電用電源部2からの出力電流を制御して充電電流Ib を図3に示すように設定値b(=1.75A)に切り替える。尚、充電用電源部2から実際に出力される充電電流Ib は充電電流検出部5によって検出され、その検出信号はCPU7に入力される。
【0022】
ところで、2次電池の充電終期には電池電圧Vb が低下する現象と電池温度Tの上昇率dT/dt(tは時間)が著しく高くなる現象が生じ、これらの現象を検知することによって2次電池の充電終了の判定を行うことができる。本実施の形態では、電池電圧Vb の低下量(−ΔV)が所定値X(=0.2V)に達した時点で充電終了と判定することにしている。
【0023】
一方、充電電流Ib を切り替えると図3に示すように電池電圧Vb が低下するため、この電池電圧Vb の低下量(−ΔV)が所定値X(=0.2V)を超えると、充電途中であるにも拘らず充電終了と誤検知して充電を終了してしまうという不具合が発生する。
【0024】
そこで、本実施の形態では、充電電流Ib を変更した場合には電池電圧Vb の最大値D02をリセットするようにした(ステップS9)。すると、D01=D02となるため(ステップS7,S8)、充電電流Ib を切り替えた時点(図3の時間t1 )における充電電圧Vb の低下量(−ΔV)=D02−D01=0と見なされ、ステップS10における充電終了の判定(D02−D01≧X)はNoとなって充電が継続される。従って、充電途中であるにも拘らず充電終了と誤検知して充電を終了してしまうという不具合が発生することはない。
【0025】
他方、図3に示す時間t1 において電池電圧Vb (D01)が設定値A(=29V)に達すると、電池電圧Vb (D01)が設定値B(=33V)より小さいか否か(D01<B)が判定され(ステップS13)、電池電圧Vb が設定値B(=33V)に達するまでの間(図3に示す時間t1 〜t2 の間)、つまり、A(=29V)≦Vb <B(=33V)である間は図3に示すように充電電流Ib が設定値b(=1.75A)に維持される(ステップS14)。
【0026】
そして、図3に示す時間t2 において電池電圧Vb (D01)が設定値B(=33V)に達すると、CPU7は充電電流制御部6に制御信号を発信し、充電電流制御部6は充電用電源部2からの出力電流を制御して充電電流Ib を図3に示すように設定値c(=1.5A)に切り替える。そして、この場合も前記と同様に充電電流Ib を変更した場合には電池電圧Vb の最大値D02がリセットされるため(ステップS9)、充電電流Ib を切り替えた時点(図3の時間t2 )における充電電圧Vb の低下量(−ΔV)=D02−D01=0と見なされ、ステップS10における充電終了の判定(D02−D01≧X)はNoとなって充電が継続され、従って、充電途中であるにも拘らず充電終了と誤検知して充電を終了してしまうという不具合が発生することはない。
【0027】
そして、図3に示す時間t2 において電池電圧Vb (D01)が設定値B(=33V)に達すると、電池電圧Vb (D01)が設定値C(=36V)より小さいか否か(D01<C)が判定され(ステップS15)、電池電圧Vb が設定値C(=36V)に達するまでの間(図3に示す時間t2 〜t3 の間)、つまり、B(=33V)≦Vb <C(=36V)である間は図3に示すように充電電流Ib が設定値c(=1.5A)に維持される(ステップS16)。
【0028】
而して、図3に示す時間t3 において電池電圧Vb (D01)が設定値C(=36V)に達すると、CPU7は充電電流Ib を図3に示すように設定値(=1.25A)に切り替え、以後はその値(=1.25A)を維持する(ステップS17)。そして、この場合も前記と同様に充電電流Ib を変更した際に発生する電池電圧Vb の低下量(−ΔV)は無視されるが、充電終期において電池電圧Vb が低下し、図3に示す時間t4 において電池電圧Vb の低下量(−ΔV=D02−D01)が所定値X(=0.2V)に達した時点で充電終了条件が満足されたものと判断して充電が終了される(ステップS10→S18)。
【0029】
以上のように、本実施の形態では、充電中の電池電圧Vb の増加に応じて充電電流Ib を切り替えてこれを3段階に下げるようにしたため、充電器本体の表面温度の上昇を低く抑えることができ、充電器本体の大型化を招くことなく、2次電池3の充電を短時間に行うことができる。
【0030】
尚、以上の実施の形態では充電中の電池電圧に応じて充電電流を3段階に切り替えるようにしたが、2段階、又は4段階以上の多段階に切り替えても良い。
【0031】
【発明の効果】
以上の説明で明らかなように、請求項1記載の発明によれば、充電中の電池電圧が第1の設定値、これより大きい第2の設定値に達するとそれぞれ充電開始時より小さい第2の充電電流値、これより小さい第3の充電電流値に変化させるようにしたため、充電器本体の表面温度の上昇を低く抑えることができ、充電器本体の大型化を招くことなく、2次電池の充電を短時間に行うことができるという効果が得られる。
【0032】
請求項1記載の発明によれば、充電終了を電池電圧の低下量によって判定する場合、記憶している最大電池電圧を充電電流の変更時にリセットするようにしたため、充電電流の変更時の電池電圧の低下を充電終了と誤検知して充電途中で充電を終了してしまう不具合が解消されるという効果が得られる。
【図面の簡単な説明】
【図1】本発明に係る急速充電器の制御方法を実施するためのシステム構成を示すブロック図である。
【図2】本発明に係る急速充電器の制御手順を示すフローチャートである。
【図3】本発明に係る急速充電器の制御方法における電池電圧と充電電流との関係を示す図である。
【符号の説明】
1 商用電源
2 充電用電源部
3 2次電池(バッテリ)
4 電圧検出部
5 充電電流検出部
6 充電電流制御部
7 CPU(コントロール用マイクロコンピュータ)
Ib 充電電流
Vb 電池電圧
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for controlling a quick charger that charges a rechargeable secondary battery in a short time.
[0002]
[Prior art]
For example, rechargeable secondary batteries such as Ni-Cd and Ni-MH batteries are used as electric power sources for electric vehicles such as electric bicycles and electric wheelchairs.
[0003]
By the way, in consideration of the convenience of the user, a quick charger that can charge the secondary battery in a short time is used. However, in this quick charger, charging is performed at a certain high current value. .
[0004]
[Problems to be solved by the invention]
However, when charging is performed at a high constant current value as described above, a large power is required and the surface temperature of the charger main body increases, which causes a problem that the charger main body is enlarged.
[0005]
The present invention has been made in view of the above problems, and the object of the present invention is to control a quick charger that can charge a secondary battery in a short time without causing an increase in the size of the charger body. Is to provide.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, the invention according to claim 1 is directed to a method of controlling a quick charger, wherein when the amount of voltage drop from the maximum battery voltage detected and stored reaches a predetermined value, the end of charging is determined. Charging is started with the first charging current, and when the detected and stored maximum battery voltage reaches the first set value, the charging is switched to the second charging current smaller than the first charging current, and is detected and stored. When the maximum battery voltage reaches a second set value that is greater than the first set value, the battery is charged with a third charge current that is smaller than the second charge current , and the memory is stored each time the charge current is switched. The maximum battery voltage is reset .
[0009]
Therefore, according to the invention of claim 1 Symbol placement, the battery voltage is first set value during charge, which is greater than the second set value is reached when the respective charging starts is less than the second charging current value, which Since the third charging current value is changed to a smaller value, the rise in the surface temperature of the charger body can be kept low, and the secondary battery can be charged in a short time without increasing the size of the charger body. It can be carried out.
[0010]
According to the first aspect of the present invention, when the end of charging is determined by the amount of decrease in battery voltage, the stored maximum battery voltage is reset when the charging current is changed. Therefore, there is no problem that the lowering of the battery is erroneously detected as the end of charging and the charging is ended in the middle of charging.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the accompanying drawings.
[0012]
FIG. 1 is a block diagram showing a system configuration for carrying out a method of controlling a quick charger according to the present invention, FIG. 2 is a flowchart showing a control procedure of the quick charger, and FIG. 3 is a control of the quick charger according to the present invention. It is a figure which shows the relationship between the battery voltage and charging current in a method.
[0013]
First, a system configuration for carrying out a control method for a quick charger according to the present invention will be described with reference to FIG. 1. In FIG. 1, 1 is a commercial power source, and the commercial power source 1 includes a power source unit 2 for charging. When the secondary battery (battery) 3 is charged, the charging power supply unit 2 is connected to the positive terminal and the negative terminal of the secondary battery 3.
[0014]
4 is a voltage detection unit for detecting the voltage (battery voltage) of the secondary battery 3 being charged, 5 is a charging current detection unit for detecting the charging current output from the charging power supply unit 2, 6 is a charging current control unit for controlling the charging current output from the charging power supply unit 2, and 7 is the charging current control unit 6 based on detection signals from the voltage detection unit 4 and the charging current detection unit 5. Is a control microcomputer (hereinafter abbreviated as a CPU) for outputting a control signal.
[0015]
Thus, in the method of controlling the quick charger according to the present invention, the voltage (battery voltage) of the secondary battery 3 being charged is detected by the voltage detection unit 4 and the charging current output from the power supply unit 2 for charging. Is changed according to the value of the battery voltage.
[0016]
Hereinafter, a specific example of the method of the present invention will be described with reference to FIGS.
[0017]
In the present embodiment, the charging current is switched to three stages according to an increase in the battery voltage during charging, and the charging current is lowered stepwise. The end of charging of the secondary battery 3 is determined by the amount of decrease in battery voltage. A judgment method is adopted.
[0018]
When the program of the CPU 7 is started (step S1 in FIG. 2 ), the data memory of the CPU 7 is cleared (step S2), and charging of the secondary battery 3 is started at time t0 shown in FIG. 3 (step S3). As shown in FIG. 3, the charging current Ib at the initial stage of charging is set to an initial value a (= 2A).
[0019]
When charging of the secondary battery 3 is started as described above, the voltage Vb of the secondary battery 3 rises rapidly after rising rapidly as shown in FIG. 3, but the battery voltage Vb is increased during charging. The detected battery voltage Vb detected by the voltage detector 4 is read by the CPU 7 (step S4), and the read battery voltage Vb is stored and stored in the data memory of the CPU 7 as data D01 (step S4). S5).
[0020]
Thereafter, it is determined whether or not the charging current Ib has been changed (step S6). At the same time, it is determined whether or not the detected battery voltage Vb (D01) is smaller than the set value A (= 29 V) (D01 <A). Determination is made (step S11). Detected battery voltage Vb (D01) set value A between (during the time shown in FIG. 3 t 0 ~t 1) (= 29V) is less than the charge current Ib as shown in FIG. 3 is the initial value a ( = 2A) (step S12). At this time, since the charging current Ib is not changed, it is determined whether or not the detected battery voltage Vb (D01) is not less than the maximum value D02 of the battery voltage Vb detected so far (D01 ≧ D02), that is, the battery It is determined whether or not the voltage Vb is increasing (step S7). Since the battery voltage Vb is increasing during the time t 0 to t 1 shown in FIG. 3, the latest detected value D01 of the battery voltage Vb is maximized and the data D02 is rewritten and stored in the data memory. The maximum value D02 of the voltage Vb is updated (step S8).
[0021]
And Thus, when the battery voltage Vb (D01) at time t 1 shown in FIG. 3 reaches the set value A (= 29V), CPU7 originates a control signal to the charging current control unit 6, charging current control unit 6 The output current from the charging power supply unit 2 is controlled to switch the charging current Ib to the set value b (= 1.75 A) as shown in FIG. The charging current Ib actually output from the charging power supply unit 2 is detected by the charging current detection unit 5 and the detection signal is input to the CPU 7.
[0022]
By the way, at the end of charging of the secondary battery, a phenomenon in which the battery voltage Vb decreases and a phenomenon in which the increase rate dT / dt (t is time) of the battery temperature T are significantly increased. It is possible to determine whether the battery has been charged. In this embodiment, the end of charging is determined when the amount of decrease (−ΔV) in the battery voltage Vb reaches a predetermined value X (= 0.2 V).
[0023]
On the other hand, when the charging current Ib is switched, the battery voltage Vb decreases as shown in FIG. 3. Therefore, when the amount of decrease (−ΔV) of the battery voltage Vb exceeds a predetermined value X (= 0.2 V), the battery voltage Vb is being charged. In spite of the fact, there is a problem that charging is terminated due to erroneous detection of the end of charging.
[0024]
Therefore, in the present embodiment, when the charging current Ib is changed, the maximum value D02 of the battery voltage Vb is reset (step S9). Then, since D01 = D02 (steps S7 and S8), the amount of decrease in the charging voltage Vb (−ΔV) = D02−D01 = 0 at the time when the charging current Ib is switched (time t 1 in FIG. 3). In step S10, the end of charging determination (D02−D01 ≧ X) is No, and charging is continued. Therefore, there is no problem that charging is terminated due to erroneous detection of the end of charging in the middle of charging.
[0025]
On the other hand, when the battery voltage Vb (D01) reaches the set value A (= 29 V) at time t 1 shown in FIG. 3, whether or not the battery voltage Vb (D01) is smaller than the set value B (= 33 V) (D01 < B) is determined (step S13), and until the battery voltage Vb reaches the set value B (= 33V) (for the time shown in FIG. 3 t 1 ~t 2), i.e., a (= 29V) ≦ Vb While <B (= 33 V), the charging current Ib is maintained at the set value b (= 1.75 A) as shown in FIG. 3 (step S14).
[0026]
When the battery voltage Vb (D01) reaches the set value B (= 33 V) at time t2 shown in FIG. 3, the CPU 7 transmits a control signal to the charging current control unit 6, and the charging current control unit 6 The output current from the unit 2 is controlled to switch the charging current Ib to a set value c (= 1.5 A) as shown in FIG. In this case as well, when the charging current Ib is changed as described above, the maximum value D02 of the battery voltage Vb is reset (step S9), so that the charging current Ib is switched (time t2 in FIG. 3). The amount of decrease in charging voltage Vb (−ΔV) = D02−D01 = 0 is considered, and the determination of the end of charging (D02−D01 ≧ X) in Step S10 is No, and charging is continued, so charging is in progress. In spite of this, there is no problem of erroneously detecting the end of charging and ending charging.
[0027]
When the battery voltage Vb (D01) at the time t 2 shown in FIG. 3 reaches the set value B (= 33V), the set value C (= 36V) battery voltage Vb (D01) is whether the difference is less than (D01 < C) is determined (step S15), and during the time t 2 ~t 3 shown between (FIG. 3 up to the battery voltage Vb reaches the set value C (= 36V)), i.e., B (= 33V) ≦ Vb While <C (= 36 V), the charging current Ib is maintained at the set value c (= 1.5 A) as shown in FIG. 3 (step S16).
[0028]
Thus, when the battery voltage Vb (D01) reaches the set value C (= 36 V) at time t3 shown in FIG. 3, the CPU 7 sets the charging current Ib to the set value d (= 1.25 A) as shown in FIG. Thereafter, the value d (= 1.25 A) is maintained (step S17). In this case as well, the amount of decrease (−ΔV) in the battery voltage Vb that occurs when the charging current Ib is changed is ignored, but the battery voltage Vb decreases at the end of charging, and the time shown in FIG. At t4, when the decrease amount (−ΔV = D02−D01) of the battery voltage Vb reaches the predetermined value X (= 0.2V), it is determined that the charging end condition is satisfied, and the charging is ended (step S1). S10 → S18).
[0029]
As described above, in the present embodiment, the charging current Ib is switched in accordance with the increase in the battery voltage Vb during charging and is lowered in three stages, so that the rise in the surface temperature of the charger body is kept low. The secondary battery 3 can be charged in a short time without increasing the size of the charger body.
[0030]
In the above embodiment has been to switch in three steps the charging current according to the battery voltage during charging, two-stage, or even have good switch to multi-stage or four stages.
[0031]
【The invention's effect】
As apparent from the above description, according to the invention of claim 1 Symbol placement, the battery voltage is first set value during charge, which is larger than the second smaller setting value is reached the charging start each of the first Since the charging current value is changed to a charging current value of 2 and a third charging current value smaller than this , an increase in the surface temperature of the charger main body can be suppressed to a low level without causing an increase in the size of the charger main body. The effect that the battery can be charged in a short time is obtained.
[0032]
According to the first aspect of the present invention, when the end of charging is determined by the amount of decrease in battery voltage, the stored maximum battery voltage is reset when the charging current is changed. It is possible to eliminate the problem of erroneously detecting the decrease in charging as the end of charging and ending charging in the middle of charging.
[Brief description of the drawings]
FIG. 1 is a block diagram showing a system configuration for carrying out a quick charger control method according to the present invention.
FIG. 2 is a flowchart showing a control procedure of the quick charger according to the present invention.
FIG. 3 is a diagram showing a relationship between a battery voltage and a charging current in the method for controlling a quick charger according to the present invention.
[Explanation of symbols]
1 Commercial Power Supply 2 Charging Power Supply Unit 3 Secondary Battery (Battery)
4 Voltage Detection Unit 5 Charging Current Detection Unit 6 Charging Current Control Unit 7 CPU (Control Microcomputer)
Ib Charging current Vb Battery voltage

Claims (1)

検出し記憶した最大電池電圧からの電圧低下量が所定値に達したとき充電終了と判定するようにした急速充電器の制御方法において、
第1の充電電流で充電を開始し、検出し記憶した最大電池電圧が第1の設定値に達すると前記第1の充電電流より小さい第2の充電電流に切り換えて充電し、
検出し記憶した最大電池電圧が前記第1の設定値より大きい第2の設定値に達すると、前記第2の充電電流よりさらに小さい第3の充電電流で充電し、
前記充電電流の切り換えの度に、前記記憶している最大電池電圧をリセットする
ことを特徴とする急速充電器の制御方法。
In the control method of the quick charger that determines that the charging is finished when the amount of voltage drop from the maximum battery voltage detected and stored reaches a predetermined value,
Charging is started at the first charging current, and when the detected and stored maximum battery voltage reaches the first set value, the charging is switched to the second charging current smaller than the first charging current,
When the detected and stored maximum battery voltage reaches a second set value greater than the first set value, the battery is charged with a third charge current that is smaller than the second charge current;
The quick charger control method , wherein the stored maximum battery voltage is reset each time the charging current is switched .
JP08174699A 1999-03-25 1999-03-25 Control method of quick charger Expired - Lifetime JP4413308B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08174699A JP4413308B2 (en) 1999-03-25 1999-03-25 Control method of quick charger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08174699A JP4413308B2 (en) 1999-03-25 1999-03-25 Control method of quick charger

Publications (2)

Publication Number Publication Date
JP2000277166A JP2000277166A (en) 2000-10-06
JP4413308B2 true JP4413308B2 (en) 2010-02-10

Family

ID=13755013

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08174699A Expired - Lifetime JP4413308B2 (en) 1999-03-25 1999-03-25 Control method of quick charger

Country Status (1)

Country Link
JP (1) JP4413308B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3983681B2 (en) 2003-01-14 2007-09-26 株式会社マキタ Charger
US9150424B2 (en) 2010-04-28 2015-10-06 Ishihara Sangyo Kaisha, Ltd. Lithium titanate, method for producing same, electrode active material containing the lithium titanate, and electricity storage device using the electrode active material
KR102408846B1 (en) * 2015-10-07 2022-06-15 삼성전자주식회사 Electronic apparatus, method for controlling charge and computer-readable recording medium
JP6955624B2 (en) * 2018-12-21 2021-10-27 オッポ広東移動通信有限公司Guangdong Oppo Mobile Telecommunications Corp., Ltd. Multiple cell charging methods, devices and electronics
JP7279421B2 (en) * 2019-03-05 2023-05-23 トヨタ自動車株式会社 Battery charging method
CN115765060A (en) * 2021-09-02 2023-03-07 中兴通讯股份有限公司 Voltage regulating method and device for quick charging and electronic equipment

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2599333B2 (en) * 1992-10-07 1997-04-09 株式会社タムラ製作所 Rechargeable battery charging method
JPH0831339B2 (en) * 1993-11-08 1996-03-27 株式会社竹田技術研究所 Charger for cordless equipment using electric double layer capacitor
JPH0951632A (en) * 1995-05-26 1997-02-18 Matsushita Electric Works Ltd Method and apparatus for boosting charge
JPH0993824A (en) * 1995-09-26 1997-04-04 J N T:Kk Charger and charging method for secondary battery
JPH10248177A (en) * 1997-03-03 1998-09-14 Sanyo Electric Co Ltd Charging circuit
JPH1098838A (en) * 1997-09-29 1998-04-14 Matsushita Electric Ind Co Ltd Charging control circuit for secondary battery

Also Published As

Publication number Publication date
JP2000277166A (en) 2000-10-06

Similar Documents

Publication Publication Date Title
JP3048755B2 (en) Rechargeable battery charger
JP2000228832A (en) Control method of charging and discharging
JP2009261174A (en) Charging system, charger and method of controlling the same, and program
JP2001186683A (en) Method of quickly charging battery
JP4413308B2 (en) Control method of quick charger
JP3306188B2 (en) Rechargeable battery charging method
JP2001333542A (en) Charging device
JP2005278249A (en) Capacity adjustment device and adjusting method of battery pack
JP3660398B2 (en) Rechargeable battery charging method
JPH08308123A (en) Method for charging a plurality of lithium ion batteries
JP3220797B2 (en) Rechargeable battery charging method
JP2793104B2 (en) Rechargeable battery charging method
JP3157410B2 (en) Rechargeable battery charging method
JPH05199674A (en) Method for charging battery
JP3421404B2 (en) Rechargeable battery charging method
JP3369858B2 (en) Rechargeable battery charging method
JP3148470B2 (en) Rechargeable battery charging method
JP3583926B2 (en) Rechargeable battery charging method
JP3208786B2 (en) Battery charger
JP2581718B2 (en) Charger
JPH07322522A (en) Charging apparatus
JPH09149557A (en) Charge control circuit
JP3421499B2 (en) Charging device
JP3173288B2 (en) Charging device
JPH08180907A (en) Charger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051128

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060324

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060420

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080331

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090818

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091016

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091117

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091118

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121127

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131127

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term