JP4408509B2 - Method for forming group III nitride thin film - Google Patents

Method for forming group III nitride thin film Download PDF

Info

Publication number
JP4408509B2
JP4408509B2 JP36672399A JP36672399A JP4408509B2 JP 4408509 B2 JP4408509 B2 JP 4408509B2 JP 36672399 A JP36672399 A JP 36672399A JP 36672399 A JP36672399 A JP 36672399A JP 4408509 B2 JP4408509 B2 JP 4408509B2
Authority
JP
Japan
Prior art keywords
gan
thin film
group iii
film
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP36672399A
Other languages
Japanese (ja)
Other versions
JP2001185487A (en
Inventor
三郎 清水
早紀 園田
元 奥村
旭強 沈
三聡 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Ulvac Inc
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST, Ulvac Inc filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP36672399A priority Critical patent/JP4408509B2/en
Publication of JP2001185487A publication Critical patent/JP2001185487A/en
Application granted granted Critical
Publication of JP4408509B2 publication Critical patent/JP4408509B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、III族窒化物薄膜の形成方法、特に分子線エピタキシー(MBE)によるIII族窒化物薄膜(極性:(0001))の形成方法に関するものである。
【0002】
【従来の技術】
六方晶であるサファイアC面基板上にGaNを成長させる場合、通常、六方晶のウルツ鉱型GaNがサファイア基板とc軸を揃えて成長する。しかし、ウルツ鉱型GaNはc軸方向に極性をもつため、通常は、図1(A)および(B)に示すように、2種類の極性、すなわち2種類の原子の配列状態をもつ結晶の混在した膜となってしまう。このようにサファイアC面基板1上に成長するGaN膜において、図1(A)に示すようにGa原子の直上にN原子が配列された場合をGaN(0001)(Ga−face)、図1(B)に示すようにN原子の直上にGa原子が配列された場合をGaN(000−1)(N−face)と呼んでいる。これらの2種類の極性と成長した膜の特性とは密接に関係しており、GaN(0001)膜の方が、GaN(000−1)膜、あるいはGaN(0001)とGaN(000−1)との混在した膜よりも、光学的、電気的特性、さらには表面平坦性に優れているということが報告されている(Keller et al., Appl. Phys. Lett. 68(1996)1525, Fuke et al., J. Appl. Phys. 83(1998)764)。したがって、いかに成長する膜の極性をGa−faceに制御するかということが高品質III族窒化物半導体素子を作製するうえでの重要なキーポイントとなっている。
【0003】
有機金属気相成長法(MOCVD法)においては、有機金属ガスの供給時期、核密度増大のためにサファイア基板上に成長させる低温バッファ層のアニール条件等を制御することにより、成長する膜の極性をGa−faceに制御することが既に可能となっている。これに対し、分子線エピタキシー(MBE)法においては、これまでGaN(000−1)が支配的な膜しか得られておらず、GaN(0001)膜を得ることは不可能であった。
【0004】
【発明が解決しようとする課題】
この発明は、上記のような従来のMBE法におけるGaN系III族窒化物薄膜形成の際の問題点を解決するものであり、成長する膜の極性を(0001)に制御して、従来よりも光学的、電気的特性に優れたGaN系III族窒化物薄膜を形成する方法を提供することを課題としている。
【0005】
【課題を解決するための手段】
本発明者らは、上記従来技術の問題点を解決すべく鋭意研究を重ねた結果、次のような手段を用いることにより、成長する膜の極性を(0001)に制御することに成功し、本発明を完成するに至った。
【0006】
(1)サファイアC面基板上に、窒素プラズマを窒素源とし、金属GaをGa源として、MBE法によりGaN単結晶薄膜をエピタキシャル成長させるには、まず基板を約800℃で加熱して清浄化する。次いで、約200オングストローム程度のGaN層を約500℃の低温で堆積させた後にアニールすることによって、GaNの核形成を促進させる低温バッファ層を形成する。このようにして形成された低温バッファ層上に、成長温度600℃〜800℃でGaN層を成長させるという方法が通常用いられている。また、さらに核密度を増大させることを目的として低温バッファ層形成前に、窒素プラズマをサファイア基板に照射してサファイア基板を窒化し、GaNと格子定数の近いAlN層を基板表面に形成させる方法が採用されることもある。以上のような方法でGaNを成長させた場合には、得られたGaN膜はGaN(0001)とGaN(000−1)との混在した膜となってしまう。また、サファイア基板の窒化プロセスを導入した場合には、GaN(000−1)の混在率が増大するのみで、GaN(0001)のみの膜を得ることはできなかった。
【0007】
(2)上記(1)で述べたように、低温バッファ層形成前に、窒素プラズマをサファイア基板に照射してサファイア基板を窒化し、GaNと格子定数の近いAlN層を形成させた場合には、GaN(000−1)の混在率が増大してしまうことがわかった。これは、サファイア基板が窒素プラズマに曝された場合には、基板表面にAlN(000−1)の層が形成されるため、このAlN層上に成長したGaN膜は(000−1)の混在率が高い膜となってしまうからである。この発明は、基板清浄化処理後、低温バッファ層形成時に基板が窒素プラズマに曝されるのを抑制する目的で、プラズマ照射前に、基板上に金属Gaあるいは金属Alを1〜数原子層を形成せしめ、その後窒素プラズマおよび金属Gaを主成分とする金属を照射して膜を成長させ、成長するGaN系III族窒化物薄膜の極性を(0001)に制御し、目的とするGaN系III族窒化物を得ようとするものである。
【0008】
(3)上記(1)で述べたように、従来、基板清浄化後に約200オングストローム程度のGaN層を約500℃の低温で堆積させ、アニールすることによって、GaNの核形成を促進させる低温バッファ層を形成する場合もある。本発明者らは、この低温バッファ層の替わりに、650℃〜800℃の高温で窒素プラズマと金属Alを用いてAlNバッファ層を成長させた場合には、成長させたAlN層の極性は(0001)であることを見い出した。この発明は、以上のことを利用し、基板の清浄化処理後、650℃〜800℃の高温で基板上に窒素プラズマと金属Alとを用いてAlNバッファ層を成長させ、その後、成長温度600℃〜800℃で膜を成長させて、得られるGaN系III族窒化物薄膜の極性を(0001)に制御し、目的とするGaN系III族窒化物を得ようとするものである。
【0009】
(4)上記(1)で述べたように、従来、低温バッファ層形成前にサファイア基板を窒化し、GaNと格子定数の近いAlN層を基板表面に形成させ、さらに核密度を増大させる方法が採用されることもある。本発明者らは、このサファイア基板の窒化プロセスにおいて、窒素源をアンモニアとし、このアンモニアをサファイア基板に800℃〜950℃で照射した場合には、基板表面に形成されるAlN層の極性は(0001)であることを見い出した。この発明は、以上のことを利用し、基板の清浄化処理後、800℃〜950℃の高温でアンモニアを照射してAlN層を形成し、次いで、窒素源としてアンモニアあるいは窒素プラズマを、またIII族源としてGaを主成分とする金属を照射して成長温度600℃〜800℃で膜を成長させ、得られるGaN系III族窒化物薄膜の極性を(0001)に制御し、目的とするGaN系III族窒化物を得ようとするものである。
【0010】
【発明の実施の形態】
以下、この発明の実施の形態を参考例とともに説明する。
【0011】
参考例によれば、通常の分子線エピタキシャル装置を用い、通常の真空下で原料物質を蒸発させ、このガス状物質を600〜800℃に加熱したサファイアC面基板上に供給し、薄膜結晶を成長させて、目的とするGaN系III族窒化物薄膜を形成する。成長温度600℃〜800℃において、窒素源として窒素プラズマを、またIII族源としてGaを主成分とする金属を基板に照射してGaN系III族窒化物薄膜を成長させる際に、窒素源およびIII族源の照射と同時に成長初期の間だけ金属Inを照射する。これにより、極性が(0001)に制御された、光学的、電気的特性に優れた薄膜を得ることができる。このようにして形成された薄膜を有する基板の一つの例を図2(A)および(B)に示す。図2(A)および(B)に示したように、サファイア基板21上に、GaN系(0001)膜、あるいはGaN系(000−1)膜、あるいは(0001)と(000−1)との混在した膜22、22’が下地として設けられ、その上にIn照射中に形成されるGaN系III族窒化物薄膜(In照射層)23が形成され、さらにその上にGaN系III族窒化物薄膜24が形成される。ここで、GaN系III族窒化物薄膜24は、Gaの他、III族金属元素としてIn、Al等を含んでも良いし、また、ドーパントとしてBe、Mg、Siなどを含んでも良い。この参考例においては:1.成長させるIII族窒化物薄膜の下地としては、GaN系(0001)膜、あるいはGaN系(000−1)膜、あるいは(0001)と(000−1)との混在した膜であればいずれの膜でも使用できる。例えば、サファイアC面基板21を加熱して(例えば、約800℃)清浄化した後、所定の厚さのGaN層を低温(例えば、約500℃)で堆積せしめ、次いでアニール処理することにより形成された低温バッファ層22でも(図2(A))、あるいは他の成長法(例えば、スパッタ、レーザーデポジションなど)で成長させた膜22’でも(図2(B))、上記結晶方位を有するものであれば使用できる。この低温バッファ層はGaNの核形成を促進させる。
【0012】
2.窒素プラズマは、RFで生成されるものでもECRで生成されるものでも良い。
【0013】
3.III族金属(Ga)としては、その強度(フラックス)が1×1013コ/cm2s〜1×1015コ/cm2sであるものを用いる。強度が1×1013コ/cm2s未満であると実用的な成長速度(0.1μm/hr)が得られず、また、1×1015コ/cm2sを超えると結晶性が劣化するからである。
【0014】
4.金属Inとしては、照射するIII族金属(Ga)の強度の2桁低い強度から1桁高い強度までの範囲内のものを用いることが好ましい。これは、この強度の範囲外では効果がないからである。
【0015】
5.金属Inは、III族窒化物薄膜の成長初期にのみ照射しても、または成長中照射し続けても良い。
【0016】
この発明の第1の実施の形態によれば、参考例において述べたようなサファイアC面基板清浄化処理後、基板上に金属Gaあるいは金属Alを1原子層形成せしめ、その後窒素源として窒素プラズマ、およびIII族源としてGaを主成分とする金属を照射してGaN系低温バッファ層を形成し、次いでこのバッファ層上に所望のGaN系(0001)薄膜を成長させる。このようにして形成された薄膜を有する基板の一つの例を図3に示す。図3に示したように、サファイア基板31上に金属Gaあるいは金属Alの原子層32が形成され、この原子層上にGaN系低温バッファ層33が形成され、その上に所望のGaN系III族窒化物薄膜34が形成される。ここで、GaN系III族窒化物薄膜34は、Gaの他、III族金属元素としてIn、Al等を含んでも良いし、また、ドーパントとしてBe、Mg、Siなどを含んでも良い。この実施の形態においては:
1.金属Gaあるいは金属Alの照射温度は、室温〜600℃であれば良い。
【0017】
この発明の第2の実施の形態によれば、参考例において述べたようなサファイアC面基板清浄化処理後、基板上に、成長温度650℃〜800℃で窒素プラズマおよび金属Alを照射してAlN(0001)膜を成長させ、次いでAlN(0001)膜上に所望のGaN系(0001)薄膜を成長させる。このようにして形成された薄膜を有する基板の一つの例を図4に示す。図4に示したように、サファイア基板41上にAlN(0001)膜42が形成され、その上に所望のGaN系III族窒化物薄膜43が形成される。ここで、GaN系III族窒化物薄膜43は、Gaの他、III族金属元素としてIn、Al等を含んでも良いし、また、ドーパントとしてBe、Mg、Siなどを含んでも良い。この実施の形態においては:
1.窒素プラズマは、RFで生成されるものでもECRで生成されるものでも良い。
【0018】
2.金属Alとしては、その強度が1×1013コ/cm2s〜1×1015コ/cm2sであるものを用いる。
【0019】
3.AlN膜の膜厚はどの程度であっても良い。
【0020】
4.AlN膜上に成長させるGaN系III族窒化物薄膜は、スパッタ、CVD、レーザーデポジションなどの、どの成長法を用いて成長させても良い。
【0021】
この発明の第3の実施の形態によれば、参考例において述べたようなサファイアC面基板清浄化処理後、基板上に800℃〜900℃でアンモニアを照射してAlN(0001)の層を形成させ、次いで所望のGaN系(0001)層を成長させる。このようにして形成された薄膜を有する基板の一つの例を図5に示す。図5に示したように、サファイア基板51上にAlN(0001)層52が形成され、その上に所望のGaN系III族窒化物薄膜53が形成される。ここで、GaN系III族窒化物薄膜53は、Gaの他、III族金属元素としてIn、Al等を含んでも良いし、また、ドーパントとしてBe、Mg、Siなどを含んでも良い。この実施の形態においては:
1.アンモニアは熱分解してあっても、してなくても良い。
【0022】
2.アンモニアの流量としては、その下限はAlN(0001)層が形成される程度の量であれば良く、また、上限には特に制限はなく、経済的観点から適宜選択すれば良い。また、アンモニアの照射時間は、5分〜2時間であればどの程度でも良い。
【0023】
3.AlN(0001)層上に成長させるGaN系(0001)薄膜は、スパッタ、CVD、レーザーデポジションなどの、どの成長法を用いて成長させても良い。
【0024】
【実施例】
以下、この発明の実施例及び参考例を図面を参照して説明する。
参考例1
通常の分子線エピタキシャル装置を用い、図2(A)および(B)に示したようなGaN系薄膜を以下のようにして形成した。
【0025】
まず、サファイアC面基板21を800℃に加熱して清浄化処理し、この基板上に、窒素プラズマとGaを主成分とする金属を照射して所定の厚さのGaN層を約500℃で堆積せしめ、次いで約600℃でアニール処理して、低温バッファ層(極性:(0001)と(000−1)との混在)22を形成せしめた。その後、約10-2〜10-4Paの真空中で、III族源としてのGaを主成分とする金属原料物質(強度:2×1013コ/cm2s)を蒸発させ、このガス状物質を、RFで生成された窒素プラズマと共に、800℃に加熱したサファイアC面基板上に供給し、照射した。結晶成長温度730℃でGaN系薄膜を成長させる際に、上記ガス状物質と窒素プラズマの照射と同時にガス状の金属In(強度:7×1012コ/cm2s)を結晶成長初期にだけ照射した。このようにして低温バッファ層22上に薄膜結晶を成長させて、目的とするGaN系薄膜を形成した(図2(A))。この場合、結晶成長初期の金属In照射中に形成されたGaN系薄膜23には、金属Inは取り込まれておらず、また、その極性は(0001)であった。金属In照射をやめた後に成長したGaN系薄膜24の極性も(0001)であった。
【0026】
下地としての低温バッファ層22に代えてスパッタ法により成長せしめた膜(極性:(0001)と(000−1)との混在)22’を使用して上記方法を繰り返したところ、得られたGaN系薄膜の極性も上記の場合と同様に(0001)であった(図2(B))。また、下地として、GaN系(0001)膜、あるいはGaN系(000−1)膜、あるいは(0001)と(000−1)との混在した膜を形成せしめ、これを用いて上記方法を繰り返したところ、下地の極性にとらわれることなく、得られたGaN系薄膜の極性は全て(0001)であった。これは、金属Inを照射することにより、下地の極性に関わりなく所望の極性のGaN系薄膜が得られることを意味する。
【0027】
なお、窒素プラズマとして、RFで生成したものに代えてECRで生成したものを用いても同様な結果が得られる。また、金属Inを結晶成長中照射し続けた場合も、上記と同様に金属InがGaN系薄膜中に取り込まれることもなく、得られた薄膜の極性は所望のものである。
【0028】
上記のようにして得られたGaN系(0001)薄膜は、光学的、電気的特性に優れている。
実施例1
本実施例では、清浄化されたサファイアC面基板上への低温バッファ層形成時に、基板が窒素プラズマに曝されるの抑制することによって、図3に示すようにサファイア基板31上にGaN系薄膜34を形成した。
【0029】
参考例1と同様にサファイアC面基板清浄化処理後、基板31上に500℃で金属Gaあるいは金属Alを照射し、GaあるいはAlの1原子層32を形成した。この層を下地として、この上に、参考例1の場合と同じ条件で、窒素プラズマおよびIII族源としてのGaを主成分とする金属を照射してGaN系低温バッファ層(極性:((0001)と(000−1)との混在))33を形成せしめ、その上にGaN系薄膜34を600℃で成長させた(図3)。得られた薄膜の極性は(0001)であった。
実施例2
参考例1と同様にサファイアC面基板清浄化処理後、図4に示すように、基板41上に、結晶成長温度750℃で窒素プラズマおよび金属Alを照射してAlN膜42を成長せしめた。このAlN膜の極性は(0001)であった。次いで、得られたAlN(0001)膜上に、参考例1の場合と同じ条件で、窒素プラズマおよびIII族源としてのGaを主成分とする金属を照射してGaN系薄膜43を成長させた。得られた薄膜の極性は(0001)であった。
【0030】
なお、窒素プラズマとして、RFで生成したものに代えてECRで生成したものを用いても同様な結果が得られる。また、バッファ層としてのAlN膜の膜厚は、特に制限されるものではない。AlN膜上に成長させるGaN系III族窒化物薄膜の成長法としては、特に制限されるものではなく、例えばスパッタ法、CVD、レーザーデポジションなどにより成長させれば、上記と同じ結果が得られる。
実施例3
参考例1と同様にサファイアC面基板清浄化処理後、図5に示すように、基板51上に900℃でアンモニアを照射して基板表面にAlNの層52を形成させた。得られたAlN層の極性は(0001)であった。次いで、参考例1の場合と同じ条件で、窒素プラズマおよびIII族源としてのGaを主成分とする金属を照射してGaN系薄膜53を成長させた。得られた薄膜の極性は(0001)であった。
【0031】
窒素源として用いるアンモニアは熱分解しても、してなくても、同じ結果が得られた。また、アンモニアの流量には特に制限はなく、その下限は基板表面にAlN層が形成され得るような量であれば充分であり、過剰であっても同じような結果が得られる。また、照射時間は、5分〜2時間であればどの程度でも同じような結果が得られる。
【0032】
また、AlN(0001)層上に成長させるGaN系薄膜の成長法としては、特に制限されるものではなく、例えばスパッタ法、CVD、レーザーデポジションなどにより成長させれば、上記と同じ結果が得られる。
【0033】
以上のようにして、この発明で形成されたGaN系薄膜は、所望のタイプの電子デバイスあるいは光電子デバイスなどに組み込まれて利用できる。
【0034】
【発明の効果】
この発明によれば、従来のMBE法においては不可能であったGaN系III族窒化物薄膜の極性を光学的、電気的特性に優れた(0001)に制御することが可能となるため、高品質なIII族窒化物半導体素子を製造することができるという効果を奏する。
【図面の簡単な説明】
【図1】(A)基板上に形成されたGaN系膜の極性(0001)を説明するための原子配列状態を示す模型図。
(B)基板上に形成されたGaN系膜の極性(000−1)を説明するための原子配列状態を示す模型図。
【図2】(A)この発明の参考例1により得られたGaN系薄膜を有する基板の断面図。
(B)この発明の参考例1により得られたGaN系薄膜を有する基板の断面図。
【図3】この発明の実施例1により得られたGaN系薄膜を有する基板の断面図。
【図4】この発明の実施例2により得られたGaN系薄膜を有する基板の断面図。
【図5】この発明の実施例3により得られたGaN系薄膜を有する基板の断面図。
【符号の説明】
1 サファイアC面基板
21、31、41、51 サファイアC面基板
22、22’ 下地
23 In照射層
24 GaN系薄膜
32 金属Gaあるいは金属Alの原子層
33 GaN系低温バッファ層
34 GaN系薄膜
42 AlN膜
43 GaN系薄膜
52 AlN層
53 GaN系薄膜
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for forming a group III nitride thin film, and more particularly to a method for forming a group III nitride thin film (polarity: (0001)) by molecular beam epitaxy (MBE).
[0002]
[Prior art]
When GaN is grown on a hexagonal sapphire C-plane substrate, hexagonal wurtzite GaN is usually grown with the c-axis aligned with the sapphire substrate. However, since wurtzite GaN has polarity in the c-axis direction, normally, as shown in FIGS. 1 (A) and (B), a crystal having two types of polarities, that is, two types of atomic arrangements, is used. It becomes a mixed film. In this way, in the GaN film grown on the sapphire C-plane substrate 1, the case where N atoms are arranged immediately above Ga atoms as shown in FIG. 1A is GaN (0001) (Ga-face), FIG. The case where Ga atoms are arranged immediately above N atoms as shown in (B) is called GaN (000-1) (N-face). These two types of polarities and the characteristics of the grown film are closely related, and the GaN (0001) film is more GaN (000-1) film, or GaN (0001) and GaN (000-1). (Keller et al., Appl. Phys. Lett. 68 (1996) 1525, Fuke) et al., J. Appl. Phys. 83 (1998) 764). Therefore, how to control the polarity of the grown film to Ga-face is an important key point in producing a high-quality group III nitride semiconductor device.
[0003]
In the metal organic chemical vapor deposition (MOCVD) method, the polarity of the film to be grown is controlled by controlling the supply timing of the metal organic gas and the annealing conditions of the low temperature buffer layer grown on the sapphire substrate to increase the nuclear density. Can be controlled to Ga-face. On the other hand, in the molecular beam epitaxy (MBE) method, only a film in which GaN (000-1) is dominant has been obtained so far, and it has been impossible to obtain a GaN (0001) film.
[0004]
[Problems to be solved by the invention]
The present invention solves the problems in forming a GaN-based group III nitride thin film in the conventional MBE method as described above. The polarity of the growing film is controlled to (0001), so that It is an object to provide a method for forming a GaN-based group III nitride thin film having excellent optical and electrical characteristics.
[0005]
[Means for Solving the Problems]
As a result of intensive studies to solve the problems of the prior art, the present inventors succeeded in controlling the polarity of the growing film to (0001) by using the following means: The present invention has been completed.
[0006]
(1) To epitaxially grow a GaN single crystal thin film by MBE using nitrogen plasma as a nitrogen source and metal Ga as a Ga source on a sapphire C-plane substrate, the substrate is first cleaned by heating at about 800 ° C. . Next, a GaN layer having a thickness of about 200 Å is deposited at a low temperature of about 500 ° C. and then annealed to form a low-temperature buffer layer that promotes GaN nucleation. A method of growing a GaN layer on the low-temperature buffer layer formed in this way at a growth temperature of 600 ° C. to 800 ° C. is usually used. In addition, for the purpose of further increasing the nuclear density, before forming the low-temperature buffer layer, there is a method of irradiating the sapphire substrate with nitrogen plasma to nitride the sapphire substrate and forming an AlN layer having a lattice constant close to that of GaN on the substrate surface. Sometimes adopted. When GaN is grown by the above method, the obtained GaN film becomes a film in which GaN (0001) and GaN (000-1) are mixed. Further, when the nitriding process of the sapphire substrate was introduced, only the mixture ratio of GaN (000-1) increased, and a film of only GaN (0001) could not be obtained.
[0007]
(2) As described in (1) above, before forming the low-temperature buffer layer, the sapphire substrate is irradiated with nitrogen plasma to nitride the sapphire substrate to form an AlN layer having a lattice constant close to that of GaN. It has been found that the mixing ratio of GaN (000-1) increases. This is because when the sapphire substrate is exposed to nitrogen plasma, an AlN (000-1) layer is formed on the surface of the substrate, and the GaN film grown on the AlN layer is a mixture of (000-1). This is because the film has a high rate. In order to prevent the substrate from being exposed to nitrogen plasma at the time of forming the low temperature buffer layer after the substrate cleaning process, the present invention provides a metal Ga or metal Al with one to several atomic layers on the substrate before the plasma irradiation. Then, the film is grown by irradiating a metal mainly composed of nitrogen plasma and metal Ga, and the polarity of the grown GaN-based group III nitride thin film is controlled to (0001). Nitride is to be obtained.
[0008]
(3) As described in (1) above, conventionally, a low temperature buffer that promotes nucleation of GaN by depositing and annealing a GaN layer of about 200 angstroms at a low temperature of about 500 ° C. after substrate cleaning. In some cases, a layer is formed. In the case where the AlN buffer layer is grown using nitrogen plasma and metal Al at a high temperature of 650 ° C. to 800 ° C. instead of the low temperature buffer layer, the inventors of the present invention have the polarity of the grown AlN layer ( 0001). The present invention utilizes the above, and after the substrate cleaning process, an AlN buffer layer is grown on the substrate at a high temperature of 650 ° C. to 800 ° C. using nitrogen plasma and metal Al, and then a growth temperature of 600 The film is grown at a temperature of from 800 ° C. to 800 ° C., and the polarity of the resulting GaN-based group III nitride thin film is controlled to (0001) to obtain the desired GaN-based group III nitride.
[0009]
(4) As described in (1) above, there is a conventional method of nitriding a sapphire substrate before forming a low-temperature buffer layer, forming an AlN layer having a lattice constant close to that of GaN on the substrate surface, and further increasing the nuclear density. Sometimes adopted. In the nitriding process of the sapphire substrate, the present inventors use a nitrogen source as ammonia, and when this ammonia is irradiated onto the sapphire substrate at 800 ° C. to 950 ° C., the polarity of the AlN layer formed on the substrate surface is ( 0001). The present invention utilizes the above, and after cleaning the substrate, irradiates ammonia at a high temperature of 800 ° C. to 950 ° C. to form an AlN layer, then uses ammonia or nitrogen plasma as a nitrogen source, and III Irradiating a metal mainly containing Ga as a group source to grow a film at a growth temperature of 600 ° C. to 800 ° C., and controlling the polarity of the resulting GaN-based group III nitride thin film to (0001) A group III nitride is to be obtained.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference examples .
[0011]
According to the reference example , using a normal molecular beam epitaxial apparatus, the raw material is evaporated under a normal vacuum, and this gaseous substance is supplied onto a sapphire C-plane substrate heated to 600 to 800 ° C. Growing to form the desired GaN-based group III nitride thin film. When growing a GaN-based Group III nitride thin film by irradiating a substrate with a nitrogen plasma as a nitrogen source and a metal mainly containing Ga as a Group III source at a growth temperature of 600 ° C. to 800 ° C., the nitrogen source and Simultaneously with the irradiation of the group III source, the metal In is irradiated only during the initial growth. Thereby, it is possible to obtain a thin film excellent in optical and electrical characteristics whose polarity is controlled to (0001). One example of a substrate having a thin film formed in this way is shown in FIGS. 2A and 2B, a GaN-based (0001) film, a GaN-based (000-1) film, or (0001) and (000-1) are formed on the sapphire substrate 21. A mixed film 22, 22 ′ is provided as a base, and a GaN group III nitride thin film (In irradiation layer) 23 formed during In irradiation is formed thereon, and further a GaN group III nitride is formed thereon. A thin film 24 is formed. Here, the GaN-based group III nitride thin film 24 may include In, Al, or the like as a group III metal element in addition to Ga, or may include Be, Mg, Si, or the like as a dopant. In this reference example : As a base of the group III nitride thin film to be grown, any film can be used as long as it is a GaN-based (0001) film, a GaN-based (000-1) film, or a film in which (0001) and (000-1) are mixed. But you can use it. For example, after the sapphire C-plane substrate 21 is heated (for example, about 800 ° C.) to be cleaned, a GaN layer having a predetermined thickness is deposited at a low temperature (for example, about 500 ° C.) and then annealed. The crystal orientation of the low temperature buffer layer 22 (FIG. 2A) or the film 22 ′ grown by another growth method (for example, sputtering, laser deposition, etc.) (FIG. 2B) If it has, it can be used. This low-temperature buffer layer promotes GaN nucleation.
[0012]
2. The nitrogen plasma may be generated by RF or generated by ECR.
[0013]
3. As the group III metal (Ga), one having a strength (flux) of 1 × 10 13 co / cm 2 s to 1 × 10 15 co / cm 2 s is used. If the strength is less than 1 × 10 13 co / cm 2 s, a practical growth rate (0.1 μm / hr) cannot be obtained, and if it exceeds 1 × 10 15 co / cm 2 s, the crystallinity deteriorates. Because it does.
[0014]
4). As the metal In, it is preferable to use a metal in a range from a strength two digits lower than the strength of the group III metal (Ga) to be irradiated to a strength one digit higher. This is because there is no effect outside this range of strength.
[0015]
5). The metal In may be irradiated only at the initial stage of growth of the group III nitride thin film, or may be continuously irradiated during the growth.
[0016]
According to the first embodiment of the present invention, after cleaning the sapphire C-plane substrate as described in the reference example , one atomic layer of metal Ga or metal Al is formed on the substrate, and then nitrogen plasma is used as a nitrogen source. Then, a GaN-based low-temperature buffer layer is formed by irradiation with a metal containing Ga as a main component as a group III source, and then a desired GaN-based (0001) thin film is grown on the buffer layer. One example of a substrate having a thin film formed in this way is shown in FIG. As shown in FIG. 3, an atomic layer 32 of metal Ga or metal Al is formed on a sapphire substrate 31, a GaN-based low-temperature buffer layer 33 is formed on the atomic layer, and a desired GaN-based III group is formed thereon. A nitride thin film 34 is formed. Here, the GaN-based group III nitride thin film 34 may contain In, Al, etc. as a group III metal element in addition to Ga, and may contain Be, Mg, Si, etc. as dopants. In this embodiment:
1. The irradiation temperature of metal Ga or metal Al should just be room temperature-600 degreeC.
[0017]
According to the second embodiment of the present invention, after the sapphire C-plane substrate cleaning process as described in the reference example , the substrate is irradiated with nitrogen plasma and metal Al at a growth temperature of 650 ° C. to 800 ° C. An AlN (0001) film is grown, and then a desired GaN-based (0001) thin film is grown on the AlN (0001) film. One example of a substrate having a thin film formed in this way is shown in FIG. As shown in FIG. 4, an AlN (0001) film 42 is formed on a sapphire substrate 41, and a desired GaN-based group III nitride thin film 43 is formed thereon. Here, the GaN-based group III nitride thin film 43 may include In, Al, or the like as a group III metal element in addition to Ga, or may include Be, Mg, Si, or the like as a dopant. In this embodiment:
1. The nitrogen plasma may be generated by RF or generated by ECR.
[0018]
2. As the metal Al, one having a strength of 1 × 10 13 co / cm 2 s to 1 × 10 15 co / cm 2 s is used.
[0019]
3. Any thickness of the AlN film may be used.
[0020]
4). The GaN-based group III nitride thin film grown on the AlN film may be grown using any growth method such as sputtering, CVD, or laser deposition.
[0021]
According to the third embodiment of the present invention, after cleaning the sapphire C-plane substrate as described in the reference example , the substrate is irradiated with ammonia at 800 ° C. to 900 ° C. to form an AlN (0001) layer. Then, the desired GaN-based (0001) layer is grown. One example of a substrate having a thin film formed in this manner is shown in FIG. As shown in FIG. 5, an AlN (0001) layer 52 is formed on a sapphire substrate 51, and a desired GaN-based group III nitride thin film 53 is formed thereon. Here, the GaN-based group III nitride thin film 53 may include In, Al, or the like as a group III metal element in addition to Ga, or may include Be, Mg, Si, or the like as a dopant. In this embodiment:
1. Ammonia may or may not be thermally decomposed.
[0022]
2. As the flow rate of ammonia, the lower limit may be an amount sufficient to form an AlN (0001) layer, and the upper limit is not particularly limited and may be appropriately selected from an economical viewpoint. Further, the ammonia irradiation time may be any time as long as it is 5 minutes to 2 hours.
[0023]
3. The GaN-based (0001) thin film grown on the AlN (0001) layer may be grown using any growth method such as sputtering, CVD, or laser deposition.
[0024]
【Example】
Embodiments and reference examples of the present invention will be described below with reference to the drawings.
( Reference Example 1 )
Using a normal molecular beam epitaxial apparatus, a GaN-based thin film as shown in FIGS. 2A and 2B was formed as follows.
[0025]
First, the sapphire C-plane substrate 21 is heated to 800 ° C. and cleaned, and the substrate is irradiated with nitrogen plasma and a metal containing Ga as a main component to form a GaN layer having a predetermined thickness at about 500 ° C. Then, annealing was performed at about 600 ° C. to form a low-temperature buffer layer (polarity: a mixture of (0001) and (000-1)) 22. Thereafter, in a vacuum of about 10 −2 to 10 −4 Pa, a metal raw material (strength: 2 × 10 13 co / cm 2 s) mainly composed of Ga as a group III source is evaporated, and this gaseous state The material was supplied to and irradiated on a sapphire C-plane substrate heated to 800 ° C. with nitrogen plasma generated by RF. When a GaN-based thin film is grown at a crystal growth temperature of 730 ° C., gaseous metal In (strength: 7 × 10 12 co / cm 2 s) is applied at the initial stage of crystal growth simultaneously with the irradiation of the gaseous substance and nitrogen plasma. Irradiated. In this manner, a thin film crystal was grown on the low temperature buffer layer 22 to form a target GaN-based thin film (FIG. 2A). In this case, the metal In was not taken into the GaN-based thin film 23 formed during the metal In irradiation at the initial stage of crystal growth, and the polarity was (0001). The polarity of the GaN-based thin film 24 grown after the metal In irradiation was stopped was also (0001).
[0026]
When the above method was repeated using a film (polarity: mixture of (0001) and (000-1)) 22 ′ grown by sputtering instead of the low-temperature buffer layer 22 as the base, the obtained GaN The polarity of the system thin film was also (0001) as in the above case (FIG. 2 (B)). In addition, a GaN-based (0001) film, a GaN-based (000-1) film, or a mixed film of (0001) and (000-1) was formed as a base, and the above method was repeated using this. However, the polarity of the obtained GaN-based thin film was all (0001) regardless of the polarity of the base. This means that by irradiating metal In, a GaN-based thin film having a desired polarity can be obtained regardless of the polarity of the base.
[0027]
Similar results can be obtained by using nitrogen plasma generated by ECR instead of RF plasma. Further, when the metal In is continuously irradiated during crystal growth, the metal In is not taken into the GaN-based thin film as described above, and the polarity of the obtained thin film is desired.
[0028]
The GaN-based (0001) thin film obtained as described above is excellent in optical and electrical characteristics.
( Example 1 )
In this embodiment, the GaN-based thin film is formed on the sapphire substrate 31 as shown in FIG. 3 by suppressing the substrate from being exposed to nitrogen plasma when the low-temperature buffer layer is formed on the cleaned sapphire C-plane substrate. 34 was formed.
[0029]
As in Reference Example 1 , after the sapphire C-plane substrate cleaning treatment, the substrate 31 was irradiated with metal Ga or metal Al at 500 ° C. to form a single atomic layer 32 of Ga or Al. Using this layer as a base, a GaN-based low-temperature buffer layer (polarity: ((0001) is formed by irradiating nitrogen plasma and a metal mainly containing Ga as a group III source under the same conditions as in Reference Example 1 on this layer. ) And (000-1))) 33 is formed, and a GaN-based thin film 34 is grown at 600 ° C. (FIG. 3). The polarity of the obtained thin film was (0001).
( Example 2 )
After the sapphire C-plane substrate cleaning treatment as in Reference Example 1 , as shown in FIG. 4, an AlN film 42 was grown on the substrate 41 by irradiation with nitrogen plasma and metal Al at a crystal growth temperature of 750 ° C. The polarity of this AlN film was (0001). Next, a GaN-based thin film 43 was grown on the obtained AlN (0001) film by irradiation with nitrogen plasma and a metal mainly composed of Ga as a group III source under the same conditions as in Reference Example 1 . . The polarity of the obtained thin film was (0001).
[0030]
Similar results can be obtained by using nitrogen plasma generated by ECR instead of RF plasma. Further, the thickness of the AlN film as the buffer layer is not particularly limited. The growth method of the GaN-based group III nitride thin film to be grown on the AlN film is not particularly limited. For example, if the growth is performed by sputtering, CVD, laser deposition, the same result as above can be obtained. .
( Example 3 )
As in Reference Example 1 , after the sapphire C-plane substrate cleaning treatment, as shown in FIG. 5, the substrate 51 was irradiated with ammonia at 900 ° C. to form an AlN layer 52 on the substrate surface. The polarity of the obtained AlN layer was (0001). Next, under the same conditions as in Reference Example 1 , a GaN-based thin film 53 was grown by irradiating a metal mainly composed of nitrogen plasma and Ga as a group III source. The polarity of the obtained thin film was (0001).
[0031]
The same results were obtained whether or not ammonia used as a nitrogen source was thermally decomposed. Further, the flow rate of ammonia is not particularly limited, and the lower limit is sufficient if it is an amount that can form an AlN layer on the substrate surface, and the same result can be obtained even if it is excessive. Further, the same result can be obtained if the irradiation time is 5 minutes to 2 hours.
[0032]
In addition, the growth method of the GaN-based thin film grown on the AlN (0001) layer is not particularly limited. For example, if the growth is performed by sputtering, CVD, laser deposition, etc., the same result as above can be obtained. It is done.
[0033]
As described above, the GaN-based thin film formed in the present invention can be used by being incorporated in a desired type of electronic device or optoelectronic device.
[0034]
【The invention's effect】
According to the present invention, it is possible to control the polarity of the GaN-based group III nitride thin film, which was impossible in the conventional MBE method, to (0001) excellent in optical and electrical characteristics. There is an effect that a quality group III nitride semiconductor device can be manufactured.
[Brief description of the drawings]
FIG. 1A is a model diagram showing an atomic arrangement state for explaining the polarity (0001) of a GaN-based film formed on a substrate.
(B) The model figure which shows the atomic arrangement | sequence state for demonstrating the polarity (000-1) of the GaN-type film | membrane formed on the board | substrate.
2A is a cross-sectional view of a substrate having a GaN-based thin film obtained according to Reference Example 1 of the present invention. FIG.
(B) Sectional drawing of the board | substrate which has the GaN-type thin film obtained by the reference example 1 of this invention.
FIG. 3 is a cross-sectional view of a substrate having a GaN-based thin film obtained according to Example 1 of the present invention.
FIG. 4 is a cross-sectional view of a substrate having a GaN-based thin film obtained according to Example 2 of the present invention.
FIG. 5 is a cross-sectional view of a substrate having a GaN-based thin film obtained according to Example 3 of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Sapphire C surface substrate 21, 31, 41, 51 Sapphire C surface substrate 22, 22 'Underlayer 23 In irradiation layer 24 GaN-type thin film 32 Metal Ga or metal Al atomic layer 33 GaN-type low-temperature buffer layer 34 GaN-type thin film 42 AlN Film 43 GaN-based thin film 52 AlN layer 53 GaN-based thin film

Claims (3)

サファイアC面基板上に、金属Gaあるいは金属Alを、室温〜600℃の照射温度で照射して、1原子層堆積させた後、GaN系低温バッファ層形成し、その後、窒素源として窒素プラズマおよびIII族源としてGaを主成分とする金属を照射して分子線エピタキシーによりGaN系III族窒化物薄膜をエピタキシャル成長させ、成長する膜の極性を(0001)に制御することを特徴とするIII族窒化物薄膜の形成方法。On the sapphire C-plane substrate, metal Ga or metal Al is irradiated at an irradiation temperature of room temperature to 600 ° C. to deposit one atomic layer, and then a GaN-based low-temperature buffer layer is formed. Irradiating a metal mainly containing Ga as a group III source to epitaxially grow a GaN-based group III nitride thin film by molecular beam epitaxy, and controlling the polarity of the grown film to (0001) A method for forming a nitride thin film. サファイアC面基板上に、650℃〜800℃の高温で、該サファイアC面基板上に窒素プラズマを窒素源とし、その強度(フラックス)が1×1013コ/cm2s〜1×1015コ/cm2sの金属AlをAl源として用いてAlN(0001)層を成長させた後、600℃〜800℃の成長温度で、窒素プラズマおよびGaを主成分とする金属を照射して分子線エピタキシーによりGaN系III族窒化物薄膜をエピタキシャル成長させ、成長する膜の極性を(0001)に制御することを特徴とするIII族窒化物薄膜の形成方法。On a sapphire C-plane substrate, nitrogen plasma is used as a nitrogen source on the sapphire C-plane substrate, and its strength (flux) is 1 × 10 13 co / cm 2 s to 1 × 10 15. After an AlN (0001) layer is grown using a metal of Al / cm 2 s as an Al source, the molecule is irradiated with a metal mainly composed of nitrogen plasma and Ga at a growth temperature of 600 ° C. to 800 ° C. A method for forming a group III nitride thin film, comprising epitaxially growing a GaN-based group III nitride thin film by line epitaxy and controlling the polarity of the grown film to (0001). サファイアC面基板上に、800℃〜950℃の高温で、該サファイアC面基板上に窒素源としてアンモニアを5分〜2時間照射してAlN(0001)層を形成させた後、600℃〜800℃の成長温度で、窒素源としてアンモニアあるいは窒素プラズマを、またIII族源としてGaを主成分とする金属を照射して分子線エピタキシーによりGaN系III族窒化物薄膜をエピタキシャル成長させ、成長する膜の極性を(0001)に制御することを特徴とするIII族窒化物薄膜の形成方法。After irradiating ammonia as a nitrogen source on the sapphire C-plane substrate for 5 minutes to 2 hours at a high temperature of 800 ° C. to 950 ° C. to form an AlN (0001) layer, 600 ° C. to At a growth temperature of 800 ° C., GaN-based group III nitride thin films are epitaxially grown by molecular beam epitaxy by irradiating ammonia or nitrogen plasma as a nitrogen source and a metal mainly containing Ga as a group III source. A method for forming a group III nitride thin film, wherein the polarity of the film is controlled to (0001).
JP36672399A 1999-12-24 1999-12-24 Method for forming group III nitride thin film Expired - Lifetime JP4408509B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36672399A JP4408509B2 (en) 1999-12-24 1999-12-24 Method for forming group III nitride thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36672399A JP4408509B2 (en) 1999-12-24 1999-12-24 Method for forming group III nitride thin film

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2009082780A Division JP5023267B2 (en) 2009-03-30 2009-03-30 Method for forming group III nitride thin film

Publications (2)

Publication Number Publication Date
JP2001185487A JP2001185487A (en) 2001-07-06
JP4408509B2 true JP4408509B2 (en) 2010-02-03

Family

ID=18487506

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36672399A Expired - Lifetime JP4408509B2 (en) 1999-12-24 1999-12-24 Method for forming group III nitride thin film

Country Status (1)

Country Link
JP (1) JP4408509B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5093740B2 (en) * 2001-07-26 2012-12-12 株式会社Ihi Semiconductor crystal film growth method
KR100472260B1 (en) * 2002-08-09 2005-03-10 한국과학기술연구원 Method of Quality Enhancement for GaN Thin Film
JP4342853B2 (en) 2003-07-01 2009-10-14 独立行政法人科学技術振興機構 Method of growing nitride thin film on substrate and nitride thin film device
KR100531178B1 (en) * 2003-07-08 2005-11-28 재단법인서울대학교산학협력재단 Growth method of nitride epitaxial layer using conversion of nitride interlayer into metallic phase
KR100538096B1 (en) * 2004-03-16 2005-12-21 삼성전자주식회사 Method for forming a capacitor using atomic layer deposition method
KR100688148B1 (en) * 2004-04-14 2007-03-02 한양대학교 산학협력단 method for manufacturing gallium nitride substrate
EP1885918B1 (en) 2005-05-11 2017-01-25 North Carolina State University Methods of preparing controlled polarity group iii-nitride films
JP2008140893A (en) 2006-11-30 2008-06-19 Sumitomo Electric Ind Ltd Semiconductor device and its manufacturing method
KR100982993B1 (en) 2008-10-14 2010-09-17 삼성엘이디 주식회사 Surface treatment method of group Ⅲ nitride semiconductor, group Ⅲ nitride semiconductor and manufacturing method thereof, group Ⅲ nitride semiconductor structure
JP2009161436A (en) * 2009-02-26 2009-07-23 Sumitomo Electric Ind Ltd Group iii nitride semiconductor crystal substrate, group iii nitride semiconductor device, and its manufacture method
JP5023267B2 (en) * 2009-03-30 2012-09-12 株式会社アルバック Method for forming group III nitride thin film
JP2010018516A (en) * 2009-07-14 2010-01-28 Sumitomo Electric Ind Ltd GaN SUBSTRATE

Also Published As

Publication number Publication date
JP2001185487A (en) 2001-07-06

Similar Documents

Publication Publication Date Title
US6528394B1 (en) Growth method of gallium nitride film
US6475882B1 (en) Method for producing GaN-based compound semiconductor and GaN-based compound semiconductor device
US7575942B2 (en) Epitaxial substrate, semiconductor element, manufacturing method for epitaxial substrate and method for unevenly distributing dislocations in group III nitride crystal
JP4408509B2 (en) Method for forming group III nitride thin film
US20060246614A1 (en) Method for manufacturing gallium nitride-based semiconductor device
JP2001044123A (en) Method for growing semiconductor layer
JP3476754B2 (en) Method for manufacturing gallium nitride-based compound semiconductor
JP4382748B2 (en) Semiconductor crystal growth method
JP2004111848A (en) Sapphire substrate, epitaxial substrate using it, and its manufacturing method
US20060016388A1 (en) Domain epitaxy for thin film growth
JPH09249499A (en) Epitaxial growth for group iii nitride semiconductor
JP3353527B2 (en) Manufacturing method of gallium nitride based semiconductor
JP2003332234A (en) Sapphire substrate having nitride layer and its manufacturing method
JPH11274079A (en) Semiconductor device and manufacture thereof
JP4051311B2 (en) Nitride semiconductor crystal growth method
JPH088185A (en) Multilayer structure and growth method of gan-based compound semiconductor thin film
JP5023267B2 (en) Method for forming group III nitride thin film
JP2002293697A (en) METHOD OF GROWING GaN EPITAXIAL LAYER
WO2003056073A1 (en) Group iii nitride semiconductor substrate and its manufacturing method
JP3564645B2 (en) Gallium nitride based semiconductor crystal growth method
JP2003224072A (en) Semiconductor structure and manufacturing method therefor
JP3870259B2 (en) Nitride semiconductor laminate and growth method thereof
JP2677221B2 (en) Method for growing nitride-based III-V compound semiconductor crystal
Yang et al. Low temperature metal organic vapor phase epitaxial growth of AlN by pulse injection method at 800° C
JP3962101B2 (en) Method for heteroepitaxial growth of nitride semiconductor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061005

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20061101

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070518

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070518

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081017

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081028

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081225

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090330

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090415

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090901

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090918

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091020

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091110

R150 Certificate of patent or registration of utility model

Ref document number: 4408509

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121120

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151120

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term