JP4409385B2 - Resistor and manufacturing method thereof - Google Patents

Resistor and manufacturing method thereof Download PDF

Info

Publication number
JP4409385B2
JP4409385B2 JP2004229342A JP2004229342A JP4409385B2 JP 4409385 B2 JP4409385 B2 JP 4409385B2 JP 2004229342 A JP2004229342 A JP 2004229342A JP 2004229342 A JP2004229342 A JP 2004229342A JP 4409385 B2 JP4409385 B2 JP 4409385B2
Authority
JP
Japan
Prior art keywords
resistor
metal plate
strip
resistance
highly conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004229342A
Other languages
Japanese (ja)
Other versions
JP2006049620A (en
Inventor
圭史 仲村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koa Corp
Original Assignee
Koa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koa Corp filed Critical Koa Corp
Priority to JP2004229342A priority Critical patent/JP4409385B2/en
Publication of JP2006049620A publication Critical patent/JP2006049620A/en
Application granted granted Critical
Publication of JP4409385B2 publication Critical patent/JP4409385B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、電流検出用等に好適な、mΩ(ミリオーム)オーダの低抵抗値を有する抵抗器に係り、特に高電力タイプの上記抵抗器の構造および製造方法に関するものである。   The present invention relates to a resistor having a low resistance value on the order of mΩ (milliohm) suitable for current detection and the like, and more particularly to a structure and a manufacturing method of the above-mentioned resistor of high power type.

従来の高電力タイプの電流検出用抵抗器として、例えば、セラミック基板上に薄膜抵抗体を形成し、そのセラミック基板を接着材などで放熱板に接着固定したものが知られている(特許文献1参照)。この抵抗器では、抵抗体に電流を供給すると共に抵抗体両端部に生じる電圧を検出するリード端子がはんだにより上記抵抗体に設けられた電極部分に接続固定されている。   As a conventional high power type current detection resistor, for example, a thin film resistor is formed on a ceramic substrate, and the ceramic substrate is bonded and fixed to a heat sink with an adhesive or the like (Patent Document 1). reference). In this resistor, a lead terminal for supplying a current to the resistor and detecting a voltage generated at both ends of the resistor is connected and fixed to an electrode portion provided on the resistor by solder.

電流検出用抵抗器の場合、上記リード端子と抵抗体に設けられた電極との接合部分に生じる接触抵抗がなるべく小さいことが必要であり、また、接合部分の機械的強度および機械的・電気的安定性などの高度の信頼性が要求される。
特開平3−141607号公報
In the case of a current detection resistor, the contact resistance generated at the joint between the lead terminal and the electrode provided on the resistor must be as small as possible, and the mechanical strength and mechanical / electrical strength of the joint are required. High reliability such as stability is required.
Japanese Patent Laid-Open No. 3-141607

しかしながら、従来の電流検出用抵抗器では、例えば特許文献1に記載のものでは、リード端子をはんだ接続により抵抗体の電極部分に接合しており、接合部分の接触抵抗や機械的・電気的安定性などの高度の要求に対して、必ずしも十分なものではないという課題があった。   However, in the conventional current detection resistor, for example, in the one described in Patent Document 1, the lead terminal is joined to the electrode portion of the resistor by solder connection, and the contact resistance and mechanical / electrical stability of the joined portion are connected. There is a problem that it is not always sufficient for high demands such as sex.

また、mΩ(ミリオーム)オーダの低抵抗値を有する電流検出用抵抗器においても、なるべく小型コンパクト化した構造で、抵抗値精度が高く、抵抗温度係数(TCR)が低く、且つ製造コストの低減が要請されている。   In addition, a current detection resistor having a low resistance value on the order of mΩ (milliohm) has a structure that is as small and compact as possible, has a high resistance value accuracy, a low temperature coefficient of resistance (TCR), and a reduction in manufacturing cost. It has been requested.

本発明は、上述した事情に鑑みて為されたもので、良好な電気的特性及び高度の信頼性が得られると共に、小型コンパクト化した構造の電流検出用抵抗器及びその製造方法を提供することを目的とする。   The present invention has been made in view of the circumstances described above, and provides a current detecting resistor having a compact and compact structure and a manufacturing method thereof, which can obtain good electrical characteristics and high reliability. With the goal.

上記課題を解決するため、本発明の抵抗器は、金属板材からなる放熱用基板と、該放熱用基板に絶縁材料を介して固定された抵抗金属板材からなる抵抗体と、該抵抗体の下側縁部に備えた凸状部である4本の基部と、該基部端部のそれぞれに接合して、前記放熱用基板の端部から突出する高導電性金属材料からなる4本のリード端子とを備え、前記リード端子の端部が前記抵抗体の基部端部にそれぞれ熱拡散接合により接合されていて、前記リード端子の幅と前記抵抗体の基部の幅とが同一となっていて、前記4本のリード端子の外側の2本が電流端子として機能し、内側の2本が電圧検出端子として機能することを特徴とするものである。 To solve the above problem, a resistor of the present invention includes a heat radiation substrate formed of a metal plate, a resistor made of a resistive metal plate which is fixed via an insulating material heat-dissipating substrate, under the resistive element antibodies and four base is convex portion provided in the side edges, joined to each of the base under the end, four consisting of highly conductive metal material projecting from the lower end portion of the heat radiating board and a lead terminal, said end portions of the lead terminals are joined by respective thermal diffusion bonded to the base end portion of the resistor, and the width of the base width as the resistor of said lead terminals has become the same The two outer terminals of the four lead terminals function as current terminals, and the inner two function as voltage detection terminals .

これにより、リード端子はCuなどの高導電性金属材料からなり、Cu−Ni系合金、Ni−Cr系合金、またはCu−Mn系合金などの抵抗金属材料からなる抵抗体の基部端部に熱拡散接合により接合されている。このため、リード端子と抵抗体との間に、機械的に高い接合強度が得られるとともに電気的な接触抵抗が小さく、かつ機械的・電気的な高度の信頼性が得られる。そして、抵抗金属板が絶縁材料を介してアルミ基板などの放熱用基板に直接固定されているので、良好な放熱性が得られ、小型コンパクト化した構造で高い電力容量を有する電流検出用抵抗器が提供される。   Thereby, the lead terminal is made of a highly conductive metal material such as Cu, and heat is applied to the base end portion of the resistor made of a resistance metal material such as a Cu-Ni alloy, a Ni-Cr alloy, or a Cu-Mn alloy. Bonded by diffusion bonding. For this reason, mechanically high joint strength is obtained between the lead terminal and the resistor, electrical contact resistance is small, and high mechanical and electrical reliability is obtained. And since the resistance metal plate is directly fixed to a heat dissipation substrate such as an aluminum substrate through an insulating material, a good heat dissipation is obtained, and a current detecting resistor having a high power capacity with a compact and compact structure Is provided.

また、本発明の抵抗器の製造方法は、抵抗金属板材と、高導電性金属板材とを、それぞれの側縁部分で熱拡散接合した帯状の複合材料板材を形成し、前記帯状の複合材料板材の一部を前記抵抗金属板材にかかるように抜き加工して、一回の抜き加工で前記抵抗金属板材の下縁端に凸状の4本の基部を形成すると共に、その端部に4本の高導電性金属からなるリード端子を形成し、前記帯状の複合材料板材を帯状の放熱用基板に絶縁性接着剤を用いて接着し、前記帯状の複合材料板材から前記4本の高導電性金属からなるリード端子を形成した抵抗金属板材部分を個々の抵抗体に分離し、該抵抗体の抵抗値調整を行い、前記帯状の放熱用基板を分割することにより個々の抵抗器に分離することを特徴とするものである。 In addition, the method for manufacturing a resistor according to the present invention includes forming a strip-shaped composite material plate in which a resistance metal plate and a highly conductive metal plate are heat diffusion bonded at respective side edge portions, and the strip- shaped composite material plate part by punching as according to the resistance metal plate material, to form a single four base of convex lower edge of the resistor metal sheet by punching, and four at the end thereof the form the form of lead terminals made of a highly conductive metal, and bonded using an insulation adhesive composite sheet material in a band radiating substrate of the strip, the high conductivity of the four composite material plate of the strip The resistive metal plate portion on which the lead terminal made of a conductive metal is formed is separated into individual resistors, the resistance value of the resistor is adjusted, and the strip-shaped heat radiation substrate is divided into individual resistors. It is characterized by this.

これにより、抵抗金属板材と高導電性金属板材とを、それぞれの側縁部分で熱拡散接合した複合材料板材を形成し、その一部を抜き加工して高導電性金属のリード端子を熱拡散接合により固定した抵抗金属板からなる抵抗体を形成することができる。このため、上記のような簡単な工程で、高導電性金属のリード端子を抵抗金属板からなる抵抗体に機械的に高い接合強度で且つ電気的な接触抵抗が小さく固定することができる。そして、上記抜き加工によりリード端子を形成したのちに、熱処理を行うことで、プレス等の抜き加工による機械的歪みを除去することができ、抵抗値の経年変化が小さい高信頼性の抵抗器を製作することができる。   As a result, a composite material plate material is formed by thermally diffusing and bonding resistance metal plate material and highly conductive metal plate material at each side edge portion, and a part of the composite material plate is punched to heat diffuse the highly conductive metal lead terminals. A resistor made of a resistive metal plate fixed by bonding can be formed. For this reason, the lead terminal of a highly conductive metal can be fixed to a resistor made of a resistive metal plate with high mechanical strength and low electrical contact resistance by a simple process as described above. Then, after forming the lead terminal by the above punching process, by performing a heat treatment, mechanical strain due to the punching process such as a press can be removed, and a highly reliable resistor with a small change in resistance over time is obtained. Can be produced.

総じて本発明によれば、機械的・電気的な高度の信頼性が得られると共に、良好な放熱性が得られ、小型コンパクト化した構造で高い電力容量を有する電流検出用抵抗器が提供される。そして、上記抵抗器を、簡単な製造工程で、経済的に製作することができる。   In general, according to the present invention, there is provided a current detection resistor having high mechanical and electrical reliability, good heat dissipation, and a small and compact structure and high power capacity. . And the said resistor can be manufactured economically by a simple manufacturing process.

以下、本発明の実施形態について、添付図面に基づいて説明する。なお、各図中、同一の作用または機能を有する部材または要素には、同一の符号を付して重複した説明を省略する。   Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. In addition, in each figure, the same code | symbol is attached | subjected to the member or element which has the same effect | action or function, and the overlapping description is abbreviate | omitted.

図1は、本発明の一実施形態の電流検出用抵抗器を示し、図2はその実装状態を示す。この抵抗器10は、抵抗金属材料からなる抵抗体11がアルミ基板等の放熱用基板15に熱導電性の良好な窒化ホウ素や窒化アルミ等の絶縁性接着材により固定されている。抵抗体11は、例えばCu−Ni系合金、Ni−Cr系合金、Cu−Mn系合金等の抵抗金属材料からなる。その厚さは、0.1〜0.5mm程度であり、縦横の寸法は、10mm×10mm〜20mm×20mm程度である。この抵抗体11により、1mΩ程度の低抵抗値を有する抵抗器10が得られる。   FIG. 1 shows a current detection resistor according to an embodiment of the present invention, and FIG. 2 shows its mounting state. In this resistor 10, a resistor 11 made of a resistive metal material is fixed to a heat radiating substrate 15 such as an aluminum substrate with an insulating adhesive material such as boron nitride or aluminum nitride having good thermal conductivity. The resistor 11 is made of a resistive metal material such as a Cu—Ni alloy, a Ni—Cr alloy, or a Cu—Mn alloy. The thickness is about 0.1 to 0.5 mm, and the vertical and horizontal dimensions are about 10 mm × 10 mm to 20 mm × 20 mm. This resistor 11 provides a resistor 10 having a low resistance value of about 1 mΩ.

放熱用基板15は、例えば縦15mm×横25mm×厚さ1〜2mm程度の寸法を有し、これにより10W程度の高電力容量がえられる。放熱用基板15としては、アルミ基板の他に、Cu等の材料を用いることができる。放熱用基板15には開口16を備え、図2に示すようにヒートシンク18に取付ねじ19により固定することができる。これにより、電力容量はさらに増大する。   The heat dissipation substrate 15 has, for example, dimensions of about 15 mm in length, 25 mm in width, and about 1 to 2 mm in thickness, so that a high power capacity of about 10 W can be obtained. As the heat dissipation substrate 15, a material such as Cu can be used in addition to the aluminum substrate. The heat dissipating substrate 15 has an opening 16 and can be fixed to the heat sink 18 with a mounting screw 19 as shown in FIG. This further increases the power capacity.

抵抗体11の下側縁部には凸状部である基部11a,11b,11c,11dを備え、それぞれの基部下端部に、高導電性金属材料からなるリード端子12a,12b,12c,12dの上端部が熱拡散接合により接合されている。ここで、リード端子12a,12b,12c,12dは、Cu、Cu系合金、Ni、Ni系合金、Au、Au系合金等、Al、Al系合金等の高導電性金属材料が用いられる。   The lower edge of the resistor 11 is provided with base portions 11a, 11b, 11c, and 11d that are convex portions, and lead terminals 12a, 12b, 12c, and 12d made of a highly conductive metal material are provided at the lower ends of the base portions. The upper end part is joined by thermal diffusion joining. Here, the lead terminals 12a, 12b, 12c, and 12d are made of a highly conductive metal material such as Cu, Cu alloy, Ni, Ni alloy, Au, Au alloy, Al, Al alloy, or the like.

ここで、熱拡散接合とは、抵抗金属材料と高導電性金属材料とを常温のまま圧力を加えて圧延する冷間圧延と、数百℃以上の高温で熱処理することの組み合わせで、抵抗金属材料と高導電性金属材料の構成原子が相互に熱拡散し、機械的に強固な接合状態が得られることを言う。この接合状態では、電気的な接触抵抗が小さく、電気的にも良好な接合状態が得られる。   Here, thermal diffusion bonding is a combination of cold rolling, in which a resistance metal material and a highly conductive metal material are rolled while applying pressure at room temperature, and heat treatment at a high temperature of several hundred degrees Celsius or higher. The constituent atoms of the material and the highly conductive metal material are thermally diffused to each other, and a mechanically strong bonded state is obtained. In this joined state, the electrical contact resistance is low, and an electrically favorable joined state can be obtained.

抵抗体11は、トリミング溝13により抵抗体11xと分離され、これにより抵抗値の概略値が調整される。すなわち、トリミング溝13の図示の上下方向の位置を調整することで、例えば、1mΩ、2mΩ、3mΩ等の抵抗値の概略値を調整することが可能である。そして、抵抗体11には抵抗値微調整用のトリミング溝17が形成される。これにより、例えば1%等の精度で抵抗値が正確に微調整される。   The resistor 11 is separated from the resistor 11x by the trimming groove 13, whereby the approximate value of the resistance value is adjusted. That is, by adjusting the position of the trimming groove 13 in the illustrated vertical direction, it is possible to adjust the approximate value of the resistance value such as 1 mΩ, 2 mΩ, and 3 mΩ. A trimming groove 17 for fine adjustment of the resistance value is formed in the resistor 11. Thereby, the resistance value is finely adjusted accurately with an accuracy of 1%, for example.

この抵抗器10は、4本のリード端子12a,12b,12c,12dを備え、外側の2本12a,12dが電流端子として機能し、図2に示すように検出電流用配線21,21に接続される。そして、内側の2本のリード端子12b,12cが電圧検出端子として機能し、電圧検出用配線22,22に接続される。電圧検出用配線22,22は図示しない電圧検出器に接続され、リード端子12a,12d間に流れる電流により抵抗体11に生じる電圧をリード端子12b,12cにより検出する。   This resistor 10 includes four lead terminals 12a, 12b, 12c, and 12d, and the two outer terminals 12a and 12d function as current terminals and are connected to the detection current wirings 21 and 21 as shown in FIG. Is done. The inner two lead terminals 12b and 12c function as voltage detection terminals and are connected to the voltage detection wirings 22 and 22, respectively. The voltage detection wires 22 and 22 are connected to a voltage detector (not shown), and the voltage generated in the resistor 11 due to the current flowing between the lead terminals 12a and 12d is detected by the lead terminals 12b and 12c.

この抵抗器10においては、抵抗値の概略調整を行うトリミング溝13が電流の流れ方向に対して平行に設けられている、すなわち、抵抗体11の長手方向に平行に設けられているので、抵抗体11の内部で抵抗体11の長手方向に沿って略平行な電流分布が形成される。これにより寄生インダクタンスが小さく、かつ抵抗値の経年変化(ΔR)の小さな抵抗器が得られる。   In this resistor 10, the trimming groove 13 for roughly adjusting the resistance value is provided in parallel with the current flow direction, that is, in parallel with the longitudinal direction of the resistor 11. A substantially parallel current distribution is formed in the body 11 along the longitudinal direction of the resistor 11. As a result, a resistor having a small parasitic inductance and a small aging (ΔR) resistance value can be obtained.

抵抗体11、抵抗体11xおよびリード端子12a,12b,12c,12dの上部は樹脂コート材の保護膜20により被覆保護されている。樹脂コート材としては、ポリイミド系樹脂、エポキシ系樹脂、ポリエステル系樹脂、アクリル系樹脂、フッ素系樹脂、シリコン系樹脂などが用いられる。   Upper portions of the resistor 11, the resistor 11x, and the lead terminals 12a, 12b, 12c, and 12d are covered and protected by a protective film 20 made of a resin coating material. As the resin coating material, polyimide resin, epoxy resin, polyester resin, acrylic resin, fluorine resin, silicon resin, or the like is used.

この抵抗器10によれば、抵抗体の基部11a,11b,11c,11dの下端部がリード端子12a,12b,12c,12dの上端部に、接合部14において熱拡散接合により接合されているので、上述したように機械的にも電気的にも高い信頼性と安定性を有する接合部14が得られる。そして、抵抗体基部11a,11b,11c,11dの幅はリード端子12a,12b,12c,12dの幅と同一となっている。これは、後述するように抵抗体11を構成する抵抗金属板材とリード端子を構成する高導電性金属板材とをそれぞれの縁辺でまず熱拡散接合し、その後プレス等により抜き加工を行うので、容易に抵抗体基部の幅とリード端子の幅とを同一寸法とすることができる。   According to the resistor 10, the lower end portions of the base portions 11a, 11b, 11c, and 11d of the resistor are joined to the upper end portions of the lead terminals 12a, 12b, 12c, and 12d by the thermal diffusion bonding at the joining portion 14. As described above, the joint 14 having high reliability and stability both mechanically and electrically can be obtained. The widths of the resistor base portions 11a, 11b, 11c, and 11d are the same as the widths of the lead terminals 12a, 12b, 12c, and 12d. This is easy because, as will be described later, the resistance metal plate constituting the resistor 11 and the highly conductive metal plate constituting the lead terminal are first subjected to thermal diffusion bonding at the respective edges and then subjected to punching by pressing or the like. Further, the width of the resistor base and the width of the lead terminal can be made the same size.

次に、本発明の抵抗器の製造方法について、図3Aおよび図3Bを参照して説明する。まず、図3A(a)に示すように、厚さ0.1〜0.5mm程度のCu−Ni系合金、Ni−Cr系合金、Cu−Mn系合金等の抵抗金属材料からなる抵抗金属板材31と、厚さ0.2mm程度のCu、Cu系合金、Ni、Ni系合金、Au、Au系合金、Al、Al系合金等の高導電性金属材料からなる高導電性金属板材32とを準備する。そして、抵抗金属板材31と高導電性金属板材32とを、それぞれの側縁部分で熱拡散接合することで、抵抗金属板材31と高導電性金属板材32とがそれぞれの縁辺で機械的にも電気的にも強固に接合した複合材料板材33を形成する。   Next, the manufacturing method of the resistor of this invention is demonstrated with reference to FIG. 3A and FIG. 3B. First, as shown in FIG. 3A (a), a resistance metal plate made of a resistance metal material such as a Cu—Ni alloy, a Ni—Cr alloy, or a Cu—Mn alloy having a thickness of about 0.1 to 0.5 mm. 31 and a highly conductive metal plate 32 made of a highly conductive metal material such as Cu, Cu alloy, Ni, Ni alloy, Au, Au alloy, Al, Al alloy having a thickness of about 0.2 mm. prepare. Then, the resistance metal plate 31 and the highly conductive metal plate 32 are thermally diffused and bonded to each other at the side edge portions, so that the resistance metal plate 31 and the high conductivity metal plate 32 are mechanically connected at the respective edges. A composite material plate 33 is formed which is also electrically bonded firmly.

ここで、熱拡散性接合は、抵抗金属板材と高導電性金属板材の側縁部分を重ねて(a1)、または相互にテーパ部を設けこれを重ねて(a2)、まず冷間圧延により接合する。そして、数百℃以上の高温で熱処理することで、抵抗金属材料と高導電性金属材料の構成原子が相互に熱拡散し、機械的にも電気的にも良好な接合状態が形成される。すなわち、接合部14,14aでは熱拡散接合のため両方の金属板材31,32間の結合力が強く、熱ストレス、機械ストレス、電気ストレスに強い接合面が得られる。   Here, in the heat diffusive joining, the side edge portions of the resistance metal plate and the highly conductive metal plate are overlapped (a1), or the taper portions are provided to each other (a2), and then joined by cold rolling first. To do. Then, by performing heat treatment at a high temperature of several hundred degrees Celsius or higher, the constituent atoms of the resistance metal material and the highly conductive metal material are thermally diffused to each other, and a good bonded state is formed both mechanically and electrically. That is, in the joint portions 14 and 14a, the bonding force between both the metal plate materials 31 and 32 is strong because of thermal diffusion bonding, and a joint surface that is strong against thermal stress, mechanical stress, and electrical stress is obtained.

次に、図3A(b)に示すように、リード端子を形成するため、例えばプレスにより抜き加工を行う。リード端子12a,12b,12c,12dが一回の抜き加工で形成される。この抜き加工は、抵抗金属板材31と高導電性金属板材32の接合部14のみならず、抵抗金属板材31にかかるように、すなわち、一部分を除去するように行う。これにより、高導電性金属材料からなるリード端子12a,12b,12c,12dを完全に電気的に分離することができる。   Next, as shown in FIG. 3A (b), in order to form a lead terminal, for example, a punching process is performed by a press. The lead terminals 12a, 12b, 12c, and 12d are formed by a single punching process. This punching process is performed not only on the joint 14 of the resistance metal plate 31 and the highly conductive metal plate 32 but also on the resistance metal plate 31, that is, so as to remove a part. Thereby, the lead terminals 12a, 12b, 12c, and 12d made of a highly conductive metal material can be completely electrically separated.

また、抵抗器の抵抗値は抵抗体11の幅Lにより決まってくる。抵抗金属板材31の一部を除去するようにプレスにより抜き加工を行うことで、抵抗体11の初期幅Lを形成することができる。この抜き加工により帯状の抵抗金属板材31の下端縁に凸状の基部基部11a,11b,11c,11dを備え、高導電性金属材料のリード端子12a,12b,12c,12dの上端部が上記基部の下端部に熱拡散接合により接合された複合材料板材33aが形成される。 The resistance value of the resistor is determined by the width L of the resistor 11. Some resistors metal sheet 31 by performing a punching process by a press to remove, it is possible to form the initial width L 1 of the resistor 11. By this punching process, convex base portions 11a, 11b, 11c and 11d are provided at the lower end edge of the strip-shaped resistance metal plate 31, and the upper ends of the lead terminals 12a, 12b, 12c and 12d made of a highly conductive metal material are the above-mentioned base portions. A composite material plate 33a bonded to the lower end portion of the substrate by thermal diffusion bonding is formed.

次に、熱処理によりプレス等による抜き加工の歪みを除去する。これは、例えば、N(窒素)ガスなどの不活性ガス雰囲気下で、例えば数時間放置することにより行う。これによりプレス等による加工歪みが除去され、後述するように、電流検出用抵抗器として好ましい安定性と信頼性を備えた抵抗器が得られる。 Next, the distortion of the punching process by a press or the like is removed by heat treatment. This is performed, for example, by leaving it for several hours in an inert gas atmosphere such as N 2 (nitrogen) gas. As a result, the processing distortion due to the press or the like is eliminated, and a resistor having stability and reliability preferable as a current detection resistor can be obtained as described later.

次に、図3A(c)に示すように、複合材料板材33aを帯状のアルミ基板35に絶縁性接着剤を用いて接合する。絶縁性接着剤としては、熱伝導性の良好な窒化ホウ素、窒化アルミ等を用いた絶縁材料による接着剤が好ましい。   Next, as shown in FIG. 3A (c), the composite material plate 33a is joined to the belt-like aluminum substrate 35 using an insulating adhesive. As the insulating adhesive, an adhesive made of an insulating material using boron nitride, aluminum nitride or the like having good thermal conductivity is preferable.

次に、図3B(d)に示すように、例えばサンドペーパーなどを用いた機械研磨加工で帯状の抵抗金属板材31から個々の抵抗体11に切断分離する。この機械研磨加工は、抵抗体として、薄い金属箔を用いた場合にはサンドブラストやレーザビーム加工等を用いることができる。また、エッチング加工により帯状の抵抗金属板材31から個々の抵抗体11に切断分離するようにしてもよい。   Next, as shown in FIG. 3B (d), the individual resistive elements 11 are cut and separated from the strip-shaped resistive metal plate 31 by mechanical polishing using, for example, sandpaper. In this mechanical polishing, when a thin metal foil is used as the resistor, sandblasting, laser beam processing, or the like can be used. Alternatively, the individual resistive elements 11 may be cut and separated from the strip-shaped resistive metal plate 31 by etching.

次に、図3B(e)に示すように、機械研磨加工でトリミング溝13を形成し、抵抗値の概略調整を行う。これは、上述したように抵抗体11の長手方向に平行にトリミング溝13を配置することで、抵抗体11を2つの領域11,11xに分離する。これにより、抵抗体11の初期幅Lから所定の抵抗値の概略値が得られる抵抗体幅Lが形成される。規格化した初期幅Lから複数の例えば1mΩ、2mΩ、3mΩ等の所要の抵抗値の概略値に対応した抵抗体幅Lを得ることができる。 Next, as shown in FIG. 3B (e), trimming grooves 13 are formed by mechanical polishing, and the resistance value is roughly adjusted. As described above, the trimming groove 13 is arranged in parallel to the longitudinal direction of the resistor 11 to separate the resistor 11 into two regions 11 and 11x. Thus, the resistor width L 2 from the initial width L 1 of the resistor 11 the approximate value of the predetermined resistance value is obtained are formed. Normalized initial width L 1 from a plurality of example 1 M.OMEGA, it is possible to obtain 2 M [Omega, the resistor width L 2 corresponding to the approximate value of the desired resistance value, such as 3 milliohms.

検出対象の電流は抵抗体11の長手方向に流れるので、トリミング溝13はこの電流の流れ方向と平行に形成され、電流の流れ方向を横切るトリミング溝が形成されることなく抵抗値の概略調整を行うことができる。これにより、寄生インダクタンスが低く、より過負荷に耐える抵抗器を提供することが可能である。また、必要に応じてレーザトリミング等により電流の流れ方向に垂直なトリミング溝17を形成し、抵抗値の微調整を行うことができる。これにより、例えば精度1%に調整した精密級の電流検出用抵抗器が得られる。   Since the current to be detected flows in the longitudinal direction of the resistor 11, the trimming groove 13 is formed in parallel with the current flow direction, and the resistance value is roughly adjusted without forming a trimming groove across the current flow direction. It can be carried out. Thereby, it is possible to provide a resistor having a low parasitic inductance and capable of withstanding overload. Further, if necessary, the trimming groove 17 perpendicular to the current flow direction can be formed by laser trimming or the like, and the resistance value can be finely adjusted. Thereby, for example, a precision-grade current detection resistor adjusted to an accuracy of 1% is obtained.

次に、図3B(f)に示すように、樹脂コート材による保護膜20で抵抗体11,11xおよびリード端子12a,12b,12c,12dの上部を被覆保護する。樹脂コート材としては、ポリミド系樹脂、エポキシ系樹脂、ポリエステル系樹脂、アクリル系樹脂、フッ素系樹脂、シリコン系樹脂などを用いることが好ましい。これらの樹脂コート材を、ポッティングなどにより塗布し、加温硬化することで保護膜20を形成する。   Next, as shown in FIG. 3B (f), the protective film 20 made of a resin coating material covers and protects the upper portions of the resistors 11, 11x and the lead terminals 12a, 12b, 12c, 12d. As the resin coating material, it is preferable to use a polyimide resin, an epoxy resin, a polyester resin, an acrylic resin, a fluorine resin, a silicon resin, or the like. These resin coating materials are applied by potting or the like and heated and cured to form the protective film 20.

次に、図3B(g)に示すように、例えばプレス加工で帯状のアルミ基板35を切断し、個々の抵抗器に分離する。これにより、アルミ基板からなる放熱用基板15に保護膜20により樹脂封止された抵抗体11と、該抵抗体の基部端部に接合して、前記放熱用基板の端部から突出する高導電性金属材料からなるリード端子12a,12b,12c,12dとを備えた抵抗器10が完成する。   Next, as shown in FIG. 3B (g), the strip-shaped aluminum substrate 35 is cut, for example, by press work, and separated into individual resistors. Thus, the resistor 11 resin-sealed by the protective film 20 to the heat dissipation substrate 15 made of an aluminum substrate, and the high conductivity that protrudes from the end of the heat dissipation substrate are joined to the base end of the resistor. The resistor 10 having lead terminals 12a, 12b, 12c, and 12d made of a conductive metal material is completed.

この後、必要に応じてリード端子12a,12b,12c,12dにはんだめっきを施す。はんだ材料としては、Sn−Pb系はんだや鉛フリーはんだを用いる。さらに、捺印、計測および検査等の工程を経て、製品として出荷される。   Thereafter, solder plating is applied to the lead terminals 12a, 12b, 12c, and 12d as necessary. As the solder material, Sn—Pb solder or lead-free solder is used. Furthermore, it is shipped as a product through processes such as marking, measurement, and inspection.

図4は、上記プレス等による抜き加工後の熱処理による効果の一データ例を示す。サンプルとしては、抵抗体11の大きさが5mm×2.5mmのもので、抵抗値が2mΩのものである。試験は170℃高温放置試験であり、横軸は放置時間(h)であり、縦軸は抵抗値変化の大きさΔR(%)である。   FIG. 4 shows an example of data of the effect of the heat treatment after the punching by the press or the like. As a sample, the size of the resistor 11 is 5 mm × 2.5 mm, and the resistance value is 2 mΩ. The test is a 170 ° C. high temperature standing test, the horizontal axis is the standing time (h), and the vertical axis is the resistance value change ΔR (%).

図中の■印は熱処理なしであり、放置時間(h)の経過とともに抵抗値Rが2〜3%程度変化することを示している。これに対して、●印はプレス加工後に窒素雰囲気下で200℃の熱処理を5時間行ったものである。また、◆印は同様に窒素雰囲気下で200℃の熱処理を3時間行ったものである。また、▲印は窒素雰囲気下で150℃の熱処理を10時間行ったものである。これらの熱処理を行ったものは、いずれも高温放置試験で放置時間の経過とともに生じる抵抗値の変化ΔRが0.5%程度以下で、極めて安定していることを示している。したがって、プレスによる抜き加工後に150〜200℃で3〜10時間程度の熱処理を行うことで、抜き加工による加工歪みが除去され、電気的な安定性が著しく改善されることがわかる。   In the figure, the ■ mark indicates that there is no heat treatment, and the resistance value R changes by about 2 to 3% as the standing time (h) elapses. On the other hand, the mark ● shows a heat treatment at 200 ° C. for 5 hours in a nitrogen atmosphere after press working. In the same manner, the asterisks are heat-treated at 200 ° C. for 3 hours in a nitrogen atmosphere. In addition, the ▲ mark shows a heat treatment at 150 ° C. for 10 hours under a nitrogen atmosphere. Any of these heat treatments shows that the resistance value change ΔR generated with the passage of the standing time in the high-temperature standing test is about 0.5% or less and is extremely stable. Therefore, it can be seen that by performing heat treatment at 150 to 200 ° C. for about 3 to 10 hours after punching by pressing, processing distortion due to punching is removed and electrical stability is remarkably improved.

通常、これらの電流検出用低抵抗器は、−40℃〜150℃の温度下で製品仕様に基づき、それぞれの定格電力で使用される。170℃高温放置試験は、使用温度範囲を超えて熱を付加することにより耐熱性の加速的な評価を行い、部品の耐久性を予想する試験である。実使用時の信頼性は、この試験結果からも予測されるように、抵抗体として安定性の高い抵抗金属材料を用い、これに熱拡散接合により高導電性金属材料からなるリード端子を接合したものであるので、本発明の抵抗器によれば良好な抵抗値の安定性が確保されることがわかる。   Normally, these low-current resistors for current detection are used at respective rated powers based on product specifications at temperatures of -40 ° C to 150 ° C. The 170 ° C. high temperature standing test is a test for predicting the durability of a component by performing accelerated evaluation of heat resistance by applying heat beyond the operating temperature range. As predicted from the results of this test, reliability in actual use uses a highly stable resistance metal material as a resistor, and a lead terminal made of a highly conductive metal material is joined to this by thermal diffusion bonding. Therefore, according to the resistor of the present invention, it can be seen that good resistance value stability is ensured.

なお、これまで本発明の一実施形態について説明したが、本発明は上述の実施形態に限定されず、その技術的思想の範囲内において種々異なる形態にて実施されてよいことは言うまでもない。   In addition, although one Embodiment of this invention was described so far, it cannot be overemphasized that this invention is not limited to the above-mentioned embodiment, and may be implemented with a different form within the range of the technical idea.

(a)は本発明の一実施形態の抵抗器を示す部分透過斜視図であり、(b)は抵抗体とリード端子の部分の断面図である。(A) is a partial see-through | perspective view which shows the resistor of one Embodiment of this invention, (b) is sectional drawing of the part of a resistor and a lead terminal. 上記抵抗器の実装状態例を示す斜視図である。It is a perspective view which shows the example of the mounting state of the said resistor. (a)〜(c)は本発明の抵抗器の製造工程を示す図であり、(a1)(a2)は、(a)の工程における抵抗金属板材と高導電性金属板材の長手方向に対して垂直方向の断面図である。また、(c1)はリード端子を備えた複合材料板材がアルミ基板35に接合した状態を示す断面図である。(A)-(c) is a figure which shows the manufacturing process of the resistor of this invention, (a1) (a2) is with respect to the longitudinal direction of the resistance metal plate material and highly conductive metal plate material in the process of (a). FIG. Further, (c1) is a cross-sectional view showing a state in which a composite material plate having lead terminals is bonded to the aluminum substrate 35. (d)〜(g)は図3Aにおける製造工程の続きの製造工程を示す図である。(D)-(g) is a figure which shows the manufacturing process of the continuation of the manufacturing process in FIG. 3A. 上記製造工程で製造された抵抗器の信頼性試験結果一例を示すグラフである。It is a graph which shows an example of the reliability test result of the resistor manufactured by the said manufacturing process.

符号の説明Explanation of symbols

10 抵抗器
11a,11b,11c,11d 基部
11,11x 抵抗体
12a,12b,12c,12d リード端子
13 トリミング溝
14,14a 接合部
15 放熱用基板
16 開口
17 トリミング溝
18 ヒートシンク
20 保護膜
21 検出電流供給用配線
22 電圧検出用配線
31 抵抗金属板材
32 高導電性金属板材
33,33a 複合材料板材
35 アルミ基板
初期幅
抵抗体幅
R 抵抗値
ΔR 抵抗値変化
DESCRIPTION OF SYMBOLS 10 Resistor 11a, 11b, 11c, 11d Base 11, 11x Resistor 12a, 12b, 12c, 12d Lead terminal 13 Trimming groove | channel 14, 14a Joint part 15 Heat radiation board | substrate 16 Opening 17 Trimming groove | channel 18 Heat sink 20 Protective film 21 Detection current Supply wiring 22 Voltage detection wiring 31 Resistance metal plate material 32 Highly conductive metal plate materials 33 and 33a Composite material plate material 35 Aluminum substrate L 1 Initial width L 2 Resistance body width R Resistance value ΔR Resistance value change

Claims (6)

放熱用基板と、
該放熱用基板に絶縁材料を介して固定された抵抗金属板材からなる抵抗体と、
該抵抗体の下側縁部に備えた凸状部である4本の基部と、
基部端部のそれぞれに接合して、前記放熱用基板の端部から突出する高導電性金属材料からなる4本のリード端子とを備え、
前記リード端子の端部が前記抵抗体の基部端部にそれぞれ熱拡散接合により接合されていて、前記リード端子の幅と前記抵抗体の基部の幅とが同一となっていて、
前記4本のリード端子の外側の2本が電流端子として機能し、内側の2本が電圧検出端子として機能することを特徴とする抵抗器。
A heat dissipation substrate;
A resistor made of a resistive metal plate fixed to the heat dissipation substrate with an insulating material;
Four bases which are convex portions provided on the lower edge of the resistor ;
It joined to each of said base under an end portion, provided with four of the lead terminals made of a highly conductive metal material projecting from the lower end portion of the heat radiating board,
The ends of the lead terminals are joined to the base end of the resistor by thermal diffusion bonding, respectively , and the width of the lead terminal and the width of the base of the resistor are the same,
Two resistors outside the four lead terminals function as current terminals, and two inside terminals function as voltage detection terminals .
前記抵抗金属板材は、Cu−Ni系合金、Ni−Cr系合金、またはCu−Mn系合金からなることを特徴とする請求項1に記載の抵抗器。 The resistor according to claim 1, wherein the resistance metal plate is made of a Cu—Ni alloy, a Ni—Cr alloy, or a Cu—Mn alloy. 前記放熱用基板は、アルミ基板であることを特徴とする請求項1に記載の抵抗器。   The resistor according to claim 1, wherein the heat dissipation substrate is an aluminum substrate. 抵抗金属板材と、高導電性金属板材とを、それぞれの側縁部分で熱拡散接合した帯状の複合材料板材を形成し、
前記帯状の複合材料板材の一部を前記抵抗金属板材にかかるように抜き加工して、一回の抜き加工で前記抵抗金属板材の下縁端に凸状の4本の基部を形成すると共に、その端部に4本の高導電性金属からなるリード端子を形成し、
前記帯状の複合材料板材を帯状の放熱用基板に絶縁性接着剤を用いて接着し、
前記帯状の複合材料板材から前記4本の高導電性金属からなるリード端子を形成した抵抗金属板材部分を個々の抵抗体に分離し、
該抵抗体の抵抗値調整を行い、
前記帯状の放熱用基板を分割することにより個々の抵抗器に分離することを特徴とする抵抗器の製造方法。
Form a strip-shaped composite material plate in which a resistance metal plate and a highly conductive metal plate are joined by thermal diffusion bonding at each side edge portion,
A part of the strip-shaped composite material plate is punched so as to cover the resistance metal plate , and four convex bases are formed at the lower edge of the resistance metal plate by a single punching process . form forms a lead terminal comprised of four highly conductive metal at its end,
Adhering the strip-shaped composite material plate to the strip-shaped heat dissipation substrate using an insulating adhesive,
The resistance metal plate material portion in which the lead terminals made of the four highly conductive metals are formed from the strip-shaped composite material plate material is separated into individual resistors,
Adjust the resistance value of the resistor,
A method of manufacturing a resistor, wherein the strip-shaped heat dissipation substrate is divided into individual resistors by dividing.
前記複合材料板材に抜き加工によりリード端子部を形成した後に、熱処理を行うことを特徴とする請求項4に記載の抵抗器の製造方法。   The method for manufacturing a resistor according to claim 4, wherein a heat treatment is performed after the lead terminal portion is formed on the composite material plate by punching. 前記抵抗値の調整は、前記抵抗体の長手方向に平行にトリミング溝を設け抵抗値の概略調整を行うことを特徴とする請求項4に記載の抵抗器の製造方法。   5. The method of manufacturing a resistor according to claim 4, wherein the resistance value is adjusted by roughly adjusting a resistance value by providing a trimming groove parallel to a longitudinal direction of the resistor. 6.
JP2004229342A 2004-08-05 2004-08-05 Resistor and manufacturing method thereof Expired - Fee Related JP4409385B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004229342A JP4409385B2 (en) 2004-08-05 2004-08-05 Resistor and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004229342A JP4409385B2 (en) 2004-08-05 2004-08-05 Resistor and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2006049620A JP2006049620A (en) 2006-02-16
JP4409385B2 true JP4409385B2 (en) 2010-02-03

Family

ID=36027826

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004229342A Expired - Fee Related JP4409385B2 (en) 2004-08-05 2004-08-05 Resistor and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4409385B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200243228A1 (en) * 2017-08-10 2020-07-30 Koa Corporation Method for manufacturing resistor

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009043958A (en) * 2007-08-09 2009-02-26 Panasonic Corp Chip type metal plate resistor, and manufacturing method thereof
JP5256544B2 (en) * 2008-05-27 2013-08-07 コーア株式会社 Resistor
JP5176775B2 (en) 2008-06-02 2013-04-03 株式会社村田製作所 Ceramic electronic component and method for manufacturing the same
JP2010114167A (en) * 2008-11-04 2010-05-20 Sumitomo Metal Mining Co Ltd Low-resistive chip resistor, and method for manufacturing the same
CN103563073B (en) * 2011-05-03 2017-06-09 韦沙戴尔电子公司 For the radiator of electronic component
JP5860639B2 (en) * 2011-09-05 2016-02-16 株式会社特殊金属エクセル Low resistance metal fixed resistor manufacturing method
JP6392487B2 (en) * 2016-10-07 2018-09-19 Semitec株式会社 Welding electronic components, mounting board and temperature sensor
CN110948996A (en) * 2019-11-29 2020-04-03 上海洲泰轻工机械制造有限公司 A equipment complex for making poroid material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200243228A1 (en) * 2017-08-10 2020-07-30 Koa Corporation Method for manufacturing resistor

Also Published As

Publication number Publication date
JP2006049620A (en) 2006-02-16

Similar Documents

Publication Publication Date Title
US8044523B2 (en) Semiconductor device
JP4670922B2 (en) Low resistance resistor
US6084172A (en) Thermoelectric conversion component
US6844621B2 (en) Semiconductor device and method of relaxing thermal stress
EP0111709A2 (en) Telescoping thermal conduction element for cooling semiconductor devices
JP5237299B2 (en) Resistor (especially SMD resistor) and manufacturing method thereof
JP5256544B2 (en) Resistor
JP4409385B2 (en) Resistor and manufacturing method thereof
KR101771817B1 (en) Chip Resistor
JP2008532280A (en) Surface mount electrical resistor with thermally conductive and electrically non-conductive filler and method of making the same
EP3236495B1 (en) Circuit substrate and electronic device
US8076771B2 (en) Semiconductor device having metal cap divided by slit
US20190279943A1 (en) Power semiconductor device
US10134510B2 (en) Chip resistor and method for manufacturing same
JP2008235523A (en) Electronic component including resistive element
KR20180047411A (en) Resistor element and resistor element assembly
US6529115B2 (en) Surface mounted resistor
JPS6147668A (en) Alternating load resistance switching operable semiconduttorelement
JPH1197203A (en) Shunt resistance element for semiconductor device, and method of mounting it
US6998612B2 (en) Sensor having membrane
JP4523306B2 (en) Method for manufacturing thermoelectric element
KR102527724B1 (en) Chip resistor and chip resistor assembly
JP4751101B2 (en) Temperature sensor
CN106910582B (en) Chip resistor and method for manufacturing the same
EP3703139A1 (en) Thermoelectric module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070723

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090721

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090918

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091020

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091111

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121120

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121120

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131120

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees