JP4409926B2 - Low self-shrinking high gap phase cement composition - Google Patents

Low self-shrinking high gap phase cement composition Download PDF

Info

Publication number
JP4409926B2
JP4409926B2 JP2003404998A JP2003404998A JP4409926B2 JP 4409926 B2 JP4409926 B2 JP 4409926B2 JP 2003404998 A JP2003404998 A JP 2003404998A JP 2003404998 A JP2003404998 A JP 2003404998A JP 4409926 B2 JP4409926 B2 JP 4409926B2
Authority
JP
Japan
Prior art keywords
amount
cement
mass
self
shrinkage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003404998A
Other languages
Japanese (ja)
Other versions
JP2005162548A (en
Inventor
雅史 大崎
秀明 五十嵐
正機 大門
悦郎 坂井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Ube Corp
Original Assignee
Mitsubishi Materials Corp
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp, Ube Industries Ltd filed Critical Mitsubishi Materials Corp
Priority to JP2003404998A priority Critical patent/JP4409926B2/en
Publication of JP2005162548A publication Critical patent/JP2005162548A/en
Application granted granted Critical
Publication of JP4409926B2 publication Critical patent/JP4409926B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/10Production of cement, e.g. improving or optimising the production methods; Cement grinding

Landscapes

  • Curing Cements, Concrete, And Artificial Stone (AREA)

Description

本発明は、低自己収縮性高間隙相型セメント組成物に関し、詳しくは、間隙相量が多いにもかかわらず自己収縮が小さく、かつAl23 成分に富む産業副産物・産業廃棄物をセメント原料として大量に使用可能である、低自己収縮性高間隙相型セメント組成物に関する。 TECHNICAL FIELD The present invention relates to a low self-shrinkage high gap phase type cement composition, and more particularly, to cement industrial by-products and industrial wastes that are small in self-shrinkage and rich in Al 2 O 3 components despite a large amount of gap phase. The present invention relates to a low self-shrinking high gap phase cement composition that can be used in a large amount as a raw material.

セメント硬化体の自己収縮とは、低水セメント比のセメント硬化体で顕著に認められるもので、水分の逸散、温度変化及び炭酸化等のない条件下で、セメントの水和の進行に伴って起こる巨視的な体積減少であり、乾燥収縮との大きな相違は水分の逸散のない状態で生じることである。   Self-shrinkage of hardened cement is noticeable in hardened cement with low water-cement ratio, and with the progress of cement hydration under the conditions of no moisture dissipation, temperature change and carbonation. This is a macroscopic volume reduction that occurs in the absence of moisture dissipation.

セメント硬化体の自己収縮は古くから知られいるが、その発生メカニズムについては現在も検討されている。一般的には、セメントの水和反応で生じる体積減少(水和収縮)により空隙水中にメニスカスが形成して収縮力を生じ、セメント硬化体が収縮するメカニズムが考えられている。   The self-shrinkage of hardened cement has been known for a long time, but its generation mechanism is still being studied. In general, a mechanism is considered in which a meniscus is formed in void water due to volume reduction (hydration shrinkage) caused by cement hydration reaction, and a shrinkage force is generated, and the hardened cement body contracts.

上記自己収縮は、近年のコンクリートの高強度化に伴い、水セメント比が低いコンクリートが製造されるようになったことにより、初期のコンクリートのひび割れの原因として注目されるようになり、その対策が検討されている。   The above self-shrinkage has been attracting attention as a cause of cracks in early concrete due to the fact that concrete with a low water-cement ratio has been produced with the recent increase in strength of concrete. It is being considered.

一般的に自己収縮が小さいセメントとしてC3 AとC4 AFの合計含有量(間隙相量)が普通ポルトランドセメントよりも少ない中庸熱ポルトランドセメントあるいは低熱ポルトランドセメントが知られている。これらのセメントを用いたコンクリートの骨材あるいは高性能AE減水剤を特定することにより、コンクリートの自己収縮を低減する技術が開示されている(例えば、特許文献1参照)。また、C3 A量を低減して自己収縮が小さいセメントを得る方法が開示されている(例えば、特許文献2及び3参照)。 Generally, a moderately hot Portland cement or a low heat Portland cement having a total content of C 3 A and C 4 AF (amount of interstitial phase) smaller than that of ordinary Portland cement is known as a cement having a small self-shrinkage. A technique for reducing self-shrinkage of concrete by specifying a concrete aggregate or a high-performance AE water reducing agent using these cements is disclosed (for example, see Patent Document 1). Further, a method for reducing the amount of C 3 A to obtain a cement having small self-shrinkage is disclosed (for example, see Patent Documents 2 and 3).

種々のポルトランドセメントの間隙相量と自己収縮との関係に関しては、間隙相量の増加により自己収縮が増大する(例えば、非特許文献1参照)、あるいは間隙相中のC3 Aの割合の増加により自己収縮が増大する(例えば、非特許文献2参照)旨の報告がされている。 Regarding the relationship between the amount of interstitial phase and the self-shrinkage of various Portland cements, the self-shrinkage increases as the amount of interstitial phase increases (for example, see Non-Patent Document 1), or the ratio of C 3 A in the interstitial phase increases. Has been reported to increase self-shrinkage (see Non-Patent Document 2, for example).

しかしながら、間隙相量が多いセメントの自己収縮を低減する方法は知られていない。間隙相量が多いセメントは、製造時に多くの廃棄物を使用できることから、間隙相量が多いセメントの自己収縮を低減する方法が望まれている。   However, there is no known method for reducing the self-shrinkage of cement having a large amount of interstitial phase. Since cement with a large amount of interstitial phase can use a large amount of waste during production, a method for reducing the self-shrinkage of cement with a large amount of interstitial phase is desired.

なお、コンクリートの収縮を抑制するためには、一般的には膨張材が添加されるが、この場合、膨張材添加量を予め調節する必要があること、また過剰に添加した場合、むしろ膨張によるひび割れが発生する場合がある等、種々の問題があった。
特開平11−302056号公報 特開平11−278879号公報 特開平11−278880号公報 田澤栄一ら、セメント・コンクリート論文集、No. 47, p.528 (1993) 宮澤伸吾ら、セメント・コンクリート論文集、No. 53, p.243 (1999)
In order to suppress the shrinkage of concrete, in general, an expansion material is added. In this case, it is necessary to adjust the amount of expansion material added in advance, and when excessively added, it is rather due to expansion. There were various problems such as the occurrence of cracks.
Japanese Patent Laid-Open No. 11-302056 JP 11-278879 A Japanese Patent Laid-Open No. 11-278880 Eiichi Tazawa et al., Papers on cement and concrete, No. 47, p.528 (1993) Shingo Miyazawa et al., Papers on cement and concrete, No. 53, p.243 (1999)

本発明の目的は、間隙相量が多いにもかかわらず、自己収縮が問題となる低水セメント比で使用しても自己収縮が小さく、かつAl23 成分に富む産業副産物・産業廃棄物をセメント原料として大量に使用可能である、低自己収縮性高間隙相型セメント組成物を提供することにある。 The object of the present invention is an industrial by-product / industrial waste that has a small self-shrinkage and is rich in Al 2 O 3 components even when used at a low water cement ratio where self-shrinkage is a problem even though the amount of interstitial phase is large An object of the present invention is to provide a low self-shrinking high gap phase type cement composition that can be used in a large amount as a cement raw material.

本発明者等は、上記目的を達成すべく鋭意検討した結果、間隙相量、即ちC3 A(3CaO・Al23 )とC4 AF(4CaO・Al23 ・Fe23 )の合計含有量が、従来のポルトランドセメントよりも多いセメントであっても、セメント組成物中のf.CaO(遊離石灰)量を調製して、水和初期に一定範囲の自己膨張ひずみを生じさせることにより、自己収縮が従来のポルトランドセメントと同等もしくはより一層小さいセメント組成物が得られることを知見した。 As a result of intensive studies to achieve the above object, the present inventors have found that the amount of interstitial phase, that is, C 3 A (3CaO.Al 2 O 3 ) and C 4 AF (4CaO.Al 2 O 3 .Fe 2 O 3 ). Even if the total content of is higher than that of conventional Portland cement, f. It was found that by preparing the amount of CaO (free lime) and generating a certain range of self-expanding strain at the initial stage of hydration, a cement composition having a self-shrinkage equivalent to or smaller than that of conventional Portland cement can be obtained. .

本発明は、上記知見に基づいてなされたもので、セメントクリンカー及び石膏を含有し、C A量とC AF量の合計量が20〜30質量%で、該C A量が15質量%以下であり、かつf.CaO量が0.28〜1質量%であり、前記f.CaO量と前記C A量との比(f.CaO/C A)が0.04〜0.07であり、C S量が16〜20質量%であり、前記石膏の含有量がSO 量で1〜3.5質量%であり、ブレーン比表面積が3200±100cm 2 /gであり、水セメント比0.4以下で使用することを特徴とする低自己収縮性高間隙相型セメント組成物を提供するものである。 The present invention has been made on the basis of the above knowledge, and contains cement clinker and gypsum, the total amount of C 3 A and C 4 AF is 20 to 30% by mass , and the amount of C 3 A is 15 % by mass. % Or less and f. CaO amount is 0.28 to 1% by mass is, the f. The ratio of the amount of CaO to the amount of C 3 A (f.CaO / C 3 A) is 0.04 to 0.07, the amount of C 2 S is 16 to 20% by mass, and the content of the gypsum is Low self-shrinkage, high interstitial phase type characterized by being used in an amount of SO 3 of 1 to 3.5% by mass, a brain specific surface area of 3200 ± 100 cm 2 / g, and a water cement ratio of 0.4 or less A cement composition is provided.

本発明の低自己収縮性高間隙相型セメント組成物は、間隙相量が多いにもかかわらず、自己収縮が問題となる低水セメント比で使用しても自己収縮が小さく、かつAl23 成分に富む石炭灰、スラグ、下水汚泥等の産業副産物・産業廃棄物をセメント原料として大量に使用可能であり、資源循環への多大な貢献が期待できるものである。 The low self-shrinkage high gap phase type cement composition of the present invention has low self-shrinkage even when used at a low water cement ratio where self-shrinkage is a problem even though the amount of gap phase is large, and Al 2 O Industrial by-products and industrial waste such as coal ash, slag, and sewage sludge rich in three components can be used in large quantities as cement raw materials, and a great contribution to resource recycling can be expected.

以下に本発明の低自己収縮性高間隙相型セメント組成物を詳細に説明する。
本発明のセメント組成物は、ボーグ式で求められるC3 A量とC4 AF量の合計量(間隙相量)が20〜30質量%、好ましくは、22〜28質量%である。間隙相量が20質量%未満の場合、産業副産物・産業廃棄物の原料使用量が制限される。また、間隙相量が30質量%を超える場合、流動性の低下や耐久性の低下が生じる。
Hereinafter, the low self-shrinking high gap phase cement composition of the present invention will be described in detail.
In the cement composition of the present invention, the total amount of C 3 A amount and C 4 AF amount (gap phase amount) determined by the Borg formula is 20 to 30% by mass, preferably 22 to 28% by mass. When the amount of interstitial phase is less than 20% by mass, the amount of raw materials used for industrial by-products and industrial waste is limited. On the other hand, when the amount of the interstitial phase exceeds 30% by mass, the fluidity and durability are deteriorated.

また、上記C3 A量は、15質量%以下であることが好ましく、より好ましくは12質量%以下である。C3 A量が15質量%を超えると、練混ぜ直後の流動性が低下する。C3 A量が少ないほど、練混ぜ直後の流動性は良好となることから、C3 A量の不足による初期強度の低下やC4 AF量の増加による色の問題が生じない範囲であれば、C3 A量は少なくすることが好ましい。通常、C3 A量の下限は4質量%程度である。 Furthermore, the C 3 A content is preferably 15 mass% or less, more preferably 12% by mass. When the amount of C 3 A exceeds 15% by mass, the fluidity immediately after mixing decreases. More C 3 A small amount, the fluidity just after kneading is because it becomes excellent, as long as the color problems caused by an increase and a decrease in C 4 AF amount of initial strength due to insufficient C 3 A content does not occur The amount of C 3 A is preferably reduced. Usually, the lower limit of the amount of C 3 A is about 4% by mass.

また、本発明のセメント組成物は、f.CaO量が0.28〜1質量%、好ましくは0.7〜1質量%である。f.CaO量が0.28質量%未満であると、セメントの膨張が生じず、その後の自己収縮が大きくなるので好ましくない。f.CaO量が1質量%を超えると、セメントの安定性に支障をもたらすので好ましくない。f.CaO量の調製には、原料の粒度、クリンカーの焼成温度及び焼成時間を調整する方法がある。   Moreover, the cement composition of the present invention comprises f. The amount of CaO is 0.28 to 1% by mass, preferably 0.7 to 1% by mass. f. If the CaO amount is less than 0.28% by mass, the cement does not expand, and the subsequent self-contraction increases, which is not preferable. f. When the amount of CaO exceeds 1% by mass, the stability of the cement is hindered. f. The preparation of the CaO amount includes a method of adjusting the particle size of the raw material, the clinker firing temperature and the firing time.

本発明のセメント組成物は、上記f.CaO量と上記C3 A量との質量比(f.CaO/C3 A)が0.04〜0.07であることが好ましく、より好ましくは0.04〜0.06である。f.CaO/C3 A比が上記範囲を逸脱すると、水和初期に自己膨張が生じず、その後の自己収縮が大きくなる。 The cement composition of the present invention is the above f. Preferably the amount of CaO and the mass ratio of the C 3 A content (f.CaO / C 3 A) is 0.04 to 0.07, more preferably 0.04 to 0.06. f. When the CaO / C 3 A ratio deviates from the above range, self-expansion does not occur in the initial stage of hydration, and the subsequent self-contraction increases.

本発明のセメント組成物は、C3 A量とC4 AF量の合計量が20〜30質量%である条件を満足すれば、そのセメントクリンカーの種類及び製造方法は制限されない。例えば、当該条件を満足する単一のクリンカーを焼成しても良いし、二種以上のクリンカーを混合して調製することも可能である。また、産業副産物・産業廃棄物である鉄鋼スラグ、非鉄スラグ、石炭灰、及び下水汚泥から選ばれる少なくとも一種以上を原料として製造することができる。 If the cement composition of the present invention satisfies the condition that the total amount of C 3 A and C 4 AF is 20 to 30% by mass, the type and production method of the cement clinker are not limited. For example, a single clinker that satisfies the conditions may be fired, or two or more clinker may be mixed and prepared. In addition, at least one selected from steel slag, non-ferrous slag, coal ash, and sewage sludge, which are industrial byproducts and industrial waste, can be produced as a raw material.

また、本発明のセメント組成物は、石膏を含有する。該石膏の種類は、二水石膏、半水石膏あるいは無水石膏の何れでも良い。石膏の含有量は、石膏のSO3 量で好ましくは1〜3.5質量%、より好ましくは2〜3質量%である。石膏の含有量が1質量%未満であると急結が生じ、3.5%質量を超えると著しい膨張を生じる。
上記石膏の添加方法は、特に制限されるものではなく、セメントクリンカーの粉砕時に添加しても良く、セメントに後添加して混合しても良い。
Moreover, the cement composition of the present invention contains gypsum. The kind of gypsum may be dihydrate gypsum, hemihydrate gypsum, or anhydrous gypsum. The content of gypsum is preferably 1 to 3.5% by mass, more preferably 2 to 3% by mass in terms of the amount of SO 3 in gypsum. When the gypsum content is less than 1% by mass, rapid setting occurs, and when it exceeds 3.5% by mass, significant expansion occurs.
The method for adding the gypsum is not particularly limited, and may be added when the cement clinker is pulverized, or may be added to the cement and mixed.

本発明のセメント組成物は、水セメント比(質量比)0.3で混練した水和硬化体の自己膨張ひずみの最大値が、好ましくは18×10-6〜60×10-6、より好ましくは30×10-6〜60×10-6の範囲にあるものである。ここで、「自己膨張ひずみの最大値」とは、同一の水セメント比でJIS R 5201−1997「セメントの物理試験方法」に準じて求めた凝結の始発時間から水和10時間以内に生じる膨張ひずみの最大値のことである。 In the cement composition of the present invention, the maximum value of the self-expansion strain of the hydrated cured product kneaded at a water cement ratio (mass ratio) of 0.3 is preferably 18 × 10 −6 to 60 × 10 −6 , and more preferably. are those in the range of 30 × 10 -6 ~60 × 10 -6 . Here, the “maximum value of the self-expanding strain” means the expansion that occurs within 10 hours of hydration from the initial setting time determined according to JIS R 5201-1997 “Physical testing method of cement” at the same water cement ratio. It is the maximum value of strain.

上記自己膨張ひずみの最大値が18×10-6未満であると、その後に生じる自己収縮ひずみが大きくなる。また、上記自己膨張ひずみの最大値が60×10-6を超えると、セメントの安定性の面で好ましくない。このように水和初期に上記の一定範囲の自己膨張ひずみを示すセメントの自己収縮ひずみが小さくなるのは、膨張による収縮の補償ではなく、自己膨張が生じる反応あるいはその反応の結果生じるセメント硬化体組織の変化が、その後の自己収縮ひずみを低減しているものと推察される。
なお、上記の「自己収縮ひずみ」及び「自己膨張ひずみ」は、社団法人日本コンクリート工学協会コンクリートの自己収縮研究委員会が定義する用語である。即ち、セメント系材料において、セメントの水和により凝結過程及び凝結以後に巨視的に生じる体積の減少量を「自己収縮ひずみ」、増加量を「自己膨張ひずみ」といい、物質の侵入や逸散、温度変化、外力や外部拘束により生じる応力に起因する変形を含まないものである。
When the maximum value of the self-expanding strain is less than 18 × 10 −6 , the self-shrinking strain generated thereafter increases. Further, if the maximum value of the self-expanding strain exceeds 60 × 10 −6 , it is not preferable in terms of cement stability. In this way, the self-shrinkage strain of the cement exhibiting a certain range of self-expansion strain in the initial stage of hydration is not compensated for shrinkage due to expansion, but is a reaction that causes self-expansion or a hardened cement body resulting from the reaction. It is inferred that the tissue change reduces the subsequent self-shrinkage strain.
The above-mentioned “self-shrinkage strain” and “self-expansion strain” are terms defined by the Japan Concrete Institute Concrete Self-Shrinkage Research Committee. That is, in cementitious materials, the volume reduction that occurs macroscopically after the setting process and after setting due to cement hydration is called “self-shrinkage strain”, and the increase is called “self-expansion strain”. It does not include deformation caused by temperature change, external force or stress caused by external restraint.

本発明のセメント組成物は、ペースト、モルタルあるいはコンクリートに使用する場合、水セメント比が0.4以下、特に0.3以下で使用するのが好ましい。水セメント比が0.4を超える場合では、一般に自己収縮は生じず、本発明のセメント組成物の特長を生かすことができない。   When the cement composition of the present invention is used for paste, mortar or concrete, the water cement ratio is preferably 0.4 or less, particularly preferably 0.3 or less. When the water cement ratio exceeds 0.4, self-shrinkage generally does not occur, and the features of the cement composition of the present invention cannot be utilized.

以下に、実施例及び比較例を挙げて本発明の効果を説明する。なお、本発明はこれらの例によって限定されるものではない。   The effects of the present invention will be described below with reference to examples and comparative examples. Note that the present invention is not limited to these examples.

実施例1〜4及び比較例1〜3
1.セメントの調製
7種のクリンカー(ブレーン比表面積3200±100cm2 /g)それぞれに、二水石膏をSO3 量でセメント組成物中に2質量%となるように添加して、下記表1に示す組成を有する7種のセメント組成物をそれぞれ調製した。なお、比較例1で用いたNo.5のセメントは、普通ポルトランドセメントに相当するものの組成である。
Examples 1-4 and Comparative Examples 1-3
1. Preparation of cement Dihydrate gypsum was added to each of the seven types of clinker (Brain specific surface area 3200 ± 100 cm 2 / g) so that the amount of SO 3 was 2% by mass in the cement composition. Seven cement compositions having compositions were prepared. In addition, No. used in Comparative Example 1 Cement No. 5 has a composition equivalent to that of ordinary Portland cement.

Figure 0004409926
Figure 0004409926

2.セメントペーストの調製
上記の7種のセメント組成物それぞれにイオン交換水を加えて3分間練り混ぜて、セメントペーストをそれぞれ調製した。水セメント比(質量比)は0.3とした。
2. Preparation of cement paste Ion exchange water was added to each of the above seven types of cement compositions and kneaded for 3 minutes to prepare cement pastes. The water cement ratio (mass ratio) was 0.3.

3.評価試験
自己収縮の評価は、「高橋俊之ほか、コンクリート工学年次論文報告集、No.18, p.621(1996)」に記載されている非接触式渦電流式変位センサーによる方法で行った。試験は、すべて20℃に設定した恒温室内で行った。20×20×160mmの型枠内に上記セメントペーストを流し込み、測定試料とした。別途に同一の水セメント比でJIS R 5201−1997「セメントの物理試験方法」に準じて求めた凝結の始発時間を基点として寸法変化を測定した。自己ひずみ(膨張又は収縮)は次式により求めた。自己膨張ひずみの最大値及び水和24時間後の自己収縮ひずみの値を下記表2に示す。
ε=ΔL/L
ここで、L:ペーストの測定開始時の長さ、ΔL:非接触式渦電流式変位センサーで測定したペーストの長さ変化量、ε:自己ひずみである。
3. Evaluation test Self-shrinkage was evaluated by the method using a non-contact eddy current displacement sensor described in "Toshiyuki Takahashi et al., Annual Report of Concrete Engineering, No.18, p.621 (1996)". . All tests were conducted in a temperature-controlled room set at 20 ° C. The cement paste was poured into a 20 × 20 × 160 mm mold and used as a measurement sample. Separately, the dimensional change was measured with the same water cement ratio as the starting point of the setting time determined according to JIS R 5201-1997 “Physical Test Method for Cement”. Self-strain (expansion or contraction) was obtained by the following equation. Table 2 below shows the maximum value of the self-expanding strain and the value of the self-shrinking strain after 24 hours of hydration.
ε = ΔL / L
Here, L: length at the start of measurement of the paste, ΔL: length change of the paste measured by a non-contact eddy current displacement sensor, and ε: self-strain

Figure 0004409926
Figure 0004409926

上記の表1及び表2の記載から次のことが明らかである。f.CaO量が0.28〜1質量%の範囲内にある実施例1〜4の本発明のセメント組成物は、何れも、普通ポルトランドセメントに相当するNo.5のセメントを用いた比較例1のセメント組成物よりも、間隙相量が多いにもかかわらず、水和24時間後の自己収縮ひずみが小さい。これに対し、f.CaO量が0.28〜1質量%の範囲を外れる比較例2及び3のセメント組成物は、比較例1のセメント組成物よりも、水和24時間後の自己収縮ひずみが大きい。   The following is clear from the descriptions in Tables 1 and 2 above. f. As for the cement composition of this invention of Examples 1-4 in which the amount of CaO exists in the range of 0.28-1 mass%, all are No. Compared with the cement composition of Comparative Example 1 using the cement of No. 5, the self-shrinkage strain after 24 hours of hydration is small despite the larger amount of interstitial phase. In contrast, f. The cement compositions of Comparative Examples 2 and 3 where the CaO amount is outside the range of 0.28 to 1% by mass have a larger self-shrinkage strain after 24 hours of hydration than the cement composition of Comparative Example 1.

Claims (6)

セメントクリンカー及び石膏を含有し、C A量とC AF量の合計量が20〜30質量%で、該C A量が15質量%以下であり、かつf.CaO量が0.28〜1質量%であり、前記f.CaO量と前記C A量との比(f.CaO/C A)が0.04〜0.07であり、C S量が16〜20質量%であり、前記石膏の含有量がSO 量で1〜3.5質量%であり、ブレーン比表面積が3200±100cm 2 /gであり、水セメント比0.4以下で使用することを特徴とする低自己収縮性高間隙相型セメント組成物。 Containing cement clinker and gypsum, the total amount of C 3 A and C 4 AF is 20 to 30% by mass , the amount of C 3 A is 15% by mass or less , and f. CaO amount is 0.28 to 1% by mass is, the f. The ratio of the amount of CaO to the amount of C 3 A (f.CaO / C 3 A) is 0.04 to 0.07, the amount of C 2 S is 16 to 20% by mass, and the content of the gypsum is Low self-shrinkage, high interstitial phase type characterized by being used in an amount of SO 3 of 1 to 3.5% by mass, a brain specific surface area of 3200 ± 100 cm 2 / g, and a water cement ratio of 0.4 or less Cement composition. A量とC AF量の合計量が22〜28質量%である請求項1記載の低自己収縮性高間隙相型セメント組成物。 The low self-shrinkage high gap phase cement composition according to claim 1 , wherein the total amount of C 3 A and C 4 AF is 22 to 28% by mass . S量が48〜52質量%である請求項1又は2記載の低自己収縮性高間隙相型セメント組成物。 C 3 S content is 48 to 52 wt% claim 1 or 2 Low-shrinkage high pore phase cement composition. 水セメント比0.3で混練した水和硬化体の自己膨張ひずみの最大値が18×10-6〜60×10-6である請求項1〜3の何れかに記載の低自己収縮性高間隙相型セメント組成物。 The maximum self-expansion strain of a hydrated cured product kneaded at a water cement ratio of 0.3 is 18 x 10-6 to 60 x 10-6. Interstitial phase cement composition. セメントクリンカーと石膏とを混合し、請求項1〜4の何れかに記載の低自己収縮性高間隙相型セメント組成物を調製することを特徴とする低自己収縮性高間隙相型セメント組成物の製造方法。A low self-shrinking high gap phase type cement composition according to any one of claims 1 to 4, wherein the cement clinker and gypsum are mixed to prepare a low self-shrinking high gap phase type cement composition. Manufacturing method. セメントクリンカーと石膏とを混合し、CCement clinker and gypsum are mixed and C 3 A量とC A amount and C 4 AF量の合計量が20〜30質量%で、該C The total amount of AF is 20 to 30% by mass, and the C 3 A量が15質量%以下とし、かつf.CaO量が0.28〜1質量%とし、前記f.CaO量と前記C A amount is 15 mass% or less, and f. The amount of CaO is 0.28 to 1% by mass, and the f. CaO amount and C 3 A量との比(f.CaO/C Ratio to A amount (f. CaO / C 3 A)が0.04〜0.07とし、C A) is 0.04 to 0.07, C 2 S量が16〜20質量%とし、前記石膏の含有量がSO The amount of S is 16 to 20% by mass, and the content of the gypsum is SO. 3 量で1〜3.5質量%とし、ブレーン比表面積が3200±100cm The amount is 1 to 3.5% by mass, and the brain specific surface area is 3200 ± 100 cm. 22 /gとすることを特徴とする高間隙相型セメント組成物の自己収縮性低減方法。 / G is a method for reducing the self-shrinkage of a high interstitial phase cement composition.
JP2003404998A 2003-12-03 2003-12-03 Low self-shrinking high gap phase cement composition Expired - Lifetime JP4409926B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003404998A JP4409926B2 (en) 2003-12-03 2003-12-03 Low self-shrinking high gap phase cement composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003404998A JP4409926B2 (en) 2003-12-03 2003-12-03 Low self-shrinking high gap phase cement composition

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2009234542A Division JP2010030894A (en) 2009-10-08 2009-10-08 Low self-shrinkable cement composition of high pore phase type

Publications (2)

Publication Number Publication Date
JP2005162548A JP2005162548A (en) 2005-06-23
JP4409926B2 true JP4409926B2 (en) 2010-02-03

Family

ID=34727830

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003404998A Expired - Lifetime JP4409926B2 (en) 2003-12-03 2003-12-03 Low self-shrinking high gap phase cement composition

Country Status (1)

Country Link
JP (1) JP4409926B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1303028C (en) * 2005-07-06 2007-03-07 王红 Low alkali high-strength cement
JP2007186360A (en) * 2006-01-11 2007-07-26 Taiheiyo Cement Corp Cement composition
JP2007186359A (en) * 2006-01-11 2007-07-26 Taiheiyo Cement Corp Cement composition
JP4801491B2 (en) * 2006-04-21 2011-10-26 宇部興産株式会社 Cement composition and method for producing the same
JP2007320843A (en) * 2006-06-05 2007-12-13 Ube Ind Ltd Cement composition and method for producing the same
JP5329762B2 (en) * 2007-01-24 2013-10-30 宇部興産株式会社 Water-soluble hexavalent chromium-reducing cement composition and method for producing the same
JP5329763B2 (en) * 2007-01-24 2013-10-30 宇部興産株式会社 Water-soluble hexavalent chromium-reducing cement composition and method for producing the same
JP5609958B2 (en) * 2012-12-04 2014-10-22 宇部興産株式会社 Method for producing water-soluble hexavalent chromium-reducing cement composition
JP6097266B2 (en) * 2014-10-06 2017-03-15 宇部興産株式会社 Method for producing water-soluble hexavalent chromium-reducing cement composition

Also Published As

Publication number Publication date
JP2005162548A (en) 2005-06-23

Similar Documents

Publication Publication Date Title
JP3559274B2 (en) Cement admixture
US20090151604A1 (en) Cement additive and cement composition
JP5113496B2 (en) Ultrafast cement composition, superhard mortar or concrete composition, and ultrafast grout mortar
JP4307187B2 (en) Hydraulic composition and concrete composition containing the composition
JP2010235381A (en) Cement composition and method for manufacturing the same
JP2009013023A (en) Portland cement clinker and its manufacturing method
JP4409926B2 (en) Low self-shrinking high gap phase cement composition
JP4776426B2 (en) Cement admixture and low expansion cement composition using the cement admixture
JP2004352515A (en) High interstitial phase type cement composition
JP2007055843A (en) Cement additive
JP2016183057A (en) Cement composition
JP2010001196A (en) Cement composition
JP2006282455A (en) Cement and method for manufacturing the same
JP2010120787A (en) Method for manufacturing low-heat portland cement
JP5061704B2 (en) Method for constructing concrete admixture, hydraulic binder, concrete and concrete structure
JP2004352516A (en) High interstitial phase type cement composition
JP2007131477A (en) Fly ash cement composition and concrete mold using it
JP2010030894A (en) Low self-shrinkable cement composition of high pore phase type
JP2008290926A (en) Fired product, cement additive, and cement composition
JP2009001449A (en) Expansive composition
JP7000714B2 (en) Cement composition and its manufacturing method, and mortar or concrete manufacturing method
JP2008050231A (en) Method for producing calcium oxide-mixed cement and calcium oxide-mixed cement cured body
JP2009256205A (en) High interstitial phase type cement composition
JP6504858B2 (en) Cement clinker and cement
JP2009149515A (en) Cement composition and cement kneaded product

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060403

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090811

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091008

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091112

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4409926

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121120

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131120

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350