JP4411740B2 - Supported catalyst and method for producing the same - Google Patents

Supported catalyst and method for producing the same Download PDF

Info

Publication number
JP4411740B2
JP4411740B2 JP2000121478A JP2000121478A JP4411740B2 JP 4411740 B2 JP4411740 B2 JP 4411740B2 JP 2000121478 A JP2000121478 A JP 2000121478A JP 2000121478 A JP2000121478 A JP 2000121478A JP 4411740 B2 JP4411740 B2 JP 4411740B2
Authority
JP
Japan
Prior art keywords
oxide
catalyst
pore volume
pore diameter
silica
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000121478A
Other languages
Japanese (ja)
Other versions
JP2001300328A (en
JP2001300328A5 (en
Inventor
典和 奥田
富雄 加藤
健 山岸
浩 長谷川
香織 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP2000121478A priority Critical patent/JP4411740B2/en
Publication of JP2001300328A publication Critical patent/JP2001300328A/en
Publication of JP2001300328A5 publication Critical patent/JP2001300328A5/ja
Application granted granted Critical
Publication of JP4411740B2 publication Critical patent/JP4411740B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Catalysts (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、酸化物担体に金属化合物を担持させた担持触媒及びその製造方法に関する。また、本発明の担持触媒存在下においてアントラキノン類の水素化反応を行い、過酸化水素を製造する方法に関する。
【0002】
【従来の技術】
酸化物担体に金属が担持された担持触媒は、例えば、白崎高保、藤堂尚之編、触媒調製、(1974)講談社に記載されているように種々の化学反応に利用される。活性成分として用いられる金属は、一般的に周期律表において第4、第5、第6周期の第IIIA族から第IB族に属する遷移金属である。なかでもパラジウム触媒や白金触媒などの白金族金属は、水素化反応などにおいて良好な活性、選択性を示すことから、工業的に利用されている触媒の一つである。これらの触媒の活性成分である白金族金属は比較的高価なため、一般的に担体に担持された担持触媒として用いられる。担持触媒の金属成分による活性や選択性の序列化は、古くから行われてきた。
【0003】
一方、担持触媒の物性の中では、平均細孔直径、BET比表面積と全細孔容積が重要であることが、触媒学会編、“触媒講座第5巻(工学編1) 触媒設計”、p122−133(1985)講談社に記載されている。五十嵐、“化学工学”、60(4)、232(1996)では、工業触媒の触媒機能を最大限に発揮するためには担持触媒の構造的要因の最適化が重要であると記載されている。小沼、“表面”、23(8)、482(1985)では、担体の細孔制御が触媒を設計する上で重要であり、触媒構造の最適化はほとんどの場合触媒製造に用いる担体の細孔を制御することにより行われるとしている。このように、従来担持触媒の細孔構造は、担体の細孔構造が保持されることを前提としており、担持触媒の構造を最適化するために、担体の平均細孔直径、全細孔容積、BET比表面積等を制御することが行われてきた。
【0004】
酸化物担体を用いた担持触媒は、例えば化学工学協会、“化学工学の進歩 第15集 触媒設計”、p40−54(1981)槇書店に記載されているAdsorptin法、Pore−filling法、Incipient wetness法、Evaporation to dryness法、Spray法などの含浸法あるいはイオン交換法などにより金属化合物を担持し、その後必要に応じて分離、洗浄、乾燥、酸化、焼成、還元等の工程を経て製造されている。
【0005】
このようにして製造された担持触媒は、例えばアントラキノン法による過酸化水素の製造において、アントラキノン類の水素化反応に使用され得る。現在、工業的に行われている過酸化水素の主な製造方法は、アントラキノン類を反応媒体とする方法でアントラキノン法と呼ばれる。一般に、アントラキノン類は、適当な有機溶媒に溶解して使用される。アントラキノン類を有機溶媒に溶かして調製した溶液は、作動溶液と呼ばれる。有機溶媒は、単独あるいは混合物として用いられるが、通常2種類の有機溶媒の混合物が使用される。アントラキノン法では、還元工程において上記の作動溶液中のアントラキノン類を触媒の存在下で水素により還元し、対応するアントラヒドロキノン類を生成させる。次いで、酸化工程においてそのアントラヒドロキノン類を空気もしくは酸素を含有する気体によって酸化してアントラキノン類に再度転化し、同時に過酸化水素を生成させる。作動溶液中に生成した過酸化水素は、抽出工程において通常水を用いて抽出され、作動溶液から分離される。過酸化水素が抽出された作動溶液は、再び還元工程に戻され、循環プロセスを形成する。このプロセスは、実質的に水素と空気から過酸化水素を製造するものであり、極めて効率的なプロセスである。既にこの循環プロセスを用いて、過酸化水素が工業的に製造されている。
【0006】
上記の循環プロセスの還元工程でアントラキノン類の水素化反応に使用される触媒としては、ラネーニッケル触媒、パラジウム黒触媒、担体に担持されたパラジウム担持触媒が知られている。ラネーニッケル触媒は、高活性であるが、作動溶液中の微量過酸化水素により顕著に劣化すること、発火金属であるため取り扱い上の危険を伴うこと及び選択性が低いことなど多くの欠点を有する。パラジウム黒触媒は、活性や選択性に優れる。しかし、作動溶液からの分離が困難であり、パラジウム存在下で分解しやすい過酸化水素を工業的に製造するには致命的な欠点を有する。担体に担持されたパラジウム担持触媒は、活性や選択性がパラジウム黒触媒よりやや劣るものの、作動溶液からの分離が容易であり、過酸化水素を工業的に製造するために適した触媒である。パラジウム担持触媒としては、シリカ、アルミナ、ジルコニア、シリカ・アルミナ、アルミノ珪酸塩、アルカリ土類金属の炭酸塩や活性炭など種々の担体に担持された担持触媒が提案されている。しかし、これら全ての担持触媒が工業用触媒として必要な安価で、触媒強度が強く、活性や選択性が高いという条件を満たしているわけではなく、実際に工業的に利用できるのは上記の担持触媒のごく一部である。
【0007】
アルミナに担持されたパラジウム担持触媒は、工業的に利用できる数少ない担持触媒の一つであり、活性、強度が比較的高いという利点を有する。米国特許5,772,997では、特定の結晶相、平均細孔直径、粒子径及びBET比表面積を有するアルミナ、シリカ、チタニア、ジルコニア、シリカ・アルミナ、シリカ・アルミナ・マグネシア等の焼成酸化物を担体として製造された触媒を使用することによってアントラキノン法の改良に成功している。
【0008】
特公昭63−29588では、アルミナに担持されたパラジウム担持触媒より優れた担持触媒としてシリカを担体としてパラジウムの他にジルコニウム、トリウム、セリウム、チタン及びアルミニウムから選ばれた少なくとも1種類の金属を添加した担持触媒とその製造方法が提案されている。
【0009】
米国特許5,853,693では、シリカに担持されたパラジウムと少なくとも1種類のアルカリ金属からなる担持触媒およびその製造方法が開示されている。その中で、担持触媒の活性や強度を支配する重要な因子として平均細孔直径、細孔容積、粒子径、粒子形状が挙げられ、8〜40nmの平均細孔直径を有する担持触媒は、活性が高く、活性劣化速度が小さいとしている。更に、用いる担体の平均細孔直径範囲を制限しても、得られる担持触媒の平均細孔直径は焼成や処理するアルカリ水溶液のpHなどの触媒製造条件によって多少変化することが指摘されている。しかし、担持触媒製造時の焼成温度によって平均細孔直径を変化させるには、かなりの高温を要し、なおかつ平均細孔直径と共に全細孔容積やBET比表面積も低下するため、担持触媒の活性が著しく低下する。また、触媒製造時のpHによって平均細孔直径を変化させるには、pHを過度に高める必要があり、担持触媒の強度や収率の低下を招く。
【0010】
【発明が解決しようとする課題】
本発明の目的は、アントラキノン類の水素化反応などに好適な担持触媒を提供すること、および、担持触媒製造時に活性や強度を低下させることなく、平均細孔直径を選択的に変化させ、所望の平均細孔直径を有する担持触媒を製造する方法を提供することにある。
【0011】
【課題を解決するための手段】
本発明者らは、担持触媒の細孔構造の骨格を決めるという意味で担体の細孔構造が重要であり、担持触媒の細孔構造を決定する上で担持触媒の製造方法が重要であるとの認識のもと、上記課題を解決するため鋭意検討した結果、担持触媒の製造において乾燥工程が、単に水分を除去するものではなく、酸化物担体に金属化合物を担持するのと同時に、又は、担持させた後に、酸化物担体を水媒体で接触処理して特定pHの水媒体を酸化物担体に含浸させ、これに引き続き、特定の温度、特定の平均蒸発速度で酸化物担体中に残存する水媒体を蒸発させる乾燥処理することにより、活性や強度を低下させることなく担持触媒の平均細孔直径を選択的に変化させられることを見出した。更に、そのような製造方法により製造された担持触媒は、細孔容積−細孔直径分布曲線において細孔容積のピークが細孔直径の大きい方に移動した細孔分布を有し、アントラキノン類の水素化反応などに対し高活性を示すことを見出した。本発明はこれらの知見に基づきなされた。
【0012】
すなわち、本発明は酸化物担体と酸化物担体の重量に対して0.1〜10重量%の金属から本質的になる担持触媒であって、細孔容積−細孔直径分布曲線において細孔直径が10nm以上の領域に細孔容積のピークが存在する細孔分布を有し、メジアン径変化率が4%以下であることを特徴とする担持触媒に関する。
【0013】
更に、本発明は、酸化物担体と酸化物担体の重量に対して0.1〜10重量%の金属から本質的になる担持触媒を製造する方法であり、金属化合物を酸化物担体に担持するのと同時に、又は、担持した後に、酸化物担体を水媒体で接触処理してpH6.0〜11.0の水媒体を酸化物担体に含浸させる工程と、これに引き続く50℃以上の乾燥温度、酸化物担体の重量に対して0.55ml/(g・h)以下の平均蒸発速度で酸化物担体中に残存する水媒体を蒸発させる乾燥処理工程を含むことを特徴とする担持触媒の製造方法に関する。
【0014】
【発明の実施の形態】
本発明に用いられる酸化物担体としては、通常用いられる触媒担体であるシリカ、アルミナ、チタニア、ジルコニアなどの酸化物、シリカ・アルミナ、シリカ・チタニア、シリカ・アルミナ・チタニアなどの複合酸化物及びこれらの2以上の物理的混合物が挙げられる。中でも、少なくとも無定形シリカ粒子を含む酸化物担体が好ましく、無定形シリカ粒子を50重量%以上含む酸化物担体がより好ましく、無定形シリカを80重量%以上含むものが最も好ましい。
【0015】
酸化物担体の粒子径、粒度分布および粒子形状は、特に制限はない。通常の触媒担体として使用される酸化物担体の粒子径、粒度分布および粒子形状であればよく、担持触媒を使用する反応プロセスに応じて選ばれる。例えば、アントラキノン類の水素化反応用としては、通常、酸化物担体のメジアン径が1μm〜200μmであり、好ましくは20〜180μmであり、より好ましくは30〜150μmである。酸化物担体の形状としては、不定形、球状、円柱、三つ葉、四つ葉、リングおよびハニカム等が例示される。
【0016】
本発明において、酸化物担体の全細孔容積は、酸化物担体単位重量当たりの全細孔容積で定義され、通常0.2〜2.0ml/gであり、好ましくは0.3〜1.5ml/g、より好ましくは0.5〜1.0ml/gである。本発明では、酸化物担体の全細孔容積が前記範囲内である限り、他の特徴は実質的に制限されず、目的とする担持触媒を製造することができる。従って、本発明に用いられる酸化物担体の平均細孔直径は特に制限されないが、任意の平均細孔直径を有する触媒を製造するためには、通常0.1〜100nmであり、好ましくは1〜50nmであり、より好ましくは1〜25nmである。また、酸化物担体の細孔直径分布は、特に制限はなく、単一のピークや複数のピークを有しても良いし、これらのピークがブロードでもシャープでも良い。
【0017】
本発明に用いられる酸化物担体のBET比表面積もまた特に制限はないが、通常50m2/g以上であり、好ましくは100m2/g以上であり、より好ましくは150m2/g以上である。BET比表面積が小さいと、金属化合物ロスの増大を招いたり、担持される金属化合物の含有率を高めるために担持操作を繰り返し行う必要が生じる。
【0018】
本発明の担持触媒は、酸化物担体の重量に対して金属として通常0.1〜10重量%、好ましくは0.5〜5重量%の金属活性種を含む。金属としては、周期律表第IA族のLi、Na、K、Rb、Csなどのアルカリ金属、第IIA族のBe、Mg、Ca、Sr、Baなどのアルカリ土類金属、第4、第5、第6周期の第IIIA族から第IB族に属するSc、Y、Ti、Zr、Hf、V、Nb、Ta、Cr、Mo、W、Mn、Tc、Re、Fe、Ru、Os、Co、Rh、Ir、Ni、Pd、Pt、Cu、Ag、Auなどの遷移金属、第IIB族のZnなどが例示され、それぞれ単独でも混合物でも用いられる。有機化合物の接触水素化反応用としては、上記金属の中ではルテニウム、ロジウム、パラジウム、白金などの白金族金属が優れる。アントラキノン類の水素化反応では、特にパラジウムや白金が好適であり、少なくともこれらの金属を単独あるいは混合物として含有する担持触媒が望ましい。なお、金属活性種は金属、酸化物などの状態で存在する。
【0019】
金属の担持様式、すなわち酸化物担体中の金属の分布は、特に制限はない。担持触媒を使用する反応プロセスに応じて選ばれる。担持様式は、egg shell、egg white、egg yolkおよびuniformが例示される。例えば、アントラキノン類の水素化反応では、egg shellあるいはuniformの担持様式が好適である。
【0020】
酸化物担体への金属化合物の担持は、従来公知のAdsorption法、Pore−filling法、Incipient wetness法、Evaporation to dryness法、Spray法などの含浸法あるいはイオン交換法により行うことができる。
【0021】
含浸法では、基本的に金属化合物の溶液と酸化物担体を接触させる。この方法による金属化合物は、水や脂肪族炭化水素、芳香族炭化水素、有機ハロゲン化物、アルコール、エーテル、アミドなどの有機溶媒に溶解する任意の金属化合物を用いることができる。より具体的には、塩化物、硝酸塩、硫酸塩、酢酸塩、水酸化物、錯塩などが例示される。溶液の金属化合物濃度は、酸化物担体に対して金属として0.1〜10重量%の金属活性種を担持する触媒が得られるように適宜選択される。金属活性種が二種類の場合、同時に担持してもよく別々に担持してもよい。金属化合物を担持した後、必要に応じて分離、洗浄、乾燥、酸化、焼成、還元、成形およびこれらの組み合わせによる処理が行われる。ここで、担持とは、酸化物担体に金属化合物または金属を物理的または化学的に吸着させることをいう。
【0022】
イオン交換法は、無定形シリカを含有する酸化物担体へ金属化合物を担持させるために好ましく用いられる。酸化物担体をアンモニウムイオンを含有する溶液に接触させプロトンをアンモニウムイオンにイオン交換させた後、金属化合物の溶液と接触させアンモニウムイオンを金属活性種を含むイオンとイオン交換させる。アンモニウムイオンとのイオン交換と金属活性種を含むイオンとのイオン交換は別々の溶液で順次行ってもよいが、同一の溶液で同時に行うこともできる。必要に応じて分離、洗浄、乾燥、酸化、焼成あるいは還元とこれらの組み合わせ処理が行われる。
【0023】
例えば、金属化合物を担持した酸化物担体は、適当な方法により分離され、酸化物担体1gに対して10〜20mlのイオン交換水などの水で、バッチ式(デカンテーション)、流通式などの方法により洗浄される。洗浄された酸化物担体は乾燥後、又は、独立の乾燥工程を経ることなく直接焼成される。乾燥工程は、50〜200℃、好ましくは100〜160℃でバッチ式、連続式などの方法で行われる。乾燥処理により細孔直径が変わる可能性がある場合には、真空乾燥が用いられる。焼成は、金属化合物を担持した酸化物担体は空気中、300〜900℃で0.1〜48時間焼成される。前記の焼成工程に換えて、或いは、焼成工程前または後に、酸化処理または還元処理を行ってもよい。酸化処理は酸化剤水溶液と金属化合物を担持した酸化物担体を室温〜100℃(水の沸点)の温度で接触させることにより行われる。酸化剤としては水溶性過酸化物、過塩素酸、塩素酸などの過酸化物とその塩類、アルカリ金属の過酸化物、過酸化水素などが用いられる。還元処理はホルムアルデヒド、蟻酸、ヒドラジンなどの還元剤を含む水溶液と金属化合物を担持した酸化物担体を室温〜100℃(水の沸点)の温度で接触させることにより行われる。
【0024】
本発明の担持触媒の製造方法では、含浸法又はイオン交換法により金属化合物を担持するのと同時に、又は、担持した後に、酸化物担体を水媒体で接触処理してpH6.0〜11.0の水媒体を酸化物担体に含浸させる工程と、これに引き続く50℃以上の乾燥温度で、酸化物担体の重量に対して0.55ml/(g・h)以下の平均蒸発速度で酸化物担体中に残存する水媒体を蒸発させる乾燥処理工程が含まれる。本発明の製造方法では、金属化合物担持と同時に上記処理工程を行うか、金属化合物担持後に上記処理工程を行えばよい。また、上記処理工程は金属化合物担持後の任意の段階で行うこともできるが、焼成後に行うのが特に好ましい。また、必要に応じて、分離、洗浄、酸化、焼成や還元などの処理を組み合わせても良いし、上記処理工程を繰り返し行っても良い。
【0025】
本発明の接触処理に用いる水媒体のpHは、水に酸、塩基あるいは酸および塩基を添加することにより、酸化物担体に含浸させた水媒体が下記に示すpHを有するように調整される。酸としては、硫酸、硝酸、塩酸、燐酸などの水溶性無機酸あるいは蟻酸、酢酸などの水溶性有機酸が好適に用いられる。塩基としては、アルカリ金属もしくはアルカリ土類金属の炭酸塩もしくは水酸化物、アンモニアなどの水溶性無機塩基あるいは第1級、第2級、第3級のアルキルアミン類などの水溶性有機塩基が好適に用いられる。
【0026】
接触処理は好ましくは50〜220℃で、全細孔容積の0.5〜1.5倍量の水媒体を用いて行う。処理時間は、下記式で表される乾燥減率:
乾燥減率=100×(乾燥前重量−160℃乾燥後重量)/乾燥前重量
が5%以下になるように決めるのが好ましく、通常は0.1〜48時間である。
【0027】
接触処理後に酸化物担体に残存する水媒体のpHは、接触処理後に得られた担持触媒を0.05g/mlの濃度で分散した水性分散液のpHとして定義する。残存水媒体のpHは、通常6.0〜11.0であり、7.0〜10.5が好ましく、8.0〜10.0が最も好ましい。このようなpHの制限は、無定形シリカを含有する酸化物担体を用いる場合に有効であり、無定形シリカを50重量%以上含有する酸化物担体を用いる場合に特に有効である。低いpHでは確実な効果を得ることは難しく、高いpHでは触媒強度の低下や収率の低下を招く。残存水媒体の量は、通常、酸化物担体の全細孔容積に対して0.5〜1.5倍であり、好ましくは0.5〜1.0倍である。
【0028】
接触処理した酸化物担体は、吸引濾過などにより分離し、必要に応じて水などで洗浄した後、乾燥処理される。乾燥温度は、処理雰囲気の温度を意味し、通常50℃以上であり、50〜220℃が好ましく、80〜150℃がより好ましい。低温では、確実な効果を得ることは難しい。高温では、酸化物担体に残存する水媒体の平均蒸発速度の制御が難しく、処理コストも高くなる。
【0029】
酸化物担体に残存する水媒体の平均蒸発速度は、乾燥処理開始から0.25時間後までに蒸発した水容量(ml)/(処理に使用した酸化物担体重量(g)×0.25時間(h))なる式により定義する。残存水媒体の平均蒸発速度は、通常0.55ml/(g・h)以下であり、0.45ml/(g・h)以下がより好ましい。残存水媒体のpH、乾燥温度を制限すると同時に平均蒸発速度を制限することによって、活性や強度を低下させることなく所望の平均細孔直径を有する担持触媒を得ることができる。
【0030】
本発明の乾燥処理は、ロータリーキルン等の連続式装置や気流乾燥機、通気バンド乾燥機、ターボ嫌型乾燥機、流動乾燥機等の回分式装置により行える。乾燥処理に使用する流体は、例えば、圧縮空気、加熱空気、不活性ガス等が挙げられる。酸化物担体に残存する水媒体の平均蒸発速度は、通常、乾燥温度や乾燥に使用する流体流量により制御することができる。乾燥処理の圧力は、特に制限はないが、通常大気圧下で行われる。
【0031】
本発明では、担持触媒製造時の平均細孔直径増加率(%、以下PD増加率と記すことがある)を、
100×触媒平均細孔直径/担体平均細孔直径−100
なる式で定義し、触媒製造時の全細孔容積減少率(%、以下PV減少率と記すことがある)を、
100−100×触媒全細孔容積/担体全細孔容積
なる式で定義する。本発明の方法では、PV減少率よりもPD増加率を選択的に大きくすることができる。PD増加率は、通常20%以上であり、好ましくは25%以上、より好ましくは30%以上である。PD増加率の上限は通常約500%である。増加率が前記の範囲より小さいと、同一の酸化物担体から任意の平均細孔直径を有する触媒を得ることは難しい。PD増加率を変えることにより、同一の酸化物担体から異なる平均細孔直径を有する担持触媒が製造でき、逆に異なる酸化物担体から同一の平均細孔直径を有する担持触媒が製造できる。PV減少率は通常0〜20%である。
【0032】
本発明の方法により製造された担持触媒は、10〜300μm、好ましくは30〜200μmのメジアン径、0.3〜1.5ml/g、好ましくは0.5〜1.0ml/gの全細孔容積、8〜40nm、好ましくは10〜30nmの平均細孔直径、50m2/g以上、好ましくは100〜250m2/gのBET比表面積を有する。更に、本発明の担持触媒は、細孔容積−細孔直径分布曲線において、細孔直径が10nm以上、好ましくは10〜80nm、より好ましくは15〜60nmの領域に細孔容積のピークを有する細孔分布により特徴づけられる。また、細孔容積−細孔直径分布曲線において、細孔直径が10nm以上である領域の全領域に対する面積割合が75%以上であるのが好ましい。
【0033】
本発明で製造された担持触媒は、種々の化学反応に適用される。適用される化学反応は、有機化合物の接触水素化反応が好ましい。例えば、アントラキノン法による過酸化水素の製造方法におけるアントラキノン類の水素化触媒として用いられる。
【0034】
本発明のアントラキノン類の水素化反応において使用される担持触媒の量は、プロセスの状況に応じて適切な濃度範囲に制御され、作動溶液に対して通常5〜70g/lで用いられる。アントラキノン類としては、エチルアントラキノン、t−ブチルアントラキノン、アミルアントラキノンなどのアルキルアントラキノン;エチルテトラヒドロアントラキノン、t−ブチルテトラヒドロアントラキノン、アミルテトラヒドロアントラキノンなどのアルキルテトラヒドロアントラキノン;及びこれらの混合物が好ましい。アルキルアントラキノンとアルキルテトラヒドロアントラキノンは、各々が複数のアルキルアントラキノンあるいはアルキルテトラヒドラアントラキノンの混合物であってもよい。アルキルアンラキノンとアルキルテトラヒドロアントラキノンの混合物を用いる場合、その混合比(モル比)は2:1〜8:1が好ましく、3:1〜6:1がより好ましい。
【0035】
作動溶液中のアルキルアントラキノン類の濃度は、プロセスの状況に応じて適切な濃度範囲に制御され、通常は0.4〜1.0mol/lである。本発明において作動溶液を調製するために用いられる溶媒は、特に限定されるものではないが、好ましい溶媒としては、芳香族炭化水素と高級アルコールの組み合わせ、芳香族炭化水素とシクロヘキサノールもしくはアルキルシクロヘキサノールのカルボン酸エステルの組み合わせ、芳香族炭化水素と四置換尿素との組み合わせなどが例示される。
【0036】
アントラキノン類の水素化反応は、例えば、水素気流下あるいは水素含有ガス雰囲気下、反応温度10〜80℃、反応圧力100〜500kPaで5分〜1時間行われる。担持触媒を除去した後、生成したアントラヒドロキノン類を空気などの酸素含有ガスにより10〜80℃で酸化してアントラキノン類に再度転化すると同時に過酸化水素を生成させる。生成した過酸化水素は水により抽出され、作動溶液から分離される。過酸化水素を分離した後の作動溶液は、再び還元工程に戻され循環プロセスが形成される。アントラキノン類の水素化反応に用いる反応器としては、固定床、流動床、機械撹拌、気泡塔、パイプリアクターなどが例示される。
【0037】
【実施例】
本発明を、以下の実施例により更に詳細に説明するが、本発明はこれらの実施例に限定されるものではない。なお、以下の実施例において、各測定は下記の方法により行った。実施例中、%は特に指定のない限り重量基準とした。
【0038】
(1)比表面積
BET法により測定した。
【0039】
(2)全細孔容積
高速比表面積/細孔分布測定装置(マイクロメリティックス社製ASAP2000)を用いてガス吸着法により測定した。
【0040】
(3)平均細孔直径
BET比表面積(一点法、相対圧0.18)と全細孔容積(一点法、相対圧0.98)の測定値から下記式より求めた。
平均細孔直径(nm)=4000×全細孔容積(ml/g)/BET比表面積(m2/g)
【0041】
(4)酸化物担体に残存する水媒体のpH
乾燥処理で得られた担持触媒をイオン交換水に0.05g/mlの濃度で分散し、80℃に加熱した後、撹拌しながら室温まで冷却して得られた水性分散液をpHメーターにより測定した。
【0042】
(5)担持触媒活性の評価
プソイドクメンとジイソブチルカルビノールからなる溶媒にアミルアントラキノンを溶解した作動溶液を少量の担持触媒と接触させたときの水素吸収量により担持触媒の活性を評価した。具体的な試験法を、以下に記した。100mlの3つ口フラスコに担持触媒50.0mgと25mlの作動溶液を入れた。作動溶液のアミルアントラキノン濃度は0.6mol/lであり、プソイドクメン60容積%とジイソブチルカルビノール40容積%の混合溶媒を用いた。フラスコ内を完全密封できる磁力誘導方式の撹拌機を装着し、フラスコを真空コックで密封した。次に、フラスコを常圧水素化反応装置に装着した。この装置は、フラスコ内での圧力変動を水位で検知し、リレー式電磁弁を介して水素吸収に見合う分の水素が計量管から供給される。水素計量管は、ビュレット部と水貯液部からなり、水素計量管内の水がピストンの役割をして、フラスコ内圧と大気圧が等しく保たれる。水素吸収量は、水素計量管内の液面高さの差として測定される。フラスコを30℃の水浴に浸し、フラスコ内の排気と水素導入を3回繰り返した。5分後に撹拌機を作動させた。水素吸収開始から30分後までの水素吸収量を測定した。0℃、1atmでの水素吸収量に換算し、単位担持触媒重量当たりの水素吸収速度(ml/(min・g))を求めた。
【0043】
(6)担持触媒の強度評価
強撹拌前後のメジアン径変化率を測定することよって行った。具体的な試験法を以下に記した。4枚のバッフルの付いた1l試験器(直径10cm、胴長21cm、下部コーン長さ2.5cm)に担持触媒15gとイオン交換水0.5lを入れた。直径5cmの6枚ディスクタービン翼(ディスク:縦1.2cm×横1.1cm×幅0.2cm)の付いた撹拌機を2000rpmで回転させた。撹拌開始1分後と2時間後にスラリーを約5ml採取した。レーザー回折式粒度分布測定器((株)堀場製作所製LA−910)により、相対屈折率1.12iでのメジアン径を測定した。メジアン径変化率(%)=(試験1分後のメジアン径−試験2時間後のメジアン径)/試験1分後のメジアン径を求めた。なお、本発明の担持触媒のメジアン径変化率は4%以下、好ましくは2%以下である。
【0044】
(7)細孔容積−細孔直径分布曲線(dV/dlog(D)曲線)
鷲尾一裕、“ガス吸着法による比表面積/細孔分布測定”、島津評論、Vol.48,No.1,pp35−49(1991.6)記載の方法により求めた。すなわち、(2)記載のASAP2000を用いて求めた吸着等温線の吸着側でHalsey型t決定式:
t(nm)=3.54×[-5.000/(ln(P/Po)]0.333×10-1
を用い、BJH(Barrett−Joyner−Halenda)法で細孔分布解析を行った。上記式において、tは吸着層の厚み、Pは吸着平衡圧、Poは測定温度(液体窒素の沸点)でのN2飽和蒸気圧を表す。なお、分布曲線は、直径を対数軸とする片対数グラフで表される。
【0045】
実施例1
富士シリシア化学株式会社製シリカゲル(CARiACT Q−10)49gを25%アンモニア水170mlに懸濁した。この懸濁液を撹拌しながら、25%アンモニア水30mlに塩化パラジウム1.672gを溶解した溶液を滴下した。この懸濁液を純水500mlで洗浄し、吸引濾過した。110℃に恒温乾燥器に入れた。この時の平均蒸発速度は、0.69ml/(g・h)であった。空気気流下、600℃で6時間焼成した。次に、焼成した触媒を水150mlに懸濁させ、4%水酸化ナトリウム水溶液をpH9.5になるまで加えた。懸濁液に37%ホルムアルデヒド水溶液を5ml加えた。pHを9.5に保持したまま、懸濁液の温度を60℃に上昇させ、その後60℃で30分間撹拌を継続した。懸濁液を純水500mlで洗浄し、吸引濾過し、容器に移した。110℃に恒温乾燥器に入れた。この時、容器の開口部面積を調節し、酸化物担体に残存する水媒体の平均蒸発速度を0.42ml/(g・h)とした。残存水媒体のpHは9.5であり、残存水媒体の量は酸化物担体の全細孔容積の0.95倍であった。得られた触媒量は、47.7gであった。各測定結果を表1及び2に示す。また、担持触媒の細孔容積−細孔直径分布曲線を図1に示す。
【0046】
実施例2
容器の開口部面積を調節し、酸化物担体に残存する水媒体の平均蒸発速度を0.056ml/(g・h)とした以外は、実施例1と同様の方法で担持触媒を製造した。各測定結果を表1及び2に示す。また、担持触媒の細孔容積−細孔直径分布曲線を図2に示す。
【0047】
実施例3
容器の開口部面積を調節し、酸化物担体に残存する水媒体の平均蒸発速度を0.046ml/(g・h)とし、残存水媒体のpHを7.0とした以外は実施例1と同様の方法で担持触媒を製造した。各測定結果を表1及び2に示す。また、担持触媒の細孔容積−細孔直径分布曲線を図3に示す。
【0048】
比較例1
富士シリシア化学株式会社製シリカゲル(CARiACT Q−6)を用い、容器の開口部面積を調節し、酸化物担体に残存する水媒体の平均蒸発速度を1.59ml/(g・h)とした以外は、実施例1と同様の方法で担持触媒を製造した。各測定結果を表1及び2に示す。また、担持触媒の細孔容積−細孔直径分布曲線を図4に示す。
【0049】
比較例2
富士シリシア化学株式会社製シリカゲル(CARiACT Q−6)49gを25%アンモニア水170mlに懸濁した。この懸濁液を撹拌しながら、25%アンモニア水30mlに塩化パラジウム1.672gを溶解した溶液を滴下した。次いで、この懸濁液を純水500mlで洗浄し、吸引濾過した。110℃に恒温乾燥器に入れた。この時の平均蒸発速度は、0.69ml/(g・h)であった。空気気流下、600℃で6時間焼成した。焼成した触媒に水31.5mlを加え良く混合した。110℃に恒温乾燥器に入れた。この時、容器の開口部面積を調節し、酸化物担体に残存する水媒体の平均蒸発速度を0.046ml/(g・h)とした。残存水媒体のpHは、5.0であり、残存水媒体の量は酸化物担体の全細孔容積の0.86倍であった。各測定結果を表1及び2に示す。また、担持触媒の細孔容積−細孔直径分布曲線を図5に示す。
【0050】
比較例3
酸化物担体に残存する水媒体のpHを11.1とした以外は実施例1と同様の方法で担持触媒を製造した。得られた触媒量は、27.0gであった。各測定結果を表1及び2に示す。また、担持触媒の細孔容積−細孔直径分布曲線を図6に示す。
【0051】

Figure 0004411740
【0052】
Figure 0004411740
【0053】
【発明の効果】
本発明の担持触媒は、機械的強度に優れ、細孔容積−細孔直径分布曲線において細孔容積のピークが細孔直径の大きい方に移動した細孔分布を有し、特に、アントラキノン類の水素化反応に対し高い活性を示す。また、本発明の製造方法によれば、担持触媒製造時に、活性や強度を低下させることなく平均細孔直径を選択的に変化させ、所望の平均細孔直径を有する担持触媒を得ることができる。また、平均細孔直径が異なる酸化物担体から同一の平均細孔直径を有する担持触媒を得ることができ、平均細孔直径が同一の酸化物担体から異なる平均細孔直径を有する担持触媒を得ることもできる。更に、金属化合物の担持ロスを低減することができる。
【図面の簡単な説明】
【図1】実施例1で製造した担持触媒の吸着等温線から求めた細孔容積−細孔直径分布曲線を示すグラフ。
【図2】実施例2で製造した担持触媒の吸着等温線から求めた細孔容積−細孔直径分布曲線を示すグラフ。
【図3】実施例3で製造した担持触媒の吸着等温線から求めた細孔容積−細孔直径分布曲線を示すグラフ。
【図4】比較例1で製造した担持触媒の吸着等温線から求めた細孔容積−細孔直径分布曲線を示すグラフ。
【図5】比較例2で製造した担持触媒の吸着等温線から求めた細孔容積−細孔直径分布曲線を示すグラフ。
【図6】比較例3で製造した担持触媒の吸着等温線から求めた細孔容積−細孔直径分布曲線を示すグラフ。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a supported catalyst in which a metal compound is supported on an oxide support and a method for producing the same. The present invention also relates to a method for producing hydrogen peroxide by performing a hydrogenation reaction of anthraquinones in the presence of the supported catalyst of the present invention.
[0002]
[Prior art]
The supported catalyst in which a metal is supported on an oxide support is used for various chemical reactions as described in, for example, Takaho Shirasaki, Naoyuki Todo, Catalyst Preparation, (1974) Kodansha. The metal used as the active component is generally a transition metal belonging to Groups IIIA to IB of the fourth, fifth and sixth periods in the periodic table. Among them, platinum group metals such as a palladium catalyst and a platinum catalyst are one of industrially utilized catalysts because they exhibit good activity and selectivity in hydrogenation reactions and the like. Since the platinum group metal which is an active component of these catalysts is relatively expensive, it is generally used as a supported catalyst supported on a carrier. The ranking of activity and selectivity by the metal component of the supported catalyst has been performed for a long time.
[0003]
On the other hand, among the physical properties of the supported catalyst, it is important that the average pore diameter, the BET specific surface area, and the total pore volume are important, “Catalyst Society Volume 5 (Engineering Volume 1) Catalyst Design”, p122. -133 (1985) Kodansha. In Igarashi, “Chemical Engineering”, 60 (4), 232 (1996), it is described that the optimization of the structural factors of the supported catalyst is important in order to maximize the catalytic function of the industrial catalyst. . In Onuma, “Surface”, 23 (8), 482 (1985), pore control of the support is important in designing the catalyst, and optimization of the catalyst structure is almost always the pores of the support used for catalyst production. It is supposed to be done by controlling. As described above, the pore structure of the conventional supported catalyst is based on the premise that the pore structure of the support is maintained, and in order to optimize the structure of the supported catalyst, the average pore diameter of the support, the total pore volume, Controlling the BET specific surface area and the like has been performed.
[0004]
The supported catalyst using the oxide carrier is, for example, the Adsorbtin method, the pore-filling method, and the incipient wetness described in Chemical Engineering Association, “Progress of Chemical Engineering, Vol. 15 Catalyst Design”, p. 40-54 (1981) Tsuji Shoten. It is manufactured through a process such as separation, washing, drying, oxidation, calcination, reduction, etc., if necessary, after supporting a metal compound by an impregnation method such as an evaporation method, an evaporation to dryness method, a spray method or an ion exchange method. .
[0005]
The supported catalyst thus produced can be used for hydrogenation of anthraquinones, for example, in the production of hydrogen peroxide by the anthraquinone method. Currently, the main production method of hydrogen peroxide that is industrially used is a method using anthraquinones as a reaction medium and is called an anthraquinone method. In general, anthraquinones are used after being dissolved in a suitable organic solvent. A solution prepared by dissolving anthraquinones in an organic solvent is called a working solution. The organic solvent is used alone or as a mixture, but usually a mixture of two kinds of organic solvents is used. In the anthraquinone method, in the reduction step, the anthraquinones in the working solution are reduced with hydrogen in the presence of a catalyst to produce the corresponding anthrahydroquinones. Next, in the oxidation step, the anthrahydroquinones are oxidized with air or a gas containing oxygen and converted again to anthraquinones, and at the same time, hydrogen peroxide is generated. Hydrogen peroxide produced in the working solution is usually extracted with water in the extraction process and separated from the working solution. The working solution from which the hydrogen peroxide has been extracted is returned to the reduction step again to form a circulation process. This process substantially produces hydrogen peroxide from hydrogen and air and is a very efficient process. Hydrogen peroxide has already been industrially produced using this circulation process.
[0006]
As a catalyst used for the hydrogenation reaction of anthraquinones in the reduction step of the circulation process, a Raney nickel catalyst, a palladium black catalyst, and a palladium supported catalyst supported on a carrier are known. Although Raney nickel catalyst is highly active, it has a number of drawbacks such as significant deterioration due to a small amount of hydrogen peroxide in the working solution, danger of handling due to the fact that it is an ignition metal, and low selectivity. The palladium black catalyst is excellent in activity and selectivity. However, separation from the working solution is difficult, and it has a fatal defect in industrial production of hydrogen peroxide that is easily decomposed in the presence of palladium. The palladium-supported catalyst supported on the carrier is slightly inferior in activity and selectivity to the palladium black catalyst, but is easily separated from the working solution and is a suitable catalyst for industrial production of hydrogen peroxide. As the palladium-supported catalyst, supported catalysts supported on various supports such as silica, alumina, zirconia, silica / alumina, aluminosilicate, alkaline earth metal carbonate and activated carbon have been proposed. However, not all these supported catalysts are inexpensive, necessary for industrial catalysts, have high catalyst strength, and have high activity and selectivity. However, the above supported catalysts can actually be used industrially. A small part of the catalyst.
[0007]
The palladium-supported catalyst supported on alumina is one of the few supported catalysts that can be used industrially, and has the advantage of relatively high activity and strength. In US Pat. No. 5,772,997, a calcined oxide such as alumina, silica, titania, zirconia, silica-alumina, silica-alumina-magnesia, etc. having a specific crystal phase, average pore diameter, particle diameter and BET specific surface area is used. The anthraquinone process has been successfully improved by using a catalyst produced as a support.
[0008]
In Japanese Patent Publication No. 63-29588, at least one metal selected from zirconium, thorium, cerium, titanium and aluminum was added in addition to palladium using silica as a carrier as a supported catalyst superior to a palladium-supported catalyst supported on alumina. A supported catalyst and a method for producing the same have been proposed.
[0009]
US Pat. No. 5,853,693 discloses a supported catalyst comprising palladium supported on silica and at least one alkali metal, and a method for producing the same. Among them, the average pore diameter, pore volume, particle diameter, and particle shape are important factors governing the activity and strength of the supported catalyst. The supported catalyst having an average pore diameter of 8 to 40 nm is active. Is high and the rate of degradation of activity is low. Furthermore, it has been pointed out that even if the average pore diameter range of the support used is limited, the average pore diameter of the obtained supported catalyst varies somewhat depending on the catalyst production conditions such as the pH of the alkaline aqueous solution to be calcined or treated. However, in order to change the average pore diameter depending on the calcination temperature during the production of the supported catalyst, a considerably high temperature is required, and the total pore volume and BET specific surface area decrease with the average pore diameter. Is significantly reduced. Moreover, in order to change the average pore diameter depending on the pH at the time of catalyst production, it is necessary to excessively increase the pH, leading to a decrease in the strength and yield of the supported catalyst.
[0010]
[Problems to be solved by the invention]
The object of the present invention is to provide a supported catalyst suitable for hydrogenation reaction of anthraquinones, etc., and to selectively change the average pore diameter without reducing the activity and strength during the production of the supported catalyst. It is an object of the present invention to provide a method for producing a supported catalyst having an average pore diameter of
[0011]
[Means for Solving the Problems]
The present inventors consider that the pore structure of the support is important in determining the skeleton of the pore structure of the supported catalyst, and that the method for producing the supported catalyst is important in determining the pore structure of the supported catalyst. As a result of intensive studies to solve the above problems, the drying step in the production of the supported catalyst is not merely removing moisture, and at the same time as supporting the metal compound on the oxide support, or After the loading, the oxide carrier is contacted with the aqueous medium to impregnate the oxide carrier with the aqueous medium having a specific pH, and subsequently remains in the oxide carrier at a specific temperature and a specific average evaporation rate. It has been found that the average pore diameter of the supported catalyst can be selectively changed without lowering the activity or strength by performing a drying treatment to evaporate the aqueous medium. Furthermore, the supported catalyst produced by such a production method has a pore distribution in which the pore volume peak moves to the larger pore diameter in the pore volume-pore diameter distribution curve. It has been found that it exhibits high activity for hydrogenation reactions and the like. The present invention has been made based on these findings.
[0012]
That is, the present invention is a supported catalyst consisting essentially of 0.1 to 10% by weight of metal with respect to the weight of the oxide support and the oxide support, and the pore diameter in the pore volume-pore diameter distribution curve. The present invention relates to a supported catalyst having a pore distribution in which a peak of pore volume exists in a region of 10 nm or more and a median diameter change rate of 4% or less.
[0013]
Furthermore, the present invention is a method for producing a supported catalyst consisting essentially of 0.1 to 10% by weight of metal with respect to the weight of the oxide support and the oxide support, and the metal compound is supported on the oxide support. At the same time or after supporting, the oxide carrier is contact-treated with an aqueous medium to impregnate the oxide carrier with an aqueous medium having a pH of 6.0 to 11.0, followed by a drying temperature of 50 ° C. or higher. And a drying process for evaporating the aqueous medium remaining in the oxide support at an average evaporation rate of 0.55 ml / (g · h) or less with respect to the weight of the oxide support. Regarding the method.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Examples of the oxide support used in the present invention include commonly used catalyst supports such as silica, alumina, titania, zirconia, and other composite oxides such as silica / alumina, silica / titania, silica / alumina / titania, and the like. Or a physical mixture of two or more of the following. Among these, an oxide carrier containing at least amorphous silica particles is preferable, an oxide carrier containing 50% by weight or more of amorphous silica particles is more preferable, and one containing 80% by weight or more of amorphous silica is most preferable.
[0015]
The particle diameter, particle size distribution and particle shape of the oxide carrier are not particularly limited. The particle size, particle size distribution, and particle shape of an oxide carrier used as a normal catalyst carrier may be used, and may be selected according to the reaction process using the supported catalyst. For example, for the hydrogenation reaction of anthraquinones, the median diameter of the oxide carrier is usually 1 μm to 200 μm, preferably 20 to 180 μm, more preferably 30 to 150 μm. Examples of the shape of the oxide carrier include an indeterminate shape, a spherical shape, a cylindrical shape, a three-leaf shape, a four-leaf shape, a ring, and a honeycomb.
[0016]
In the present invention, the total pore volume of the oxide support is defined as the total pore volume per unit weight of the oxide support, and is usually 0.2 to 2.0 ml / g, preferably 0.3 to 1. 5 ml / g, more preferably 0.5 to 1.0 ml / g. In the present invention, as long as the total pore volume of the oxide support is within the above range, other features are not substantially limited, and the intended supported catalyst can be produced. Therefore, the average pore diameter of the oxide support used in the present invention is not particularly limited. However, in order to produce a catalyst having an arbitrary average pore diameter, it is usually 0.1 to 100 nm, preferably 1 to 1 nm. It is 50 nm, More preferably, it is 1-25 nm. The pore diameter distribution of the oxide support is not particularly limited, and may have a single peak or a plurality of peaks, and these peaks may be broad or sharp.
[0017]
The BET specific surface area of the oxide support used in the present invention is not particularly limited, but is usually 50 m.2/ G or more, preferably 100 m2/ G or more, more preferably 150 m2/ G or more. If the BET specific surface area is small, it is necessary to repeat the loading operation in order to increase the loss of the metal compound or increase the content of the metal compound to be supported.
[0018]
The supported catalyst of the present invention usually contains 0.1 to 10% by weight, preferably 0.5 to 5% by weight of metal active species as a metal based on the weight of the oxide support. Examples of the metal include alkali metals such as Li, Na, K, Rb, and Cs of Group IA of the periodic table, alkaline earth metals such as Be, Mg, Ca, Sr, and Ba of Group IIA, fourth, and fifth. , Sc, Y, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Tc, Re, Fe, Ru, Os, Co, belonging to Group IIIA to Group IB of the sixth period Illustrative are transition metals such as Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au, Group IIB Zn, etc., each used alone or in a mixture. Among the above metals, platinum group metals such as ruthenium, rhodium, palladium and platinum are excellent for use in the catalytic hydrogenation reaction of organic compounds. In the hydrogenation reaction of anthraquinones, palladium and platinum are particularly suitable, and a supported catalyst containing at least these metals alone or as a mixture is desirable. The metal active species exists in the state of a metal, an oxide or the like.
[0019]
The metal loading mode, that is, the distribution of the metal in the oxide support is not particularly limited. It is selected according to the reaction process using the supported catalyst. Examples of the loading mode include egg shell, egg white, egg yolk, and uniform. For example, in the hydrogenation reaction of anthraquinones, an egg shell or uniform support mode is suitable.
[0020]
The metal compound can be supported on the oxide support by an impregnation method such as a conventionally known Adsorption method, Pore-filling method, Incipient wetness method, Evaporation to dryness method, Spray method, or an ion exchange method.
[0021]
In the impregnation method, a metal compound solution and an oxide support are basically brought into contact with each other. As the metal compound by this method, any metal compound that can be dissolved in an organic solvent such as water, aliphatic hydrocarbon, aromatic hydrocarbon, organic halide, alcohol, ether, amide, or the like can be used. More specifically, chloride, nitrate, sulfate, acetate, hydroxide, complex salt and the like are exemplified. The concentration of the metal compound in the solution is appropriately selected so as to obtain a catalyst supporting 0.1 to 10% by weight of metal active species as a metal with respect to the oxide support. When there are two kinds of metal active species, they may be supported simultaneously or separately. After supporting the metal compound, separation, washing, drying, oxidation, firing, reduction, molding, and a combination thereof are performed as necessary. Here, the term “support” means that a metal compound or metal is physically or chemically adsorbed on an oxide carrier.
[0022]
The ion exchange method is preferably used for supporting a metal compound on an oxide carrier containing amorphous silica. The oxide carrier is brought into contact with a solution containing ammonium ions to exchange protons with ammonium ions, and then brought into contact with a solution of a metal compound to exchange ammonium ions with ions containing a metal active species. The ion exchange with the ammonium ion and the ion exchange with the metal-containing species ion may be performed sequentially in separate solutions, but can also be performed simultaneously in the same solution. Separation, washing, drying, oxidation, calcination, or reduction and a combination of these are performed as necessary.
[0023]
For example, an oxide carrier carrying a metal compound is separated by an appropriate method, and 10 to 20 ml of water such as ion-exchanged water is used for 1 g of the oxide carrier, and a batch type (decantation) method or a flow type method. It is washed by. The washed oxide support is directly calcined after drying or without an independent drying step. A drying process is performed by methods, such as a batch type and a continuous type, at 50-200 degreeC, Preferably it is 100-160 degreeC. Vacuum drying is used when the pore diameter may change due to the drying process. In the firing, the oxide carrier carrying the metal compound is fired in the air at 300 to 900 ° C. for 0.1 to 48 hours. An oxidation treatment or a reduction treatment may be performed instead of the firing step or before or after the firing step. The oxidation treatment is performed by bringing an aqueous oxidant solution and an oxide carrier carrying a metal compound into contact with each other at a temperature of room temperature to 100 ° C. (boiling point of water). As the oxidizing agent, water-soluble peroxides, peroxides such as perchloric acid and chloric acid and salts thereof, alkali metal peroxides, hydrogen peroxide and the like are used. The reduction treatment is performed by bringing an aqueous solution containing a reducing agent such as formaldehyde, formic acid, hydrazine, and the oxide carrier carrying the metal compound into contact at a temperature of room temperature to 100 ° C. (boiling point of water).
[0024]
In the method for producing a supported catalyst of the present invention, the oxide carrier is contact-treated with an aqueous medium simultaneously with or after the metal compound is supported by the impregnation method or the ion exchange method, and the pH is 6.0 to 11.0. An oxide carrier impregnated with an aqueous solution of the oxide carrier, followed by a drying temperature of 50 ° C. or higher and an average evaporation rate of 0.55 ml / (g · h) or less with respect to the weight of the oxide carrier. A drying treatment step of evaporating the aqueous medium remaining therein is included. In the production method of the present invention, the treatment step may be performed simultaneously with the metal compound loading, or the treatment step may be performed after the metal compound loading. Moreover, although the said process process can also be performed in the arbitrary steps after metal compound carrying | support, it is especially preferable to carry out after baking. Further, if necessary, treatments such as separation, washing, oxidation, calcination and reduction may be combined, or the above treatment steps may be repeated.
[0025]
The pH of the aqueous medium used in the contact treatment of the present invention is adjusted so that the aqueous medium impregnated in the oxide carrier has the following pH by adding acid, base, or acid and base to water. As the acid, water-soluble inorganic acids such as sulfuric acid, nitric acid, hydrochloric acid and phosphoric acid or water-soluble organic acids such as formic acid and acetic acid are preferably used. Suitable bases are carbonates or hydroxides of alkali metals or alkaline earth metals, water-soluble inorganic bases such as ammonia, or water-soluble organic bases such as primary, secondary and tertiary alkylamines. Used for.
[0026]
The contact treatment is preferably performed at 50 to 220 ° C. using an aqueous medium having an amount of 0.5 to 1.5 times the total pore volume. The treatment time is a drying loss rate represented by the following formula:
Loss on drying = 100 × (weight before drying−weight after drying at 160 ° C.) / Weight before drying
Is preferably determined to be 5% or less, and is usually 0.1 to 48 hours.
[0027]
The pH of the aqueous medium remaining on the oxide support after the contact treatment is defined as the pH of the aqueous dispersion in which the supported catalyst obtained after the contact treatment is dispersed at a concentration of 0.05 g / ml. The pH of the residual aqueous medium is usually 6.0 to 11.0, preferably 7.0 to 10.5, and most preferably 8.0 to 10.0. Such a pH restriction is effective when an oxide carrier containing amorphous silica is used, and is particularly effective when an oxide carrier containing 50% by weight or more of amorphous silica is used. At low pH, it is difficult to obtain a certain effect, and at high pH, catalyst strength and yield are reduced. The amount of the residual aqueous medium is usually 0.5 to 1.5 times, preferably 0.5 to 1.0 times the total pore volume of the oxide support.
[0028]
The contact-treated oxide carrier is separated by suction filtration or the like, washed with water or the like as necessary, and then dried. A drying temperature means the temperature of process atmosphere, and is 50 degreeC or more normally, 50-220 degreeC is preferable and 80-150 degreeC is more preferable. It is difficult to obtain a certain effect at low temperatures. At a high temperature, it is difficult to control the average evaporation rate of the aqueous medium remaining on the oxide carrier, and the processing cost becomes high.
[0029]
The average evaporation rate of the aqueous medium remaining on the oxide support is the volume of water evaporated in 0.25 hours after the start of the drying process (ml) / (weight of oxide support used in the process (g) × 0.25 hours). (H)). The average evaporation rate of the residual aqueous medium is usually 0.55 ml / (g · h) or less, and more preferably 0.45 ml / (g · h) or less. By limiting the pH and drying temperature of the residual aqueous medium and simultaneously limiting the average evaporation rate, a supported catalyst having a desired average pore diameter can be obtained without reducing activity or strength.
[0030]
The drying treatment of the present invention can be performed by a continuous apparatus such as a rotary kiln or a batch apparatus such as an air dryer, an aeration band dryer, a turbo negative dryer, or a fluid dryer. Examples of the fluid used for the drying treatment include compressed air, heated air, and inert gas. The average evaporation rate of the aqueous medium remaining on the oxide carrier can usually be controlled by the drying temperature and the fluid flow rate used for drying. The pressure of the drying process is not particularly limited, but is usually performed under atmospheric pressure.
[0031]
In the present invention, the average pore diameter increase rate (%, hereinafter may be referred to as PD increase rate) during the production of the supported catalyst,
100 × Catalyst average pore diameter / Support average pore diameter−100
The total pore volume reduction rate (%, hereinafter may be referred to as PV reduction rate) during catalyst production,
100-100 × total pore volume of catalyst / total pore volume of support
It is defined by the expression In the method of the present invention, the PD increase rate can be selectively made larger than the PV decrease rate. The PD increase rate is usually 20% or more, preferably 25% or more, more preferably 30% or more. The upper limit of the PD increase rate is usually about 500%. If the increase rate is smaller than the above range, it is difficult to obtain a catalyst having an arbitrary average pore diameter from the same oxide support. By changing the PD increase rate, supported catalysts having different average pore diameters can be produced from the same oxide support, and conversely, supported catalysts having the same average pore diameter can be produced from different oxide supports. The PV reduction rate is usually 0 to 20%.
[0032]
The supported catalyst produced by the method of the present invention has a median diameter of 10 to 300 μm, preferably 30 to 200 μm, and total pores of 0.3 to 1.5 ml / g, preferably 0.5 to 1.0 ml / g. Volume, average pore diameter of 8-40 nm, preferably 10-30 nm, 50 m2/ G or more, preferably 100 to 250 m2/ G BET specific surface area. Furthermore, the supported catalyst of the present invention has a pore volume peak in a region where the pore diameter is 10 nm or more, preferably 10 to 80 nm, more preferably 15 to 60 nm in the pore volume-pore diameter distribution curve. Characterized by pore distribution. In the pore volume-pore diameter distribution curve, the area ratio of the region having a pore diameter of 10 nm or more to the entire region is preferably 75% or more.
[0033]
The supported catalyst produced in the present invention is applied to various chemical reactions. The applied chemical reaction is preferably a catalytic hydrogenation reaction of an organic compound. For example, it is used as a hydrogenation catalyst for anthraquinones in a method for producing hydrogen peroxide by the anthraquinone method.
[0034]
The amount of the supported catalyst used in the hydrogenation reaction of the anthraquinones of the present invention is controlled to an appropriate concentration range depending on the process conditions, and is usually used at 5 to 70 g / l with respect to the working solution. As the anthraquinones, alkyl anthraquinones such as ethyl anthraquinone, t-butyl anthraquinone and amyl anthraquinone; alkyl tetrahydroanthraquinones such as ethyl tetrahydroanthraquinone, t-butyl tetrahydroanthraquinone and amyl tetrahydroanthraquinone; and mixtures thereof are preferable. Each of the alkylanthraquinone and the alkyltetrahydroanthraquinone may be a mixture of a plurality of alkylanthraquinones or alkyltetrahydranthraquinones. When a mixture of alkyl anthraquinone and alkyl tetrahydroanthraquinone is used, the mixing ratio (molar ratio) is preferably 2: 1 to 8: 1, and more preferably 3: 1 to 6: 1.
[0035]
The concentration of the alkylanthraquinones in the working solution is controlled to an appropriate concentration range depending on the process conditions, and is usually 0.4 to 1.0 mol / l. Although the solvent used for preparing the working solution in the present invention is not particularly limited, preferred solvents include a combination of aromatic hydrocarbon and higher alcohol, aromatic hydrocarbon and cyclohexanol or alkylcyclohexanol. And combinations of carboxylic acid esters of the above, combinations of aromatic hydrocarbons and tetrasubstituted ureas, and the like.
[0036]
The hydrogenation reaction of anthraquinones is performed, for example, in a hydrogen stream or in a hydrogen-containing gas atmosphere at a reaction temperature of 10 to 80 ° C. and a reaction pressure of 100 to 500 kPa for 5 minutes to 1 hour. After removing the supported catalyst, the produced anthrahydroquinones are oxidized with an oxygen-containing gas such as air at 10 to 80 ° C. and converted again to anthraquinones, and at the same time, hydrogen peroxide is produced. The produced hydrogen peroxide is extracted with water and separated from the working solution. The working solution after separating the hydrogen peroxide is returned again to the reduction step to form a circulation process. Examples of the reactor used for the hydrogenation reaction of anthraquinones include a fixed bed, a fluidized bed, mechanical stirring, a bubble column, and a pipe reactor.
[0037]
【Example】
The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to these examples. In the following examples, each measurement was performed by the following method. In the examples,% is based on weight unless otherwise specified.
[0038]
(1) Specific surface area
It was measured by the BET method.
[0039]
(2) Total pore volume
It measured by the gas adsorption method using the high-speed specific surface area / pore distribution measuring apparatus (ASAP2000 by Micromeritics).
[0040]
(3) Average pore diameter
It calculated | required from the following formula from the measured value of BET specific surface area (one point method, relative pressure 0.18) and total pore volume (one point method, relative pressure 0.98).
Average pore diameter (nm) = 4000 × total pore volume (ml / g) / BET specific surface area (m2/ G)
[0041]
(4) pH of aqueous medium remaining on oxide support
The supported catalyst obtained by the drying process is dispersed in ion-exchanged water at a concentration of 0.05 g / ml, heated to 80 ° C. and then cooled to room temperature with stirring, and the aqueous dispersion obtained is measured with a pH meter. did.
[0042]
(5) Evaluation of supported catalyst activity
The activity of the supported catalyst was evaluated by the amount of hydrogen absorbed when a working solution in which amylanthraquinone was dissolved in a solvent composed of pseudocumene and diisobutylcarbinol was brought into contact with a small amount of the supported catalyst. Specific test methods are described below. A 100 ml three-necked flask was charged with 50.0 mg of supported catalyst and 25 ml of working solution. The concentration of amylanthraquinone in the working solution was 0.6 mol / l, and a mixed solvent of 60% by volume of pseudocumene and 40% by volume of diisobutyl carbinol was used. A magnetic induction type stirrer capable of completely sealing the inside of the flask was attached, and the flask was sealed with a vacuum cock. The flask was then attached to an atmospheric hydrogenation reactor. This apparatus detects the pressure fluctuation in the flask based on the water level, and hydrogen corresponding to the hydrogen absorption is supplied from the measuring pipe via the relay type electromagnetic valve. The hydrogen metering pipe is composed of a burette part and a water storage part, and the water in the hydrogen metering pipe serves as a piston so that the pressure inside the flask and the atmospheric pressure are kept equal. The hydrogen absorption is measured as a difference in liquid level in the hydrogen metering tube. The flask was immersed in a 30 ° C. water bath, and evacuation and hydrogen introduction into the flask were repeated three times. The stirrer was turned on after 5 minutes. The amount of hydrogen absorbed from 30 minutes after the start of hydrogen absorption was measured. The hydrogen absorption rate per unit supported catalyst weight (ml / (min · g)) was determined in terms of hydrogen absorption at 0 ° C. and 1 atm.
[0043]
(6) Strength evaluation of supported catalyst
This was done by measuring the median diameter change rate before and after strong stirring. Specific test methods are described below. A 1 l tester (diameter 10 cm, barrel length 21 cm, lower cone length 2.5 cm) with four baffles was charged with 15 g of supported catalyst and 0.5 l of ion-exchanged water. A stirrer with 6 disk turbine blades (disk: length 1.2 cm × width 1.1 cm × width 0.2 cm) having a diameter of 5 cm was rotated at 2000 rpm. About 5 ml of the slurry was collected 1 minute and 2 hours after the start of stirring. The median diameter at a relative refractive index of 1.12i was measured with a laser diffraction particle size distribution analyzer (LA-910, manufactured by Horiba, Ltd.). Median diameter change rate (%) = (median diameter after 1 minute of test−median diameter after 2 hours of test) / median diameter after 1 minute of test. The median diameter change rate of the supported catalyst of the present invention is 4% or less, preferably 2% or less.
[0044]
(7) Pore volume-pore diameter distribution curve (dV / dlog (D) curve)
Kazuhiro Washio, “Measurement of specific surface area / pore distribution by gas adsorption method”, Shimazu review, Vol. 48, no. 1, pp 35-49 (1991.6). That is, the Halsey-type t determinant on the adsorption side of the adsorption isotherm obtained using ASAP2000 described in (2):
t (nm) = 3.54 × [-5.000 / (ln (P / Po)]0.333× 10-1
The pore distribution was analyzed by the BJH (Barrett-Joyner-Halenda) method. In the above formula, t is the thickness of the adsorption layer, P is the adsorption equilibrium pressure, and Po is N at the measurement temperature (the boiling point of liquid nitrogen).2Represents saturated vapor pressure. The distribution curve is represented by a semilogarithmic graph having a diameter as a logarithmic axis.
[0045]
Example 1
49 g of silica gel (CariACT Q-10) manufactured by Fuji Silysia Chemical Ltd. was suspended in 170 ml of 25% aqueous ammonia. While stirring this suspension, a solution obtained by dissolving 1.672 g of palladium chloride in 30 ml of 25% aqueous ammonia was added dropwise. The suspension was washed with 500 ml of pure water and suction filtered. It put into the constant temperature dryer at 110 degreeC. The average evaporation rate at this time was 0.69 ml / (g · h). Firing was performed at 600 ° C. for 6 hours in an air stream. Next, the calcined catalyst was suspended in 150 ml of water, and a 4% aqueous sodium hydroxide solution was added until the pH reached 9.5. 5 ml of 37% aqueous formaldehyde solution was added to the suspension. While maintaining the pH at 9.5, the temperature of the suspension was raised to 60 ° C., and then stirring was continued at 60 ° C. for 30 minutes. The suspension was washed with 500 ml of pure water, filtered with suction, and transferred to a container. It put into the constant temperature dryer at 110 degreeC. At this time, the opening area of the container was adjusted so that the average evaporation rate of the aqueous medium remaining on the oxide carrier was 0.42 ml / (g · h). The pH of the residual aqueous medium was 9.5, and the amount of the residual aqueous medium was 0.95 times the total pore volume of the oxide support. The amount of catalyst obtained was 47.7 g. Each measurement result is shown in Tables 1 and 2. Moreover, the pore volume-pore diameter distribution curve of the supported catalyst is shown in FIG.
[0046]
Example 2
A supported catalyst was produced in the same manner as in Example 1 except that the opening area of the container was adjusted and the average evaporation rate of the aqueous medium remaining on the oxide support was 0.056 ml / (g · h). Each measurement result is shown in Tables 1 and 2. Moreover, the pore volume-pore diameter distribution curve of the supported catalyst is shown in FIG.
[0047]
Example 3
Example 1 except that the opening area of the container was adjusted, the average evaporation rate of the aqueous medium remaining on the oxide support was 0.046 ml / (g · h), and the pH of the residual aqueous medium was 7.0. A supported catalyst was produced in the same manner. Each measurement result is shown in Tables 1 and 2. Moreover, the pore volume-pore diameter distribution curve of the supported catalyst is shown in FIG.
[0048]
Comparative Example 1
Other than using silica gel manufactured by Fuji Silysia Chemical Co., Ltd. (CARIACT Q-6), adjusting the opening area of the container and setting the average evaporation rate of the aqueous medium remaining on the oxide support to 1.59 ml / (g · h) Produced a supported catalyst in the same manner as in Example 1. Each measurement result is shown in Tables 1 and 2. Moreover, the pore volume-pore diameter distribution curve of the supported catalyst is shown in FIG.
[0049]
Comparative Example 2
49 g of silica gel (CariACT Q-6) manufactured by Fuji Silysia Chemical Ltd. was suspended in 170 ml of 25% aqueous ammonia. While stirring this suspension, a solution obtained by dissolving 1.672 g of palladium chloride in 30 ml of 25% aqueous ammonia was added dropwise. Subsequently, this suspension was washed with 500 ml of pure water and suction filtered. It put into the constant temperature dryer at 110 degreeC. The average evaporation rate at this time was 0.69 ml / (g · h). Firing was performed at 600 ° C. for 6 hours in an air stream. 31.5 ml of water was added to the calcined catalyst and mixed well. It put into the constant temperature dryer at 110 degreeC. At this time, the opening area of the container was adjusted so that the average evaporation rate of the aqueous medium remaining on the oxide carrier was 0.046 ml / (g · h). The pH of the residual aqueous medium was 5.0, and the amount of the residual aqueous medium was 0.86 times the total pore volume of the oxide support. Each measurement result is shown in Tables 1 and 2. Moreover, the pore volume-pore diameter distribution curve of the supported catalyst is shown in FIG.
[0050]
Comparative Example 3
A supported catalyst was produced in the same manner as in Example 1 except that the pH of the aqueous medium remaining on the oxide support was changed to 11.1. The amount of catalyst obtained was 27.0 g. Each measurement result is shown in Tables 1 and 2. Moreover, the pore volume-pore diameter distribution curve of the supported catalyst is shown in FIG.
[0051]
Figure 0004411740
[0052]
Figure 0004411740
[0053]
【The invention's effect】
The supported catalyst of the present invention is excellent in mechanical strength and has a pore distribution in which the pore volume peak moves to the larger pore diameter in the pore volume-pore diameter distribution curve. High activity for hydrogenation reaction. In addition, according to the production method of the present invention, a supported catalyst having a desired average pore diameter can be obtained by selectively changing the average pore diameter without reducing the activity or strength during production of the supported catalyst. . Also, supported catalysts having the same average pore diameter can be obtained from oxide supports having different average pore diameters, and supported catalysts having different average pore diameters can be obtained from oxide supports having the same average pore diameter. You can also Furthermore, it is possible to reduce the loading loss of the metal compound.
[Brief description of the drawings]
1 is a graph showing a pore volume-pore diameter distribution curve obtained from an adsorption isotherm of a supported catalyst produced in Example 1. FIG.
2 is a graph showing a pore volume-pore diameter distribution curve obtained from an adsorption isotherm of the supported catalyst produced in Example 2. FIG.
3 is a graph showing a pore volume-pore diameter distribution curve obtained from an adsorption isotherm of the supported catalyst produced in Example 3. FIG.
4 is a graph showing a pore volume-pore diameter distribution curve obtained from an adsorption isotherm of the supported catalyst produced in Comparative Example 1. FIG.
5 is a graph showing a pore volume-pore diameter distribution curve obtained from an adsorption isotherm of a supported catalyst produced in Comparative Example 2. FIG.
6 is a graph showing a pore volume-pore diameter distribution curve obtained from an adsorption isotherm of the supported catalyst produced in Comparative Example 3. FIG.

Claims (12)

酸化物担体と酸化物担体の重量に対して0.1〜10重量%の金属活性種から本質的になる担持触媒であって、細孔容積−細孔直径分布曲線において細孔直径が10nm以上の領域に細孔容積のピークが存在する細孔分布を有し、メジアン径変化率が4%以下であること、前記酸化物担体が、シリカ、アルミナ、チタニア、ジルコニア、シリカ・アルミナ複合酸化物、シリカ・チタニア複合酸化物、シリカ・アルミナ・チタニア複合酸化物及びこれらの物理的混合物からなる群より選ばれた少なくとも一の酸化物であり、かつ0.2〜2.0ml/gの全細孔容積を有すること、および、前記金属活性種が、ルテニウム化合物、ロジウム化合物、パラジウム化合物及び白金化合物からなる群より選ばれた少なくとも一の白金族金属化合物由来であることを特徴とする特徴とするアントラキノン類の水素化触媒。  A supported catalyst consisting essentially of 0.1 to 10% by weight of a metal active species based on the weight of an oxide support and an oxide support, wherein the pore diameter is 10 nm or more in a pore volume-pore diameter distribution curve Having a pore distribution in which a peak of pore volume exists and a median diameter change rate of 4% or less, and the oxide carrier is silica, alumina, titania, zirconia, silica-alumina composite oxide And at least one oxide selected from the group consisting of a silica / titania composite oxide, a silica / alumina / titania composite oxide, and a physical mixture thereof, and a total fineness of 0.2 to 2.0 ml / g. Having a pore volume, and the metal active species is derived from at least one platinum group metal compound selected from the group consisting of ruthenium compounds, rhodium compounds, palladium compounds and platinum compounds Anthraquinones of a hydrogenation catalyst, characterized wherein there. 細孔直径が10〜80nmの領域に前記細孔容積のピークが存在することを特徴とする請求項1記載のアントラキノン類の水素化触媒。  2. The hydrogenation catalyst for anthraquinones according to claim 1, wherein a peak of the pore volume exists in a region having a pore diameter of 10 to 80 nm. 前記細孔容積−細孔直径分布曲線において、細孔直径が10nm以上である領域の全領域に対する面積割合が75%以上であることを特徴とする請求項1又は2記載のアントラキノン類の水素化触媒。  3. The hydrogenation of anthraquinones according to claim 1, wherein in the pore volume-pore diameter distribution curve, the area ratio of the region having a pore diameter of 10 nm or more to the whole region is 75% or more. catalyst. 前記酸化物担体が、少なくとも無定形シリカを含み、かつ0.2〜2.0ml/gの全細孔容積を有することを特徴とする請求項1〜3のいずれかに記載のアントラキノン類の水素化触媒。  The hydrogen of anthraquinones according to any one of claims 1 to 3, wherein the oxide support contains at least amorphous silica and has a total pore volume of 0.2 to 2.0 ml / g. Catalyst. 酸化物担体と酸化物担体の重量に対して0.1〜10重量%の金属から本質的になるアントラキノン類の水素化触媒を製造する方法であり、金属化合物を酸化物担体に担持するのと同時に、又は、担持した後に、酸化物担体を水媒体で接触処理してpH6.0〜11.0の水媒体を酸化物担体に存在させる工程と、これに引き続く50℃以上の乾燥温度、酸化物担体の重量に対して0.55ml/(g・h)以下の平均蒸発速度で酸化物担体中に残存する水媒体を蒸発させる乾燥処理工程を含むこと、前記酸化物担体が、シリカ、アルミナ、チタニア、ジルコニア、シリカ・アルミナ複合酸化物、シリカ・チタニア複合酸化物、シリカ・アルミナ・チタニア複合酸化物及びこれらの物理的混合物からなる群より選ばれた少なくとも一の酸化物であり、かつ0.2〜2.0ml/gの全細孔容積を有すること、および、前記金属化合物が、ルテニウム化合物、ロジウム化合物、パラジウム化合物及び白金化合物からなる群より選ばれた少なくとも一の白金族金属化合物であることを特徴とするアントラキノン類の水素化触媒の製造方法。  A method for producing a hydrogenation catalyst for anthraquinones consisting essentially of 0.1 to 10% by weight of metal with respect to the weight of the oxide carrier and the oxide carrier, wherein the metal compound is supported on the oxide carrier. Simultaneously or after supporting, the oxide carrier is contact-treated with an aqueous medium so that an aqueous medium having a pH of 6.0 to 11.0 is present in the oxide carrier, followed by a drying temperature of 50 ° C. or higher, oxidation Including a drying treatment step of evaporating the aqueous medium remaining in the oxide support at an average evaporation rate of 0.55 ml / (g · h) or less with respect to the weight of the product support. , Titania, zirconia, silica-alumina composite oxide, silica-titania composite oxide, silica-alumina-titania composite oxide, and at least one oxide selected from the group consisting of physical mixtures thereof And at least one platinum selected from the group consisting of a ruthenium compound, a rhodium compound, a palladium compound and a platinum compound, and having a total pore volume of 0.2 to 2.0 ml / g A method for producing a hydrogenation catalyst for anthraquinones, which is a group III metal compound. 担持触媒製造時に平均細孔直径を変化させることを特徴とする請求項5記載の製造方法。  6. The production method according to claim 5, wherein the average pore diameter is changed during production of the supported catalyst. 平均細孔直径変化率が20%以上であることを特徴とする請求項6記載の製造方法。  The method according to claim 6, wherein the average pore diameter change rate is 20% or more. 前記酸化物担体が、少なくとも無定形シリカを含み、かつ0.2〜2.0ml/gの全細孔容積を有することを特徴とする請求項5〜7のいずれかに記載の製造方法。  The production method according to claim 5, wherein the oxide carrier includes at least amorphous silica and has a total pore volume of 0.2 to 2.0 ml / g. 前記残存する水媒体のpHを、7.0〜10.5にすることを特徴とする請求項5〜8のいずれかに記載の製造方法。  The manufacturing method according to any one of claims 5 to 8, wherein the pH of the remaining aqueous medium is set to 7.0 to 10.5. 前記乾燥温度が80℃〜150℃であることを特徴とする請求項5〜9のいずれかに記載の製造方法。  The said drying temperature is 80 to 150 degreeC, The manufacturing method in any one of Claims 5-9 characterized by the above-mentioned. 前記残存する水媒体の量が、酸化物担体の全細孔容積に対して0.5〜1.5倍であることを特徴とする請求項5〜10のいずれかに記載の製造方法。  The production method according to any one of claims 5 to 10, wherein the amount of the remaining aqueous medium is 0.5 to 1.5 times the total pore volume of the oxide support. アントラキノン法による過酸化水素の製造方法であって、請求項1〜4のいずれかに記載の水素化触媒、又は、請求項5〜11のいずれかに記載の製造方法により製造した水素化触媒の存在下でアントラキノン類の水素化反応を行うことを特徴とする過酸化水素の製造方法。  It is a manufacturing method of hydrogen peroxide by an anthraquinone method, Comprising: The hydrogenation catalyst in any one of Claims 1-4, or the hydrogenation catalyst manufactured by the manufacturing method in any one of Claims 5-11 A method for producing hydrogen peroxide, characterized by carrying out a hydrogenation reaction of anthraquinones in the presence.
JP2000121478A 2000-04-21 2000-04-21 Supported catalyst and method for producing the same Expired - Lifetime JP4411740B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000121478A JP4411740B2 (en) 2000-04-21 2000-04-21 Supported catalyst and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000121478A JP4411740B2 (en) 2000-04-21 2000-04-21 Supported catalyst and method for producing the same

Publications (3)

Publication Number Publication Date
JP2001300328A JP2001300328A (en) 2001-10-30
JP2001300328A5 JP2001300328A5 (en) 2007-06-07
JP4411740B2 true JP4411740B2 (en) 2010-02-10

Family

ID=18632115

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000121478A Expired - Lifetime JP4411740B2 (en) 2000-04-21 2000-04-21 Supported catalyst and method for producing the same

Country Status (1)

Country Link
JP (1) JP4411740B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101814893B1 (en) * 2013-09-10 2018-01-04 신닛테츠스미킨 카부시키카이샤 Oxidation catalyst, exhaust gas treatment device, regenerative combustion burner, method for oxidizing combustible components contained in gas, and method for removing nitrogen oxide contained in gas

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100342966C (en) * 2005-09-06 2007-10-17 南开大学 Loaded palladium catalyst and preparing method and its use
JP5098215B2 (en) * 2006-05-01 2012-12-12 三菱瓦斯化学株式会社 Method for activating hydrogenation catalyst and method for producing hydrogen peroxide containing the same
KR100804199B1 (en) 2006-07-21 2008-02-20 한국화학연구원 Synthesis of mesoporous Pt-incorporated titania/silica using platinum precursor as a template
TWI443063B (en) * 2007-07-11 2014-07-01 Mitsubishi Gas Chemical Co Method for producing regenerative catalyst for producing hydrogen peroxide working solution
JP6456204B2 (en) * 2015-03-24 2019-01-23 千代田化工建設株式会社 Aromatic hydrocarbon hydrogenation catalyst and hydrotreating method using the same
US20230330636A1 (en) * 2020-09-29 2023-10-19 Resonac Corporation Method for producing ethyl acetate production catalyst

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101814893B1 (en) * 2013-09-10 2018-01-04 신닛테츠스미킨 카부시키카이샤 Oxidation catalyst, exhaust gas treatment device, regenerative combustion burner, method for oxidizing combustible components contained in gas, and method for removing nitrogen oxide contained in gas

Also Published As

Publication number Publication date
JP2001300328A (en) 2001-10-30

Similar Documents

Publication Publication Date Title
US5591688A (en) Process for the preparation of fluid bed vinyl acetate catalyst
RU2237517C2 (en) Fluidized-bed vinyl acetate production catalyst
US6528453B2 (en) Process for making a catalyst composition
WO2017128946A1 (en) Highly-dispersed particulate catalyst for use in hydrogen peroxide synthesis, preparation method therefor and application thereof
KR100456411B1 (en) Hydrogenation catalyst for producing hydrogen peroxide and its manufacturing method
CN112675830B (en) Aldol condensation catalyst, preparation method and method for preparing methyl methacrylate by using aldol condensation catalyst
JP4759739B2 (en) Ethylene decomposition catalyst
US4240933A (en) Pd/SiO2 Hydrogenation catalyst suitable for H2 O2 manufacture
CN107694562B (en) Monolithic catalyst and preparation and application thereof
US20190060832A1 (en) Low-Temperature Oxidation Catalyst With Particularly Marked Hydrophobic Properties For The Oxidation Of Organic Pollutants
US9849442B2 (en) Method for producing a metal-containing shell catalyst without intermediate calcining
JP4411740B2 (en) Supported catalyst and method for producing the same
JP3765499B2 (en) Anthraquinone method
KR20010105408A (en) Method of preparing a catalyst containing gold and titanium
JP4595158B2 (en) Supported catalyst and method for producing the same
US20150126361A1 (en) Production Of Shell Catalysts In A Coating Device
JP4890194B2 (en) Method for producing carbon monoxide removal catalyst
EP0009802B1 (en) Pd/sio2 hydrogenation catalyst, the process of preparing the catalyst and its use for producing hydrogen peroxide
CN113731405A (en) Catalyst for preparing hydrogen peroxide by anthraquinone hydrogenation and preparation method and application thereof
US20080249331A1 (en) Vinyl Acetate Catalyst and Support
JP5976845B2 (en) Pre-gold coating of shell-type catalyst coated with Pd-Au
JP5143610B2 (en) Method for producing catalyst for producing ethylene oxide
US7166557B2 (en) Process for the preparation of a microspheroidal catalyst
CN115779899B (en) Palladium-aluminum oxide catalyst and preparation method thereof
JP5258485B2 (en) Catalyst for producing ethylene oxide and method for producing ethylene oxide using the catalyst

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070418

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070418

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091019

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091027

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091109

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121127

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4411740

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121127

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131127

Year of fee payment: 4

EXPY Cancellation because of completion of term