JP4412240B2 - Gas blowing nozzle and method for producing ultra-low nitrogen steel - Google Patents
Gas blowing nozzle and method for producing ultra-low nitrogen steel Download PDFInfo
- Publication number
- JP4412240B2 JP4412240B2 JP2005165787A JP2005165787A JP4412240B2 JP 4412240 B2 JP4412240 B2 JP 4412240B2 JP 2005165787 A JP2005165787 A JP 2005165787A JP 2005165787 A JP2005165787 A JP 2005165787A JP 4412240 B2 JP4412240 B2 JP 4412240B2
- Authority
- JP
- Japan
- Prior art keywords
- gas
- blowing nozzle
- gas blowing
- ladle
- horizontal plate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Treatment Of Steel In Its Molten State (AREA)
Description
本発明は、鋼の精錬方法において使用される真空脱ガス装置を用いて、安価でかつ安定的に極低窒素鋼を溶製できるガス吹き込みノズル、及び、このガス吹き込みノズルを使用して極低窒素鋼を製造する方法に関するものである。 The present invention uses a vacuum degassing apparatus used in a steel refining method, a gas blowing nozzle capable of melting ultra-low nitrogen steel stably at low cost, and an extremely low level using this gas blowing nozzle. The present invention relates to a method for producing nitrogen steel.
鋼の精錬方法には、真空槽の下部に設置された2本の浸漬管を取鍋内の溶鋼中に浸漬して脱ガスを行うことにより極低窒素鋼を製造するRHと呼ばれる方法があるが、このRH法において脱ガス処理中に鋼中の窒素濃度が上昇する場合があり問題となっている。 As a steel refining method, there is a method called RH in which ultra-low nitrogen steel is produced by degassing by immersing two dip tubes installed in the lower part of a vacuum chamber in molten steel in a ladle. However, in this RH method, the nitrogen concentration in the steel may increase during the degassing process, which is a problem.
この脱ガス処理中における鋼中の窒素濃度の上昇は、浸漬管の接続フランジあるいは浸漬管に発生した亀裂等から浸漬管の周囲の空気が吸い込まれることにより発生すると考えられている。 It is considered that the increase in the nitrogen concentration in the steel during the degassing process is caused by the suction of air around the dip tube from a connection flange of the dip tube or a crack generated in the dip tube.
そこで、RH式真空脱ガス装置の下降側浸漬管の周囲に音速以上の速度でガスを吹き付けつつ脱ガス処理して、極低窒素鋼を溶製する技術が、特許文献1で提案されている。
また、真空脱ガス槽と取鍋を連結して密閉した後に、真空脱ガス槽と取鍋が造る空間をArガスで加圧しつつ、真空脱ガス槽内でArガス吹き付けるか、あるいは炭素源を吹き付けることにより、極低窒素鋼を溶製する技術が、特許文献2で提案されている。
しかしながら、特許文献1で提案された技術では、吹き付けガス流のすぐ外側は大気であるため、ガスを高速で吹き付けた場合に大気の巻き込みが発生し、浸漬管から侵入するガスは、窒素を含んだものとなる。従って、真空脱ガス処理時間が短い場合には、吸窒は見かけ上発生しないが、脱ガスに加え脱炭処理や昇熱処理などを行うことで処理時間が長くなる場合には、徐々に溶鋼中の窒素濃度が上昇するという問題があった。
However, in the technique proposed in
また、特許文献2で提案された技術は、現実の操業においては以下の支障を来す。すなわち、真空脱ガス装置による脱ガス処理操業中は、浸漬管の浸漬深さ、湯面状態、スラグ状態を常時監視する必要があり、さらに、操業中は溶鋼温度の測定、および溶鋼組成の分析のための溶鋼サンプルを採取する必要があるが、真空脱ガス槽と取鍋を連結して密閉した場合にはこれらの作業が不可能となる。
Further, the technique proposed in
また、取鍋と真空脱ガス槽との相対的位置関係は取鍋中の溶鋼量や、処理中の真空脱ガス槽中の真空度により適宜変更する必要があるが、特許文献2で提案された設備をそれらに十分に対応できるものとするには、高度な設備構造および制御システムが必要となり、高コスト化となる。 In addition, the relative positional relationship between the ladle and the vacuum degassing tank needs to be appropriately changed depending on the amount of molten steel in the ladle and the degree of vacuum in the vacuum degassing tank being processed. In order to make the necessary equipment compatible with them, an advanced equipment structure and control system are required, which increases the cost.
本発明が解決しようとする問題点は、従来のRH法による極低窒素鋼の製造方法では、空気侵入による鋼中窒素濃度の上昇を効果的に抑制できず、極低窒素鋼の安定した精錬を安価に行うことができなかったと言う点である。 The problem to be solved by the present invention is that the conventional method for producing ultra-low nitrogen steel by the RH method cannot effectively suppress the increase of nitrogen concentration in the steel due to air intrusion, and stable refining of ultra-low nitrogen steel. Is that it could not be carried out inexpensively.
本発明のガス吹き込みノズルは、
RH法において、空気侵入による鋼中窒素濃度の上昇を抑制するために、
真空槽の下部に設置された2本の浸漬管を取鍋内の溶鋼中に浸漬し、一方の浸漬管からガスを吹き込むことで、真空槽と取鍋間で前記溶鋼を循環させて脱ガスを行うことにより極低窒素鋼を製造するに際し、前記脱ガス処理中、浸漬管の周りに不活性ガスをパージするガス吹き込みノズルにおいて、
前記ガス吹き込みノズルのガス噴出口に、真空槽と取鍋間の開口部からの空気の巻き込みを防止する整流板を設けたことを最も主要な特徴としている。
The gas blowing nozzle of the present invention is
In the RH method, in order to suppress an increase in nitrogen concentration in steel due to air intrusion,
Two dip tubes installed in the lower part of the vacuum chamber are immersed in the molten steel in the ladle, and gas is blown from one of the dip tubes so that the molten steel is circulated between the vacuum chamber and the ladle and degassed. In producing a very low nitrogen steel by performing a gas blowing nozzle for purging an inert gas around the dip tube during the degassing process,
The main feature is that a rectifying plate is provided at the gas outlet of the gas blowing nozzle to prevent air from being caught from the opening between the vacuum chamber and the ladle.
本発明のガス吹き込みノズルにおいては、
前記整流板は、水平板と、この水平板の外周端から垂下させた垂直板とで形成され、
前記水平板の外周半径(m)は、前記ガス吹き込みノズルの内周面半径(m)に、前記ガス吹き込みノズルから吹き出されるガスの出口流速(m/s)に変換係数2を乗じて加えた値以上の大きさを有し、
また、前記垂直板の高さ(m)は、前記水平板の外周半径(水平板が円形以外の場合には同一面積の円形の半径)(m)以上、もしくは、溶鋼湯面とガス吹き込みノズルのガス噴出口との間隔の1/2の小さい方で、垂直板を設ける範囲(m)は、前記水平板の外周の1/3以上、1/2以下とするので、真空槽と取鍋間の開口部からガス噴出口の周りへの空気の巻き込みを効果的に防止することができる。なお、前記変換係数2は、(s)の次元を持つものであることは言うまでもない。
In the gas blowing nozzle of the present invention,
The rectifying plate is formed of a horizontal plate and a vertical plate suspended from the outer peripheral end of the horizontal plate,
The outer peripheral radius (m) of the horizontal plate is obtained by multiplying the inner peripheral surface radius (m) of the gas blowing nozzle by the
Further, the height (m) of the vertical plate is equal to or greater than the outer peripheral radius of the horizontal plate (circular radius of the same area when the horizontal plate is not circular) (m), or the molten steel surface and the gas blowing nozzle the smaller of the half of the distance between the gas ejection port, the range of providing a vertical plate (m) is 1/3 or more of the outer periphery of the horizontal plate, so that the 1/2 hereinafter, collected and vacuum tank Entrainment of air from the opening between the pots to the periphery of the gas ejection port can be effectively prevented. Needless to say, the
本発明のガス吹き込みノズルにおける前記水平板の外周半径、垂直板の高さ、垂直板を設ける範囲は、発明者等の数値計算による解析と、実験結果に基づいて決定されたものである。すなわち、水平板の外周半径、垂直板の高さ、垂直板を設ける範囲が前記した範囲から外れると、整流板の軸中心から垂直板側で、パージガス流に合流する鉛直方向の流れが形成できず、外気を引き込むようになるからである。 The outer peripheral radius of the horizontal plate, the height of the vertical plate, and the range in which the vertical plate is provided in the gas blowing nozzle of the present invention have been determined based on numerical analysis by the inventors and experimental results. That is, if the outer radius of the horizontal plate, the height of the vertical plate, and the range in which the vertical plate is provided deviate from the above range, a vertical flow that merges with the purge gas flow can be formed on the vertical plate side from the axial center of the rectifying plate. This is because it will draw in outside air.
前記本発明のガス吹き込みノズルを用いて、脱ガス処理中、浸漬管の周りに不活性ガスをパージする、より具体的には、ガス吹き込みノズルを、垂直板の内面が浸漬管と対向するように設置して、浸漬管の周りに不活性ガスをパージすれば、真空槽と取鍋間の開口部からの空気の巻き込みを効果的に防止しつつ脱ガス処理が行える。これが本発明の極低窒素鋼の製造方法である。 Using the gas blowing nozzle of the present invention, an inert gas is purged around the dip tube during the degassing process. More specifically, the gas blow nozzle is arranged so that the inner surface of the vertical plate faces the dip tube. If the inert gas is purged around the dip tube, the degassing process can be performed while effectively preventing air entrainment from the opening between the vacuum chamber and the ladle. This is the method for producing the ultra-low nitrogen steel of the present invention.
本発明により、RH法における鋼中窒素濃度の上昇を効果的に抑制でき、極低窒素鋼の安定した精錬を安価に行えるという利点がある。 By this invention, the raise of the nitrogen concentration in steel in RH method can be suppressed effectively, and there exists an advantage that the stable refining of ultra-low nitrogen steel can be performed at low cost.
出願人は、従来のRH法による極低窒素鋼の製造方法では、空気侵入による鋼中窒素濃度の上昇を抑制できず、極低窒素鋼の安定した精錬を安価に行うことができなかったという問題を解決すべく特開平10−140228号を提案した。 The applicant stated that the conventional method for producing ultra-low nitrogen steel by the RH method could not suppress an increase in nitrogen concentration in the steel due to air intrusion, and could not perform stable refining of ultra-low nitrogen steel at low cost. In order to solve the problem, Japanese Patent Laid-Open No. 10-140228 has been proposed.
本出願人が提案した方法は、浸漬管と取鍋との間のスラグ又は溶鋼の露出部をガスシール板で覆って空間部を形成し、この空間部に不活性ガスを供給しながら脱ガス処理を行うものである。 In the method proposed by the present applicant, the exposed portion of slag or molten steel between the dip tube and the ladle is covered with a gas seal plate to form a space portion, and degassing is performed while supplying an inert gas to the space portion. The processing is performed.
しかしながら、その後、本出願人が提案した方法について、発明者らが実験的検討を進めたところ、効果の発揮が不安定な場合が見られた。そこで、試験状況と効果の発生状況とを対比した結果、ガスシール板と取鍋間の開口部より外気(空気)が侵入する場合があることが判明した。 However, when the inventors proceeded with experimental studies on the method proposed by the present applicant, there were cases where the effect was unstable. Therefore, as a result of comparing the test situation with the occurrence of the effect, it has been found that outside air (air) may enter from the opening between the gas seal plate and the ladle.
その場合、図4に示すように、ガス吹き込みノズル1より吹き込まれたパージガス(Ar、CO 2 等)による流れが、侵入した外気(空気)を巻き込んで流れるため、浸漬管2周りのパージ状況が不十分となって、パージ効果が不安定になると推察できる。なお、図4中の3は真空槽、4は溶鋼を示す。
In this case, as shown in FIG. 4, since the flow by the purge gas (Ar, CO 2, etc.) blown from the
これより、浸漬管の周りに設けたガス吹き込みノズルより吹き込まれるパージガスによる前記開口部方向からの外気の巻き込みを抑制できれば、安定した浸漬管周りのパージが可能になるとの着想を得た。なお、先に述べた特許文献2のような密閉構造とした場合にはこのような問題は発生しないが、その場合、大規模かつ精密な構造が必要となり、コストアップとなる。
As a result, the idea that stable purge around the dip tube would be possible if the entrainment of outside air from the direction of the opening by the purge gas blown from the gas blowing nozzle provided around the dip tube could be suppressed. Note that such a problem does not occur when the sealed structure as in
発明者らは、浸漬管周りのパージ状況について数値計算により解析を行い、前記推察した現象が発生することを確認した。さらに巻き込みを防止できるガス吹き込みノズル形状の検討を行い、特許文献2に示される密閉構造、および本出願人が提案した前記方法におけるガスシール板の設置を不要とするノズル形状を考案し、本発明の成立に至った。
The inventors analyzed the purge situation around the dip tube by numerical calculation and confirmed that the inferred phenomenon occurred. Further, the shape of the gas blowing nozzle capable of preventing the entrainment is studied, and the sealing structure shown in
本発明は発明者らのかかる着想及び検討に基づいてなされたものであり、以下、本発明のガス吹き込みノズルの最良の形態を、図1〜図3を用いて説明する。
11は例えば図3に示すように、浸漬管2の外側から20cm隔てた周りの、真空槽3の底部直下の等間隔位置に8本配置された、内径が50mm、外径が60mmの本発明のガス吹き込みノズルで、そのガス噴出口11aに、水平板12aと、この水平板12aの外周端から垂下させた垂直板12bとで形成される整流板12を設けている。
The present invention has been made on the basis of such an idea and examination by the inventors. Hereinafter, the best mode of the gas blowing nozzle of the present invention will be described with reference to FIGS.
3, for example, as shown in FIG. 3, the present invention has eight inner diameters of 50 mm and an outer diameter of 60 mm, which are arranged at equidistant positions just below the bottom of the
そして、前記水平板12aは、その外周の半径R(m)が、前記ガス吹き込みノズル11の内周面半径r(m)に、ガス吹き込みノズル11から吹き出されるガスの出口流速(m/s)の2倍を加えた値以上の大きさ、例えば外周の半径が0.15mで、内周の半径が50mmのリング状を有している。 The horizontal plate 12 a has an outer peripheral radius R (m) equal to an inner peripheral radius r (m) of the gas blowing nozzle 11, and an outlet flow velocity (m / s) of the gas blown from the gas blowing nozzle 11. For example, a ring shape having an outer radius of 0.15 m and an inner radius of 50 mm.
また、前記垂直板12bは、その高さh(m)が、水平板12aの前記半径R(m)以上か、もしくは、溶鋼4の湯面とガス吹き込みノズル11のガス噴出口11aとの間隔Lの1/2の何れか小さい方、例えば0.15mとなされている。
The
このような高さの垂直板12aは、水平板12aの外周全域に設けるのではなく、前記水平板12aの外周の1/3以上、1/2以下の範囲(m)だけ、例えば水平板の1/2周、図2に示すように、その内周面側が浸漬管2と対向するように設ける。
The vertical plate 12a having such a height is not provided over the entire outer periphery of the horizontal plate 12a, but only within a range (m) of 1/3 or more and 1/2 or less of the outer periphery of the horizontal plate 12a. As shown in FIG. 2, the ½ circumference is provided so that the inner circumferential surface faces the
このような本発明のガス吹き込みノズル11を用いたRH法による極低窒素鋼の製造では、図2(b)に示すように、ガス流動を制御することが可能となる。すなわち、本発明のガス吹き込みノズル11から浸漬管2の周りに不活性ガスをパージすれば、整流板12の軸中心から内側(浸漬管2側)では循環流(矢印イ)が形成される。これに対し、整流板12の軸中心から垂直板12b側では、垂直板12bの効果によって鉛直方向の流れ(矢印ロ)となってパージガス流に合流することになる。
In the production of extremely low nitrogen steel by the RH method using the gas blowing nozzle 11 of the present invention as described above, the gas flow can be controlled as shown in FIG. That is, if the inert gas is purged around the
従って、本発明のガス吹き込みノズル11を用いたRH法による本発明の極低窒素鋼の製造方法では、パージガス流に巻き込まれる外気は極小化されて真空槽3と取鍋5の間の開口部6からの空気の巻き込みを効果的に防止でき、鋼中窒素濃度の上昇に対する影響を事実上無視しうる程度に抑制できるようになる。
Therefore, in the manufacturing method of the ultra low nitrogen steel of the present invention by the RH method using the gas blowing nozzle 11 of the present invention, the outside air entrained in the purge gas flow is minimized and the opening between the
以下、本発明の効果を確認するために行った実験結果の一例について説明する。
実験は、転炉で粗脱炭した溶鋼約300tonを用いて行った。この溶鋼の取鍋への出鋼時にAlを添加したが、RHで真空脱炭を行う場合は未脱酸のまま出鋼した。この取鍋をRHに移送し、速やかに処理を開始した。そして、RH処理開始と同時に、前述の各ガス吹き込みノズルから0.5Nm3/hrのArガスを溶鋼面に向けて垂直に吹き込んでパージを行った。
Hereinafter, an example of the results of experiments conducted to confirm the effects of the present invention will be described.
The experiment was performed using about 300 tons of molten steel roughly decarburized in a converter. Al was added at the time of discharging the molten steel to the ladle, but when performing vacuum decarburization with RH, the steel was discharged without deoxidation. This ladle was transferred to RH, and processing was started immediately. Simultaneously with the start of the RH treatment, 0.5 Nm 3 / hr Ar gas was blown perpendicularly toward the molten steel surface from each of the gas blowing nozzles described above to perform a purge.
比較例として、前述のガス吹き込みノズルのガス噴出口に整流板を設けないガス吹き込みノズルを用いたもの(比較例1)と、全くパージを行わずに通常の処理を行った場合(比較例2)について同様の条件で実験した。
なお、処理時間は13分〜30分、真空度は133Pa〜1330Paであった。
As a comparative example, a case using a gas blowing nozzle in which a rectifying plate is not provided at the gas outlet of the gas blowing nozzle described above (Comparative Example 1) and a case where normal processing is performed without performing any purging (Comparative Example 2) ) Under the same conditions.
The treatment time was 13 to 30 minutes, and the degree of vacuum was 133 Pa to 1330 Pa.
処理前のN濃度と処理後のN濃度を分析し、吸窒、脱窒速度を求めた。脱窒速度は次式で求めた。
脱窒速度=(処理前N濃度−処理後N濃度)/処理時間
処理前、処理後のN濃度はppm、処理時間は分とし、脱窒速度はppm/分とした。
The N concentration before the treatment and the N concentration after the treatment were analyzed to determine the nitrogen absorption and denitrification rates. The denitrification rate was calculated by the following formula.
Denitrification rate = (N concentration before treatment−N concentration after treatment) / treatment time N concentration before treatment and after treatment was ppm, treatment time was minutes, and denitrification rate was ppm / min.
なお、脱窒、すなわち処理前N濃度>処理後N濃度の場合、脱窒速度は正となり、吸窒、すなわち処理前N濃度<処理後N濃度の場合、脱窒速度は負となる。
発明例と各比較例で用いた溶鋼主要成分と脱窒速度を下記表1に示す。
In the case of denitrification, ie, N concentration before treatment> N concentration after treatment, the denitrification rate is positive, and in the case of nitrogen absorption, ie, N concentration before treatment <N concentration after treatment, the denitrification rate is negative.
The molten steel main components and denitrification rates used in the inventive examples and the comparative examples are shown in Table 1 below.
表1より、発明例では鋼種によらず大きな脱窒速度が得られることが明らかである。
一方、比較例1では脱窒速度が正の場合もあるが、負の場合もあり、性能が安定しないことが分かる。また、比較例2では脱窒速度は全て負となり、全て吸窒が進行した。
From Table 1, it is clear that a large denitrification rate can be obtained in the invention examples regardless of the steel type.
On the other hand, in Comparative Example 1, the denitrification rate may be positive, but it may be negative, indicating that the performance is not stable. Moreover, in the comparative example 2, all the denitrification speed became negative, and all nitrogen absorption advanced.
本発明は、上記の実施例に示したものに限られるものではなく、各請求項に記載した技術的思想の範囲内で適宜実施態様を変更しても良いことはいうまでもない。 The present invention is not limited to those shown in the above embodiments, and it goes without saying that the embodiments may be appropriately changed within the scope of the technical idea described in each claim.
例えば、以上の実施例では、整流板を形成する水平板はリング状のものについて説明したが、リング状のもの以外でも良い等である。但し、水平板がリング状以外の場合、垂直板の高さを求める際に用いる水平板の半径は、同一面積の円形の半径を使用する。 For example, in the above embodiment, the horizontal plate forming the rectifying plate has been described as having a ring shape, but other than the ring shape may be used. However, when the horizontal plate has a shape other than the ring shape, the radius of the horizontal plate used for obtaining the height of the vertical plate is a circular radius of the same area.
本発明は、上記の例に限らず、本発明と同様に外気の巻き込みを防止しつつパージするものであれば、他の用途に用いられるものでも良い。 The present invention is not limited to the above example, and may be used for other applications as long as purge is performed while preventing the entrainment of outside air as in the present invention.
2 浸漬管
3 真空槽
4 溶鋼
5 取鍋
6 開口部
11 ガス吹き込みノズル
11a ガス噴出口
12 整流板
12a 水平板
12b 垂直板
2
Claims (2)
前記ガス吹き込みノズルのガス噴出口に、真空槽と取鍋間の開口部からの空気の巻き込みを防止する整流板を設け、
前記整流板は、水平板と、この水平板の外周端から垂下させた垂直板とで形成され、
前記水平板の外周半径(m)は、前記ガス吹き込みノズルの内周面半径(m)に、前記ガス吹き込みノズルから吹き出されるガスの出口流速(m/s)に変換係数2を乗じて加えた値以上の大きさを有し、
また、前記垂直板の高さ(m)は、前記水平板の外周半径(水平板が円形以外の場合には同一面積の円形の半径)(m)以上、もしくは、溶鋼湯面とガス吹き込みノズルのガス噴出口との間隔の1/2の小さい方で、垂直板を設ける範囲(m)は、前記水平板の外周の1/3以上、1/2以下であることを特徴とするガス吹き込みノズル。 Two dip tubes installed in the lower part of the vacuum chamber are immersed in the molten steel in the ladle, and gas is blown from one of the dip tubes so that the molten steel is circulated between the vacuum chamber and the ladle and degassed. In producing a very low nitrogen steel by performing a gas blowing nozzle for purging an inert gas around the dip tube during the degassing process,
A gas flow outlet of the gas blowing nozzle is provided with a rectifying plate for preventing air entrainment from the opening between the vacuum chamber and the ladle ,
The rectifying plate is formed of a horizontal plate and a vertical plate suspended from the outer peripheral end of the horizontal plate,
The outer peripheral radius (m) of the horizontal plate is obtained by multiplying the inner peripheral surface radius (m) of the gas blowing nozzle by the conversion coefficient 2 to the outlet flow velocity (m / s) of the gas blown from the gas blowing nozzle. Have a size greater than or equal to
Further, the height (m) of the vertical plate is equal to or greater than the outer peripheral radius of the horizontal plate (circular radius of the same area when the horizontal plate is not circular) (m), or the molten steel surface and the gas blowing nozzle The range (m) in which the vertical plate is provided on the smaller one-half of the distance to the gas jetting port is 1/3 or more and 1/2 or less of the outer periphery of the horizontal plate. nozzle.
前記脱ガス処理中、請求項1に記載のガス吹き込みノズルを、垂直板の内面が浸漬管と対向するように設置して、浸漬管の周りに不活性ガスをパージすることを特徴とする極低窒素鋼の製造方法。 Two dip tubes provided at the bottom of the vacuum tank are immersed in the molten steel in the ladle, gas is blown from one of the dip tubes, and the molten steel is circulated between the vacuum tank and the ladle to degas. When producing ultra-low nitrogen steel,
During the degassing treatment, electrode gas blowing nozzle according to claim 1, the inner surface of the vertical plate installed to face the dip tube, characterized by purging an inert gas around the immersion tube Low nitrogen steel manufacturing method .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005165787A JP4412240B2 (en) | 2005-06-06 | 2005-06-06 | Gas blowing nozzle and method for producing ultra-low nitrogen steel |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005165787A JP4412240B2 (en) | 2005-06-06 | 2005-06-06 | Gas blowing nozzle and method for producing ultra-low nitrogen steel |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006336100A JP2006336100A (en) | 2006-12-14 |
JP4412240B2 true JP4412240B2 (en) | 2010-02-10 |
Family
ID=37556909
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005165787A Active JP4412240B2 (en) | 2005-06-06 | 2005-06-06 | Gas blowing nozzle and method for producing ultra-low nitrogen steel |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4412240B2 (en) |
-
2005
- 2005-06-06 JP JP2005165787A patent/JP4412240B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2006336100A (en) | 2006-12-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2010138446A (en) | METHOD FOR PREVENTING NITROGEN ABSORPTION OF Cr-CONTAINING MOLTEN STEEL | |
JP4412240B2 (en) | Gas blowing nozzle and method for producing ultra-low nitrogen steel | |
US9181602B2 (en) | Device for degassing molten steel with an improved discharge nozzle | |
JP6372540B2 (en) | Vacuum degassing apparatus and vacuum degassing treatment method | |
JP6052263B2 (en) | Top blow lance for refining and method for refining molten iron | |
JP2007031820A (en) | Vacuum-degassing treating method for molten steel | |
JP6372541B2 (en) | Vacuum degassing apparatus and vacuum degassing treatment method | |
JP6638538B2 (en) | RH type vacuum degassing equipment | |
JP6888492B2 (en) | Molten steel refining equipment and molten steel refining method | |
JP2002363636A (en) | Method for smelting molten steel in rh vacuum degassing apparatus | |
JPH03226516A (en) | Vacuum degassing device for production extra-low carbon steel and operating method thereof | |
JP5026693B2 (en) | RH degassing refining method | |
JPH08120324A (en) | Apparatus and method for vacuum-refining molten steel | |
SU1135773A1 (en) | Method for batch vacuum treatment of steel | |
JP2002180124A (en) | Method for refining molten metal | |
JPH06299227A (en) | Production of extra low carbon steel by rh type degassing apparatus | |
JP3296249B2 (en) | Manufacturing method of ultra low nitrogen steel | |
JPS5919717Y2 (en) | Vacuum degassing equipment | |
JP2005060801A (en) | Top-blown lance for vacuum degassing vessel | |
JPH0610027A (en) | Vacuum degassing refining method for molten metal | |
JP2988737B2 (en) | Manufacturing method of ultra-low carbon steel | |
JP3118606B2 (en) | Manufacturing method of ultra-low carbon steel | |
JPH05271748A (en) | Vacuum degassing method | |
JP3070416B2 (en) | Vacuum degassing method for molten steel | |
JPH0688117A (en) | Vacuum degassing device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070723 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090721 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090811 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090928 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20091027 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20091109 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121127 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4412240 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131127 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131127 Year of fee payment: 4 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131127 Year of fee payment: 4 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |