JPH1098838A - Charging control circuit for secondary battery - Google Patents

Charging control circuit for secondary battery

Info

Publication number
JPH1098838A
JPH1098838A JP9263108A JP26310897A JPH1098838A JP H1098838 A JPH1098838 A JP H1098838A JP 9263108 A JP9263108 A JP 9263108A JP 26310897 A JP26310897 A JP 26310897A JP H1098838 A JPH1098838 A JP H1098838A
Authority
JP
Japan
Prior art keywords
battery
charging
voltage
battery voltage
load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9263108A
Other languages
Japanese (ja)
Inventor
Zenichi Hashimoto
善一 橋本
Toshio Miki
敏夫 三木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP9263108A priority Critical patent/JPH1098838A/en
Publication of JPH1098838A publication Critical patent/JPH1098838A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Measurement Of Current Or Voltage (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce adapter power supply by detecting fluctuation of load from fluctuation of battery voltage, storing and resetting the peak charging voltage of a battery and comparing a detected battery voltage with a stored peak charging voltage thereby preventing the erroneous operation due to fluctuation of the load and realizing a float charging operation. SOLUTION: Battery voltage is detected by a battery voltage detecting circuit 16 and when it is lower than a reference level, a count of a count means 8 is stored in a memory means 4. Upon fluctuation of a load connected with a battery a decision means decides an abrupt fluctuation of the load from the absolute voltage of the battery by controlling the charging current with a predetermined constant current. Memory means 4, 7 store the peak charging voltage of the battery and a reset means 5 resets a stored peak charging voltage. A comparison means 6 compares a detected battery voltage with the stored peak charging voltage. According to the arrangement, two power supply circuits comprising DC stabilized power supplies 1, 2 for charging and the adapter can be reduced to one power supply circuit.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、二次電池充電制御
回路に関する。
The present invention relates to a secondary battery charging control circuit.

【0002】[0002]

【従来の技術】近年、ポータブルビデオやハンドヘルド
コンピュータなどの携帯機器用電源として、密閉形ニッ
ケルカドミウム電池(以下ニカド電池という)や鉛シー
ル電池等の二次電池が多く使用されている。これらの二
次電池の充電の終了を検出する回路として、充電電圧の
上限を検出する方法や、充電電圧のピーク電圧を検出す
る方法が代表例として挙げられる。また、携帯機器と一
体の場合、電池の充電中も携帯機器の動作を可能にする
ため、充電用電源にアダプター電源を組み合わせた構成
となっているものが多い。
2. Description of the Related Art In recent years, secondary batteries such as sealed nickel cadmium batteries (hereinafter referred to as "NiCad batteries") and lead sealed batteries have been widely used as power supplies for portable devices such as portable videos and handheld computers. Typical examples of circuits for detecting the end of charging of these secondary batteries include a method of detecting the upper limit of the charging voltage and a method of detecting the peak voltage of the charging voltage. In addition, in the case of being integrated with a portable device, in many cases, an adapter power supply is combined with a charging power supply in order to enable the operation of the portable device even while the battery is being charged.

【0003】以下、図面を参考にしながら上述したよう
な従来の充電電圧のピーク電圧を検出する充電制御回路
と、アダプター電源からなる回路について説明する。図
5において、21はアダプター用直流安定化電源、22
は充電用直流安定化電源、23はアダプター電流を検出
する手段、24は充電電流制御回路、25は比較器、2
6は抵抗、27はダイオード、28はコンデンサ、29
はコンデンサ28の電荷の放電スイッチ、30は電池の
切り換えスイッチ、31は充電される二次電池、32は
アダプター回路、33は充電制御回路、34は電池パッ
ク、35は携帯機器である。
Hereinafter, a conventional charge control circuit for detecting a peak voltage of a charge voltage and a circuit including an adapter power supply as described above will be described with reference to the drawings. In FIG. 5, reference numeral 21 denotes a stabilized DC power supply for an adapter;
Is a stabilized DC power supply for charging, 23 is means for detecting an adapter current, 24 is a charging current control circuit, 25 is a comparator,
6 is a resistor, 27 is a diode, 28 is a capacitor, 29
Is a switch for discharging the electric charge of the capacitor 28, 30 is a switch for changing the battery, 31 is a secondary battery to be charged, 32 is an adapter circuit, 33 is a charge control circuit, 34 is a battery pack, and 35 is a portable device.

【0004】以下この電池の充電電圧のピーク点を検出
する回路と、アダプター回路を具備する充電制御回路に
ついて、その動作を説明する。
The operation of the circuit for detecting the peak point of the charge voltage of the battery and the charge control circuit including the adapter circuit will be described below.

【0005】今、携帯機器35を電池パック34にて動
作させている時は、切り換えスイッチ30はオンし、二
次電池31から電力を供給する。しかし、充電の際に
は、切り換えスイッチ30はオフとなり、携帯機器35
はアダプター回路32からのみ電力を供給することとな
る。この状態において二次電池31を充電する際、放電
スイッチ29によりコンデンサ28の電荷を放電後、放
電スイッチ29を開き、直流安定化電源22より充電電
流を供給する。
When the portable device 35 is operated by the battery pack 34, the changeover switch 30 is turned on to supply power from the secondary battery 31. However, during charging, the changeover switch 30 is turned off, and the portable device 35 is turned off.
Supplies power only from the adapter circuit 32. In charging the secondary battery 31 in this state, after discharging the charge of the capacitor 28 by the discharge switch 29, the discharge switch 29 is opened, and a charging current is supplied from the DC stabilized power supply 22.

【0006】二次電池31の電荷は抵抗26,ダイオー
ド27を通じてコンデンサ28を充電する。この場合、
比較器25は非反転入力の方が反転入力に対してダイオ
ード27の順方向電圧分だけ高くバイアスされるため、
ハイレベルを出力し、充電電流制御回路24はアクティ
ブ状態となり充電を行う。
The charge of the secondary battery 31 charges a capacitor 28 through a resistor 26 and a diode 27. in this case,
Since the non-inverting input of the comparator 25 is biased higher than the inverting input by the forward voltage of the diode 27,
A high level is output, and the charging current control circuit 24 is activated to perform charging.

【0007】充電中の電池電圧は、図2に示すようにピ
ーク点Pまでは上昇し続け、その後は降下する。コンデ
ンサ28の電圧は電池電圧に追従して上昇し続け、やが
てピーク点Pに達し、その値を保持する。電池電圧が上
昇している期間は抵抗26,ダイオード27を通じてコ
ンデンサ28を充電しているのでダイオード27は順方
向にバイアスされ、比較器25も非反転入力の方が反転
入力より高くバイアスされ、ハイレベルを出力し充電電
流制御回路24によって二次電池31を充電する。
[0007] As shown in FIG. 2, the battery voltage during charging continues to increase up to a peak point P, and thereafter decreases. The voltage of the capacitor 28 continues to rise following the battery voltage, reaches the peak point P, and keeps its value. Since the capacitor 28 is charged through the resistor 26 and the diode 27 during the period when the battery voltage is increasing, the diode 27 is biased in the forward direction, and the comparator 25 is also biased higher at the non-inverting input than at the inverting input. The level is output, and the secondary battery 31 is charged by the charging current control circuit 24.

【0008】やがて所定の定電流による充電が終了に近
づき、電池電圧がピーク点Pより降下を始めるとコンデ
ンサ28の電圧の方が二次電池31の電圧より高くなり
コンデンサ28の電荷はダイオード27を逆バイアスす
る。従って、比較器25の反転入力の方が非反転入力よ
り高くバイアスされ、出力はローレベルとなり、充電電
流制御回路24によって所定の定電流による充電を終了
する。また、充電中において携帯機器35の動作によっ
てアダプター電流が流れた場合、電流を検出する手段2
3によって、携帯機器35の動作を検出し、所定の定電
流による充電を一時ストップさせる。その後アダプター
電流が流れなくなると再び所定の定電流による充電を開
始することにより制御を行う。
When the charging with the predetermined constant current approaches the end, and the battery voltage starts dropping from the peak point P, the voltage of the capacitor 28 becomes higher than the voltage of the secondary battery 31 and the charge of the capacitor 28 Reverse bias. Accordingly, the inverting input of the comparator 25 is biased higher than the non-inverting input, the output becomes low level, and charging by the charging current control circuit 24 with a predetermined constant current ends. When the adapter current flows due to the operation of the portable device 35 during charging, the current detecting means 2 detects the current.
By 3, the operation of the portable device 35 is detected, and charging with a predetermined constant current is temporarily stopped. Thereafter, when the adapter current stops flowing, control is performed by starting charging with a predetermined constant current again.

【0009】[0009]

【発明が解決しようとする課題】しかしながら、上記の
ような充電電流制御回路24においては、アダプター用
直流安定化電源21と充電用直流安定化電源22の二つ
の直流安定化電源が必要で、電池パック34内において
も切り換えスイッチ30が必要であり、このため充電
器,電池パック34は携帯機器35に対応した小形軽量
化が困難であった。
However, in the charging current control circuit 24 as described above, two stabilized DC power supplies, that is, a stabilized DC power supply 21 for the adapter and a stabilized DC power supply 22 for the charging are required. The changeover switch 30 is also required in the pack 34, and therefore, it is difficult to reduce the size of the charger and the battery pack 34 to the size and weight corresponding to the portable device 35.

【0010】本発明は、このような従来の問題点を解決
するものであり、電池を急速充電しながら電池に接続さ
れた負荷の変動に対して誤動作を起こさず、─ΔV制御
によりフローティング充電を行うことにより、アダプタ
ー電源と電池パック内の切り換えスイッチを削除し、小
形軽量の二次電池充電制御回路を実現することを目的と
する。
SUMMARY OF THE INVENTION The present invention solves such a conventional problem, and does not cause a malfunction due to a change in a load connected to the battery while rapidly charging the battery, and performs floating charging by ─ΔV control. By doing so, the object of the present invention is to eliminate the changeover switch in the adapter power supply and the battery pack and realize a small and lightweight secondary battery charge control circuit.

【0011】[0011]

【課題を解決するための手段】この目的を達成するため
に、本発明の充電制御回路は、電池電圧を検出する手段
と電池電圧を記憶する手段と、電池に接続された負荷が
変動したとき、電池電圧の変化から負荷の変動を検出す
る手段と、電池の充電ピーク電圧を記憶する手段と、記
憶された充電ピーク電圧をリセットする手段と、検出さ
れた電池電圧と記憶された充電ピーク電圧を比較する手
段とから構成されている。
In order to achieve this object, a charge control circuit according to the present invention comprises a means for detecting a battery voltage, a means for storing a battery voltage, and a means for detecting a change in a load connected to the battery. Means for detecting a change in load from a change in battery voltage, means for storing a battery charging peak voltage, means for resetting a stored charging peak voltage, a detected battery voltage and a stored charging peak voltage. And means for comparing

【0012】この構成により、本発明の二次電池充電制
御回路は、電池に接続された負荷の変動による電池電圧
の降下と、所定の定電流による充電時の正規の電圧降下
との判別を行い、負荷の変動による誤動作を防ぎ、フロ
ーティング充電を可能にすることによりアダプター電源
や電池パック内の切り換えスイッチ等の回路を削減する
ことができ、大幅な回路の縮小を可能にするものであ
る。
With this configuration, the rechargeable battery charge control circuit of the present invention discriminates between a drop in the battery voltage due to a change in the load connected to the battery and a normal voltage drop during charging with a predetermined constant current. By preventing a malfunction due to a change in load and enabling floating charging, circuits such as an adapter power supply and a changeover switch in a battery pack can be reduced, and the circuit can be significantly reduced.

【0013】[0013]

【発明の実施の形態】以下、本発明の一実施例の二次電
池の充電制御回路について図面を参照しながら説明す
る。図1において、16は電池電圧の絶対値を検出する
電池電圧検出回路、15は携帯機器、14は二次電池、
13はコンデンサ、12は電池電圧によってコンデンサ
を充電する手段、11はコンデンサを放電する回路、1
0は基準電圧発生回路、9は比較器、8は比較器9のハ
イレベルとなっている出力電圧を相対的なカウント時間
(カウント値)に変換するカウント手段、7はカウント
手段8の前回のカウント値の記憶手段、6はカウント手
段8によるカウント値とカウント手段8の前回のカウン
ト値との比較手段、5はカウント値の最小値のリセット
手段、4はカウント値の最小値の記憶手段、3はカウン
ト値の最小値とカウント値の比較手段、2は充電電流制
御回路、1は直流安定化電源である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a charge control circuit for a secondary battery according to an embodiment of the present invention will be described with reference to the drawings. In FIG. 1, 16 is a battery voltage detection circuit for detecting the absolute value of the battery voltage, 15 is a portable device, 14 is a secondary battery,
13 is a capacitor, 12 is means for charging the capacitor with the battery voltage, 11 is a circuit for discharging the capacitor, 1
0 is a reference voltage generating circuit, 9 is a comparator, 8 is a counting means for converting the output voltage of the comparator 9 at a high level into a relative counting time (count value), and 7 is a counting means 8 for the previous time. Means for storing the count value; 6 means for comparing the count value of the count means 8 with the previous count value of the count means 8; 5 means for resetting the minimum count value; 4 means for storing the minimum count value; 3 is a means for comparing the minimum count value with the count value, 2 is a charging current control circuit, and 1 is a stabilized DC power supply.

【0014】以上のように構成された充電電流制御回路
の動作を以下に説明する。まず放電済みの二次電池14
と携帯機器15を図1のように接続し、直流安定化電源
1により二次電池14の充電を開始し、コンデンサを放
電する回路11をオフにして解除すると同時にカウント
手段8をスタートさせる。この場合、コンデンサ13は
電池電圧によってコンデンサを充電する手段12を通じ
て充電され、このコンデンサ13の電圧が基準電圧発生
回路10の電圧より高くなると、比較器9の出力は反転
出力となる。ここで、カウント手段8はカウントを停止
すると同時に、コンデンサを放電する回路11に信号を
出力して、コンデンサ13を放電させる。次に、比較手
段6により記憶手段7に記憶されているカウント手段8
の前回カウント値と、カウント手段8の現在のカウント
値とを比較し、その差が基準値以下の場合は携帯機器1
5の負荷の変化しない状態と判断し、比較手段3により
記憶手段4に記憶されている最小カウント値とカウント
手段8の現在のカウント値とを比較し、カウント手段8
によってカウントされた現在のカウント値のほうが小さ
ければその値を記憶手段4に記憶する。この状態が繰り
返されたとき、充電中の電池電圧は図2に示すようにピ
ーク点Pまで上昇し続け、その後は降下する。これに対
応し、カウント手段8によってカウントされる値は電池
電圧のピーク点Pで最小となり、その後増加する。電池
電圧が上昇している期間はカウント手段8によってカウ
ントされた値が、記憶手段4によって記憶されている値
よりも常に小さくなっている。やがて所定の定電流によ
る充電が終了に近づき、電池電圧がピーク点Pよりも降
下を始めると、記憶手段4によって記憶されている値の
方がカウント手段8によってカウントされた値よりも小
さくなり、その差が設定値以上になると、充電電流制御
回路2によって充電電流を減少させ、電池電圧検出回路
16により電池電圧を検出し、その値が基準値以下であ
れば、カウント手段8によってカウントされた値を記憶
手段4に記憶し、所定の定電流による充電を再スタート
させ、基準値をこえていれば、所定の定電流による充電
を終了する。
The operation of the charging current control circuit configured as described above will be described below. First, the discharged secondary battery 14
The portable device 15 is connected as shown in FIG. 1, the charging of the secondary battery 14 is started by the stabilized DC power supply 1, the circuit 11 for discharging the capacitor is turned off and released, and at the same time the counting means 8 is started. In this case, the capacitor 13 is charged by the battery voltage through the means 12 for charging the capacitor. When the voltage of the capacitor 13 becomes higher than the voltage of the reference voltage generating circuit 10, the output of the comparator 9 becomes an inverted output. Here, the counting means 8 stops counting and simultaneously outputs a signal to the capacitor discharging circuit 11 to discharge the capacitor 13. Next, the counting means 8 stored in the storage means 7 by the comparing means 6
Is compared with the current count value of the counting means 8, and if the difference is equal to or smaller than the reference value, the portable device 1
5 is determined to be in a state where the load does not change.
If the current count value counted by is smaller, the value is stored in the storage means 4. When this state is repeated, the battery voltage during charging continues to rise to the peak point P as shown in FIG. 2, and then falls. Correspondingly, the value counted by the counting means 8 becomes minimum at the peak point P of the battery voltage, and thereafter increases. During the period when the battery voltage is rising, the value counted by the counting means 8 is always smaller than the value stored by the storage means 4. When the charging with the predetermined constant current approaches the end and the battery voltage starts dropping from the peak point P, the value stored by the storage means 4 becomes smaller than the value counted by the counting means 8, When the difference is equal to or greater than the set value, the charging current is reduced by the charging current control circuit 2 and the battery voltage is detected by the battery voltage detection circuit 16. The value is stored in the storage means 4, and the charging with the predetermined constant current is restarted. If the value exceeds the reference value, the charging with the predetermined constant current is terminated.

【0015】図4は、この動作を充電状態に応じて示し
た詳細図である。フローティング充電において電池電圧
が電圧降下を行うのは、正規の充電末期と充電途中にて
携帯機器の負荷の増加による時の2通りに分けられる。
今、電池の充電末期において通常の電池電圧カーブによ
り─ΔV動作を検出した時、充電電流をトリクル電流ま
で減少させると、電池電圧は図4(a)の充電末期電圧
カーブをえがき、電圧判定時の電池電圧は基準値をこえ
て所定の定電流による充電は終了となる。しかし、充電
途中に携帯機器の負荷による電圧降下を検出した時、充
電電流とトリクル電流まで減少させると、電池電圧は図
4(b)の充電途中の電圧カーブとなり、電圧判定時の
電池電圧は基準値以下となって、所定の定電流による充
電を再スタートさせる。これにより携帯機器15の負荷
急変時の誤動作をなくすことができる。
FIG. 4 is a detailed diagram showing this operation according to the state of charge. In the floating charging, the battery voltage drops in two types, that is, at the end of regular charging and when the load on the portable device increases during charging.
Now, when the ─ΔV operation is detected from the normal battery voltage curve at the end of charging of the battery, if the charging current is reduced to the trickle current, the battery voltage is plotted according to the end-of-charging voltage curve of FIG. When the battery voltage exceeds the reference value, the charging with the predetermined constant current is completed. However, when the voltage drop due to the load of the portable device is detected during charging, if the charging current and the trickle current are reduced, the battery voltage becomes the voltage curve during charging shown in FIG. When the charge becomes equal to or less than the reference value, charging with a predetermined constant current is restarted. As a result, malfunction of the portable device 15 at the time of a sudden load change can be eliminated.

【0016】図3はこの制御をフローチャートによって
示すものであり、本実施例においては図1の比較手段
3,6、記憶手段4,7、リセット手段5、カウント手
段8、比較器9、基準電圧発生回路10、コンデンサを
放電する回路11、電池電圧検出回路16の各手段をマ
イクロコンピュータによって実現した。
FIG. 3 is a flowchart showing this control. In this embodiment, the comparing means 3, 6, the storing means 4, 7, the resetting means 5, the counting means 8, the comparator 9, the reference voltage Each means of the generation circuit 10, the circuit 11 for discharging the capacitor, and the battery voltage detection circuit 16 was realized by a microcomputer.

【0017】以上のように、本実施例によれば電池電圧
を相対的なカウント時間(カウント値)に変換するカウ
ント手段と、カウント値の変化を検出する手段と、記憶
手段によるカウント最小値とカウント手段によるカウン
ト値の比較手段と、電池電圧の絶対値を検出する手段を
備え、カウント値が少量変化によって増加し、その増加
量が設定値以上になったとき電池電圧が基準値をこえて
いる時所定の定電流による充電を終了することにより携
帯機器などの負荷接続によるフローティング充電を行え
る機能を備えることができる。
As described above, according to this embodiment, the counting means for converting the battery voltage into the relative count time (count value), the means for detecting a change in the count value, the minimum count value by the storage means, and the like. A means for comparing the count value by the counting means and a means for detecting the absolute value of the battery voltage are provided, and the battery voltage exceeds the reference value when the count value increases due to a small change, and when the increase amount exceeds a set value. A function of performing floating charging by connecting a load to a portable device or the like by terminating the charging with a predetermined constant current can be provided.

【0018】[0018]

【発明の効果】以上の実施例の説明により明らかなよう
に、本発明の二次電池充電制御回路によれば、電池電圧
を検出する手段と、電池電圧を記憶する手段と、電池に
接続された負荷が変動した時、所定の定電流による充電
電流を制御して電池の絶対電圧から、負荷急変を判断す
る手段と、電池の充電ピーク電圧を記憶する手段と、記
憶された充電ピーク電圧をリセットする手段と、検出さ
れた電池電圧と記憶された充電ピーク電圧を比較する手
段を設けることにより、従来回路では実現できなかった
フローティング充電を行うことが可能になり、充電用直
流安定化電源およびアダプター用直流安定化電源よりな
る2電源回路を1電源回路とし、アダプター用直流安定
化電源や電池パック内の切り換えスイッチなどの電子回
路を削減することによって、充電器自身の小形・軽量化
はもとよりコストダウンに対しても大幅な効果を上げる
ことができるものである。
As is apparent from the above description of the embodiment, according to the rechargeable battery charging control circuit of the present invention, the means for detecting the battery voltage, the means for storing the battery voltage, and the battery are connected. Means for judging a sudden load change from the absolute voltage of the battery by controlling the charging current at a predetermined constant current when the load fluctuates, a means for storing the charging peak voltage of the battery, By providing a means for resetting and a means for comparing the detected battery voltage with the stored charging peak voltage, it becomes possible to perform floating charging that could not be realized by a conventional circuit, and Two power supply circuits consisting of a stabilized DC power supply for the adapter are used as one power supply circuit, and electronic circuits such as a stabilized DC power supply for the adapter and a changeover switch in the battery pack are reduced. Therefore, compact and lighter charger itself is one that can raise a significant effect on well costs.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例の二次電池充電制御回路の構
成を示す回路図
FIG. 1 is a circuit diagram showing a configuration of a secondary battery charge control circuit according to one embodiment of the present invention.

【図2】二次電池の充電電圧の特性と本発明の一実施例
の二次電池充電制御回路における相対的カウント値を示
すグラフ
FIG. 2 is a graph showing characteristics of a charging voltage of a secondary battery and a relative count value in a secondary battery charging control circuit according to an embodiment of the present invention;

【図3】同本発明の一実施例の二次電池充電制御回路の
二次電池の充電制御を説明したフローチャート
FIG. 3 is a flowchart illustrating charging control of the secondary battery in the secondary battery charging control circuit according to the embodiment of the present invention;

【図4】同(a)は同充電末期における正規の電圧降下
と、(b)は充電途中の携帯機器の負荷の増加による電
圧降下との比較を示したグラフ
FIG. 4 (a) is a graph showing a comparison between a normal voltage drop at the end of the charging and FIG. 4 (b) a voltage drop due to an increase in the load of a portable device during charging.

【図5】従来の充電制御回路の構成を示す回路図FIG. 5 is a circuit diagram showing a configuration of a conventional charge control circuit.

【符号の説明】[Explanation of symbols]

1 直流安定化電源 2 充電電流制御回路 3,6 比較手段 4,7 記憶手段 5 リセット手段 6 比較手段 8 カウント手段 9 比較器 10 基準電圧発生回路 11 コンデンサを放電する手段 12 コンデンサを充電する手段 13 コンデンサ 14 二次電池 15 携帯機器 16 電池電圧検出回路 Reference Signs List 1 DC stabilized power supply 2 Charging current control circuit 3, 6 Comparison means 4, 7 Storage means 5 Reset means 6 Comparison means 8 Counting means 9 Comparator 10 Reference voltage generation circuit 11 Capacitor discharging means 12 Capacitor charging means 13 Capacitor 14 Secondary battery 15 Portable device 16 Battery voltage detection circuit

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】電池電圧が記憶された充電ピーク電圧に達
してから、設定値以上降下したときの電池電圧を、予め
設定された値と比較することにより、所定の定電流によ
る充電電流を制御して前記所定の定電流による充電を終
了するか、または前記所定の定電流による充電を継続す
るかを判別する二次電池の充電制御回路であって、電池
電圧を検出する手段と、電池電圧を記憶する手段と、電
池に接続された負荷が変動したとき、電池電圧の変化か
ら負荷の変動を検出する手段と、電池の充電ピーク電圧
を記憶する手段と、記憶された充電ピーク電圧をリセッ
トする手段と、検出された電池電圧と記憶された充電ピ
ーク電圧を比較する手段と、電池電圧が記憶された前記
充電ピーク電圧に達してから設定値以上降下したとき
に、充電電流を制御して前記所定の定電流による充電を
終了するか、または電池に接続された負荷の変動を検出
したときは、記憶された前記充電ピーク電圧をリセット
し、前記所定の定電流による充電を継続する手段とを有
することを特徴とする二次電池充電制御回路。
The present invention controls a charging current at a predetermined constant current by comparing a battery voltage when the battery voltage drops by a set value or more after the battery voltage reaches a stored charging peak voltage with a preset value. A charge control circuit for a secondary battery that determines whether to end charging with the predetermined constant current or to continue charging with the predetermined constant current, comprising: means for detecting a battery voltage; Means for detecting a change in the load from a change in the battery voltage when the load connected to the battery fluctuates; means for storing the charge peak voltage of the battery; and resetting the stored charge peak voltage. Means for comparing the detected battery voltage with the stored charging peak voltage, and controlling the charging current when the battery voltage drops by a set value or more after reaching the stored charging peak voltage. Means for ending the charging with the predetermined constant current or detecting a change in the load connected to the battery, resetting the stored charging peak voltage, and continuing the charging with the predetermined constant current. And a charge control circuit for a secondary battery.
JP9263108A 1997-09-29 1997-09-29 Charging control circuit for secondary battery Pending JPH1098838A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9263108A JPH1098838A (en) 1997-09-29 1997-09-29 Charging control circuit for secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9263108A JPH1098838A (en) 1997-09-29 1997-09-29 Charging control circuit for secondary battery

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP3129193A Division JP2737445B2 (en) 1991-05-31 1991-05-31 Secondary battery charge control circuit

Publications (1)

Publication Number Publication Date
JPH1098838A true JPH1098838A (en) 1998-04-14

Family

ID=17384948

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9263108A Pending JPH1098838A (en) 1997-09-29 1997-09-29 Charging control circuit for secondary battery

Country Status (1)

Country Link
JP (1) JPH1098838A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000277166A (en) * 1999-03-25 2000-10-06 Yamaha Motor Co Ltd Method for controlling quick charger
WO2000045496A3 (en) * 1999-01-26 2000-11-30 Ericsson Telefon Ab L M Method and apparatus for communication between an electronic device and a connected battery
CN105067998A (en) * 2015-08-20 2015-11-18 贵州天义电器有限责任公司 Voltage and current fluctuation detector

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000045496A3 (en) * 1999-01-26 2000-11-30 Ericsson Telefon Ab L M Method and apparatus for communication between an electronic device and a connected battery
US6809649B1 (en) 1999-01-26 2004-10-26 Telefonaktiebolaget Lm Ericsson(Publ) Method and apparatus for communication between an electronic device and a connected battery
US7079038B2 (en) 1999-01-26 2006-07-18 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for communication between an electronic device and a connected battery
JP2000277166A (en) * 1999-03-25 2000-10-06 Yamaha Motor Co Ltd Method for controlling quick charger
CN105067998A (en) * 2015-08-20 2015-11-18 贵州天义电器有限责任公司 Voltage and current fluctuation detector

Similar Documents

Publication Publication Date Title
US5994875A (en) Battery charging apparatus and method with charging mode convertible function
US7649343B2 (en) Charge control circuit, charging device, and connection checking method
US7570023B2 (en) Method of charging batteries
JP5119307B2 (en) Battery pack charge control method
JPH06315233A (en) Battery charge control method
JP3507384B2 (en) Capacitor storage device with initialization function
KR101177455B1 (en) Battery charging apparatus, battery pack, battery charging system and battery charging method
EP1338074B1 (en) Temperature limitation in li battery charging
CN102013531A (en) Method of charging battery pack and battery pack
JPH0956080A (en) Battery charger
JPH1098838A (en) Charging control circuit for secondary battery
JP3696101B2 (en) Charging method and charger
JP2737445B2 (en) Secondary battery charge control circuit
JPH07123604A (en) Charger for secondary battery
JP2679392B2 (en) Secondary battery charge control circuit
JP3223539B2 (en) Quick charger
JP3216595B2 (en) Rechargeable battery charger
JP2590853B2 (en) Secondary battery charge control circuit
JPH06205543A (en) Charge control circuit of secondary battery
JPH1014123A (en) Charging circuit of secondary battery
JP2553531B2 (en) Secondary battery charge control circuit
JP3167393B2 (en) Battery pack
JP3219442B2 (en) Charge control circuit
JPH10150730A (en) Charger and charging method for secondary battery
JPH0779531B2 (en) Secondary battery charge control circuit