JP4408398B2 - Turbine building of nuclear power plant - Google Patents

Turbine building of nuclear power plant Download PDF

Info

Publication number
JP4408398B2
JP4408398B2 JP2004196195A JP2004196195A JP4408398B2 JP 4408398 B2 JP4408398 B2 JP 4408398B2 JP 2004196195 A JP2004196195 A JP 2004196195A JP 2004196195 A JP2004196195 A JP 2004196195A JP 4408398 B2 JP4408398 B2 JP 4408398B2
Authority
JP
Japan
Prior art keywords
turbine
low
feed water
pressure
heater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004196195A
Other languages
Japanese (ja)
Other versions
JP2006017598A5 (en
JP2006017598A (en
Inventor
芳則 飯村
欣治 中野
静 平子
裕二 根本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi GE Nuclear Energy Ltd
Original Assignee
Hitachi GE Nuclear Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi GE Nuclear Energy Ltd filed Critical Hitachi GE Nuclear Energy Ltd
Priority to JP2004196195A priority Critical patent/JP4408398B2/en
Publication of JP2006017598A publication Critical patent/JP2006017598A/en
Publication of JP2006017598A5 publication Critical patent/JP2006017598A5/ja
Application granted granted Critical
Publication of JP4408398B2 publication Critical patent/JP4408398B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Description

本発明は、沸騰水型原子炉を採用した原子力発電所のタービン建屋内の機器の配置技術に関する。   The present invention relates to a technology for arranging equipment in a turbine building of a nuclear power plant that employs a boiling water reactor.

沸騰水型原子炉を採用した原子力発電所は原子炉建屋やタービン建屋等の複数の建屋を有する。その原子炉建屋においては、核燃料が装荷された炉心を内蔵した原子炉圧力容器を有し、その原子炉圧力容器内ではその炉心で軽水を加熱させて沸騰させた際の蒸気を得ている。その蒸気は蒸気配管を通してタービン建屋内に導かれている。   A nuclear power plant employing a boiling water reactor has a plurality of buildings such as a reactor building and a turbine building. The reactor building has a reactor pressure vessel containing a core loaded with nuclear fuel, and in the reactor pressure vessel, light water is heated in the reactor core to obtain steam when boiled. The steam is led into the turbine building through steam piping.

一方のタービン建屋内には、タービン・発電機設置架台が中央部に設置され、その架台の上端と同じ高さでタービン建屋内を上下に区画するタービン建屋運転床(以下、単に運転床という。)が設置されている。そのタービン・発電機設置架台には、高圧タービンと3基の低圧タービンと発電機とが設置され、それらは直列に回転軸が接続されて各タービンで発電機を回転駆動して発電させるようにされている。   In one turbine building, a turbine / generator installation stand is installed in the center, and a turbine building operation floor (hereinafter simply referred to as an operation floor) that divides the turbine building up and down at the same height as the upper end of the stand. ) Is installed. The turbine / generator installation stand includes a high-pressure turbine, three low-pressure turbines, and a generator, which are connected in series with a rotating shaft so that each turbine can rotate and drive the generator to generate power. Has been.

その高圧タービンには蒸気配管を通じてタービンを駆動するための蒸気が原子炉建屋側から供給され、その高圧タービンはその蒸気で駆動される。その高圧タービンでタービン駆動に用いられた蒸気はその高圧タービンから排出された時点で低温且つ高湿度の状態となっているので、熱効率向上と侵食防止のためにその蒸気を湿分分離加熱器で除湿及び加熱して高温な乾燥蒸気とする。その乾燥蒸気は湿分分離加熱器から配管を通じて各低圧タービンへ配管を通じて供給され、その乾燥蒸気で各低圧タービンが駆動される。このように高圧タービンと3基の低圧タービンが駆動されると、その駆動力によって発電機も同期して駆動されて発電作用を起こす。   Steam for driving the turbine is supplied from the reactor building side to the high-pressure turbine through the steam pipe, and the high-pressure turbine is driven by the steam. The steam used to drive the turbine in the high-pressure turbine is in a low-temperature and high-humidity state when discharged from the high-pressure turbine. Therefore, the steam is separated by a moisture separator and heater to improve thermal efficiency and prevent erosion. Dehumidify and heat to high temperature dry steam. The dry steam is supplied from the moisture separation heater to each low-pressure turbine through a pipe, and each low-pressure turbine is driven by the dry steam. When the high-pressure turbine and the three low-pressure turbines are driven in this way, the generator is also driven in synchronism with the driving force to generate a power generation action.

各低圧タービンでタービン駆動のために用いられた蒸気は、各低圧タービンから排出されて低圧給水加熱器に送られ、ここで原子炉圧力容器への給水をその蒸気で加熱して高圧給水加熱器を経由して原子炉圧力容器へ給水できるようになっている。この低圧給水加熱器は、1基の低圧タービン毎に4段で4本(1段につき1本)、3基の低圧タービンで計12本を各低圧タービンの直下に設けられている復水器上部胴内に設置されている。   The steam used for driving the turbine in each low-pressure turbine is discharged from each low-pressure turbine and sent to the low-pressure feed water heater, where the feed water to the reactor pressure vessel is heated with the steam and the high-pressure feed water heater is used. It is possible to supply water to the reactor pressure vessel via This low-pressure feed water heater has four in four stages for each low-pressure turbine (one per stage), and a total of 12 in three low-pressure turbines, which are provided directly under each low-pressure turbine. It is installed in the upper trunk.

4段の各低圧給水加熱器で給水と熱交換した蒸気は、復水器上部胴の真下に配置した復水器内に導入され、凝縮させられて原子炉圧力容器への給水とされる。   Steam that has exchanged heat with the feed water in each of the four stages of low-pressure feed water heaters is introduced into a condenser that is disposed directly below the upper trunk of the condenser, condensed, and supplied to the reactor pressure vessel.

従来例1:このようなタービン建屋内の各機器のうち、湿分分離加熱器は湿分分離手段と加熱手段とを統合させて熱効率の向上や配管物量の低減やスペース効率を向上している(例えば、特許文献1参照)。このような湿分分離加熱器は2本採用され、運転床の上であって低圧タービンを挟んで両側に長さ方向がタービン軸と平行な向きにて配置されている(例えば、非特許文献1,2参照)。低圧タービンを挟んで両側に湿分分離加熱器を配置すると、その配置は低圧タービンを挟んで湿分分離加熱器やそれに関係する配管ルートが対称の配置と成りやすく、低圧タービンや湿分分離加熱器へ入ってゆく蒸気流量バランスにおいても有利で効率良いシステムが組める。   Conventional Example 1: Among each device in such a turbine building, the moisture separation heater integrates the moisture separation means and the heating means to improve the thermal efficiency, reduce the amount of piping, and improve the space efficiency. (For example, refer to Patent Document 1). Two such moisture separation heaters are employed, and are arranged on both sides of the low-pressure turbine on the operation floor so that the length direction is parallel to the turbine shaft (for example, non-patent document). 1 and 2). If a moisture separator / heater is placed on both sides of the low-pressure turbine, the arrangement tends to be symmetrical with the moisture separator / heater and the piping route related to the low-pressure turbine. An efficient and efficient system can be built in the balance of the steam flow rate entering the vessel.

その運転床の下方には、復水器上部胴の片側に各低圧給水加熱器の伝熱チューブを引き抜くためのスペース、即ち給水加熱器チューブ引き抜きスペースが設定されていて、そのスペースに湿分分離加熱器が干渉しないように湿分分離加熱器は運転床の上方に配置されている。   Below the operation floor, a space for pulling out the heat transfer tube of each low-pressure feed water heater is set on one side of the upper body of the condenser, that is, a feed water heater tube pull-out space is set, and moisture is separated into that space. The moisture separator heater is arranged above the operation floor so that the heater does not interfere.

従来例2:これとは反対に、運転床の下方に復水器上部胴の高さで高圧タービン寄りに湿分分離加熱器を配置することも考えられている(例えば、非特許文献3及び特許文献1参照)。   Conventional example 2: Contrary to this, it is also considered that a moisture separation heater is disposed below the operation floor at the height of the condenser upper body and close to the high-pressure turbine (for example, Non-Patent Document 3 and Patent Document 1).

従来例3:また、運転床の下方に湿分分離加熱器を配置するバリエーションとして、2基設置される湿分分離加熱器のうち片方の平面位置をタービン・発電機軸方向に他の1基より発電機側にずらして配置する方法が記載されている。これは復水器内蔵給水加熱器のチューブ引き抜き側に設置されている湿分分離加熱器は従来の運転床下配置同様、復水器内蔵給水加熱器のチューブ引き抜きスペースと湿分分離加熱器の干渉を避けるため湿分分離加熱器を高圧タービン下部の脇のエリアに配置し湿分分離加熱器の先端が給水加熱器チューブ引き抜きスペースと交錯しない位置に設置している。復水器上部胴に内蔵の低圧給水加熱器のチューブ引き抜きスペースと湿分分離加熱器のチューブ引き抜きスペースとの兼用化を図っているが、反対側の湿分分離加熱器のチューブ引き抜きスペースは建屋を一部張り出した建屋形状とする必要がある。また、復水器内蔵給水加熱器チューブ引き抜きスペースと反対側に設置される湿分分離加熱器は発電機側にずらすことで湿分分離加熱器のチューブ引き抜きスペース建屋内に確保する方法が提案されている(例えば、特許文献2参照)。   Conventional example 3: In addition, as a variation of disposing a moisture separation heater below the operation floor, one of the two moisture separation heaters installed in the plane direction of the turbine / generator axial direction from the other one A method of shifting the generator to the generator side is described. This is because the moisture separator heater installed on the tube extraction side of the condenser built-in water heater is the same as the conventional arrangement under the operation floor. In order to avoid this, the moisture separator / heater is arranged in the area under the high-pressure turbine, and the tip of the moisture separator / heater is installed at a position where it does not intersect with the feed water heater tube drawing space. The tube pull-out space of the low-pressure feed water heater built in the upper body of the condenser is shared with the tube pull-out space of the moisture separation heater, but the tube pull-out space of the moisture separation heater on the opposite side is the building. Must be partly overhanging. In addition, a method has been proposed in which the moisture separation heater installed on the opposite side of the condenser water supply heater tube extraction space is shifted to the generator side to secure the moisture separation heater tube extraction space in the building. (For example, refer to Patent Document 2).

従来例4:また、原子力発電所のタービン建屋内に設置される湿分分離加熱器を湿分分離器と加熱器とに分離して独立に設置し、湿分分離器は高圧タービンから加熱器に接続される排気管の途中に設置し、分離された加熱器は従来の湿分分離加熱器の胴径より細くなり小型化されるため、タービン・発電機軸平行方向で運転床下の復水器両側且つ復水器内蔵給水加熱器チューブ引き抜きスペースの上側のエリアに収納することが可能となる配置手法が提案されている(例えば、特許文献3参照)。   Conventional example 4: In addition, a moisture separator / heater installed in the turbine building of a nuclear power plant is separated into a moisture separator and a heater, and the moisture separator is installed independently from the high-pressure turbine. Since the heater installed and separated in the middle of the exhaust pipe connected to the pipe is thinner and smaller than the diameter of the conventional moisture separator heater, the condenser under the operation floor in the direction parallel to the turbine / generator axis An arrangement method has been proposed that can be accommodated in both areas and in the upper area of the condenser built-in feed water heater tube drawing space (see, for example, Patent Document 3).

従来例5:また、タービン建屋内に設置される湿分分離加熱器と低圧タービンを連絡する蒸気配管はタービン・発電機支持架台の梁に貫通口を設置することで低圧タービンの両側の運転床を平坦化する配置手法が提案されている(例えば、特許文献4参照)。   Conventional example 5: In addition, the steam piping connecting the moisture separator and the low-pressure turbine installed in the turbine building is installed on the beam of the turbine / generator support frame so that the operation floors on both sides of the low-pressure turbine are installed. An arrangement method for flattening is proposed (see, for example, Patent Document 4).

特開昭61−266777号公報JP-A 61-266777 特開平11−23771号公報JP-A-11-23771 特開2003−14885号公報Japanese Patent Laid-Open No. 2003-14485 特開平3−3903号公報JP-A-3-3903 「軽水炉発電所のあらまし」(財)原子力安全研究協会 実務テキスト編集委員会 第23頁"Summary of light water reactor power plant" Nuclear Safety Research Association Practical Text Editorial Committee Page 23 「柏崎刈羽原子力発電所原子炉設置許可変更申請書(6,7号原子炉の増設)本文及び添付書類」 第57頁“Kashiwazaki-Kariwa Nuclear Power Station Reactor Installation Permission Change Application Form (Expansion of Reactor Nos. 6, 7) and attached documents” page 57 「志賀原子力発電所原子炉設置許可変更申請書(2号原子炉の増設)本文及び添付書類」 第51頁及び第58頁“Shiga Nuclear Power Station Reactor Installation Permission Change Application Form (Addition of Reactor No. 2) Text and Attached Documents” on page 51 and page 58

上記従来例1のように、タービン建屋の運転床の上に湿分分離加熱器を配置したものにあっては、原子炉圧力容器内で発生した蒸気を湿分分離加熱器に通す関係上、運転床上の作業員を放射線から保護するように、湿分分離加熱器の周囲に放射線遮蔽手段を施す必要がある。この放射線遮蔽手段は、運転床上に設置した放射線遮蔽壁に放射線遮蔽天井をつけて構成された箱状の構築物、即ち湿分分離加熱器室である。このような湿分分離加熱器室を運転床に作ることは建設工程を延長させ、且つタービンや発電機の分解点検時の部品の仮置き場、即ちタービン・発電機分解品仮置きエリア(レイダウンエリア)を運転床上に広く求めることができなくなる。特に大形の部品をレイダウンするエリアの確保に困難をきたす。そのため、レイダウンエリアの確保のためにタービン建屋面積を増加させたり隣接する建屋へ分解品を運ぶ手間が必要となる。タービン建屋面積を増加させて建設することは、発電所の建設工程を延長する要因になる。   In the case where the moisture separation heater is disposed on the operation floor of the turbine building as in Conventional Example 1 above, the steam generated in the reactor pressure vessel is passed through the moisture separation heater, In order to protect the workers on the operating floor from radiation, it is necessary to provide radiation shielding means around the moisture separator heater. This radiation shielding means is a box-shaped structure configured by attaching a radiation shielding ceiling to a radiation shielding wall installed on the operation floor, that is, a moisture separation heater room. Making such a moisture separation heater room on the operation floor extends the construction process and temporarily puts parts for the turbine and generator overhaul, that is, the turbine / generator disassembly temporary storage area (laydown area). ) Cannot be widely obtained on the driving floor. In particular, it is difficult to secure an area for laying down large parts. Therefore, in order to secure a laydown area, it is necessary to increase the area of the turbine building or to carry a disassembled product to an adjacent building. Increasing the turbine building area increases the power plant construction process.

従来例2は、タービン建屋の運転床の下に湿分分離加熱器を配置するので、運転床が放射線の遮蔽機能を果たし、運転床上には放射線を遮蔽する湿分分離加熱器室を必要としない上に、運転床上にレイダウンエリアを広く確保できる良さがある。しかし、その運転床下の湿分分離加熱器の平面配置は低圧給水加熱器の給水加熱器チューブ引き抜きスペースと交錯しないように高圧タービンよりの建屋の端がわに配置されることから、タービン建屋のタービン軸長手方向の長さが長くなって大型化する。建屋の大型化は発電所の建設工程を延長する要因となる。また、湿分分離加熱器と低圧タービンとの配管には弁が配置されているので、その弁を覆う遮蔽板が運転床から上方へ突き出てレイダウンエリアの狭小化をまねく課題がある。   In Conventional Example 2, since the moisture separator / heater is arranged under the operation floor of the turbine building, the operation floor performs a radiation shielding function, and a moisture separation heater room for shielding radiation is required on the operation floor. In addition, it has the advantage that a wide laydown area can be secured on the driving floor. However, the plane arrangement of the moisture separator heater under the operation floor is arranged on the side of the building from the high pressure turbine so that it does not cross the feed water heater tube drawing space of the low pressure feed water heater. The length in the longitudinal direction of the turbine shaft increases and the size increases. Increasing the size of the building is a factor in extending the construction process of the power plant. In addition, since a valve is disposed in the pipe between the moisture separation heater and the low-pressure turbine, there is a problem that a shielding plate that covers the valve protrudes upward from the operation floor and narrows the laydown area.

従来例3は、低圧給水加熱器の給水加熱器チューブ引き抜きスペースと交錯しないように、そのスペースと交錯しやすい片側の湿分分離加熱器だけをタービン建屋の端がわに、寄せているから、タービン建屋の形状が複雑で大型化する傾向になる。建屋の複雑形状化及び大型化は発電所の建設工程を延長する要因となる。   Since Conventional Example 3 does not intersect with the feed water heater tube extraction space of the low pressure feed water heater, only the moisture separation heater on one side that easily intersects with that space is brought close to the end of the turbine building, The shape of the turbine building tends to be complicated and large. Increasing the shape and size of the building will be a factor in extending the construction process of the power plant.

従来例4は、湿分分離加熱器を湿分分離器と加熱器とに分離して、湿分分離加熱器を湿分分離器と加熱器に分け小型化し、加熱器の胴径寸法を細くすることで上部の運転床と復水器内蔵給水加熱器チューブ引き抜きスペースの間に加熱器を配置することにある。このことは機器を分けて小型の機器にした上で狭いスペースに収納する配置手法を提案したものであり、従来の湿分分離加熱器では大型機器となるため胴径が太く、運転床と復水器内蔵給水加熱器チューブ引き抜きスペースとの間のスペースに収納する方策として本従来例を適用することは困難であった。また加熱器を運転床下に配置した場合でも運転床上の低圧タービン両側のスペースは組み合わせ中間弁及びそれを囲む放射線遮蔽上の躯体または鋼板が配置されるため完全には平坦化することができず、大型機器の分解レイダウン性を阻害する要因となっている。   Conventional Example 4 separates the moisture separator / heater into a moisture separator and a heater, divides the moisture separator / heater into a moisture separator and a heater, reduces the size, and narrows the body diameter of the heater. This is to arrange a heater between the upper operation floor and the condenser built-in feed water heater tube drawing space. This suggests an arrangement method in which the equipment is divided into small equipment and stored in a narrow space. The conventional moisture separation heater is a large equipment and has a large body diameter. It has been difficult to apply this conventional example as a measure for storing in a space between the water heater built-in water heater tube pull-out space. Even when the heater is arranged under the operation floor, the space on both sides of the low-pressure turbine on the operation floor cannot be completely flattened because the combination intermediate valve and the enclosure or steel plate on the radiation shield surrounding it are arranged. This is a factor that hinders the decomposition laydown of large equipment.

従来例5は、タービン建屋の運転床下に配置される湿分分離加熱器から低圧タービン蒸気入口ノズルを連絡する蒸気配管をタービン・発電機設置架台の運転床面の梁に蒸気配管を通すための貫通口を設け、この貫通口に配管を通すことで運転床を平坦化しているが、貫通口設置による梁の強度確保のため梁寸法,鉄骨・鉄筋量等の増加を行う必要があった。梁の強度は梁高さがその支配要因となるが梁高さの約1/3〜1/4に近い断面欠損を補うための補強による構造成立性に加え、配筋,鋼板の施工性を考慮した検証が必要である。また、従来、低圧タービンの蒸気入口ノズルは水平横方向に鏡対称に設置されていたが、本発明ではタービンの下側から接続し、かつ2本の蒸気入口ノズルが接近して配置されるため、従来のノズル位置に比べ低圧タービン内に入った蒸気を均等に分配するための対策を行う必要があった。   Conventional example 5 is for passing a steam pipe from a moisture separator heater arranged under the operation floor of the turbine building to a low pressure turbine steam inlet nozzle to a beam on the operation floor surface of the turbine / generator installation stand. The operation floor is flattened by providing a through-hole and piping through this through-hole, but it was necessary to increase the beam dimensions, the amount of steel frames and reinforcing bars to ensure the strength of the beam by installing the through-hole. The strength of the beam is governed by the height of the beam, but in addition to the structural feasibility by reinforcing the cross-sectional defect close to about 1/3 to 1/4 of the beam height, the workability of reinforcement and steel plate Verification that takes into account is necessary. Conventionally, the steam inlet nozzle of the low-pressure turbine has been installed mirror-symmetrically in the horizontal and lateral direction. However, in the present invention, the steam inlet nozzle is connected from the lower side of the turbine and the two steam inlet nozzles are arranged close to each other. Therefore, it is necessary to take measures for evenly distributing the steam that has entered the low-pressure turbine as compared with the conventional nozzle position.

本発明は、熱効率などを向上すべく湿分分離器と加熱器とを統合した湿分分離加熱器を採用しながらも原子力発電所の建屋のコンパクト化を達成することを目的とする。   An object of the present invention is to achieve downsizing of a building of a nuclear power plant while adopting a moisture separator / heater in which a moisture separator and a heater are integrated in order to improve thermal efficiency and the like.

本発明の目的を達成するための手段は、以下の要件を備える。Means for achieving the object of the present invention has the following requirements.

即ち、原子力発電所のタービン建屋と、前記タービン建屋内を上下に区画する運転床と、前記タービン建屋内に設置されたタービン・発電機設置架台と、前記タービン・発電機設置架台に設置された高圧タービンと複数の低圧タービンと、前記タービン・発電機設置架台に設置されて前記各タービンで駆動される発電機と、前記低圧タービンの下方に設置され、前記低圧給水加熱器から受け入れた蒸気を原子炉圧力容器への給水として凝縮する復水器と、前記復水器と前記各低圧タービンとの間に配置された復水器上部胴と、前記復水器上部胴内に設置され、前記各低圧タービンからの蒸気を受け入れて複数段に前記給水を加熱する複数本の低圧給水加熱器と、前記低圧給水加熱器のチューブ引き抜きスペースの上方に位置する前記運転床上方と、前記タービン・発電機設置架台を挟んで前記チューブ引き抜きスペースの反対側で前記運転床の下方であって、前記低圧タービンとを挟んでそれぞれ配置され、前記高圧タービンから前記低圧タービンへ供給する蒸気を除湿及び加熱する複数本の湿分分離加熱器とを備えた原子力発電所のタービン建屋であることを要件としている。

That is, a turbine building of a nuclear power plant, an operation floor that vertically partitions the turbine building, a turbine / generator installation stand installed in the turbine building, and a turbine / generator installation stand A high-pressure turbine, a plurality of low-pressure turbines, a generator installed on the turbine / generator installation base and driven by each turbine, and steam received from the low-pressure feed water heater installed below the low-pressure turbine. A condenser that condenses as feed water to the reactor pressure vessel, a condenser upper trunk disposed between the condenser and each low-pressure turbine, and is installed in the condenser upper trunk, A plurality of low-pressure feed water heaters that receive steam from each low-pressure turbine and heat the feed water in a plurality of stages, and the operation floor located above the tube drawing space of the low-pressure feed water heater When the sides of the turbine generator installation stand a lower side of the operation floor opposite the tube withdrawal space, disposed respectively across said low pressure turbine, supplied from the high pressure turbine to the low pressure turbine It is required to be a turbine building of a nuclear power plant provided with a plurality of moisture separation heaters for dehumidifying and heating steam.

また、このような手段を備えることにより、以下の効果を奏する。Moreover, the following effects are produced by providing such means.

即ち、復水器内蔵給水加熱器チューブ引き抜きスペース側の湿分分離器または湿分分離加熱器のみを運転床上に配置するため、従来2基の湿分分離器または湿分分離加熱器を運転床上に配置した場合に比べ運転床の定期検査時のタービン・発電機分解レイダウンスペース確保を阻害することが抑制することができる。この結果、運転床上に2基の湿分分離器または湿分分離加熱器を配置する場合に比べ、不足するレイダウンスペース確保のための建屋拡大またはレイダウンスペースとして使用する隣接建屋の縮小が可能となる。 That is, only the moisture separator or moisture separation heater on the side of the pull-out space of the condenser built- in condenser on the operation floor is placed on the operation floor, so that two conventional moisture separators or moisture separation heaters are installed on the operation floor. Compared with the case where it arrange | positions, it can suppress that the turbine / generator decomposition | disassembly laydown space ensuring at the time of the periodic inspection of an operation floor is inhibited. As a result, compared to the case where two moisture separators or moisture separator heaters are arranged on the operation floor, it is possible to expand the building for securing the insufficient laydown space or to reduce the adjacent building used as the laydown space. .

本発明によれば、湿分分離加熱器を採用しながらも、タービン・発電機分解品仮置きエリア(レイダウンエリア)を極力広く確保できるので、タービン建屋のコンパクト化が達成できる。   According to the present invention, a turbine / generator disassembled product temporary storage area (laydown area) can be secured as much as possible while employing a moisture separator / heater, so that the turbine building can be made compact.

発明者は、本発明の実施例を案出する際に、以下の各参考実施例を同時に発案した。When the inventor devised an embodiment of the present invention, the inventor simultaneously invented the following reference embodiments.

(参考実施例1)
沸騰水型原子炉を採用した原子力発電所は原子炉建屋やタービン建屋1等の複数の建屋を有する。その原子炉建屋においては、核燃料が装荷された炉心を内蔵した原子炉圧力容器を有し、その原子炉圧力容器内ではその炉心で軽水を加熱させて沸騰させた際の蒸気を得ている。その蒸気は主蒸気配管21を通してタービン建屋1内に導かれている。
(Reference Example 1)
A nuclear power plant employing a boiling water reactor has a plurality of buildings such as a reactor building and a turbine building 1. The reactor building has a reactor pressure vessel containing a core loaded with nuclear fuel, and in the reactor pressure vessel, light water is heated in the reactor core to obtain steam when boiled. The steam is guided into the turbine building 1 through the main steam pipe 21.

一方のタービン建屋1内には、タービン・発電機設置架台9が中央部に設置され、そのタービン・発電機設置架台9の上端と同じ高さでタービン建屋1内を上下に区画するタービン建屋運転床(以下、単に運転床という。)13が設置されている。そのタービン・発電機設置架台9には、高圧タービン6と3基の低圧タービン7a,7b,7c(以下、3基の低圧タービン7a,7b,7cを総称する場合には、低圧タービン7と表示する。)と発電機8とが設置され、それらは直列に回転軸が接続されて各タービンで発電機8を回転駆動して発電させるようになっている。14はタービン建屋内に設置された天井クレーンであり、各タービンや発電機8を分解して運転床13上に仮置きしたり、再組み立てする際のクレーンとして用いられるものである。   In one turbine building 1, a turbine / generator installation stand 9 is installed in the center, and the turbine building operation is divided into upper and lower sections at the same height as the upper end of the turbine / generator installation stand 9. A floor (hereinafter simply referred to as a driving floor) 13 is installed. The turbine / generator installation base 9 includes a high-pressure turbine 6 and three low-pressure turbines 7a, 7b, and 7c (hereinafter, the three low-pressure turbines 7a, 7b, and 7c are collectively referred to as low-pressure turbine 7). And a generator 8, which are connected to a rotating shaft in series, and each turbine is configured to drive the generator 8 to rotate to generate power. 14 is an overhead crane installed in the turbine building, which is used as a crane when disassembling each turbine or generator 8 and temporarily placing it on the operation floor 13 or reassembling.

その高圧タービン6には主蒸気配管21を通じてタービンを駆動するための蒸気が原子炉建屋側から供給され、その高圧タービン6はその蒸気で駆動される。その高圧タービン6に供給された蒸気はタービンの駆動に用いられて、後にその高圧タービン6から排出されるが、その排出された蒸気は低温且つ高湿度の状態となっているので、熱効率向上と侵食防止のためにその蒸気を2基の湿分分離加熱器2a,2b(以下、2基の湿分分離加熱器2a,2bを総称する場合には、湿分分離加熱器2と表示する。)で除湿及び加熱して高温な乾燥蒸気とする。その乾燥蒸気は湿分分離加熱器から主蒸気配管21を通じて各低圧タービン7へ供給され、その乾燥蒸気で各低圧タービン7が駆動される。このように高圧タービン6と3基の低圧タービン7が駆動されると、その駆動力によって発電機8も同期して駆動されて発電作用を起こす。   Steam for driving the turbine is supplied to the high-pressure turbine 6 from the reactor building side through the main steam pipe 21, and the high-pressure turbine 6 is driven by the steam. The steam supplied to the high-pressure turbine 6 is used to drive the turbine, and is later discharged from the high-pressure turbine 6. The discharged steam is in a low temperature and high humidity state, so that the heat efficiency is improved. In order to prevent erosion, the vapor is indicated as two moisture separation heaters 2a and 2b (hereinafter, the two moisture separation heaters 2a and 2b are collectively referred to as moisture separation heater 2). ) To dehumidify and heat to a high temperature dry steam. The dry steam is supplied from the moisture separator and heater to each low-pressure turbine 7 through the main steam pipe 21, and each low-pressure turbine 7 is driven by the dry steam. When the high-pressure turbine 6 and the three low-pressure turbines 7 are driven in this way, the generator 8 is also driven in synchronism by the driving force to generate a power generation action.

各低圧タービン7でタービンの駆動のために用いられた蒸気は、各低圧タービン7から排出されて第4段低圧給水加熱器10−4a,10−4b,10−4c、第3段低圧給水加熱器10−3a,10−3b,10−3c、第2段低圧給水加熱器10−2a,10−2b,10−2c、第1段低圧給水加熱器10−1a,10−1b,10−1c(以下、各低圧給水加熱器を総称する場合には、低圧給水加熱器10と表示する。)に送られ、ここで原子炉圧力容器への給水をその蒸気で加熱して高圧給水加熱器を経由して原子炉圧力容器へ給水できるようになっている。この低圧給水加熱器10は、1基の低圧タービン毎に4段で4本(1段につき1本)、3基の低圧タービン7で計12本を各低圧タービン7の直下に設けられている各復水器上部胴5a,5b,5c(以下、各復水器上部胴5a,5b,5cを総称する場合には、復水器上部胴5と表示する。)内に設置されている。   Steam used for driving the turbine in each low-pressure turbine 7 is discharged from each low-pressure turbine 7 to be supplied to the fourth stage low pressure feed water heaters 10-4a, 10-4b, 10-4c, and the third stage low pressure feed water heating. 10-3a, 10-3b, 10-3c, second stage low pressure feed water heaters 10-2a, 10-2b, 10-2c, first stage low pressure feed water heaters 10-1a, 10-1b, 10-1c (Hereinafter, when the low-pressure feed water heaters are collectively referred to as the low-pressure feed water heater 10), the feed water to the reactor pressure vessel is heated with the steam, and the high-pressure feed water heater is It is possible to supply water to the reactor pressure vessel via. This low-pressure feed water heater 10 is provided with four in four stages (one per stage) for each low-pressure turbine, and a total of twelve in three low-pressure turbines 7 immediately below each low-pressure turbine 7. It is installed in each condenser upper body 5a, 5b, 5c (hereinafter, when each condenser upper body 5a, 5b, 5c is generically referred to as the condenser upper body 5).

4段の各低圧給水加熱器10で給水と熱交換した蒸気は、各復水器上部胴5の真下に配置した各復水器4a,4b,4c(以下、各復水器4a,4b,4cを総称する場合には、復水器4と表示する。)内に導入され、凝縮させられて原子炉圧力容器への給水とされる。   The steam exchanged with the feed water in each of the four stages of the low pressure feed water heaters 10 is converted into the condensers 4a, 4b, 4c (hereinafter referred to as the respective condensers 4a, 4b, In the case of generically referring to 4c, it is indicated as the condenser 4.) It is introduced into the condenser, condensed, and supplied to the reactor pressure vessel.

このような、タービン建屋1内のタービン設備とそれに附帯する主要な各機器の系統構成について、1350MWe級沸騰水型原子力発電所を前提に例示すると図1の通りである。即ち、図1に示すように、原子炉圧力容器によって発生した蒸気は、4本の主蒸気配管21にてタービン建屋1に導かれ主蒸気止め弁・加減弁43を通過し高圧タービン6に送られる。高圧タービン6から排出された蒸気は高圧タービンを回転駆動させることにより温度が少し低下し湿分が多くなっている。この蒸気は主蒸気配管21によって湿分分離加熱器蒸気入口ノズル36から2基の湿分分離加熱器2a,2b内に送られ、湿分分離加熱器2a,2b内に設置された湿分分離器によって湿分を除去され、さらに湿分分離加熱器2a,2b内に設置された加熱器(1350MWe級の場合2段階に加熱される)で加熱され、湿り度の低い蒸気は湿分分離加熱器蒸気出口ノズル35から乾燥蒸気として主蒸気配管21にて3基の低圧タービン7a,7b,7cに供給される。この際、高圧タービン6から1基の湿分分離加熱器2には2本の蒸気配管21がルーティングされ蒸気入口ノズル36の手前で4本に分岐し接続される。   FIG. 1 shows an example of the system configuration of the turbine equipment in the turbine building 1 and the main devices attached thereto, assuming a 1350 MWe class boiling water nuclear power plant. That is, as shown in FIG. 1, steam generated by the reactor pressure vessel is guided to the turbine building 1 through the four main steam pipes 21, passes through the main steam stop valve / regulator valve 43, and is sent to the high pressure turbine 6. It is done. The steam discharged from the high-pressure turbine 6 is driven to rotate the high-pressure turbine so that the temperature is slightly reduced and the moisture is increased. This steam is sent from the moisture separator heater steam inlet nozzle 36 into the two moisture separator heaters 2a and 2b through the main steam pipe 21, and the moisture separator installed in the moisture separator heaters 2a and 2b. Moisture is removed by a vessel, and further heated by a heater installed in the moisture separation heaters 2a and 2b (heated in two stages in the case of the 1350 MWe class), and steam with low wetness is moisture separated and heated. The steam is supplied from the steam outlet nozzle 35 to the three low-pressure turbines 7a, 7b, 7c through the main steam pipe 21 as dry steam. At this time, two steam pipes 21 are routed from the high-pressure turbine 6 to one moisture separator / heater 2 and branched and connected to four before the steam inlet nozzle 36.

また、湿分分離加熱器2上部の3個の出口ノズル35から組み合わせ中間弁17を介し低圧タービン7a,7b,7cに主蒸気配管21が接続される。主蒸気配管21から各低圧タービン7a,7b,7cへ入った乾燥蒸気は低圧タービン7a,7b,7cを駆動した後に、低圧タービン7a,7b,7cから吐出され、吐出された蒸気は低圧タービン下部に設置された復水器4a,4b,4cで凝縮されて水になり、その水は原子炉圧力容器への給水になる。   The main steam pipe 21 is connected to the low-pressure turbines 7 a, 7 b, and 7 c through the combined intermediate valve 17 from the three outlet nozzles 35 above the moisture separator / heater 2. The dry steam that has entered the low-pressure turbines 7a, 7b, and 7c from the main steam pipe 21 is driven from the low-pressure turbines 7a, 7b, and 7c and then discharged from the low-pressure turbines 7a, 7b, and 7c. The water is condensed by the condensers 4a, 4b, 4c installed in the water and becomes water, and the water is supplied to the reactor pressure vessel.

更にこの水は以下に示す機器を通して給水配管45を介し原子炉圧力容器に戻される。3基の復水器4a,4b,4cから吐出された水は低圧復水ポンプ26で昇圧された後、復水ろ過装置18,復水脱塩装置25を通過し原子炉給水として十分な水質に浄化処理した後、空気抽出器41,グランド蒸気復水器42を経て高圧復水ポンプ37で昇圧される。その後復水器上部胴に設置された第4段低圧給水加熱器10−4a,10−4b,10−4c、第3段低圧給水加熱器10−3a,10−3b,10−3c、第2段低圧給水加熱器10−2a,10−2b,10−2c、第1段低圧給水加熱器10−1a,10−1b,10−1cで給水温度を上げ原子炉給水ポンプ39で昇圧され、第2段高圧給水加熱器38−2a,38−2b、第1段高圧給水加熱器38−1a,38−1bで更に給水温度を上げて原子炉へ送られる。第1段〜第4段低圧給水加熱器は復水器4a,4b,4cの胴数に合わせ3系列に分離配置し各々の復水器上部胴5内に設置されているため、3系列×4段構成=12本の低圧給水加熱器を有する系統構成となっている。その際、1基の復水器上部胴に4本の低圧給水加熱器が設置されている。各低圧タービン7a,7b,7cから抽気された高温の蒸気が抽気配管40によって第1段〜第4段の各低圧給水加熱器10に導かれ給水配管内の水と熱交換することにより原子炉圧力容器側に戻る給水の温度を上げるようになっている。低圧タービン下部に設置されたノズルと復水器上部胴に設置された各段の低圧給水加熱器10はこの抽気配管40によって接続されており、抽気蒸気は低圧給水加熱器10内で熱交換されたことにより温度が低下してドレン水となって各低圧給水加熱器10よりドレン配管44にて復水器4に戻される系統構成となっている。   Further, this water is returned to the reactor pressure vessel through the water supply pipe 45 through the following equipment. Water discharged from the three condensers 4a, 4b, and 4c is pressurized by the low-pressure condensate pump 26, and then passes through the condensate filtration device 18 and the condensate demineralizer 25 to provide sufficient water quality as reactor water supply. Then, the pressure is increased by the high pressure condensate pump 37 through the air extractor 41 and the ground steam condenser 42. Thereafter, the fourth stage low-pressure feed water heaters 10-4a, 10-4b, 10-4c, the third stage low-pressure feed water heaters 10-3a, 10-3b, 10-3c, second installed in the condenser upper shell. The feed water temperature is raised by the first stage low pressure feed water heaters 10-2a, 10-2b, 10-2c and the first stage low pressure feed water heaters 10-1a, 10-1b, 10-1c, and the pressure is raised by the reactor feed water pump 39. The two-stage high-pressure feed water heaters 38-2a and 38-2b and the first-stage high-pressure feed water heaters 38-1a and 38-1b are further raised in feed water temperature and sent to the reactor. Since the first to fourth stage low-pressure feed water heaters are separated and arranged in three series according to the number of the condensers 4a, 4b, 4c and are installed in each condenser upper trunk 5, three series × 4-stage configuration = a system configuration having 12 low-pressure feed water heaters. In that case, four low pressure feed water heaters are installed in one condenser upper trunk. The high-temperature steam extracted from each low-pressure turbine 7a, 7b, 7c is led to each of the first to fourth low-pressure feed water heaters 10 by the extraction pipe 40 to exchange heat with the water in the feed water pipe. The temperature of the feed water returning to the pressure vessel side is raised. The nozzles installed in the lower part of the low-pressure turbine and the low-pressure feed water heaters 10 installed in each stage of the condenser upper body are connected by this extraction pipe 40, and the extracted steam is heat-exchanged in the low-pressure feed water heater 10. Thus, the system configuration is such that the temperature is lowered to become drain water, and is returned from each low-pressure feed water heater 10 to the condenser 4 through the drain pipe 44.

図2は湿分分離加熱器2内の概略構造を示したものである。湿分分離加熱器2は外側に円筒形の胴体47と端部に鏡板48が設置され水平方向に細長い形状となっている。湿分分離加熱器2の胴体47内に湿分分離器49と第1段加熱器50及び第2段加熱器51を有しているため、出力1350MWe級の原子力発電所の場合には、直径が約4m、長さが約30mを越す大型機器となっている。胴体47下部には蒸気入口ノズル36a,36b,36c,36d(以下、蒸気入口ノズル36a,36b,36c,36dを総称する場合には、蒸気入口ノズル36と表示する。)が設置され、高圧タービン6からの主蒸気配管21が接続される。また胴体47上部には低圧タービン7へ蒸気を供給する主蒸気出口ノズル35a,35b,35c,35d(以下、主蒸気出口ノズル35a,35b,35c,35dを総称する場合には、主蒸気出口ノズル35と表示する。)が設置されている。   FIG. 2 shows a schematic structure in the moisture separation heater 2. The moisture separator / heater 2 has a cylindrical body 47 on the outside and an end plate 48 at the end, and has a shape elongated in the horizontal direction. Since the moisture separator 49, the first stage heater 50, and the second stage heater 51 are provided in the body 47 of the moisture separator heater 2, in the case of a nuclear power plant with an output of 1350 MWe, the diameter Is a large equipment with a length of over 4m and a length of over 30m. Steam inlet nozzles 36a, 36b, 36c, and 36d (hereinafter referred to as steam inlet nozzle 36 when generically referred to as steam inlet nozzles 36a, 36b, 36c, and 36d) are installed at the bottom of the body 47, and a high-pressure turbine. The main steam pipe 21 from 6 is connected. Further, the main steam outlet nozzles 35a, 35b, 35c, and 35d for supplying steam to the low-pressure turbine 7 are disposed above the body 47 (hereinafter, the main steam outlet nozzles 35a, 35b, 35c, and 35d are collectively referred to as main steam outlet nozzles). 35.) is installed.

湿分分離器49は胴体47内の下側に設置されており、この役割としては、高圧タービン6から排出された蒸気は高圧タービンを回転駆動させることにより温度が少し低下し湿分が多くなっているため、波板形状をした湿分分離器49a,49bを通過することにより気水を分離し、ほぼ乾き蒸気とすることで各低圧タービン7に送られる蒸気の湿り度を減らすことで、プラント性能向上及び低圧タービン等への部材浸食の軽減を図っている。   The moisture separator 49 is installed on the lower side of the body 47. The role of the steam discharged from the high-pressure turbine 6 is to reduce the temperature and increase the moisture by rotating the high-pressure turbine. Therefore, by separating the steam and water by passing through the corrugated moisture separators 49a, 49b, and reducing the wetness of the steam sent to each low-pressure turbine 7 by making it almost dry steam, It aims to improve plant performance and reduce member erosion to low-pressure turbines.

胴体47内で湿分分離器49a,49bの上部には第1段加熱器50a,50bが設置されその上部に第2段加熱器51a,51bが右側と左側のエリアに夫々1基ずつ設置されており、この役割は湿分分離器49a,49bからの蒸気を更に加熱し蒸気温度を高くすることによりタービン系の熱効率を向上し発電出力の増加を目的としている。なお、その加熱するための熱源としては高圧タービン6の最終段より前側の部分から取り出された抽気蒸気52を用い、その抽気蒸気52は鏡板48に設置されたノズルより第1段加熱器50a,50bに入れるように配管接続され、また原子炉圧力容器側からタービン建屋1内に入った時点の主蒸気止め弁・加減弁43の前側(上流側)の高温な主蒸気を一部分岐して取り出した抽気蒸気53を用い、その抽気蒸気53を鏡板48に設置されたノズルより第2段加熱器51a,51bに入るように配管接続される。湿分分離加熱器2内で乾いた高温の蒸気は上部に設置された蒸気出口ノズル35から各低圧タービン7に供給される。また、湿分分離器49a,49bによって蒸気中から分離された湿分及び加熱器内の蒸気はドレンとなって胴体47の下部に設置されたドレンノズル54より夫々のドレンタンクに回収される。   In the body 47, first stage heaters 50a, 50b are installed above the moisture separators 49a, 49b, and second stage heaters 51a, 51b are installed in the upper and lower areas respectively. This role is intended to improve the thermal efficiency of the turbine system and increase the power generation output by further heating the steam from the moisture separators 49a and 49b to increase the steam temperature. In addition, as the heat source for heating, the extraction steam 52 taken out from the part before the last stage of the high-pressure turbine 6 is used, and the extraction steam 52 is supplied to the first stage heater 50a, 50b is connected to the pipe, and a part of the high-temperature main steam on the front side (upstream side) of the main steam stop valve / regulator valve 43 at the time of entering the turbine building 1 from the reactor pressure vessel side is taken out. The extracted steam 53 is connected by piping so that the extracted steam 53 enters the second stage heaters 51 a and 51 b from the nozzles installed on the end plate 48. The high-temperature steam dried in the moisture separator / heater 2 is supplied to each low-pressure turbine 7 from a steam outlet nozzle 35 installed at the top. Further, the moisture separated from the steam by the moisture separators 49 a and 49 b and the steam in the heater are drained and collected in the respective drain tanks from the drain nozzle 54 installed at the lower part of the body 47.

このような湿分分離加熱器2や低圧給水加熱器10は、図3,図4,図5,図6のように、タービン建屋1内に配置されている。即ち、図3は本実施例によるタービン建屋内の主要機器の配置を示すタービン建屋1の運転床13下面の配置平面図である。図3,図4,図5,図6のように、そのタービン建屋1の復水器上部胴5内に低圧給水加熱器10を1胴あたり4本収納している。図4はその運転床13上面の機器の配置平面図であり、図5はそれの短辺方向における縦断面図、図6は長辺方向における給水加熱器チューブ引き抜きスペース11側の縦断面図である。   Such a moisture separation heater 2 and low-pressure feed water heater 10 are arranged in the turbine building 1 as shown in FIGS. 3, 4, 5, and 6. That is, FIG. 3 is an arrangement plan view of the lower surface of the operation floor 13 of the turbine building 1 showing the arrangement of the main equipment in the turbine building according to the present embodiment. As shown in FIGS. 3, 4, 5, and 6, four low-pressure feed water heaters 10 are housed in the condenser upper shell 5 of the turbine building 1. FIG. 4 is an arrangement plan view of equipment on the upper surface of the operation floor 13, FIG. 5 is a longitudinal sectional view in the short side direction thereof, and FIG. 6 is a longitudinal sectional view on the feed water heater tube drawing space 11 side in the long side direction. is there.

大型である湿分分離加熱器2をタービン建屋1の運転床13下部の復水器上部胴5両側に配置するとともに、1胴あたり4本の給水加熱器10を復水器上部胴5に内蔵した場合の配置について説明する。図3,図5及び図6に示すように復水器上部胴内5には1胴あたり水平2列に上下2段の合計4本の給水加熱器10が配置されている。また低圧給水加熱器10には夫々に給水加熱器チューブ引き抜きスペース11が運転床13の下方に確保されている。   The large moisture separator / heater 2 is disposed on both sides of the condenser upper trunk 5 at the lower part of the operation floor 13 of the turbine building 1, and four feed water heaters 10 per cylinder are incorporated in the condenser upper trunk 5. The arrangement in this case will be described. As shown in FIGS. 3, 5, and 6, a total of four water heaters 10 in two upper and lower stages are arranged in two horizontal rows per cylinder in the condenser upper body 5. Further, each of the low-pressure feed water heaters 10 is provided with a feed water heater tube drawing space 11 below the operation floor 13.

給水加熱器チューブ引き抜きスペース11のエリアに大型である湿分分離加熱器2を運転床13の下且つ復水器上部胴5の両側のエリアに配置するためには、給水加熱器チューブ引き抜きスペース11と湿分分離加熱器2の本体との干渉を避けるよう、湿分分離加熱器2を給水加熱器チューブ引き抜きスペース11より上方に設置する。このとき運転床13と湿分分離加熱器2との干渉を回避するよう運転床13の床レベルを変更して配置する必要がある。そのため、湿分分離加熱器2とその上下に設置される主蒸気配管21等の配置スペースを確保するため、湿分分離加熱器2の設置エリアの上方に対応する運転床13部分をタービン・発電機設置架台9の上面(上部床面)よりも高い位置に嵩上げして設置する。嵩上げした運転床13の部分と嵩上げしていない運転床13の部分とは連続するように構築されている。   In order to arrange the large moisture separation heater 2 in the area of the feed water heater tube drawing space 11 in the area under the operation floor 13 and on both sides of the condenser upper trunk 5, the feed water heater tube drawing space 11 is provided. The moisture separation heater 2 is installed above the feed water heater tube drawing space 11 so as to avoid interference with the moisture separation heater 2 main body. At this time, it is necessary to change and arrange the floor level of the operation floor 13 so as to avoid interference between the operation floor 13 and the moisture separation heater 2. Therefore, in order to secure a space for arranging the moisture separation heater 2 and the main steam pipes 21 installed above and below it, the operation floor 13 corresponding to the upper part of the installation area of the moisture separation heater 2 is turbine / power generation. It is raised and installed at a position higher than the upper surface (upper floor surface) of the machine installation stand 9. The raised operation floor 13 and the non-raised operation floor 13 are constructed so as to be continuous.

従来配置では湿分分離加熱器2の設置位置としては、基準床であるタービン・発電機設置架台9上部床面(運転床13としての基準床面)と同一床レベルにタービン建屋1の運転床13のレベルを設定し、その上部に湿分分離加熱器2を配置するか、または湿分分離加熱器を給水加熱器引き抜きスペースと干渉しないよう高圧タービン側に移動し運転床13の下部に配置する手法であったが、本実施例は低圧タービン7の両側エリアの運転床13設置高さを運転床13より上方に変更し、タービン・発電機設置架台9上部床面より嵩上げした躯体34で構築されたタービン建屋の運転床とすることで湿分分離加熱器2を給水加熱器チューブ引き抜きスペース11の上部に収納するスペースを確保することにある。   In the conventional arrangement, the operating position of the turbine building 1 is set to the same floor level as the upper floor of the turbine / generator installation stand 9 (reference floor as the operation floor 13) as the reference floor as the installation position of the moisture separation heater 2. Set the level of 13 and arrange the moisture separation heater 2 at the top or move the moisture separation heater to the high pressure turbine side so as not to interfere with the feed water heater drawing space and place it at the bottom of the operation floor 13 In this embodiment, the height of the operation floor 13 installed on both sides of the low-pressure turbine 7 is changed to be higher than the operation floor 13, and the casing 34 is raised from the upper floor surface of the turbine / generator installation base 9. The operation floor of the constructed turbine building is to secure a space for storing the moisture separation heater 2 in the upper part of the feed water heater tube drawing space 11.

本実施例では、湿分分離加熱器2の鏡板48を胴体47から外して各加熱器50a,50b,51a,51bを胴体47外へ引き抜いて保守点検乃至は交換する際に、その引き抜きに必要なスペース、即ち湿分分離加熱器内蔵加熱器引き抜きスペース3を、タービン建屋の長大化をまねくことなく確保できる。尚、22はタービン建屋の取り外し式壁であり、タービン建屋内外間での大形機器の搬出入に際して、取り外し及び再組み立てできる壁である。   In this embodiment, the end plate 48 of the moisture separator / heater 2 is removed from the body 47, and the heaters 50a, 50b, 51a, 51b are pulled out of the body 47 for maintenance inspection or replacement. Space, that is, a heater extraction space 3 with a built-in moisture separator / heater can be secured without imposing an increase in the length of the turbine building. Reference numeral 22 denotes a detachable wall of the turbine building, which is a wall that can be removed and reassembled when a large-sized device is carried in and out of the turbine building.

また、給水加熱器チューブ引き抜きスペース11側の高圧タービン6から湿分分離加熱器2までの主蒸気配管21のルートにおいては給水加熱器チューブ引き抜きスペース11と主蒸気配管21の干渉を回避するため後述する実施例2と同様な配管ルートとしている。   Further, in order to avoid interference between the feed water heater tube drawing space 11 and the main steam pipe 21 in the route of the main steam pipe 21 from the high pressure turbine 6 to the moisture separation heater 2 on the feed water heater tube drawing space 11 side, it will be described later. The piping route is the same as in Example 2.

また、湿分分離加熱器2を運転床13下に配置した場合においても、運転床13面の低圧タービン7の両側には低圧タービン蒸気入口ノズル30が設置され、このノズルには湿分分離加熱器2の上部に設置される蒸気出口ノズル35からの吐出配管32が接続され、低圧タービン蒸気入口ノズル30には組み合わせ中間弁17が設置されている。この組み合わせ中間弁17は低圧タービン7の蒸気入口ノズル30近傍に配置し、蒸気流量の調整,閉止を行う弁である。   In addition, even when the moisture separator / heater 2 is disposed under the operation floor 13, low-pressure turbine steam inlet nozzles 30 are installed on both sides of the low-pressure turbine 7 on the surface of the operation floor 13, and the moisture separation heating is performed on these nozzles. A discharge pipe 32 from a steam outlet nozzle 35 installed in the upper part of the vessel 2 is connected, and a combined intermediate valve 17 is installed in the low-pressure turbine steam inlet nozzle 30. This combination intermediate valve 17 is a valve that is disposed in the vicinity of the steam inlet nozzle 30 of the low-pressure turbine 7 to adjust and close the steam flow rate.

組み合わせ中間弁17を設置するエリアはこれらの弁,配管スペース確保に加え、運転床13の低圧タービン7,高圧タービン6周囲のエリア(タービン・発電機レイダウンエリア29)に対する遮蔽上の要求から、これらの弁/配管エリアを囲う遮蔽のための箱状のコンクリート製躯体または鉄板による組み合わせ中間弁用の部屋31が運転床上に設置される。そのため、低圧タービン7の両側のエリアは1車室当たり2箇所の遮蔽のための躯体または遮蔽鉄板が運転床13面から上方へ張り出した形で段差が生じることとなる。   In addition to securing these valves and piping space, the area where the combined intermediate valve 17 is installed is based on shielding requirements for the area around the low pressure turbine 7 and the high pressure turbine 6 (turbine / generator laydown area 29) on the operation floor 13. A room 31 for a combination intermediate valve made of a box-shaped concrete casing or an iron plate for shielding surrounding the valve / pipe area is installed on the operation floor. Therefore, in the areas on both sides of the low-pressure turbine 7, a level difference is generated in a form in which two casings or shielding iron plates for shielding are projected upward from the surface of the operation floor 13.

このため、湿分分離加熱器2を運転床13下に配置した場合でも運転床13上で低圧タービン7両側のスペースは平坦化することができず、大型機器の分解レイダウン性を阻害する要因となり、小物分解品のレイダウンスペースとして使用する等の制約があった。   For this reason, even when the moisture separator / heater 2 is disposed below the operation floor 13, the space on both sides of the low-pressure turbine 7 on the operation floor 13 cannot be flattened, which is a factor that hinders the decomposition laydown of large equipment. There were restrictions such as use as a laydown space for small items.

本参考実施例では運転床13下の湿分分離加熱器2の設置エリア上部の運転床面を嵩上げした躯体34は低圧タービン蒸気入口ノズル30と組み合わせ中間弁17及び湿分分離加熱器蒸気出口ノズル35間の主蒸気配管21を水平に配置し、組み合わせ中間弁17及びこの主蒸気配管32廻りを囲う躯体の床は前記組み合わせ中間弁設置のための段差と同等もしくはそれ以上の高さに運転床面を嵩上げすることにより、低圧タービン7の両側のエリアを完全に平坦化することができる。尚、この嵩上げされたエリアの運転床面13はその周囲の嵩上げされなかった運転床13面と約3〜4mの段差が生じるため両運転床面間のアクセス用階段20の設置及び組み合わせ中間弁搬出入用ハッチ33を嵩上げした床に設置することで嵩上げしたエリアへのアクセス性、ハッチからの機器搬出入による保守性を考慮した配置としている。この結果、平坦化された低圧タービン7の両側のエリアを定検時の大物機器分解レイダウンスペースとして使用可能となることで従来の湿分分離加熱器運転床下配置よりも広いレイダウンスペースを確保することが可能となり、レイダウンスペース確保のための隣接建屋の廃止またはタービン建屋平面寸法の増加の抑制をすることができる。また、前記の如く湿分分離加熱器2に接続される主蒸気配管21と組み合わせ中間弁17及び低圧タービン蒸気入口ノズル30を同一レベルで設置することにより、曲げの少ないルートすることが可能となり配管物量の削減も図れる。 Skeleton 34 in this reference real施例that raising the moisture operation floor of the installation area top of separator heater 2 below the operation floor 13 is the low pressure turbine steam inlet nozzle 30 combined intermediate valve 17 and moisture separator reheater steam outlet The main steam pipe 21 between the nozzles 35 is horizontally arranged, and the floor of the enclosure surrounding the combined intermediate valve 17 and the main steam pipe 32 is operated at a height equal to or higher than the step for installing the combined intermediate valve. By raising the floor surface, the areas on both sides of the low-pressure turbine 7 can be completely flattened. In addition, since the operation floor 13 in the raised area has a level difference of about 3 to 4 m from the surrounding operation floor 13 which has not been raised, the installation of the step 20 for access between the operation floors and the combination intermediate valve By placing the carry-in / out hatch 33 on the raised floor, it is arranged in consideration of the accessibility to the raised area and the maintainability by loading / unloading the equipment from the hatch. As a result, the area on both sides of the flattened low-pressure turbine 7 can be used as a large equipment disassembly laydown space at the time of regular inspection, thereby securing a wider laydown space than the conventional arrangement under the operating floor of the moisture separation heater. Therefore, it is possible to abolish the adjacent building for securing the laydown space or suppress the increase in the plane size of the turbine building. Also, as described above, the main steam pipe 21 connected to the moisture separation heater 2 and the combined intermediate valve 17 and the low-pressure turbine steam inlet nozzle 30 are installed at the same level, so that a route with less bending can be provided. The amount of goods can also be reduced.

本参考実施例では1胴あたり4本の低圧給水加熱器10を復水器上部胴5に内蔵した場合の配置について示したが、実施例1の変形例として、次に1胴あたり2本の低温給水加熱器を復水器上部胴に内蔵した場合の配置について説明する。図7は復水器上部胴5内に給水加熱器を1胴あたり2本収納した場合の運転床13下の配置平面図であり、図8はその短辺方向における縦断面図である。 While the low-pressure feed water heater 10 of four per cylinder in the present reference real施例shown the arrangement of a case with a built-in condenser upper cylinder 5, as a modification of the first embodiment, then two per cylinder The arrangement when the low-temperature feed water heater is built in the condenser upper shell will be described. FIG. 7 is an arrangement plan view under the operation floor 13 when two water heaters are accommodated in the condenser upper body 5 and FIG. 8 is a longitudinal sectional view in the short side direction.

復水器上部胴5には後述するように第1段及び第2段低圧給水加熱器を、復水器上部胴5の外側に移設し、且つ各段ごとに1本に統合化することで第1段低圧給水加熱器12−1及び第2段低圧給水加熱器12−2の2本の系統構成に変更し、その2本の統合化後の低圧給水加熱器12の配置スペースは給水加熱器チューブ搬出入空間スペース46として機器,配管等が設置されないスペースとして確保されていたタービン建屋長辺沿いの外壁側のエリアに設置する。復水器上部胴5内には従来通り第3段及び第4段の低圧給水加熱器10が上下1段水平2列の配置で配置されている。   As will be described later, the first and second stage low-pressure feed water heaters are transferred to the condenser upper body 5 to the outside of the condenser upper body 5 and integrated into one for each stage. The arrangement of the low-pressure feed water heater 12 after the integration of the two low-pressure feed water heaters 12-1 and 12-2 is changed to the two system configurations of the first-stage low-pressure feed water heater 12-1 and the second-stage low pressure feed water heater 12-2. It is installed in the area on the outer wall side along the long side of the turbine building, which has been secured as a space where equipment, piping, etc. are not installed as the vessel tube carry-in / out space. In the upper condenser body 5, third and fourth low-pressure feed water heaters 10 are arranged in a horizontal two-row arrangement in the upper and lower stages as usual.

また、湿分分離加熱器2の設置高さは1胴あたり4本の低圧給水加熱器10を復水器上部胴5に内蔵した参考実施例1と同様、湿分分離加熱器2の設置エリアのみの範囲で運転床面13を嵩上げし、その下部に低圧タービン7の主蒸気入口ノズル30,組み合わせ中間弁17及び湿分分離加熱器2の主蒸気出口ノズル35間の接続配管スペースを考慮して設定する。復水器上部胴5内に内蔵する低圧給水加熱器10が2本となったことにより、4本内蔵に比べ給水加熱器チューブ引き抜きスペース11上部と湿分分離加熱器2の胴体47下面のスペースが高く確保できるため、湿分分離加熱器2の主蒸気入口ノズル36に接続される主蒸気配管21も給水加熱器チューブ引き抜きスペース11より上方に配置することができる。このように配置することにより、復水器上部胴5に4本の給水加熱器を内蔵する場合に比べ、高圧タービン6から湿分分離加熱器の主蒸気入口ノズル36までの主蒸気配管21のルートに制約を与えない配置とすることが可能となり、給水加熱器チューブ引き抜きスペース11と反対側の主蒸気配管引き回しルートと対称形のルートとすることが可能となり、且つ曲げの少ないシンプルなルートによる配管物量の低減が図れる配置とすることができる。 Also, similar to the moisture installation height of the separator heater 2 has a built-in low-pressure feed water heater 10 of four per cylinder to the condenser upper cylinder 5 Reference real Example 1, the moisture separator heater 2 The operation floor 13 is raised only in the installation area, and a connecting piping space between the main steam inlet nozzle 30 of the low-pressure turbine 7, the combination intermediate valve 17 and the main steam outlet nozzle 35 of the moisture separation heater 2 is formed below the operation floor 13. Set in consideration. Since there are two low-pressure feed water heaters 10 built in the condenser upper shell 5, the space above the feed water heater tube pull-out space 11 and the lower surface of the body 47 of the moisture separation heater 2 compared to the built-in four. Therefore, the main steam pipe 21 connected to the main steam inlet nozzle 36 of the moisture separation heater 2 can also be arranged above the feed water heater tube drawing space 11. By arranging in this way, the main steam pipe 21 from the high-pressure turbine 6 to the main steam inlet nozzle 36 of the moisture separation heater is compared with the case where four condenser water heaters are built in the condenser upper shell 5. It is possible to arrange the route without restricting the route, and it is possible to make the route symmetric with the main steam pipe routing route on the opposite side of the feed water heater tube drawing space 11, and with a simple route with little bending. The arrangement can reduce the amount of pipes.

(参考実施例2)
図9は本発明に係わるタービン建屋1の運転床13下面の配置平面図であり復水器上部胴5内に低圧給水加熱器を内蔵しない場合の実施例である。図10はそれの短辺方向における縦断面図、図11は長辺方向における縦断面図である。
(Reference real施例2)
FIG. 9 is an arrangement plan view of the lower surface of the operation floor 13 of the turbine building 1 according to the present invention, and is an embodiment in the case where the low-pressure feed water heater is not built in the condenser upper body 5. FIG. 10 is a longitudinal sectional view in the short side direction, and FIG. 11 is a longitudinal sectional view in the long side direction.

長大かつ大型機器である湿分分離加熱器2を運転床13下の復水器室内のエリアに設置し、タービン・発電機軸方向と平行かつ復水器上部胴5の両側に配置する。   The moisture separator / heater 2, which is a long and large-sized device, is installed in an area of the condenser room under the operation floor 13, and is arranged on both sides of the condenser upper body 5 in parallel with the turbine / generator axial direction.

このとき、従来復水器上部胴5内に設置していた低圧給水加熱器10の給水加熱器チューブ引き抜きスペース11と湿分分離加熱器2との干渉を避けるため、復水器上部胴5内に低圧給水加熱器を内蔵する構成を廃止した。これらの低圧給水加熱器は統合化することで基数を低減した統合化された低圧給水加熱器12を運転床13の下に配置する。1350MWe級の原子力発電所のタービン建屋の場合、通常復水器上部胴5内に4本の給水加熱器10が内蔵されており復水器3胴分で復水器内には4本/胴×3胴=合計12本の給水加熱器10が設置されている。   At this time, in order to avoid interference between the feed water heater tube pull-out space 11 of the low pressure feed water heater 10 and the moisture separation heater 2 which have been installed in the upper condenser body 5 of the conventional condenser, The configuration with a built-in low-pressure feed water heater was abolished. These low-pressure feed water heaters are integrated, and an integrated low-pressure feed water heater 12 with a reduced number of bases is disposed under the operation floor 13. In the case of a turbine building of a 1350 MWe class nuclear power plant, usually four feed water heaters 10 are built in the upper fuselage 5 of the condenser, and there are 4 per barrel in the condenser. X3 body = total 12 water heaters 10 are installed.

本参考実施例では湿分分離加熱器2の本体と給水加熱器チューブ引き抜きスペース11との干渉を避けるため全低圧給水加熱器10を復水器上部胴5外に移設し配置する。この場合、12本の低圧給水加熱器10を配置するための新たなスペースをタービン建屋1内に確保することは建屋寸法の増加につながりコストアップ要因となる可能性がある。このため、12本の低圧給水加熱器を系列毎に統合する系統設備構成とすることで本数の削減を図る。 All low-pressure feed water heater 10 to be transferred disposed outside 5 condenser upper barrel to avoid interference between the main body and the feed water heater tube withdrawal space 11 of the moisture separator heater 2 in this reference real施例. In this case, securing a new space in the turbine building 1 for arranging the 12 low-pressure feed water heaters 10 may lead to an increase in building dimensions and increase costs. For this reason, the number is reduced by adopting a system facility configuration in which twelve low-pressure feed water heaters are integrated for each series.

参考実施例1の系統をベースにして第1段から第4段の低圧給水加熱器10を統合化した場合の系統構成を図12に示す。図12では、高圧タービン6や湿分分離加熱器2廻りの系統構成は図1と同一であるので、それを省略している。復水器上部胴5内に設置していた低圧給水加熱器10全てを復水器外に移設し、各復水器4a,4b,4c毎に分離設置していた低圧給水加熱器を1段あたり1本に統合することで、合計12本の低圧給水加熱器を4本/4段に低減する。 FIG. 12 shows the system configuration when integrating the fourth stage low-pressure feed water heater 10 from the first stage was based the system of reference the actual Example 1. In FIG. 12, since the system configuration around the high-pressure turbine 6 and the moisture separator / heater 2 is the same as that in FIG. 1, it is omitted. All the low-pressure feed heaters 10 installed in the condenser upper shell 5 are moved outside the condenser, and one stage of the low-pressure feed heaters installed separately for each condenser 4a, 4b, 4c. By integrating them into one, a total of 12 low-pressure feed water heaters are reduced to 4/4 stages.

具体的には実施例1の第1段低圧給水加熱器10−1a,10−1b,10−1cの3本を1本に統合化し第1段低圧給水加熱器12−1とし、順次同様に第2段低圧給水加熱器12−2,第3段低圧給水加熱器12−3,第4段低圧給水加熱器12−4とする系統構成とする。また復水器上部胴5外に低圧給水加熱器を設置することで低圧タービン7a,7b,7cからの抽気配管40は各低圧タービン7a,7b,7cから統合化された1本/段の低圧給水加熱器12に夫々接続することも可能であるが、配管物量の低減を図るため各低圧タービン7a,7b,7cから出た抽気配管40は復水器内または外のエリアで統合して各低圧給水加熱器12に接続する。ドレン配管44は統合化された第1段低圧給水加熱器12−1から順次第2段低圧給水加熱器12−2,第3段低圧給水加熱器12−3,第4段低圧給水加熱器12−4に接続され、第4段低圧給水加熱器からのドレンはドレン配管44にて各復水器4a,4b,4cに戻される。   Specifically, the first-stage low-pressure feed water heaters 10-1a, 10-1b, 10-1c of the first embodiment are integrated into one to form a first-stage low-pressure feed water heater 12-1, and sequentially in the same manner. The system configuration is the second-stage low-pressure feed water heater 12-2, the third-stage low-pressure feed water heater 12-3, and the fourth-stage low-pressure feed water heater 12-4. Further, by installing a low-pressure feed water heater outside the upper condenser body 5, the extraction pipe 40 from the low-pressure turbines 7 a, 7 b, 7 c is integrated into one / stage low-pressure from each low-pressure turbine 7 a, 7 b, 7 c. Although it is possible to connect to the feed water heater 12 respectively, in order to reduce the amount of pipes, the extraction pipes 40 coming out from the low-pressure turbines 7a, 7b, 7c are integrated in the condenser or outside the condensers. Connect to low pressure feed water heater 12. The drain pipe 44 is integrated from the integrated first-stage low-pressure feed water heater 12-1 to the second-stage low-pressure feed water heater 12-2, the third-stage low-pressure feed water heater 12-3, and the fourth-stage low-pressure feed water heater 12. -4, the drain from the fourth stage low-pressure feed water heater is returned to the condensers 4a, 4b, 4c through the drain pipe 44.

次にこの統合化した4本分の低圧給水加熱器12の設置スペース確保方策について以下に述べる。参考実施例1のように復水器上部胴に内蔵の低圧給水加熱器10から引き抜かれた給水加熱器チューブ本体を屋外に搬出するため、タービン建屋1の長辺方向の復水器室の外壁には取り外し式壁22が設置されている。この取り外し式壁22までのタービン建屋内には引き抜かれた給水加熱器チューブ本体を屋外に搬出するための空間スペースが確保されている。また、屋外に搬出された低圧給水加熱器の給水加熱器チューブは新品との交換を考慮し、屋外から復水器上部胴5に新品の給水加熱器チューブを搬入するための空間スペース46を有しているため、復水器上部胴5の低圧給水加熱器設置エリアから外壁までのエリアはチューブ搬出入スペースとして機器・配管等を設置しない空間スペースとなっている。図9〜図11は統合化した4本の低圧給水加熱器12を復水器上部胴5外に配置した実施例である。復水器上部胴5の両側には湿分分離加熱器2が配置されており、復水器上部胴5には低圧給水加熱器は設置されておらずタービン建屋長辺方向外壁側の取り外し壁22の近傍に統合化した低圧給水加熱器12が設置されている。統合化された低圧給水加熱器12に低圧タービン7からの抽気配管を接続されるため配管長を極力延ばさないようにするには復水器近傍に配置することが好ましいが、復水器脇のエリアには湿分分離加熱器2を配置し、その外側(外壁脇)のスペースに統合化した低圧給水加熱器12を設置する。このスペースは従来配置では低圧給水加熱器チューブ搬出入空間スペース46として機器,配管等が設置されないスペースとして確保されていたものである。 Next, a method for securing the installation space for the four integrated low-pressure feed water heaters 12 will be described below . For conveying the feed water heater tube body which is withdrawn from the low pressure feed water heater 10 built in the condenser upper torso as reference the actual Example 1 outdoors, the turbine building 1 in the long side direction condenser chamber A removable wall 22 is installed on the outer wall. In the turbine building up to the detachable wall 22, a space space is secured for carrying out the extracted water heater tube body outdoors. Further, considering the replacement of the feed water heater tube of the low pressure feed water heater carried out outdoors with a new one, there is a space 46 for carrying a new feed water heater tube into the condenser upper body 5 from the outside. Therefore, the area from the low pressure feed water heater installation area to the outer wall of the condenser upper trunk 5 is a space space where no equipment, piping, etc. are installed as a tube carry-in / out space. 9 to 11 show an embodiment in which four integrated low-pressure feed water heaters 12 are arranged outside the condenser upper body 5. A moisture separator / heater 2 is disposed on both sides of the condenser upper shell 5, and no low-pressure feed water heater is installed on the condenser upper shell 5. A low-pressure feed water heater 12 integrated in the vicinity of 22 is installed. Since the extraction pipe from the low-pressure turbine 7 is connected to the integrated low-pressure feed water heater 12, it is preferable to arrange it near the condenser so as not to extend the pipe length as much as possible. A moisture separator / heater 2 is disposed in the area, and a low-pressure feed water heater 12 integrated in a space outside (outside the wall) is installed. In the conventional arrangement, this space is ensured as a space where equipment, piping and the like are not installed as the low-pressure feed water heater tube carry-in / out space space 46.

また、このエリアに低圧給水加熱器12を配置する際に、低圧給水加熱器を統合化したことで1本あたりの低圧給水加熱器12の寸法は多少大きくなるが、配置スペースの効率化をはかるため4本の統合化された低圧給水加熱器12の給水加熱器チューブ引き抜きスペース11はそれぞれ2本の低圧給水加熱器12を直列に配置することにより共用化を行っている。なお、復水器上部胴5外に統合化した低圧給水加熱器12を設置することは低圧タービン7からの抽気配管長が多少増加することとなるが、図12のように各抽気配管40の統合化を行うことでタービン建屋内の全体の配管物量から見れば大きな物量増加とはならなく、逆に参考実施例1での計12本の低圧給水加熱器10を統合化し低圧給水加熱器12の本数を4本に低減(12本→4本)することは機器員数の削減ともなるためコスト低減効果が期待できる。これらの方策を行うことでタービン建屋寸法に影響を与えないでこれら統合化された低圧給水加熱器12の設置スペースを確保することができる。 Moreover, when the low-pressure feed water heater 12 is arranged in this area, the size of the low-pressure feed water heater 12 is slightly increased by integrating the low-pressure feed water heater, but the arrangement space is made more efficient. Therefore, the feed water heater tube drawing space 11 of the four integrated low pressure feed water heaters 12 is shared by arranging two low pressure feed water heaters 12 in series. Note that installing the integrated low-pressure feed water heater 12 outside the upper condenser body 5 slightly increases the length of the extraction pipe from the low-pressure turbine 7. However, as shown in FIG. not pose a significant amount increases when viewed by performing integration from the entire pipe amount in the turbine building, a total of 12 low-pressure feed water heater 10 in the reverse reference actual Example 1 integrates low-pressure feed water heater Reducing the number of 12 to 4 (from 12 to 4) also reduces the number of equipment, so a cost reduction effect can be expected. By implementing these measures, an installation space for these integrated low-pressure feed water heaters 12 can be secured without affecting the turbine building dimensions.

これにより、湿分分離加熱器2をタービン・発電機設置床、即ち運転床13の下の復水器上部胴5両側に配置しても低圧給水加熱器12及びその給水加熱器チューブ引き抜きスペース11と干渉することはない。また、復水器上部胴5に内蔵の低圧給水加熱器10が無くなることで復水器上部胴5の高さを低くすることが可能であり、運転床13〜基礎マット19上端までの高さを低くすることができるためタービン建屋全体の高さ低減に繋がり建屋全体容積の削減を図ることができる。実施例2では、その他の構成や作用は実施例1と同様である。   Thereby, even if the moisture separator / heater 2 is arranged on both sides of the condenser upper trunk 5 under the turbine / generator installation floor, that is, the operation floor 13, the low-pressure feed water heater 12 and the feed water heater tube drawing space 11 are provided. There will be no interference. Further, since the low pressure feed water heater 10 built in the condenser upper body 5 is eliminated, the height of the condenser upper body 5 can be lowered, and the height from the operation floor 13 to the upper end of the foundation mat 19 can be reduced. Therefore, the overall height of the turbine building can be reduced, and the overall volume of the building can be reduced. In the second embodiment, other configurations and operations are the same as those in the first embodiment.

また、図13は参考実施例2の変形例を示している。図13は、この変形例におけるタービン建屋のタービン・発電機設置階床(運転床13)下面の配置平面図であり復水器上部胴5内に低圧給水加熱器10を1胴あたり上下1段水平2列の配置で2本を収納する場合の配置例を示している。図14はそれの短辺方向における縦断面図、図15は長辺方向における復水器上部胴5に内蔵の低圧給水加熱器10の給水加熱器チューブ引き抜きスペース11側の縦断面図である。 Further, FIG. 13 shows a modification of the reference real施例2. FIG. 13 is an arrangement plan view of the lower surface of the turbine / generator installation floor (operating floor 13) of the turbine building in this modified example. The example of arrangement | positioning in case two are accommodated by arrangement | positioning of 2 horizontal rows is shown. FIG. 14 is a longitudinal sectional view in the short side direction thereof, and FIG. 15 is a longitudinal sectional view of the feed water heater tube drawing space 11 side of the low pressure feed water heater 10 built in the condenser upper body 5 in the long side direction.

図16は参考実施例1の系統をベースにして第1段から第4段の低圧給水加熱器10の内の第1段と第2段の低圧給水加熱器10を統合化した場合の系統構成を示している。図16では、高圧タービン6や湿分分離加熱器2廻りの系統構成は図1と同一であるので、それを省略している。復水器上部胴5内に設置していた低圧給水加熱器10のうち第1段と第2段の低圧給水加熱器を復水器上部胴5外に移設し、実施例1では各復水器4a,4b,4c毎に分離配置していた低圧給水加熱器10−1a,10−1b,10−1c及び10−2a,10−2b,10−2cを1本/段に統合することで、合計6本の低圧給水加熱器10を2本の統合化された低圧給水加熱器12に低減する。 Figure 16 is system when that integrates the first stage and the low-pressure feed water heater 10 of the second stage of the low-pressure feed water heater 10 of the fourth stage from the first stage was based the system of reference actual Example 1 The configuration is shown. In FIG. 16, the system configuration around the high-pressure turbine 6 and the moisture separator / heater 2 is the same as that in FIG. Among the low-pressure feed water heaters 10 installed in the condenser upper shell 5, the first and second low-pressure feed water heaters are transferred to the outside of the condenser upper shell 5. By integrating the low pressure feed water heaters 10-1a, 10-1b, 10-1c and 10-2a, 10-2b, 10-2c, which have been separately arranged for each of the devices 4a, 4b, 4c, into one / stage , A total of six low pressure feed water heaters 10 are reduced to two integrated low pressure feed water heaters 12.

具体的には参考実施例1の第1段低圧給水加熱器10−1a,10−1b,10−1cの3本を1本に統合化し第1段低圧給水加熱器12−1、同様に実施例1の第2段低圧給水加熱器10−2a,10−2b,10−2cの3本を1本に統合化し第2段低圧給水加熱器12−2とし、実施例1の第3段及び第4段低圧給水加熱器は統合化せず実施例1と同様に各復水器上部胴5内に設置する系統構成とする。 Specifically, the first stage low-pressure feed water heater 10-1a Reference real施例1, 10-1b, first stage low-pressure feed water heater 12-1 integrates into one of three 10-1c, similarly The second stage low-pressure feed water heaters 10-2a, 10-2b, 10-2c of the first embodiment are integrated into a single second stage low-pressure feed water heater 12-2, and the third stage of the first embodiment. In addition, the fourth-stage low-pressure feed water heater is not integrated and is configured in a system configuration that is installed in each condenser upper trunk 5 in the same manner as in the first embodiment.

統合化した第1段及び第2段低圧給水加熱器12−1,12−2へは復水器上部胴5内に内蔵した第3段,第4段低圧給水加熱器10−3a,b,c,10−4a,b,cから給水配管45が統合され接続される。ドレン配管44は第2低圧給水加熱器12−2から復水器内蔵第3段低圧給水加熱器10−3a,b,cに分岐して接続される。また、第1段及び第2段低圧給水加熱器12−1,12−2への低圧タービン7からの抽気配管40の接続方法は前記の図12で説明した方法と同様である。   The integrated first-stage and second-stage low-pressure feed water heaters 12-1 and 12-2 include third-stage and fourth-stage low-pressure feed water heaters 10-3a, b, The water supply piping 45 is integrated and connected from c, 10-4a, b, c. The drain pipe 44 is branched and connected from the second low-pressure feed water heater 12-2 to the third stage low-pressure feed water heater 10-3a, b, c with a built-in condenser. Moreover, the connection method of the extraction piping 40 from the low-pressure turbine 7 to the first-stage and second-stage low-pressure feed water heaters 12-1 and 12-2 is the same as the method described in FIG.

この変形例では参考実施例1での上下2段水平2列の配置の4本/胴の低圧給水加熱器10のうち上段に設置される2本の低圧給水加熱器10が統合されて復水器上部胴5の外である給水加熱器チューブ搬出入空間スペース46に移設される。このことで、運転床13の床・梁とその下部の給水加熱器チューブ引き抜きスペース11との空間スペースを広く確保することができる。この空間部に湿分分離加熱器2を配置することで復水器上部胴に内蔵されていた低圧給水加熱器10を全て復水器上部胴5外に設置する場合に比べ、復水器上部胴5外に移設配置する低圧給水加熱器10の本数は3系列×2段構成=6本となり、これらの低圧給水加熱器を前記同様に統合化することで2本/2段の統合化された低圧給水加熱器12とすることができ、低圧給水加熱器の移設先配置スペースの削減及び低圧タービン7からの抽気配管長増加を抑制することができる。 In this modification integrates with two low-pressure feed water heater 10 installed in the upper of the four / cylinder low-pressure feed water heater 10 of the arrangement of the two upper and lower stages horizontal two columns in Reference real Example 1 It is moved to the feed water heater tube carry-in / out space space 46 outside the condenser upper shell 5. This makes it possible to secure a wide space between the floor / beams of the operation floor 13 and the feed water heater tube drawing space 11 below the operation floor 13. Compared to the case where all the low-pressure feed heaters 10 built in the condenser upper shell are installed outside the condenser upper shell 5 by disposing the moisture separator heater 2 in this space, the upper portion of the condenser. The number of low-pressure feed water heaters 10 to be relocated to the outside of the body 5 is 3 series × 2 stage configuration = 6. By integrating these low-pressure feed water heaters in the same manner as described above, two / two stages are integrated. The low-pressure feed water heater 12 can be reduced, and the reduction of the installation location space of the low-pressure feed water heater and the increase in the length of the extraction pipe from the low-pressure turbine 7 can be suppressed.

2本の統合化された低圧給水加熱器12の配置スペースは低圧給水加熱器チューブ搬出入空間スペース46として機器,配管等が設置されないスペースとして確保されていたタービン建屋長辺沿いの外壁側のエリアに設置し、且つ2本の統合化低圧給水加熱器12を直列に配置し統合化低圧給水加熱器12の給水加熱器チューブ引き抜きスペース11を共用することでタービン建屋寸法に影響を与えることなく配置することが可能である。   The arrangement space of the two integrated low-pressure feed water heaters 12 is an area on the outer wall side along the long side of the turbine building, where the low-pressure feed water heater tube carry-in / out space space 46 is secured as a space where no equipment, piping, etc. are installed. The two integrated low-pressure feed water heaters 12 are arranged in series and the feed water heater tube drawing space 11 of the integrated low-pressure feed water heater 12 is shared so that the turbine building dimensions are not affected. Is possible.

また、本変形例では図13〜図15に示すように復水器上部胴5に内蔵の低圧給水加熱器10の給水加熱器チューブ引き抜きスペース11と湿分分離加熱器2の本体が干渉しないよう復水器上部胴5の高さを設定しているが、高圧タービン6から湿分分離加熱器2までの主蒸気配管21のルートにおいて湿分分離加熱器2の主蒸気入口ノズル36は胴下部に設置されるため、配管の設置高さは復水器上部胴5に内蔵の低圧給水加熱器の給水加熱器チューブ引き抜きスペース11とほぼ同じ高さとなる。このため、主蒸気配管21と復水器上部胴に内蔵の低圧給水加熱器10の給水加熱チューブ引き抜きスペース11の干渉回避方策として主蒸気配管21を低圧給水加熱器10の給水加熱チューブ引き抜きスペース11の外側に設置し低圧給水加熱器10の給水加熱チューブ引き抜きスペース11を迂回したルートとすることで干渉回避が可能である。本変形例では干渉回避のため主蒸気配管21側で迂回したルート案を示したが、給水加熱器チューブ引き抜き時は主蒸気配管21を一部撤去することで主蒸気配管21の配管ルートを迂回せずに低圧給水加熱器10の給水加熱チューブ引き抜きスペース11内に主蒸気配管を設置することも可能である。その他の構成や作用は実施例1と同様である。   Further, in this modified example, as shown in FIGS. 13 to 15, the feed water heater tube drawing space 11 of the low pressure feed water heater 10 built in the condenser upper body 5 does not interfere with the main body of the moisture separation heater 2. The height of the condenser upper body 5 is set, but the main steam inlet nozzle 36 of the moisture separation heater 2 is located at the lower part of the route of the main steam pipe 21 from the high pressure turbine 6 to the moisture separation heater 2. Therefore, the installation height of the pipe is almost the same as the feed water heater tube drawing space 11 of the low pressure feed water heater built in the condenser upper shell 5. Therefore, as a measure for avoiding interference between the main steam pipe 21 and the feed water heating tube drawing space 11 of the low pressure feed water heater 10 built in the condenser upper shell, the main steam pipe 21 is connected to the feed water heating tube drawing space 11 of the low pressure feed water heater 10. It is possible to avoid interference by setting a route that bypasses the feed water heating tube drawing space 11 of the low-pressure feed water heater 10 installed outside. In this modified example, the route plan detoured on the main steam pipe 21 side to avoid interference is shown. However, when the feed water heater tube is pulled out, the main steam pipe 21 is partially removed to bypass the pipe route of the main steam pipe 21. It is also possible to install a main steam pipe in the feed water heating tube drawing space 11 of the low pressure feed water heater 10 without doing so. Other configurations and operations are the same as those in the first embodiment.

このような参考実施例2及びその変形例は復水器上部胴に内蔵の低圧給水加熱器の全てまたは一部を復水器外に移設することで湿分分離加熱器2を運転床13の下の復水器上部胴5の両側に配置することが可能となり、また移設した低圧給水加熱器は統合化することで本数を減らし配置するためのスペースを削減することにより、タービン建屋の寸法を変更することなく収納することが可能となる。 Such references real施例2 and its modification condenser upper torso in a built-in low-pressure feed water heater moisture by relocating all or part outside condenser unit separator reheater 2 the operation floor 13 The size of the turbine building can be reduced by reducing the number of the low-pressure feed water heaters that have been relocated and reducing the space for placement by integrating them. It becomes possible to store without changing.

この配置手法により湿分分離加熱器2を運転床13下に配置した場合でもタービン建屋1の長辺方向寸法の長大化とならずに原子力発電所の建設工程のクリチカル要因とはならず、タービン建屋1の長辺方向の寸法は従来の湿分分離加熱器2の運転床上配置と同等の建屋寸法で配置することができ、タービン建屋がコンパクトに仕上がる。更に運転床13上のエリアからは湿分分離加熱器室が不要となるため低圧タービン7の両側を定検時の分解仮置きエリア29として活用することができる。また給水加熱器本数削減による機器設備コストの低減を図ることができる。   Even when the moisture separator / heater 2 is arranged under the operation floor 13 by this arrangement method, the dimension of the long side direction of the turbine building 1 is not increased and does not become a critical factor in the construction process of the nuclear power plant. The dimension of the long side direction of the building 1 can be arrange | positioned by the building dimension equivalent to arrangement | positioning on the operation floor of the conventional moisture separation heater 2, and a turbine building is finished compactly. Furthermore, since the moisture separation heater room is not required from the area on the operation floor 13, both sides of the low-pressure turbine 7 can be used as the disassembly temporary storage area 29 at the time of regular inspection. In addition, the equipment cost can be reduced by reducing the number of water heaters.

(参考実施例3)
図17は本発明に係わるタービン建屋運転床面の配置平面図であり、図18は復水器上部胴5に1胴あたり2本の低圧給水加熱器10を内蔵した場合における短辺方向の縦断面図。図19は復水器上部胴5に1胴あたり4本の低圧給水加熱器10を内蔵した場合における短辺方向の縦断面図である。前記の参考実施例1とその変形例では復水器上部胴5に低圧給水加熱器10を1胴あたり2本または4本内蔵した上で湿分分離加熱器2と低圧給水加熱器10の給水加熱器チューブ引き抜きスペース11との干渉を避けるため、湿分分離加熱器2の設置レベルを上げ、その上げ代に応じて、湿分分離加熱器2が配置される位置の上方に存在する運転床13の部分であって低圧タービン7両側の運転床13部分のみ嵩上げした躯体34を配置している。
(Reference real施例3)
FIG. 17 is an arrangement plan view of the operation floor surface of the turbine building according to the present invention, and FIG. 18 is a longitudinal sectional view in the short side direction when two low-pressure feed water heaters 10 are built in the upper body 5 of the condenser. Plan view. FIG. 19 is a longitudinal sectional view in the short side direction in the case where four low-pressure feed water heaters 10 are built in the upper condenser body 5 of the condenser. The reference actual Example 1 and in its variant condenser upper cylinder 5 to the low-pressure feed water heater 10 the moisture separator heater 2 in terms of incorporating two or four per cylinder and a low-pressure feed water heater 10 In order to avoid interference with the feed water heater tube drawing space 11, the installation level of the moisture separation heater 2 is raised, and the operation existing above the position where the moisture separation heater 2 is arranged according to the raising cost. A casing 34 which is a part of the floor 13 and is raised only on the operation floor 13 on both sides of the low-pressure turbine 7 is disposed.

本参考実施例では前記の如く嵩上げした躯体34によって構築された運転床13の部分と同一高さに合わせ、その周囲の運転床13の部分も全域に渡って嵩上げすることで、運転床13の全体を平坦化するものである。更には、運転床13下の各フロア23のレベル及び基礎マット19の床レベルを順次嵩上げしたものである。まず運転床13のエリア面のほぼ全域に渡って運転床13を嵩上げする場合、タービン・発電機設置架台(T−G架台)9の上端の面は従来と変わらないため、このタービン・発電機設置架台(T−G架台)9の上端の面と周囲の嵩上げした運転床13の面は湿分分離加熱器2の上部の運転床の面と同一レベルになることから約3〜4mの段差が生じる。 In this reference the real施例fit portion and the same height of the operation floor 13 built by skeleton 34 was raised as above, part of the operation floor 13 of the surrounding also be raised over the entire region, the operation floor 13 The whole is flattened. Furthermore, the level of each floor 23 under the operation floor 13 and the floor level of the foundation mat 19 are sequentially raised. First, when raising the operation floor 13 over almost the entire area of the operation floor 13, the upper end surface of the turbine / generator installation base (TG base) 9 is not different from the conventional one. Since the surface of the upper end of the installation base (TG base) 9 and the surface of the raised operation floor 13 are the same level as the surface of the upper operation floor of the moisture separator / heater 2, a level difference of about 3 to 4 m is provided. Occurs.

また、発電機8から発電機回転子を引き抜くに必要なスペースである発電機回転子引き抜きスペース24が存在している。その発電機回転子引き抜きスペース24の下方の運転床13は、発電機回転子の引き抜きを水平に且つ発電機本体に対し回転軸方向に引き抜く必要があるため、T−G架台9の上端の面とは段差を設置しないように設定する。このような運転床13の配置及び床レベルで構成したタービン建屋では、運転床13下の階高が運転床を嵩上げした分(1350MWe級の場合約3〜4m)高くなるため、運転床13下の全域の高さが従来プラントよりも高く確保できることとなる。この結果、運転床13下スペースのより合理的な配置を行うため運転床13下の各フロア23の床レベルを順次同様に嵩上げすることでタービン建屋全域に渡りタービン建屋1の基礎マット19の床レベルを浅く設定することができる。   There is also a generator rotor extraction space 24 which is a space necessary for extracting the generator rotor from the generator 8. The operation floor 13 below the generator rotor pull-out space 24 needs to pull out the generator rotor horizontally and in the direction of the rotation axis with respect to the generator main body. Is set so that there is no step. In the turbine building configured with such an arrangement and floor level of the operation floor 13, the floor height under the operation floor 13 is increased by raising the operation floor (about 3 to 4 m in the case of 1350 MWe class). The height of the entire area can be secured higher than that of the conventional plant. As a result, in order to more rationally arrange the space under the operation floor 13, the floor level of each floor 23 under the operation floor 13 is raised in the same manner in the same manner so that the floor of the foundation mat 19 of the turbine building 1 is spread over the entire turbine building. The level can be set shallow.

この際、復水器を配置するエリア26,復水ポンプ及びサンプ・タンク等の配置エリア27の基礎マット19の床レベルは復水器4本体の高さとの関係で決定されるため嵩上げすることはできない。これは復水器4下部の基礎マット19床レベルは復水器本体の必要高さに復水器下部の基礎高さで決定され、また復水ポンプ設置床レベルは復水器内の水位からの水頭圧力確保のため決定されており、復水器下部の基礎マットレベルと同等の基礎マットレベルに配置する必要がある。   At this time, the floor level of the foundation mat 19 in the area 26 where the condenser is arranged, the arrangement area 27 such as the condensate pump and sump tank is determined in relation to the height of the condenser 4 body, so that it is raised. I can't. This is because the floor level of the foundation mat 19 in the lower part of the condenser 4 is determined by the basic height of the lower part of the condenser, and the floor level of the condenser pump is determined from the water level in the condenser. It is determined to secure the head pressure of the water, and it is necessary to place it at the base mat level equivalent to the base mat level below the condenser.

更に、サンプ・タンク等の設備は床ドレン回収のための基礎マット内に配置される配管勾配確保の観点から据付床レベルが決定されるため、復水器設置エリア26,復水ポンプ及びサンプ,タンク等が配置されるエリア27以外の周囲のマット床レベルが嵩上げされた場合でも本エリアの床レベルを嵩上げすることはできない。   Furthermore, the installation floor level of the equipment such as sump tank is determined from the viewpoint of securing the piping gradient arranged in the base mat for floor drain recovery, so the condenser installation area 26, the condensate pump and sump, Even when the surrounding mat floor level other than the area 27 where the tank or the like is arranged is raised, the floor level of this area cannot be raised.

このように配置することで復水器及び復水ポンプ等が設置されるエリアの基礎マット19床レベルとその周囲の基礎マット19床レベルとは段差が生じる形となるが、復水器及び復水ポンプ等が設置されるエリアの基礎マットのみ掘り込んだタービン建屋基礎マット形状とすることで建屋の容積低減,掘削物量削減による建設コストの低減が図れる。また運転床はタービン・発電機設置架台(T−G架台)9床及び発電機引き抜きエリアの床とは段差が生じるためアクセス用階段20を設置することで作業員のアクセスが可能であり、その周囲の運転床は全域が平坦化することができるため、建屋平面寸法縮小化において一つの阻害要因となる運転床レイダウンスペース確保の観点から大物分解品のレイダウンスペースを確保することが容易となり定期検査時の作業性向上が期待できる。その他の構成や作用は既述の参考実施例1または参考実施例1の変形例と同様であり、参考実施例1と同様な場合には、図19のように、また参考実施例1の変形例と同様な場合には、図18に表示のようになるが、いずれの場合にもタービン建屋1の基礎マット19は他の参考実施例に比較して地表面から浅い位置に設定できる。 By arranging in this way, there is a difference in level between the 19 floor level of the foundation mat in the area where the condenser and the condensate pump are installed and the 19 floor level of the surrounding foundation mat. By adopting a turbine building foundation mat shape that only excavates the foundation mat in the area where water pumps are installed, the construction cost can be reduced by reducing the volume of the building and reducing the amount of excavated material. The operation floor has a level difference between the turbine / generator installation base (TG base) 9 floor and the floor of the generator pull-out area, so that the worker can access by installing the access stairs 20. Since the entire area of the surrounding operation floor can be flattened, it is easy to secure a laydown space for large-scale decomposition products from the viewpoint of securing the operation floor laydown space, which is one of the obstructions in reducing the building floor dimensions. It can be expected to improve workability at the time. Other construction and operation are described above in reference actual Example 1 or the same as the modification of the reference real Example 1, when a same manner as in Reference Example 1, as shown in FIG. 19, or reference a real If similar to the modification of example 1 is made as shown in Figure 18, basal mat 19 of the turbine building 1 in each case is shallow from the ground surface as compared to the other references the actual施例Can be set to position.

(本発明の実施例)
図20は本発明の実施例によるタービン建屋1の運転床13の上面での各機器の配置平面図であり、図21は復水器上部胴5に1胴あたり4本の低圧給水加熱器10を内蔵した場合における短辺方向の縦断面図である。本実施例では復水器上部胴5内に低圧給水加熱器10を4本/胴設置し、給水加熱器チューブ引き抜きスペース11が復水器上部胴5の片側に確保されている。このとき、復水器上部胴5を挟んで給水加熱器チューブ引き抜きスペース11と反対側に1基の湿分分離加熱器2が運転床13下の復水器上部胴5脇に配置される。一方、給水加熱器チューブ引き抜きスペース11側に設置されるもう1基の湿分分離加熱器2は給水加熱器チューブ引き抜きスペース11との干渉を避けるために運転床13の上部に配置する。その運転床13は、タービン・発電機設置架台9の上端面と同じ床面高さで配置され、運転床13上の湿分分離加熱器2は湿分分離加熱器室遮蔽躯体15で覆われて、運転床上の空間に放射線が到達しないようにされている。湿分分離加熱器室遮蔽躯体15の一部分は取り外し式壁22で構成され、湿分分離加熱器2内から加熱器を加熱器引き抜きスペース3へ引き抜いて点検乃至は交換する際に取り外され、点検乃至は交換終了後に元の壁に再組み立て可能である。この実施例におけるその他の構成や作用は既述の参考実施例1と同様である。
(Example of the present invention)
Figure 20 is a layout plan view of the equipment in the upper surface of the operation floor 13 of the turbine building 1 according to the embodiment of the present invention, FIG 21 is four low-pressure feed water heater per cylinder to the condenser upper cylinder 5 It is a longitudinal cross-sectional view of the short side direction when 10 is built. In the present embodiment, four low-pressure feed water heaters 10 / cylinder are installed in the condenser upper trunk 5, and a feed water heater tube drawing space 11 is secured on one side of the condenser upper trunk 5. At this time, one moisture separation heater 2 is arranged on the side opposite to the condenser upper trunk 5 below the operation floor 13 on the side opposite to the feed water heater tube drawing space 11 across the condenser upper trunk 5. On the other hand, another moisture separation heater 2 installed on the feed water heater tube drawing space 11 side is arranged on the upper part of the operation floor 13 in order to avoid interference with the feed water heater tube drawing space 11. The operation floor 13 is arranged at the same floor height as the upper end surface of the turbine / generator installation base 9, and the moisture separation heater 2 on the operation floor 13 is covered with a moisture separation heater room shielding housing 15. Thus, radiation is prevented from reaching the space above the operation floor. A part of the moisture separating heater chamber shielding housing 15 is constituted by a removable wall 22 and is removed when the heater is pulled out from the moisture separating heater 2 to the heater extraction space 3 for inspection or replacement. Or it can be reassembled to the original wall after the replacement. Other construction and operation of this embodiment is the same as that already described in Reference actual Example 1.

このように、片側の湿分分離加熱器2を運転床13の下に配置し、もう一方側の湿分分離加熱器2を運転床13の上に配置することで、低圧給水加熱器10の本数に影響されることなく、2基の湿分分離加熱器2を低圧タービン7の両側に接近させて配置することが可能となる。この結果、従来のように2基の湿分分離加熱器を運転床上に配置するのに比べて、本実施例では片側の湿分分離加熱器2のみを運転床13の上に配置とするので、各タービンや発電機8の定期検査時(定検時)に行われる各タービンや発電機8の分解品の仮置きに利用するレイダウンスペース29を運転床13上に広く確保することが可能である。   Thus, the moisture separation heater 2 on one side is disposed under the operation floor 13, and the moisture separation heater 2 on the other side is disposed on the operation floor 13. The two moisture separation heaters 2 can be arranged close to both sides of the low-pressure turbine 7 without being affected by the number. As a result, as compared with the conventional case where two moisture separation heaters are arranged on the operation floor, only one moisture separation heater 2 is arranged on the operation floor 13 in this embodiment. It is possible to secure a wide laydown space 29 on the operation floor 13 to be used for temporary placement of a disassembled product of each turbine or generator 8 that is performed at the time of periodic inspection (regular inspection) of each turbine or generator 8. is there.

また従来のように湿分分離加熱器2を運転床の下に配置する場合には、湿分分離加熱器2と給水加熱器チューブ引き抜きスペース11との干渉を避けるため、湿分分離加熱器2を高圧タービン側に移動して配置することが必要で、その必要性のためにタービン建屋1の長辺方向寸法が増加していたが、本実施例では、2基の湿分分離加熱器2は低圧タービン7を挟んで両側に配置することができるため、タービン建屋1の長辺方向寸法の抑制(1350MWe級で約10〜12m縮小)が可能となり、タービン建屋の建設費のコストダウンや建設工程の短縮が期待できる。   Further, when the moisture separation heater 2 is disposed under the operation floor as in the prior art, the moisture separation heater 2 is avoided in order to avoid interference between the moisture separation heater 2 and the feed water heater tube drawing space 11. However, in this embodiment, two moisture separation heaters 2 are used. However, in the present embodiment, the length of the turbine building 1 is increased. Can be arranged on both sides with the low-pressure turbine 7 interposed therebetween, so that it is possible to suppress the dimension in the long side direction of the turbine building 1 (reduced by about 10 to 12 m in the 1350 MWe class), thereby reducing the construction cost of the turbine building and the construction Shortening of the process can be expected.

また、更に、この実施例を次のように一部変更することができる。その変更内容は、湿分分離加熱器2の上部の運転床13を実施例1のようにタービン・発電機設置架台9の上端面を超える高さに嵩上げし、低圧タービン7の片側エリアの運転床レイダウンエリア29を平坦化することであり、これにより大物の分解品のレイダウンスペースの確保が容易となる配置を構築することができる。   Furthermore, this embodiment can be partially modified as follows. The content of the change is that the operation floor 13 at the top of the moisture separator / heater 2 is raised to a height exceeding the upper end surface of the turbine / generator installation base 9 as in the first embodiment, and the operation in one side area of the low-pressure turbine 7 is performed. By flattening the floor laydown area 29, it is possible to construct an arrangement that facilitates securing a laydown space for a large disassembled product.

なお前記の参考実施例1〜3や本発明の実施例において湿分分離加熱器2の設置位置は低圧タービン7の両側を基本として説明を行ってきたが、図22に示すように湿分分離加熱器2を高圧タービン6側に寄せて配置(1350MWe級の場合は約10〜15m移動して低圧タービン7と高圧タービン6両側の運転床13下のエリアに配置)することも可能である。 In the reference examples 1 to 3 and the embodiment of the present invention, the installation position of the moisture separator / heater 2 has been described based on both sides of the low-pressure turbine 7. However, as shown in FIG. It is also possible to arrange the heater 2 close to the high-pressure turbine 6 side (in the case of 1350 MWe class, move about 10 to 15 m and place it in the area under the operation floor 13 on both sides of the low-pressure turbine 7 and the high-pressure turbine 6).

この発明は、原子力発電所のタービン建屋内の機器の配置に利用される。   The present invention is used for arrangement of equipment in a turbine building of a nuclear power plant.

本発明に関連する参考実施例1によるタービン建屋内の蒸気及び給水系統の系統図である。It is a system diagram of a steam and water system in the turbine building by reference actual Example 1 relating to the present invention. 図1の湿分分離加熱器の縦断面図である。It is a longitudinal cross-sectional view of the moisture separation heater of FIG. 参考実施例1によるタービン建屋のタービン建屋運転床下における各機器及び構成の平面配置図である。It is a plane arrangement drawing of each apparatus and composition under a turbine building operation floor of a turbine building by reference example 1. 参考実施例1によるタービン建屋のタービン建屋運転床上における各機器及び構成の平面配置図である。It is a plane arrangement drawing of each apparatus and composition on a turbine building operation floor of a turbine building by reference example 1. 図4のタービン建屋における短辺方向の縦断面図である。It is a longitudinal cross-sectional view of the short side direction in the turbine building of FIG. 図4のタービン建屋における長辺方向の縦断面図である。It is a longitudinal cross-sectional view of the long side direction in the turbine building of FIG. 参考実施例1の変形例によるタービン建屋のタービン建屋運転床下における各機器及び構成の平面配置図である。It is a plane layout drawing of each apparatus and composition under the turbine building operation floor of the turbine building by the modification of reference example 1. 図7のタービン建屋における短辺方向の縦断面図である。It is a longitudinal cross-sectional view of the short side direction in the turbine building of FIG. 本発明に関連する参考実施例2によるタービン建屋のタービン建屋運転床下における各機器及び構成の平面配置図である。It is a plane arrangement drawing of each apparatus and composition under the turbine building operation floor of the turbine building by reference example 2 relevant to the present invention. 図9のタービン建屋における短辺方向の縦断面図である。It is a longitudinal cross-sectional view of the short side direction in the turbine building of FIG. 図9のタービン建屋における長辺方向の縦断面図である。It is a longitudinal cross-sectional view of the long side direction in the turbine building of FIG. 本発明に関連する参考実施例2によるタービン建屋内の蒸気及び給水系統の系統図である。It is a system diagram of a steam and feedwater lines of the reference real施例2 by the turbine building related to the present invention. 参考実施例2の変形例によるタービン建屋のタービン建屋運転床下における各機器及び構成の平面配置図である。It is a plane layout drawing of each apparatus and composition under the turbine building operation floor of the turbine building by the modification of reference example 2. 図13のタービン建屋における短辺方向の縦断面図である。It is a longitudinal cross-sectional view of the short side direction in the turbine building of FIG. 図13のタービン建屋における長辺方向の縦断面図である。It is a longitudinal cross-sectional view of the long side direction in the turbine building of FIG. 参考実施例2の変形例によるタービン建屋内の蒸気及び給水系統の系統図である。It is a systematic diagram of the steam and water supply system in the turbine building according to a modification of Reference Example 2. 本発明に関連する参考実施例3によるタービン建屋のタービン建屋運転床上における各機器及び構成の平面配置図である。It is a flat layout view of the devices and configuration in the associated reference for by real施例3 turbine building turbine building operation floor to the present invention. 図17のタービン建屋における短辺方向の縦断面図である。It is a longitudinal cross-sectional view of the short side direction in the turbine building of FIG. 参考実施例3の変形例によるタービン建屋における短辺方向の縦断面図である。It is a longitudinal sectional view of a short side direction of the turbine building by modification of the reference real施例3. 本発明の実施例によるタービン建屋のタービン建屋運転床上における各機器及び構成の平面配置図である。It is a plane arrangement drawing of each apparatus and composition on the turbine building operation floor of the turbine building by the example of the present invention. 図20のタービン建屋における短辺方向の縦断面図。The longitudinal cross-sectional view of the short side direction in the turbine building of FIG. 湿分分離加熱器の配置に関するもう一つの平面配置のバリエーションを示した図である。It is the figure which showed the variation of another plane arrangement regarding arrangement | positioning of a moisture separation heater.

符号の説明Explanation of symbols

1…タービン建屋、2,2a,2b…湿分分離加熱器、3…加熱器引き抜きスペース、4,4a,4b,4c…復水器、5,5a,5b,5c…復水器上部胴、6…高圧タービン、7,7a,7b,7c…低圧タービン、8…発電機、9…タービン・発電機設置架台、10,10−1a,10−1b,10−1c,10−2a,10−2b,10−2c,10−3a,10−3b,10−3c,10−4a,10−4b,10−4c,12,12−1,12−2…低圧給水加熱器、11…給水加熱器チューブ引き抜きスペース、13…タービン建屋運転床(運転床)、14…天井クレーン、15…湿分分離加熱器室遮蔽躯体、16…低圧復水ポンプ、17…組み合わせ中間弁、18…復水ろ過装置、19…基礎マット、20…アクセス用階段、21…主蒸気配管、22…取り外し式壁、23…運転床下の各フロア、24…発電機回転子引き抜きスペース、25…復水脱塩装置、26…復水器設置エリア、27…復水ポンプ,サンプ・タンク設置エリア、28…タービン・発電機回転軸、29…タービン・発電機分解品仮置きエリア(レイダウンエリア)、30…低圧タービン蒸気入り口ノズル、31…組み合わせ中間弁用部屋、33…組み合わせ中間弁搬出入用ハッチ、34…嵩上げした躯体、35…主蒸気出口ノズル、36…主蒸気入口ノズル、37…高圧復水ポンプ、38,38−1a,38−1b,38−2a,38−2b…高圧給水加熱器、39…原子炉給水ポンプ、40…抽気配管、41…空気抽出器、42…グランド蒸気復水器、43…主蒸気止め弁・加減弁、44…ドレン配管、45…給水配管、46…給水加熱器チューブ搬出入空間スペース、47…胴体、48…鏡板、49…湿分分離器、50,50a,50b…第1段加熱器、51,51a,51b…第2段加熱器、52…高圧タービンからの抽気蒸気、53…主蒸気止め弁・加減弁前側からの抽気蒸気、54…ドレンノズル。   DESCRIPTION OF SYMBOLS 1 ... Turbine building, 2, 2a, 2b ... Moisture separation heater, 3 ... Heater extraction space, 4, 4a, 4b, 4c ... Condenser, 5, 5a, 5b, 5c ... Condenser upper trunk, 6 ... High-pressure turbine, 7, 7a, 7b, 7c ... Low-pressure turbine, 8 ... Generator, 9 ... Turbine / generator installation base, 10, 10-1a, 10-1b, 10-1c, 10-2a, 10- 2b, 10-2c, 10-3a, 10-3b, 10-3c, 10-4a, 10-4b, 10-4c, 12, 12-1, 12-2 ... low pressure feed water heater, 11 ... feed water heater Tube drawing space, 13 ... Turbine building operation floor (operation floor), 14 ... Overhead crane, 15 ... Moisture separation heater room shielding housing, 16 ... Low pressure condensate pump, 17 ... Combination intermediate valve, 18 ... Condensate filtration device , 19 ... Basic mat, 20 ... Stairs for access DESCRIPTION OF SYMBOLS 21 ... Main steam piping, 22 ... Removable wall, 23 ... Each floor under operation floor, 24 ... Generator rotor extraction space, 25 ... Condensate demineralizer, 26 ... Condenser installation area, 27 ... Condensate pump , Sump / tank installation area, 28 ... turbine / generator rotating shaft, 29 ... turbine / generator disassembled product temporary storage area (laydown area), 30 ... low pressure turbine steam inlet nozzle, 31 ... combined intermediate valve room, 33 ... Combination intermediate valve carry-in / out hatch 34: Raised housing 35: Main steam outlet nozzle 36 ... Main steam inlet nozzle 37: High pressure condensate pump 38, 38-1a, 38-1b, 38-2a, 38 -2b ... High-pressure feed water heater, 39 ... Reactor feed pump, 40 ... Extraction piping, 41 ... Air extractor, 42 ... Ground steam condenser, 43 ... Main steam stop valve / regulator valve, 44 ... Len piping, 45 ... water supply piping, 46 ... feed water heater tube carry-in / out space space, 47 ... fuselage, 48 ... end plate, 49 ... moisture separator, 50, 50a, 50b ... first stage heater, 51, 51a, 51b ... second stage heater, 52 ... bleeding steam from high-pressure turbine, 53 ... bleeding steam from the main steam stop valve / regulation valve front side, 54 ... drain nozzle.

Claims (1)

原子力発電所のタービン建屋と、
前記タービン建屋内を上下に区画する運転床と、
前記タービン建屋内に設置されたタービン・発電機設置架台と、
前記タービン・発電機設置架台に設置された高圧タービンと複数の低圧タービンと、
前記タービン・発電機設置架台に設置されて前記各タービンで駆動される発電機と、
前記低圧タービンの下方に設置され、前記低圧給水加熱器から受け入れた蒸気を原子炉
圧力容器への給水として凝縮する復水器と、
前記復水器と前記各低圧タービンとの間に配置された復水器上部胴と、
前記復水器上部胴内に設置され、前記各低圧タービンからの蒸気を受け入れて複数段に前記給水を加熱する複数本の低圧給水加熱器と、
前記低圧給水加熱器のチューブ引き抜きスペースの上方に位置する前記運転床上方と、前記タービン・発電機設置架台を挟んで前記チューブ引き抜きスペースの反対側で前記運転床の下方であって、前記低圧タービンとを挟んでそれぞれ配置され、前記高圧タービンから前記低圧タービンへ供給する蒸気を除湿及び加熱する複数本の湿分分離加熱器と、を備えた原子力発電所のタービン建屋。
The turbine building of the nuclear power plant,
An operation floor for vertically dividing the turbine building;
A turbine / generator installation stand installed in the turbine building;
A high-pressure turbine and a plurality of low-pressure turbines installed on the turbine / generator installation base;
A generator installed on the turbine / generator installation stand and driven by each turbine;
A condenser installed below the low-pressure turbine and condensing steam received from the low-pressure feed water heater as feed water to a reactor pressure vessel;
A condenser upper body disposed between the condenser and each low pressure turbine;
A plurality of low-pressure feed water heaters installed in the condenser upper body and receiving steam from each of the low-pressure turbines to heat the feed water in multiple stages;
Wherein said operation floor upper positioned above the tube withdrawal space of the low-pressure feed water heater, a lower side of the operation floor opposite the tube withdrawal space across the turbine generator installation stand, the low-pressure turbine DOO across disposed respectively, and a plurality of the moisture separator heater for dehumidifying and heating the steam supplied from the high pressure turbine to the low pressure turbine, a nuclear power plant turbine building equipped.
JP2004196195A 2004-07-02 2004-07-02 Turbine building of nuclear power plant Expired - Fee Related JP4408398B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004196195A JP4408398B2 (en) 2004-07-02 2004-07-02 Turbine building of nuclear power plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004196195A JP4408398B2 (en) 2004-07-02 2004-07-02 Turbine building of nuclear power plant

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2008317806A Division JP5135196B2 (en) 2008-12-15 2008-12-15 Turbine building of nuclear power plant

Publications (3)

Publication Number Publication Date
JP2006017598A JP2006017598A (en) 2006-01-19
JP2006017598A5 JP2006017598A5 (en) 2006-08-10
JP4408398B2 true JP4408398B2 (en) 2010-02-03

Family

ID=35792026

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004196195A Expired - Fee Related JP4408398B2 (en) 2004-07-02 2004-07-02 Turbine building of nuclear power plant

Country Status (1)

Country Link
JP (1) JP4408398B2 (en)

Also Published As

Publication number Publication date
JP2006017598A (en) 2006-01-19

Similar Documents

Publication Publication Date Title
JP6657523B2 (en) Steam generator with inclined tube sheet
TW201234387A (en) Compact nuclear reactor with integral steam generator
CN105960680B (en) Monoblock type reactor pressure vessel tube sheet
KR101710229B1 (en) Heat recovery steam generator and multidrum evaporator
JP2010256322A (en) Emergency core cooling system and nuclear reactor facility
RU2161283C2 (en) Device for forming fluidized layer and incinerator using such device
JP5135196B2 (en) Turbine building of nuclear power plant
JP4408398B2 (en) Turbine building of nuclear power plant
CN105421831B (en) Thermal power plant main building arrangement form based on joint side coal bunker scheme
EP3155319B1 (en) Modular heat recovery steam generator construction
US20070227469A1 (en) Steam Generator
US5199264A (en) Steam operated turbine-generator installations
US4799538A (en) Device for condensing steam under pressure and its application to the cooling of a nuclear reactor after an incident
US3799253A (en) Condensation system for low pressure gaseous media, such as exhaust steam of steam power plants
JP2002031694A (en) Supercritical pressure water reactor and its power plant
US8596227B2 (en) Steam generator
JP6109543B2 (en) Steam generator disassembly method
JP5871472B2 (en) Method for assembling tube group outer cylinder, steam generator assembling method, and tube group outer cylinder moving device
CN107588414A (en) Steam generating system
JP2002243386A (en) Method for installing and constructing condenser
JPH1123771A (en) Turbine building
CN210667819U (en) Reactor body structure suitable for double-layer sleeve structure nuclear steam supply system
Shamarokov et al. The new generation of moisture separators-reheaters for steam-turbine units of nuclear power plants (NPP) with VVER-reactors
CN211147364U (en) Lateral steam inlet steam cooler
JP4592216B2 (en) Steam turbine equipment

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060424

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060620

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060620

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20071122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081111

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090630

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090827

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091104

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091109

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121120

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121120

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131120

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees