JP4408580B2 - Hot gas heat exchange tube - Google Patents

Hot gas heat exchange tube Download PDF

Info

Publication number
JP4408580B2
JP4408580B2 JP2001033564A JP2001033564A JP4408580B2 JP 4408580 B2 JP4408580 B2 JP 4408580B2 JP 2001033564 A JP2001033564 A JP 2001033564A JP 2001033564 A JP2001033564 A JP 2001033564A JP 4408580 B2 JP4408580 B2 JP 4408580B2
Authority
JP
Japan
Prior art keywords
tube
oxide film
heat treatment
atmosphere
heat exchange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001033564A
Other languages
Japanese (ja)
Other versions
JP2002235903A (en
Inventor
広之 伊藤
敏春 清水
淳 船越
善雄 片山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP2001033564A priority Critical patent/JP4408580B2/en
Publication of JP2002235903A publication Critical patent/JP2002235903A/en
Application granted granted Critical
Publication of JP4408580B2 publication Critical patent/JP4408580B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Combustion Of Fluid Fuel (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、高温ガスを熱源として被処理物を間接加熱するための、特に1000℃を超える高温加熱を必要とする熱処理炉のラジアントチューブ等として有用な熱交換用チューブに関する。
【0002】
【従来の技術】
被処理物を間接加熱する熱処理炉の加熱方式には、高温燃焼ガスを熱源とするガス加熱方式と、抵抗発熱を利用した電気加熱方式とがある。ガス加熱方式は、ラジアンチューブ内にバーナーの高温燃焼炎・燃焼ガスを噴射してチューブを赤熱状態とし、チューブ表面からの輻射熱で被処理物を加熱する。電気加熱方式は、抵抗発熱体を保護管に納設し、保護管表面からの輻射熱により被処理物を加熱する。従来、ガス加熱方式は、約960℃以下の熱処理に適用され、鍛造,焼結等の1000℃を超える高温加熱を要求される熱処理炉には、電気加熱方式が使用されている。
【0003】
【発明が解決しようとする課題】
ガス加熱方式は、電気加熱方式に比しエネルギー効率などの点で大きく優れているので、1000℃を超えるような高温熱処理炉にも、電気加熱方式に代えてガス加熱方式を適用することが望まれる。しかし、電気加熱方式と異なって、ガス加熱方式におけるラジアントチューブは、バーナーの高温燃焼火炎・燃焼ガスによる苛酷な酸化作用を受ける。1000℃を超える高温域では、酸化作用によるチューブの損耗は顕著となる。
【0004】
従来の代表的なチューブ材料であるCo基耐熱合金(40Co−20Ni−25Cr−Fe)でも、その使用限界温度は1250℃程度であり、上記の高温環境では、長期の安定使用を確保することができない。このため、1000℃を超える高温熱処理炉では、やむを得ず電気加熱方式が使用されている。
本発明は上記に鑑み、1000℃を超える高温加熱のラジアントチューブ等として安定に使用することを可能とする改良された高温特性を有する熱交換用チューブを提供するものである。
【0005】
【課題を解決するための手段】
本発明のガス式熱交換用チューブは、Cr基金属からなる中空円筒体をチューブ基体とし、基体の表面をCr基金属の酸化物膜で被覆した構成を有している。
【0006】
本発明の熱交換用チューブは、Cr基金属による物性として高温燃焼炎の直接被曝・燃焼ガスの接触による酸化作用や熱的損傷に対する卓抜した抵抗性を示し、かつ座屈・変形等を生じ難い高温強度を有する。この高温諸特性は、1000℃付近の温度域はむろん、従来のCo基耐熱合金の使用限界温度(約1250℃)を超える高温環境での使用を可能にする。
【0007】
チューブ基体(Cr基金属)を被覆する酸化物膜は、基体を熱処理雰囲気から遮断する層である。熱処理雰囲気が単なる高温酸化性雰囲気である場合は、そのような被膜を必要としないが、Cr基金属の蒸気圧は比較的高く(例えば約1Pa,at1350℃)、真空熱処理炉のラジアントチューブのように高温の減圧雰囲気に曝される使用環境では、蒸発耐性が不足し、蒸発による減肉損耗を生じる。またCrはCとの親和性が高いため、浸炭性雰囲気の熱処理炉のラジアントチューブとして使用される場合、浸炭による基体の材質劣化(脆化等)が生じる。このようなチューブ基体の損耗・劣化は、Cr基金属の酸化物膜により効果的に抑制防止される。
【0008】
【発明の実施の形態】
チューブ基体を構成するCr基金属は、CrまたはCr合金である。Cr(融点約1870℃)は、耐熱性,耐酸化性,高温強度等、高温構造材料として卓抜した物性を有する。Cr合金はCr含有量60%重量以上であることが望ましい。この高Cr含有によりCrに準ずる高温特性が確保されると共に、Crを主成分とするバリアー機能に優れた酸化物膜の緻密・均一な形成が保証される。
【0009】
Cr合金は、代表例としてCr−Fe合金が挙げられ、所望により、高温特性の改善を目的として、W,Mo,Nb,Ta,Hf,Co,Al,V,Mn等から選ばれる1種ないし2種以上の元素を含有する組成が与えられる。しかしこれらの元素の多量添加は高温特性を損ない、かつ加工性の低下を招くので、各元素の含有量(重量%)は10%以下とし、その合計含有量は60重%以上のCr含有量が維持されるように制限することが望ましい。なお、Cr基金属(Cr,Cr合金)は0.8%以下のC、5%以下のSiの混在が許容される。この範囲内であれば前記の高温諸特性は損なわれない。
【0010】
チューブ基体の表面を被覆する酸化物膜はCrで代表される。
Crは、1200℃を超える高温雰囲気に対する優れた耐酸化性を有すると共に、高温減圧雰囲気に対する卓抜した蒸発耐性(例えば、1350℃における蒸気圧:2.2×10−2Pa)を有している。
【0011】
チューブ基体がCr合金からなる場合、基体の表面は、Crを含む複酸化物で被覆される。複酸化物は、(Cr,M)で示される酸化物、MO・Crで示されるスピネル型構造の酸化物[各式中、M:基材のCr合金の合金元素]等である。
これらの複酸化物膜は、前記のCr酸化物膜と同等ないしそれに準ずる保護膜機能を奏する。
【0012】
上記酸化物膜は、蒸発耐性に優れていると共に、浸炭性雰囲気に対する保護膜として効果的に機能する。酸化物の生成自由エネルギーは、炭化物の生成標準自由エネルギーより大であり、浸炭性雰囲気においても、酸化物膜の分解・変質を生じず、緻密・均一な膜質を保持する。これにより、浸炭性雰囲気に置かれる使用環境におけるチューブの損耗・劣化が抑制防止され、長期に亘る安定な使用が可能となる。
【0013】
酸化物膜は、チューブ基体を雰囲気から遮断し、その保護膜機能を良好ならしめるために、50μm以上の膜厚を有することが好ましい。より好ましくは、100μm以上である。しかし、酸化物膜とチューブ基体(Cr基金属)とは熱膨張率が相違するので、酸化物膜の膜厚を過度に厚くすると、酸化物膜の亀裂・剥離を助長する原因となる。このために、酸化物膜の膜厚は500μm以下に制限するのが好ましい。
【0014】
本発明の熱交換用チューブは、チューブ基体を形成する工程と、その基体の表面に酸化物膜を形成する工程により製造される。チューブ基体は、好ましくは、Cr基金属の粉末を原料とする熱間静水圧プレス成形体、または熱間押出し成形体として作製される。
【0015】
図2は、熱間静水圧プレス(HIP)に供する原料粉末のカプセル封入態様を示している。21は円筒状カプセル材(例えば軟鋼製)、22は芯金(円柱体)であり、カプセル材(21)と芯金(22)は互いの軸芯を一致させて底側の端板(23)に溶接等で固定されている。カプセル内に原料粉末(P)を充填して、上部開口端を端板(24)で閉じ,脱気密封したうえHIP処理する。HIP処理は、温度:約1000〜1500℃、加圧力:約100〜200MPaに設定し、適当時間保持することにより首尾よく達成される。HIP処理後、カプセル(21),芯金(22)等を除去して成形体を取出す。
【0016】
図3は、熱間押出し成形加工に供される原料粉末のカプセル封入形態を示している。カプセル材(例えば軟鋼製)は、内側円筒体(31)と外側円筒体(32)とを同心円状に重合し、両端の開口面に端板(33)(34)を施蓋した中空円筒体であり、内部に原料粉末(P)が脱気密封されている。このカプセル体(30)を、熱間押出し成形材料として、図4に示すように熱間押出し成形装置(所謂「中空材前方押出し加工装置」)(40)のライナ(41)内に装填する。
【0017】
押出し材料(30)は、中空孔内にマンドレル(43)を挿通され、加圧板(44)を介してラム(45)による押出し成形圧力が加えられ、ダイス(42)から押出される。カプセル体(30)の充填粉末(P)は押出しの際に受ける高い圧縮応力により圧密化と粒子同士の結合および塑性変形を生じる。
押出し加工温度は、約1000〜1500℃の範囲が適当である。押出し材料(30)を加工温度に保持するための加熱処理は、予め(ライナに装填する前に)施され、またはライナ(41)内で行なわれる。熱間押出し加工の後、カプセルを除去して成形体を取り出す。
【0018】
上記のように、熱間静水圧加圧プレス,熱間押出し加工等により形成された成形体に、機械加工を施して所定サイズのチューブ基体を得る。ついで、そのチューブ基体の表面に酸化物膜を形成するための熱処理を行なう。この熱処理は、チューブ基体を酸化雰囲気(大気雰囲気であってよい)中、800〜1100℃の温度域に適当時間(例えば5〜15Hr)加熱保持することにより達成される。酸化物膜の膜厚は、熱処理温度,時間等により調整される。
【0019】
図1は、本発明の熱交換用チューブの形態例を模式的に示している。11は基体、12は基体の表面を被覆するCr基金属酸化物の膜体である。チューブの開口端部には必要に応じて継手補助部材(13)(14)が形設される。継手補助部材(13)(14)の取付けは、チューブ基体の熱処理(酸化物膜形成)に先行し又はその後に溶接等により行なえばよい。チューブ基体を熱間静水圧加圧プレス成形体として製作する場合は、前記図2に示したように、原料粉末をキャニングする際の端板(23)(24)として、継手部材に適した材種の板材を使用すると共に、HIP処理後にカプセルを除去する機械加工において、その端板(23)(24)(HIP処理過程の固相拡散によりチューブ基体の端面に強固に結合している)を継手補助部材として残置させるようにすればよい。
【0020】
図1に示した熱交換用チューブはストレート管であるが、チューブ形態はこれに限定されない。すなわち、熱間静水圧加圧プレス又は熱間押出し加工等により形成されるチューブ基体は、熱間塑性加工(例えば高周波曲げ加工)により、ベンド管(U字型,L字型等)に成形することができ、縮径・長尺化等の加工も容易であり、またベンド管とストレート管とを継手補助部材(13)(14)を介して溶接や機械的結合により連結すること種々の形態を有する熱交換用チューブに仕上げることができる。
【0021】
【実施例】
(1)供試材の製作
Cr基金属粉末(粒径355μm以下)を図2のようにカプセル(軟鋼製)に充填封入し熱間静水圧加圧プレス処理に付し(1250℃×100MPa×5Hr)、処理後、機械加工でカプセルを除去し、仕上げ加工を施してチューブ基体を得た(外径114,肉厚7,長さ1400,mm)
ついで、チューブ基体にを熱処理炉(大気雰囲気)に装入し、酸化物膜を形成するための加熱処理(処理条件は表中記載)を施して供試チューブを得た。
【0022】
(2)耐雰囲気特性の評価
(2.1)昇華試験
供試チューブを高温真空雰囲気に所定時間保持した後、蒸発による試験片の重量減少率(重量減少量/試験前の重量 ×100%)を測定し、蒸発耐性を評価する。
雰囲気 :1250℃×0.133Pa
試験時間:1000Hr
【0023】
(2.2)浸炭試験
供試チューブから切出した中空筒体を固体浸炭剤(デグサKG30)に埋め込み加熱保持(温度1150℃×300Hr)する。試験後、試験片表面から深さ3mmまで、0.5mm間隔の各深さ位置から採取した切粉のC量(化学分析)から、浸炭により増加したC分の総量(ΣΔC)を求め、耐浸炭性を評価する。
【0024】
【表1】

Figure 0004408580
【0025】
表1に、供試チューブの構成および上記物性試験結果を高温強度測定結果と併せて示す。「高温曲げ強度」は、JIS
Z2248に準拠した曲げ試験(試験温度:1000℃)による。比較例No.11およびNo.12は、酸化物膜を形成する加熱処理が省略されている点を除いて発明例と同一条件の高Cr基金属からなるチューブ、No.13は従来の代表的耐熱材料であるCo基合金からなるチューブ材の例である。
【0026】
表1に示したように、発明例のチューブは、Cr基金属による卓抜した高温強度を有し、その強度レベルは従来の代表的耐熱合金であるCo基耐熱合金チューブを大きく上回っている。また、発明例の耐雰囲気性を、発明例と同じ高Cr合金からなる比較例No.11,No.12(いずれも酸化物膜形成処理なし)と対比すると、比較例No.11,No.12は、高温真空雰囲気での蒸発損耗および浸炭雰囲気における炭素増量が顕著であるのに対し、発明例の蒸発損耗および炭素増量はいずれも極く微量であり、本発明の酸化物膜による耐雰囲気性の改善効果は歴然である。
【0027】
【発明の効果】
Cr基合金からなる本発明の熱交換用チューブは、1000℃を超える燃焼炎やガスが接触する高温酸化雰囲気下にも、溶損や酸化損耗を受けず、従来の耐熱合金製チューブでは不可能な安定使用を確保することができ、鍛造炉,焼結炉,磁気焼鈍や高速度鋼の焼入れなどもガス炉による処理を可能とする。この高温特性は、チューブ基体表面に形成された酸化物膜の被覆効果として、熱処理雰囲気との反応・相互作用等に起因する損傷・劣化が抑制防止され、真空雰囲気や浸炭性雰囲気等の特殊な熱処理雰囲気においても安定に保持され、熱交換用チューブのメンテナンスの改善、操炉効率の向上等の効果をもたらす。また、熱間静水圧加圧プレス成形体や熱間押出し成形体等として製造される本発明の熱交換用チューブは、ニアネットシェイプを有し、仕上げ機械加工の負担も少なくコスト的に有利に製造することができる。
【図面の簡単な説明】
【図1】本発明のチューブの実施例を示す軸方向断面図である。
【図2】チューブ基体を熱間静水圧加圧プレス成形体として製造するための原料粉末のキャニング形態を示す軸方向断面説明図である。
【図3】チューブ基体を熱間押出し成形体として製造するための押出し材用として使用される粉末充填カプセル体の例を示す軸方向断面説明図である。
【図4】本発明チューブの熱間押出し成形加工の軸方向断面説明図である。
【符号の説明】
10:熱交換用チューブ
11:チューブ基体
12:酸化物膜
13,14:継手補助部材
21:カプセル材
22:芯金
23,24:端板
30:粉末充填カプセル
31:内側円筒体
32:外側円筒体
33,34:端板
35:熱間押出し成形物
40:熱間押出し成形装置
P :Cr基金属粉末[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a heat exchange tube useful for indirectly heating an object to be processed using a high temperature gas as a heat source, particularly as a radiant tube of a heat treatment furnace requiring high temperature heating exceeding 1000 ° C.
[0002]
[Prior art]
As a heating method of a heat treatment furnace for indirectly heating an object to be processed, there are a gas heating method using a high-temperature combustion gas as a heat source and an electric heating method using resistance heat generation. In the gas heating method, a high-temperature combustion flame / combustion gas of a burner is injected into a radiant tube to bring the tube into a red hot state, and the object to be processed is heated by radiant heat from the tube surface. In the electric heating method, a resistance heating element is placed in a protective tube, and the object to be processed is heated by radiant heat from the surface of the protective tube. Conventionally, the gas heating method is applied to a heat treatment of about 960 ° C. or less, and an electric heating method is used for a heat treatment furnace that requires high-temperature heating exceeding 1000 ° C. such as forging and sintering.
[0003]
[Problems to be solved by the invention]
Since the gas heating method is greatly superior in terms of energy efficiency and the like as compared with the electric heating method, it is desirable to apply the gas heating method to a high-temperature heat treatment furnace exceeding 1000 ° C. instead of the electric heating method. It is. However, unlike the electric heating method, the radiant tube in the gas heating method is subjected to severe oxidation by the high-temperature combustion flame / combustion gas of the burner. In a high temperature range exceeding 1000 ° C., the wear of the tube due to the oxidizing action becomes significant.
[0004]
Even a Co-based heat-resistant alloy (40Co-20Ni-25Cr-Fe), which is a typical typical tube material, has a use limit temperature of about 1250 ° C., and in the above high temperature environment, long-term stable use can be ensured. Can not. For this reason, in a high temperature heat treatment furnace exceeding 1000 ° C., an electric heating method is unavoidably used.
In view of the above, the present invention provides a heat exchange tube having improved high temperature characteristics that can be stably used as a radiant tube heated at a high temperature exceeding 1000 ° C.
[0005]
[Means for Solving the Problems]
The gas heat exchange tube of the present invention has a configuration in which a hollow cylindrical body made of a Cr-based metal is used as a tube base, and the surface of the base is covered with an oxide film of a Cr-based metal.
[0006]
The heat exchange tube of the present invention exhibits outstanding resistance to oxidation and thermal damage caused by direct exposure to the high-temperature combustion flame and contact with combustion gas as a physical property of the Cr-based metal, and hardly causes buckling or deformation. Has high temperature strength. These high temperature characteristics enable the use in a high temperature environment exceeding the use limit temperature (about 1250 ° C.) of the conventional Co-based heat-resistant alloy as well as the temperature range near 1000 ° C.
[0007]
The oxide film covering the tube substrate (Cr-based metal) is a layer that blocks the substrate from the heat treatment atmosphere. When the heat treatment atmosphere is just a high-temperature oxidizing atmosphere, such a coating is not required, but the vapor pressure of the Cr-based metal is relatively high (for example, about 1 Pa, at 1350 ° C.), which is like a radiant tube of a vacuum heat treatment furnace. In a use environment exposed to a high-temperature reduced-pressure atmosphere, evaporation resistance is insufficient, and thinning wear due to evaporation occurs. In addition, since Cr has a high affinity with C, when used as a radiant tube of a heat treatment furnace in a carburizing atmosphere, material deterioration (embrittlement, etc.) of the substrate due to carburization occurs. Such wear and deterioration of the tube base is effectively suppressed and prevented by the oxide film of the Cr-based metal.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
The Cr-based metal constituting the tube base is Cr or a Cr alloy. Cr (melting point: about 1870 ° C.) has outstanding physical properties as a high-temperature structural material such as heat resistance, oxidation resistance, and high-temperature strength. The Cr alloy desirably has a Cr content of 60% by weight or more. The high Cr content ensures high-temperature characteristics equivalent to Cr, and guarantees dense and uniform formation of an oxide film having a barrier function mainly composed of Cr 2 O 3 .
[0009]
A typical example of the Cr alloy is a Cr—Fe alloy. If desired, one selected from W, Mo, Nb, Ta, Hf, Co, Al, V, Mn, etc. may be used for the purpose of improving high temperature characteristics. A composition containing two or more elements is provided. However, since the addition of a large amount of these elements impairs the high temperature characteristics and leads to a decrease in workability, the content (% by weight) of each element is 10% or less, and the total content is a Cr content of 60% by weight or more. It is desirable to limit so that is maintained. The Cr-based metal (Cr, Cr alloy) is allowed to contain 0.8% or less of C and 5% or less of Si. If it exists in this range, the said high temperature characteristics will not be impaired.
[0010]
An oxide film covering the surface of the tube base is represented by Cr 2 O 3 .
Cr 2 O 3 has excellent oxidation resistance to a high temperature atmosphere exceeding 1200 ° C. and outstanding evaporation resistance to a high temperature reduced pressure atmosphere (for example, vapor pressure at 1350 ° C .: 2.2 × 10 −2 Pa). Yes.
[0011]
When the tube substrate is made of a Cr alloy, the surface of the substrate is coated with a double oxide containing Cr 2 O 3 . The double oxide includes an oxide represented by (Cr, M) 2 O 3 and an oxide having a spinel structure represented by MO · Cr 2 O 3 [wherein, M: alloy element of Cr alloy of base material] Etc.
These double oxide films have a protective film function equivalent to or equivalent to that of the Cr 2 O 3 oxide film.
[0012]
The oxide film has excellent evaporation resistance and effectively functions as a protective film against a carburizing atmosphere. The free energy of formation of oxide is larger than the standard free energy of formation of carbide, and even in a carburizing atmosphere, the oxide film is not decomposed or altered, and a dense and uniform film quality is maintained. As a result, wear and deterioration of the tube in a use environment placed in a carburizing atmosphere is suppressed and prevented, and stable use over a long period of time becomes possible.
[0013]
The oxide film preferably has a thickness of 50 μm or more in order to block the tube base from the atmosphere and to make the protective film function good. More preferably, it is 100 μm or more. However, since the coefficient of thermal expansion is different between the oxide film and the tube base (Cr-based metal), excessively increasing the thickness of the oxide film may promote cracking / peeling of the oxide film. For this reason, the thickness of the oxide film is preferably limited to 500 μm or less.
[0014]
The heat exchange tube of the present invention is manufactured by a step of forming a tube base and a step of forming an oxide film on the surface of the base. The tube base is preferably produced as a hot isostatic press molded body or a hot extruded molded body made of Cr-based metal powder.
[0015]
FIG. 2 shows an encapsulation mode of raw material powder to be subjected to hot isostatic pressing (HIP). 21 is a cylindrical capsule material (for example, made of mild steel), 22 is a metal core (cylindrical body), and the capsule material (21) and the metal core (22) have their axial cores aligned with each other and end plates (23 ) Is fixed by welding or the like. The capsule is filled with the raw material powder (P), and the upper opening end is closed with an end plate (24), deaerated and sealed, and then subjected to HIP treatment. The HIP treatment is successfully achieved by setting the temperature: about 1000-1500 ° C. and the applied pressure: about 100-200 MPa and holding it for an appropriate time. After the HIP process, the capsule (21), the cored bar (22) and the like are removed and the molded body is taken out.
[0016]
FIG. 3 shows an encapsulated form of raw material powder subjected to hot extrusion molding. A capsule material (for example, made of mild steel) is a hollow cylindrical body in which an inner cylindrical body (31) and an outer cylindrical body (32) are concentrically polymerized and end plates (33) and (34) are applied to the opening surfaces of both ends. The raw material powder (P) is deaerated and sealed inside. The capsule body (30) is loaded as a hot extrusion molding material into a liner (41) of a hot extrusion molding apparatus (so-called “hollow material forward extrusion processing apparatus”) (40) as shown in FIG.
[0017]
The extruded material (30) is inserted through the mandrel (43) into the hollow hole, is subjected to extrusion pressure by the ram (45) via the pressure plate (44), and is extruded from the die (42). The filled powder (P) of the capsule body (30) causes consolidation, bonding between particles, and plastic deformation due to high compressive stress received during extrusion.
The extrusion temperature is suitably in the range of about 1000 to 1500 ° C. The heat treatment for maintaining the extruded material (30) at the processing temperature is performed in advance (before being loaded into the liner) or is performed in the liner (41). After hot extrusion, the capsule is removed and the molded body is taken out.
[0018]
As described above, a molded body formed by hot isostatic pressing, hot extrusion, or the like is machined to obtain a tube substrate of a predetermined size. Next, heat treatment for forming an oxide film on the surface of the tube base is performed. This heat treatment is achieved by heating and holding the tube base in a temperature range of 800 to 1100 ° C. for an appropriate time (for example, 5 to 15 Hr) in an oxidizing atmosphere (which may be an air atmosphere). The thickness of the oxide film is adjusted by the heat treatment temperature, time, and the like.
[0019]
FIG. 1 schematically shows an example of a heat exchange tube according to the present invention. Reference numeral 11 is a substrate, and 12 is a Cr-based metal oxide film covering the surface of the substrate. Joint auxiliary members (13) and (14) are formed at the opening end of the tube as necessary. The joint auxiliary members (13) and (14) may be attached by welding or the like prior to or after the heat treatment (oxide film formation) of the tube base. In the case where the tube base is manufactured as a hot isostatic press molding, as shown in FIG. 2, a material suitable for a joint member as an end plate (23) (24) when the raw material powder is canned. The end plate (23) (24) (which is firmly bonded to the end face of the tube base by solid phase diffusion during the HIP process) is used in machining to remove the capsule after the HIP process while using a seed plate. What is necessary is just to make it leave as a coupling auxiliary member.
[0020]
The heat exchange tube shown in FIG. 1 is a straight tube, but the tube form is not limited to this. That is, a tube base formed by hot isostatic pressing or hot extrusion or the like is formed into a bend pipe (U-shaped, L-shaped, etc.) by hot plastic working (for example, high-frequency bending). It is possible to easily reduce the diameter and increase the length, and to connect the bend pipe and the straight pipe by welding or mechanical connection via the joint auxiliary members (13) and (14). It can be finished into a heat exchange tube having
[0021]
【Example】
(1) Production of test material Cr-based metal powder (particle size of 355 μm or less) is filled and sealed in a capsule (made of mild steel) as shown in FIG. 2 and subjected to hot isostatic pressing (1250 ° C. × 100 MPa × 5Hr) After the treatment, the capsule was removed by machining and finished to obtain a tube base (outer diameter 114, wall thickness 7, length 1400, mm)
Next, the tube base was charged into a heat treatment furnace (atmosphere), and subjected to heat treatment (treatment conditions are described in the table) for forming an oxide film to obtain a test tube.
[0022]
(2) Evaluation of atmospheric resistance
(2.1) Sublimation test After holding the test tube in a high-temperature vacuum atmosphere for a predetermined time, the weight reduction rate of the test piece by evaporation (weight reduction amount / weight before test × 100%) is measured to evaluate the evaporation resistance.
Atmosphere: 1250 ° C x 0.133 Pa
Test time: 1000Hr
[0023]
(2.2) Carburizing test A hollow cylinder cut out from a test tube is embedded in a solid carburizing agent (Degussa KG30) and heated (temperature: 1150 ° C x 300 hours). After the test, the total amount of C (ΣΔC) increased by carburization was determined from the C amount (chemical analysis) of the chips collected from each depth position at intervals of 0.5 mm from the surface of the test piece to a depth of 3 mm. Carburizability is evaluated.
[0024]
[Table 1]
Figure 0004408580
[0025]
Table 1 shows the configuration of the test tube and the physical property test results together with the high temperature strength measurement results. "High temperature bending strength" is JIS
According to a bending test (test temperature: 1000 ° C) according to Z2248. Comparative Examples No. 11 and No. 12 are tubes made of a high Cr-based metal under the same conditions as the inventive examples except that the heat treatment for forming the oxide film is omitted, and No. 13 is a conventional representative It is an example of the tube material which consists of Co base alloy which is a heat resistant material.
[0026]
As shown in Table 1, the tube of the invention example has an outstanding high temperature strength with a Cr-based metal, and its strength level greatly exceeds that of a conventional representative heat-resistant alloy, a Co-based heat resistant alloy tube. Further, when the atmospheric resistance of the inventive example is compared with Comparative Examples No. 11 and No. 12 (both without oxide film formation treatment) made of the same high Cr alloy as that of the Invention Example, Comparative Examples No. 11 and No. No. 12, the evaporation wear in the high temperature vacuum atmosphere and the carbon increase in the carburizing atmosphere are remarkable, whereas the evaporation wear and the carbon increase in the invention example are both extremely small, and the resistance to the atmosphere by the oxide film of the present invention The gender improvement effect is obvious.
[0027]
【The invention's effect】
The heat exchange tube of the present invention made of a Cr-based alloy is not subject to melting or oxidative wear even in a high-temperature oxidizing atmosphere in which a combustion flame exceeding 1000 ° C. or gas contacts, and is impossible with a conventional heat-resistant alloy tube. It is possible to ensure stable use, and forging furnaces, sintering furnaces, magnetic annealing and quenching of high-speed steel can be processed by a gas furnace. This high temperature characteristic is a special effect such as vacuum atmosphere and carburizing atmosphere because the oxide film formed on the surface of the tube base is prevented from being damaged and deteriorated due to reaction and interaction with the heat treatment atmosphere. It is stably maintained even in a heat treatment atmosphere, and brings about effects such as improved maintenance of the heat exchange tube and improved operation efficiency. In addition, the heat exchange tube of the present invention manufactured as a hot isostatic pressure press-molded body or a hot-extruded molded body has a near net shape, has a low burden of finishing machining, and is advantageous in terms of cost. Can be manufactured.
[Brief description of the drawings]
FIG. 1 is an axial sectional view showing an embodiment of a tube of the present invention.
FIG. 2 is an axial cross-sectional explanatory view showing a canning form of raw material powder for producing a tube base as a hot isostatic pressure press-formed body.
FIG. 3 is an axial cross-sectional explanatory view showing an example of a powder-filled capsule used for an extruded material for producing a tube base as a hot-extruded product.
FIG. 4 is an axial cross-sectional explanatory view of the hot extrusion molding process of the tube of the present invention.
[Explanation of symbols]
10: Heat exchange tube 11: Tube base 12: Oxide film 13, 14: Joint auxiliary member 21: Capsule material 22: Core metal 23, 24: End plate 30: Powder-filled capsule 31: Inner cylinder 32: Outer cylinder Body 33, 34: End plate 35: Hot extrusion molding 40: Hot extrusion molding apparatus P: Cr-based metal powder

Claims (4)

減圧雰囲気のガス加熱式熱処理炉に設置されるラジアントチューブであって、Cr60重量%以上含有するCr基金属からなる中空円筒体をチューブ基体とし、チューブ基体は、外面が減圧雰囲気下での蒸発による減肉損耗を抑制するための酸化物膜、内面が加熱用バーナーの燃焼ガスによる酸化を防止するための酸化物膜で被覆されており、酸化物膜の酸化物は、チューブ基体を酸化雰囲気での加熱処理に付して形成されたCrA radiant tube installed in a gas heating type heat treatment furnace in a reduced pressure atmosphere, wherein a hollow cylindrical body made of a Cr-based metal containing 60 wt% or more of Cr is used as a tube base, and the tube base is formed by evaporation under a reduced pressure atmosphere. An oxide film for suppressing thinning and wear, and an inner surface is coated with an oxide film for preventing oxidation by the combustion gas of a heating burner. Formed by heat treatment of 22 O 3Three を含む複酸化物である、ラジアントチューブ。Radiant tube, which is a double oxide containing 浸炭雰囲気のガス加熱式熱処理炉に設置されるラジアントチューブであって、Cr60重量%以上含有するCr基金属からなる中空円筒体をチューブ基体とし、チューブ基体は、外面が浸炭雰囲気下での浸炭を抑制するための酸化物膜、内面が加熱用バーナーの燃焼ガスによる酸化を防止するための酸化物膜で被覆されており、酸化物膜の酸化物は、チューブ基体を酸化雰囲気での加熱処理に付して形成されたCrA radiant tube installed in a gas heating type heat treatment furnace in a carburizing atmosphere, wherein a hollow cylindrical body made of a Cr-based metal containing 60 wt% or more of Cr is used as a tube base, and the outer surface of the tube base is carburized under a carburizing atmosphere. The oxide film for suppressing the inner surface is covered with an oxide film for preventing oxidation by the combustion gas of the heating burner. The oxide of the oxide film is used for heat treatment of the tube substrate in an oxidizing atmosphere. Cr formed 22 O 3Three を含む複酸化物である、ラジアントチューブ。Radiant tube, which is a double oxide containing 酸化物膜は、50〜500μmの膜厚を有する請求項1又は2に記載のラジアントチューブ。 The radiant tube according to claim 1, wherein the oxide film has a thickness of 50 to 500 μm . 酸化物膜は、130〜500μmの膜厚を有する請求項3に記載のラジアントチューブ The radiant tube according to claim 3, wherein the oxide film has a thickness of 130 to 500 μm .
JP2001033564A 2001-02-09 2001-02-09 Hot gas heat exchange tube Expired - Fee Related JP4408580B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001033564A JP4408580B2 (en) 2001-02-09 2001-02-09 Hot gas heat exchange tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001033564A JP4408580B2 (en) 2001-02-09 2001-02-09 Hot gas heat exchange tube

Publications (2)

Publication Number Publication Date
JP2002235903A JP2002235903A (en) 2002-08-23
JP4408580B2 true JP4408580B2 (en) 2010-02-03

Family

ID=18897296

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001033564A Expired - Fee Related JP4408580B2 (en) 2001-02-09 2001-02-09 Hot gas heat exchange tube

Country Status (1)

Country Link
JP (1) JP4408580B2 (en)

Also Published As

Publication number Publication date
JP2002235903A (en) 2002-08-23

Similar Documents

Publication Publication Date Title
US5263349A (en) Extrusion of seamless molybdenum rhenium alloy pipes
US7416696B2 (en) Powder metal materials and parts and methods of making the same
JP4408580B2 (en) Hot gas heat exchange tube
EP0603749B1 (en) Compound sleeve roll and method for producing same
CN112958626A (en) Sheath suitable for rolling TiAl alloy and preparation method thereof
JPH08193241A (en) Hot working tool and its production
JPH028336A (en) Carbon deposition-resistant two-layer pipe
JP4735950B2 (en) Cemented carbide roll for rolling
EP3498388A1 (en) Method for manufacturing piercer plug
JP2712460B2 (en) Extruded billet with metal powder clad tube and insulated steel tube
JP2001304793A (en) High temperature gas heat exchanging tube
JP6560549B2 (en) Laminated tube and manufacturing method thereof
JPH0150514B2 (en)
JP2004167503A (en) Composite rolling roll made of cemented carbide
JP4221703B2 (en) Cemented carbide roll composite roll manufacturing method and roll
JP6354504B2 (en) Cemented carbide composite roll and manufacturing method thereof
JPH03193204A (en) Plug for manufacturing hot seamless tube
JPH024551B2 (en)
JPH0790540A (en) Wear resistant double layered steel pipe for boiler and its production
CN118492373A (en) High-density tungsten-titanium target hot-pressing production method
JP2004315877A (en) Method of canning precompact for sintering, and method of producing sintered material thereby
JP2004181521A (en) Composite roll made of sintered hard alloy
CN113316489A (en) Method for manufacturing zirconium alloy tubular product
JPS6214632B2 (en)
JP2003342676A (en) Cemented-carbide-made composite roll

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070705

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070706

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070705

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080125

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090303

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090430

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091110

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4408580

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121120

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131120

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees