JP4405356B2 - Control method of resistivity distribution of composite sintered body - Google Patents

Control method of resistivity distribution of composite sintered body Download PDF

Info

Publication number
JP4405356B2
JP4405356B2 JP2004286480A JP2004286480A JP4405356B2 JP 4405356 B2 JP4405356 B2 JP 4405356B2 JP 2004286480 A JP2004286480 A JP 2004286480A JP 2004286480 A JP2004286480 A JP 2004286480A JP 4405356 B2 JP4405356 B2 JP 4405356B2
Authority
JP
Japan
Prior art keywords
specific resistance
voltage
resistance value
sintered body
composite sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004286480A
Other languages
Japanese (ja)
Other versions
JP2006096632A (en
Inventor
良樹 吉岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Osaka Cement Co Ltd
Original Assignee
Sumitomo Osaka Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Osaka Cement Co Ltd filed Critical Sumitomo Osaka Cement Co Ltd
Priority to JP2004286480A priority Critical patent/JP4405356B2/en
Publication of JP2006096632A publication Critical patent/JP2006096632A/en
Application granted granted Critical
Publication of JP4405356B2 publication Critical patent/JP4405356B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Apparatuses And Processes For Manufacturing Resistors (AREA)

Description

本発明は、絶縁性セラミックス及び導電性材料を含む複合焼結体の比抵抗値分布の制御方法に関する。更に詳しく述べるならば、本発明は前記複合焼結体の比抵抗値分布を簡単な操作で制御する方法に関するものである。 The present invention is related to method of controlling the resistivity distribution in the composite sintered body containing an insulating ceramics and the conductive material. More specifically, the present invention relates to a method for controlling the specific resistance value distribution of the composite sintered body with a simple operation .

例えば1×106〜1×1013Ωcm程度の比抵抗値を有する抵抗体の製造方法としては、例えば、特開平9−283606号公報(特許文献1)及び特開平9−283607号公報(特許文献2)に示されるように、絶縁性セラミックス粉末に特定量の耐熱性導電材料粉末を添加した混合粉末を成型・焼結して焼結体とし、この複合焼結体を複合抵抗体として使用する方法(第1の方法)が従来から知られている。 For example, as a method of manufacturing a resistor having a specific resistance value of about 1 × 10 6 to 1 × 10 13 Ωcm, for example, Japanese Patent Application Laid-Open No. 9-283606 (Patent Document 1) and Japanese Patent Application Laid-Open No. 9-283607 (Patent) As shown in Reference 2), a mixed powder obtained by adding a specific amount of heat-resistant conductive material powder to insulating ceramic powder is molded and sintered to form a sintered body, and this composite sintered body is used as a composite resistor. A method (first method) for performing this is conventionally known.

前記第1の方法により得られた抵抗体の比抵抗値は、主として耐熱性導電材料の添加量により定まるものであるけれども、閾値前後で抵抗体の比抵抗値が急激に変化する。従って、この抵抗体の第1の製造方法では、室温における比抵抗値が例えば1×106〜1×1013Ωcmの範囲内の所望の比抵抗値を有する抵抗体を実験室的に製造することは可能であるけれども、工業的規模で製造することは困難である。
また、この第1の抵抗体製造方法では、耐熱性導電材料の焼結体中における分布を制御することにより、室温における比抵抗値が例えば1×106〜1×1013Ωcm程度であって、抵抗体中における比抵抗分布が任意に制御された抵抗体を製造することは容易ではなく、これを工業的規模で製造することは実質的に不可能である。
Although the specific resistance value of the resistor obtained by the first method is mainly determined by the addition amount of the heat-resistant conductive material, the specific resistance value of the resistor changes rapidly before and after the threshold value. Therefore, in the first method for manufacturing the resistor, a resistor having a desired specific resistance value within a range of, for example, 1 × 10 6 to 1 × 10 13 Ωcm at room temperature is manufactured in the laboratory. Although possible, it is difficult to manufacture on an industrial scale.
In the first resistor manufacturing method, the specific resistance value at room temperature is, for example, about 1 × 10 6 to 1 × 10 13 Ωcm by controlling the distribution of the heat-resistant conductive material in the sintered body. It is not easy to manufacture a resistor whose specific resistance distribution in the resistor is arbitrarily controlled, and it is virtually impossible to manufacture this on an industrial scale.

一方、抵抗体中の比抵抗分布が任意に制御された抵抗体を製造する第2の方法としては、例えば、特開平7−69756号公報(特許文献3)には、酸素含有雰囲気中で、室温における比抵抗が2×10-4〜1Ωcmの炭素−セラミックス複合材料に通電し、かつ通電用電極の位置を調整することにより炭素−セラミックス複合材料の比抵抗分布を制御することが知られている。 On the other hand, as a second method for producing a resistor in which the specific resistance distribution in the resistor is arbitrarily controlled, for example, in Japanese Patent Laid-Open No. 7-69756 (Patent Document 3), It is known that a specific resistance distribution of a carbon-ceramic composite material is controlled by energizing a carbon-ceramic composite material having a specific resistance of 2 × 10 −4 to 1 Ωcm at room temperature and adjusting the position of the current-carrying electrode. Yes.

この第2の抵抗体製造方法では、炭素−セラミックス複合材料中の炭素を通電加熱により酸化除去し、この炭素が酸化除去された部分の比抵抗値を高めることにより抵抗体の比抵抗分布を制御するものである。そのため、用いる複合材料は、室温における比抵抗が2×10-4〜1Ωcmの範囲内にあることが必須である。用いられる複合材料の抵抗値が1Ωcmを超えると、複合材料に流れる電気量が少なくなって発熱が充分に行われないので、炭素を十分に酸化除去できず、従って、この方法は、室温における比抵抗値を、例えば1×106〜1×1013Ωcm程度に制御することはできないものである。 In this second resistor manufacturing method, the carbon in the carbon-ceramic composite material is oxidized and removed by current heating, and the specific resistance distribution of the resistor is controlled by increasing the specific resistance value of the portion where the carbon is oxidized and removed. To do. Therefore, it is essential that the composite material to be used has a specific resistance at room temperature in the range of 2 × 10 −4 to 1 Ωcm. When the resistance value of the composite material used exceeds 1 Ωcm, the amount of electricity flowing through the composite material is reduced and heat generation is not sufficiently performed, so that carbon cannot be sufficiently oxidized and removed. For example, the resistance value cannot be controlled to about 1 × 10 6 to 1 × 10 13 Ωcm.

特開平9−283606号公報JP-A-9-283606 特開平9−283607号公報JP-A-9-283607 特開平7−69756号公報JP-A-7-69756

本発明は、絶縁性セラミックスと導電性材料との複合焼結体の比抵抗値分布を、簡便かつ高い効率をもって、制御する方法を提供しようとするものである。
本発明方法により、複合抵抗体の比抵抗値分布をほぼ均一にすること、或は、得られる複合抵抗体中に互に異なる比抵抗値を有する領域を分布させることができる。
The present invention is intended to provide a method for controlling the specific resistance value distribution of a composite sintered body of an insulating ceramic and a conductive material simply and with high efficiency.
According to the method of the present invention , the specific resistance value distribution of the composite resistor can be made substantially uniform, or regions having different specific resistance values can be distributed in the obtained composite resistor .

本発明者は前記の課題を解決するため鋭意検討した結果、絶縁性セラミックスと導電性材料との複合焼結体に電圧を印加すると、電圧印加部近傍の比抵抗値が低下し、比抵抗値の低下量は印加する電圧値、印加時間等に依存することを見出し、この知見に基いて本発明を完成した。   As a result of intensive studies to solve the above problems, the present inventor has found that when a voltage is applied to a composite sintered body of an insulating ceramic and a conductive material, the specific resistance value in the vicinity of the voltage application portion decreases, and the specific resistance value It was found that the amount of decrease depends on the voltage value to be applied, the application time, etc., and the present invention was completed based on this finding.

本発明の絶縁性セラミックスと導電性材料との複合焼結体の比抵抗値分布の制御方法は、酸化アルミニウム粒子からなる絶縁性セラミック粒子と、炭化珪素からなる導電性材料粒子との混合物を成型・焼結して得られ、かつ室温における比抵抗値が1×10 7 Ω・cm及至1×10 18 Ω・cmである複合焼結体の、所望部分に、電界強度が1及至20kV/mmになるような電圧を印加して、当該電圧印加部分の比抵抗値を低下させることを特徴とするものである。
本発明の制御方法において、前記複合焼結体中の、前記導電性材料粒子の含有量が、前記複合焼結体の全体積に対して、5体積%以上であり、また前記導電性材料粒子の10体積%以上が、0.2μm以下の粒径を有することが好ましい。
本発明の制御方法において、前記複合焼結体中の、前記酸化アルミニウム粒子及び前記炭化珪素粒子の平均粒径がそれぞれ、2μm以下及び0.5μm以下であることが好ましい。
本発明の制御方法において、前記複合焼結体の所望部分に印加する電圧が、当該複合焼結体の予定使用電圧以上であることが好ましい。
本発明の制御方法において、前記複合焼結体の電圧印加する部分の比抵抗値を測定し、その測定値に対応して、前記印加する電圧を調節することができる。
本発明の制御方法において、前記複合焼結体の、電圧印加する部分の比抵抗値の測定値が、その周囲の比抵抗値よりも高いとき、この高比抵抗値部分に、前記電圧印加を施して、その比抵抗値を、周囲の比抵抗値とほぼ等しくなるまで低下させることができる。
本発明の制御方法において、前記電圧印加のために用いられる電圧印用電極の位置を調整することによって、得られる複合抵抗体の比抵抗値分布を制御することができる。
本発明の制御方法において、前記複合焼結体の所望のパターンを有する2以上の領域の、それぞれに対して電圧印加用電極を配置し、それぞれの電極による電圧印加を、当該領域が所望の比抵抗値に到達するまで施して、高比抵抗値領域と、低比抵抗値領域とを、所望のパターンが分布させることができる。
The method for controlling the specific resistance value distribution of the composite sintered body of the insulating ceramic and the conductive material according to the present invention comprises molding a mixture of insulating ceramic particles made of aluminum oxide particles and conductive material particles made of silicon carbide. -The electric field strength is 1 to 20 kV / mm in the desired part of the composite sintered body obtained by sintering and having a specific resistance value at room temperature of 1 x 10 7 Ω · cm to 1 x 10 18 Ω · cm. A specific voltage is applied to reduce the specific resistance value of the voltage application portion.
In the control method of the present invention, the content of the conductive material particles in the composite sintered body is 5% by volume or more based on the total volume of the composite sintered body, and the conductive material particles It is preferable that 10% by volume or more has a particle size of 0.2 μm or less.
In the control method of the present invention, it is preferable that the average particle diameters of the aluminum oxide particles and the silicon carbide particles in the composite sintered body are 2 μm or less and 0.5 μm or less, respectively.
In the control method of the present invention, it is preferable that a voltage applied to a desired portion of the composite sintered body is equal to or higher than a predetermined use voltage of the composite sintered body.
In the control method of the present invention, it is possible to measure a specific resistance value of a portion of the composite sintered body to which a voltage is applied, and to adjust the applied voltage according to the measured value.
In the control method of the present invention, when the measured value of the specific resistance value of the composite sintered body is higher than the surrounding specific resistance value, the voltage application is applied to the high specific resistance value portion. As a result, the specific resistance value can be lowered until it becomes substantially equal to the surrounding specific resistance value.
In the control method of the present invention, the specific resistance value distribution of the obtained composite resistor can be controlled by adjusting the position of the voltage marking electrode used for the voltage application.
In the control method of the present invention, a voltage application electrode is arranged for each of two or more regions having the desired pattern of the composite sintered body, and voltage application by each electrode is performed in a desired ratio. By applying until the resistance value is reached, a desired pattern can be distributed in the high specific resistance value region and the low specific resistance value region.

本発明の制御方法によれば、電圧を印加するという簡便な方法により、絶縁性セラミックスと導電性材料との複合焼結体の比抵抗値分布を効率よく制御することができる。また、本発明の方法により、絶縁性セラミックスと導電性材料との複合焼結体から、比抵抗値分布がほぼ均一な複合抵抗体を、工業的規模で安価に製造することができる。 According to the control method of the present invention, the specific resistance value distribution of the composite sintered body of the insulating ceramic and the conductive material can be efficiently controlled by a simple method of applying a voltage. In addition, according to the method of the present invention, a composite resistor having a substantially uniform specific resistance value distribution can be manufactured at a low cost on an industrial scale from a composite sintered body of an insulating ceramic and a conductive material.

本発明においては、絶縁性セラミックス材料粒子と導電性材料粒子とを含む混合粉末を成型し焼結して、複合焼結体を製造する。
絶縁性セラミックス材料粒子としては、酸化アルミニウム(Al23)粒子、酸化イットリウム(Y23)粒子、酸化ケイ素(SiO2)粒子、酸化ジルコニウム(ZrO2)粒子、窒化アルミニウム(AlN)粒子、窒化ケイ素(Si34)粒子、ムライト(3Al23・2SiO2)質粒子等が知られている。これらのなか酸化アルミニウム(Al23)粒子は安価で耐熱性に優れ、複合焼結体の機械的特性も良好であるので、本発明において特定して用いられる。
In the present invention, a mixed powder containing insulating ceramic material particles and conductive material particles is molded and sintered to produce a composite sintered body.
Insulating ceramic material particles include aluminum oxide (Al 2 O 3 ) particles, yttrium oxide (Y 2 O 3 ) particles, silicon oxide (SiO 2 ) particles, zirconium oxide (ZrO 2 ) particles, and aluminum nitride (AlN) particles. Silicon nitride (Si 3 N 4 ) particles, mullite (3Al 2 O 3 .2SiO 2 ) particles, and the like are known. Aluminum oxide Of these (Al 2 O 3) particles are excellent in heat resistance at low cost, since the mechanical properties of the composite sintered body is also good, used to identify in the present invention.

また、導電性材料粒子としては、焼結時の高温に耐え得るものである限り特に限定はなく、例えば、導電性炭化珪素(SiC)粒子、モリブデン(Mo)粒子、タングステン(W)粒子、タンタル(Ta)粒子などの高融点金属粒子、カーボン(C)粒子等が知られている。これらのなかで導電性炭化珪素(SiC)粒子は、これを酸化アルミニウム(Al23)粒子と複合化した場合、得られる複合焼結体は、比抵抗値の温度依存性が少なく、ハロゲンガスに対する耐蝕性に優れ、耐熱性、耐熱衝撃性に富み、かつ高温下の使用において熱応力による損傷の危険性が少ないので本発明において特定して用いられる。 The conductive material particles are not particularly limited as long as they can withstand high temperatures during sintering. For example, conductive silicon carbide (SiC) particles, molybdenum (Mo) particles, tungsten (W) particles, tantalum High melting point metal particles such as (Ta) particles, carbon (C) particles, and the like are known. Among these, when conductive silicon carbide (SiC) particles are compounded with aluminum oxide (Al 2 O 3 ) particles, the resulting composite sintered body has less temperature dependency of the specific resistance value, It is excellent in corrosion resistance to gas, has excellent heat resistance and thermal shock resistance, and has a low risk of damage due to thermal stress when used at high temperatures, so it is specifically used in the present invention.

前記の絶縁性セラミックス粒子と、前記導電性粒子との混合比には、特に制限はないが、複合焼結体(電圧印加前)の、室温における比抵抗値が1×107Ωcm以上となる混合比を用いることが好ましい。
即ち、前記複合焼結体の電圧印加前の、室温における比抵抗値が1×107Ωcmを下回る複合焼結体の場合は、複合焼結体に流れる電流量が大きくなり過ぎるために、複合焼結体が完全に破壊されてしまう虞もあり、比抵抗値を効率良く制御することができなくなる。前記複合焼結体の電圧印加前の、室温における比抵抗値の上限は特にないが、通常、実用的な上限は1×1018Ωcmであり、好ましくは1×1016Ωcmである。
The mixing ratio of the insulating ceramic particles and the conductive particles is not particularly limited, but the specific resistance value at room temperature of the composite sintered body (before voltage application) is 1 × 10 7 Ωcm or more. It is preferable to use a mixing ratio.
That is, in the case of a composite sintered body having a specific resistance value at room temperature of less than 1 × 10 7 Ωcm before voltage application of the composite sintered body, the amount of current flowing through the composite sintered body becomes too large, There is also a possibility that the sintered body is completely destroyed, and the specific resistance value cannot be controlled efficiently. The upper limit of the specific resistance value at room temperature before voltage application of the composite sintered body is not particularly limited, but the practical upper limit is usually 1 × 10 18 Ωcm, preferably 1 × 10 16 Ωcm.

前記の絶縁性セラミックス粒子の粒径、前記導電性粒子の粒径、及び焼結する際の焼結条件にも特に制限はないが、前記複合焼結体中における前記導電性材料粒子の含有量は前記複合焼結体の体積に対して、5体積%以上であることが好ましく、当該導電性材料粒子の10体積%以上は0.2μm以下の粒径を有していることが好ましい。   The particle size of the insulating ceramic particles, the particle size of the conductive particles, and the sintering conditions for sintering are not particularly limited, but the content of the conductive material particles in the composite sintered body Is preferably 5% by volume or more with respect to the volume of the composite sintered body, and 10% by volume or more of the conductive material particles preferably have a particle size of 0.2 μm or less.

前記電圧を印加する前記複合焼結体中に含まれる導電性材料粒子の含有割合が5体積%以上であって、粒径が0.2μmの導電性材料粒子の含有量が、導電性材料粒子の合計体積の10体積%以上であると、電圧印加による比抵抗値の低下が緩やかに起こり、目的の比抵抗値にすることが容易になり、また、電圧印加前に存在していた比抵抗値のばらつきを減少させることができる。   The content ratio of the conductive material particles contained in the composite sintered body to which the voltage is applied is 5% by volume or more, and the content of the conductive material particles having a particle size of 0.2 μm is the conductive material particles. When the total volume is 10% by volume or more, the specific resistance value is gradually decreased by voltage application, and it becomes easy to obtain the target specific resistance value. In addition, the specific resistance existing before voltage application Variations in value can be reduced.

得られた絶縁性セラミックスと導電性材料との複合焼結体の所望部分に、複数の電圧印加用電極を取り付けて、電圧を印加する。印加される電圧は直流電圧、交流電圧のいずれであってもよいが、作業上の安全性の点から直流電圧を用いることが好ましい。電圧を印加すると電圧印加部近傍領域の比抵抗が低下する。電圧印加する時間は、電圧印加部近傍領域の比抵抗値が所望の値となるに十分な時間に設定する。   A plurality of voltage application electrodes are attached to a desired portion of the composite sintered body of the obtained insulating ceramic and conductive material, and a voltage is applied. The applied voltage may be either a DC voltage or an AC voltage, but it is preferable to use a DC voltage from the viewpoint of work safety. When a voltage is applied, the specific resistance in the vicinity of the voltage application portion decreases. The voltage application time is set to a time sufficient for the specific resistance value in the vicinity of the voltage application portion to be a desired value.

具体的な電圧印加条件は、絶縁性セラミックスと導電性材料との複合焼結体の種類、絶縁性セラミックスと耐熱性導電性材料との配合割合、複合焼結体の形状、所望の比抵抗値分布などにより、変わり得るが、本発明においては、印加電圧を電界強度が〜20kV/mmになるように設定する。印加電界強度の上限値は、安全性の観点から20kV/mmになるように設定される。
電圧印加する際の雰囲気には限定はなく、通常、大気中で電圧印加することが好ましい。
Specific voltage application conditions are: type of composite sintered body of insulating ceramics and conductive material, blending ratio of insulating ceramics and heat-resistant conductive material, shape of composite sintered body, desired specific resistance value In the present invention, the applied voltage is set so that the electric field strength is 1 to 20 kV / mm . The upper limit value of the applied electric field strength is set to 20 kV / mm from the viewpoint of safety .
There is no limitation on the atmosphere in applying the voltage, and it is usually preferable to apply the voltage in the air.

本発明に基づいて、複合抵抗体を製造する際には、印加する電圧は、複合抵抗体の使用電圧以上に設定する。ここに、「抵抗体の使用電圧」とは、本発明の抵抗体の製造方法により製造された複合抵抗体が各種の用途に現に用いられる際に、印加される電圧をいう。印加される電圧が、「抵抗体の使用電圧」以下であっても、前記複合焼結体の比抵抗値は低下するが、最終的に製造された複合抵抗体に製造時の印加電圧以上の電圧が印加されると、抵抗体の比抵抗値が低下し続けることとなり、得られる抵抗体の実用性が失われる。   When manufacturing a composite resistor according to the present invention, the voltage to be applied is set to be equal to or higher than the working voltage of the composite resistor. Here, the “voltage used by the resistor” refers to a voltage applied when the composite resistor manufactured by the resistor manufacturing method of the present invention is actually used for various applications. Even if the applied voltage is equal to or lower than the “use voltage of the resistor”, the specific resistance value of the composite sintered body is lowered, but the final manufactured composite resistor has a voltage higher than the applied voltage at the time of manufacture. When a voltage is applied, the specific resistance value of the resistor continues to decrease, and the practicality of the resulting resistor is lost.

印加用電極の取付け位置は、電圧印加後に得ようとする所望の比抵抗値の分布に応じて定めればよく、本発明の方法にあっては、電圧が印加された印加部近傍のみの比抵抗が低下するのであるから、電圧印加用電極の取り付け位置を調整することにより、複合抵抗体中の比抵抗値の分布を制御することができる。 The attachment position of the application electrode may be determined according to the distribution of the desired specific resistance value to be obtained after voltage application. In the method of the present invention, the ratio of only the vicinity of the application part to which the voltage is applied is determined . Since the resistance decreases, the distribution of the specific resistance value in the composite resistor can be controlled by adjusting the mounting position of the voltage application electrode.

即ち、絶縁性セラミックスと導電性材料との複合焼結体からなり、但し、比抵抗値の分布が均一でない複合抵抗体の高抵抗域に電圧を印加し、この印加部近傍領域の比抵抗値を、電圧を印加しない領域の比抵抗値まで低下せしめることにより、比抵抗分布が複合抵抗体中でほぼ均一化されるから、それによってほぼ一定の抵抗値を有する複合抵抗体を、工業的規模で安価に得ることが可能になる。
また、電圧印加用電極の位置を調整することにより、高比抵抗値を有する領域と低比抵抗値を有する領域が任意のパターンで分布する複合抵抗体を工業的規模で安価にることもできる。
That is, it consists of a composite sintered body of insulating ceramics and a conductive material, provided that a voltage is applied to the high resistance region of the composite resistor where the distribution of specific resistance values is not uniform, and the specific resistance value in the vicinity of this application part. Is reduced to a specific resistance value in a region where no voltage is applied, so that the specific resistance distribution is almost uniformized in the composite resistor , so that a composite resistor having a substantially constant resistance value can be produced on an industrial scale. Can be obtained at low cost.
Further, by adjusting the position of the voltage application electrode, inexpensively obtained Rukoto an industrial scale a composite resistors region having an area and a low resistivity having a high specific resistance value are distributed in any pattern also it can.

前記の比抵抗値の制御方法にあっては、前記電圧の印加部の比抵抗値を測定しつつ、または、事前に実験的に求められた電圧印加条件(印加電圧、印加時間)に従って、前記電圧を印加することが好ましい。このように前記複合焼結体の比抵抗値を測定しながら前記電圧を印加するか、または、事前に実験的に求められた電圧印加条件(印加電圧、印加時間)に従って電圧を印加することにより、正確な所望の比抵抗値分布を有する複合抵抗体を工業的規模で安価に得ることができる。 In the method of controlling the specific resistance value, while measuring the specific resistance value of the voltage application unit, or according to the voltage application conditions (applied voltage, application time) obtained experimentally in advance, It is preferable to apply a voltage. In this way, by applying the voltage while measuring the specific resistance value of the composite sintered body, or by applying a voltage according to voltage application conditions (applied voltage, application time) obtained experimentally in advance. Thus, a composite resistor having an accurate desired specific resistance value distribution can be obtained on an industrial scale at a low cost.

このように、絶縁性セラミックスと導電性材料との複合焼結体に電圧を印加することによって、電圧印加部近傍領域の比抵抗が低下する理由は、必ずしも明確ではないが、電圧が印加された電圧印加部近傍領域の絶縁性に富む組織が、導電性に富む組織に変化するためと考えられる。   As described above, the reason why the specific resistance in the vicinity of the voltage application portion is reduced by applying a voltage to the composite sintered body of the insulating ceramic and the conductive material is not necessarily clear, but the voltage was applied. This is considered to be because the tissue rich in insulation in the vicinity of the voltage application portion changes to a tissue rich in conductivity.

以下、絶縁性セラミックスとして酸化アルミニウム(Al23)を用い、かつ耐熱性導電性材料として導電性炭化珪素(SiC)を用いて、
(1)得られる複合抵抗体中で比抵抗分布が均一化され、一定の抵抗値を有する複合抵抗体、及び
(2)高比抵抗値領域と低比抵抗値領域が任意のパターンで分布している複合抵抗体と、
を得る場合を例にとり、本発明を更に詳述する。
Hereinafter, using aluminum oxide (Al 2 O 3 ) as the insulating ceramic, and using conductive silicon carbide (SiC) as the heat-resistant conductive material,
(1) The specific resistance distribution is uniformed in the obtained composite resistor, and the composite resistor has a constant resistance value. (2) The high specific resistance region and the low specific resistance region are distributed in an arbitrary pattern. A compound resistor,
The present invention will be further described in detail by taking the case of obtaining the above.

酸化アルミニウム(Al 2 3 )−炭化珪素(SiC)複合焼結体
使用する導電性炭化珪素(SiC)粒子としては、プラズマCVD法によって得た粒子を用いることが好ましい。特に、非酸化性雰囲気のプラズマ中に、シラン化合物またはハロゲン化珪素と炭化水素との原料ガスを導入し、反応系の圧力を1気圧未満から0.1torrの範囲で制御しつつ気相反応させて得られ、平均粒子径0.1μm以下の導電性炭化珪素(SiC)超微細粒子が、焼結性に優れており、高純度であり、粒子形状が球状であるために成形時の分散性が良好である。
As the conductive silicon carbide (SiC) particles used for the aluminum oxide (Al 2 O 3 ) -silicon carbide (SiC) composite sintered body, it is preferable to use particles obtained by a plasma CVD method. In particular, a raw material gas of a silane compound or silicon halide and hydrocarbon is introduced into a plasma in a non-oxidizing atmosphere, and a gas phase reaction is performed while controlling the pressure of the reaction system in the range of less than 1 atm to 0.1 torr. Conductive silicon carbide (SiC) ultrafine particles having an average particle size of 0.1 μm or less are excellent in sinterability, high purity, and spherical in particle shape. Is good.

一方、酸化アルミニウム(Al23)粉末には、特段の限定はなく、高純度のものであればよい。また、焼結時の雰囲気を非酸化性雰囲気とすることによって、焼結時における炭化珪素(SiC)の過度の酸化を抑制することができる。
なお、前記複合焼結体の作製時における成形法、焼結法に関しては、格別の限定はなく、例えばホットプレス法等の従来の手段を採用することができる。また複合焼結体の寸法形状についても限定はない。
On the other hand, the aluminum oxide (Al 2 O 3 ) powder is not particularly limited as long as it has a high purity. Moreover, excessive oxidation of silicon carbide (SiC) during sintering can be suppressed by setting the atmosphere during sintering to a non-oxidizing atmosphere.
In addition, there is no special limitation regarding the shaping | molding method and sintering method at the time of preparation of the said composite sintered compact, For example, conventional means, such as a hot press method, are employable. Moreover, there is no limitation also about the dimension shape of a composite sintered compact.

比抵抗分布が抵抗体中で均一化され、一定の抵抗値を有する複合抵抗体
前記の酸化アルミニウム(Al23)−炭化珪素(SiC)複合焼結体における比抵抗値の分布を測定する。例えば、複合焼結体の上下面の所望部分に微小電極をそれぞれ配置し、この電極間に100V/mm程度の直流電圧を印加して、流れる電流値を測定し、オームの法則から当該部分の比抵抗値を算出することにより測定する。
A specific resistance distribution is made uniform in the resistor, and a composite resistor having a constant resistance value is measured. The specific resistance value distribution in the aluminum oxide (Al 2 O 3 ) -silicon carbide (SiC) composite sintered body is measured. . For example, microelectrodes are respectively arranged in desired portions on the upper and lower surfaces of the composite sintered body, a direct current voltage of about 100 V / mm is applied between the electrodes, and the flowing current value is measured. Measure by calculating the specific resistance value.

そして、図1に示されるように、前記複合焼結体1の表面1a上(図1においては上面)の比抵抗値の高い領域に電圧印加用電極2を配設し、更に、前記複合焼結体1の裏面1b上(図1においては下面)に対極の電圧印加用電極3を配設する。なお、電圧印加中の電圧印加部の比抵抗値は、例えば、前記の低抵抗化のための電圧の印加を一時的に中断し、別途、電極間に電界強度が100V/mm程度になるように直流電圧を印加し、流れる電流値を測定し、オームの法則から比抵抗値を算出することにより測定する。 Then, as shown in FIG. 1, a voltage applying electrode 2 is disposed in a region having a high specific resistance value on the surface 1a (upper surface in FIG. 1) of the composite sintered body 1, and further, the composite firing is performed. On the back surface 1b of the bonded body 1 (the lower surface in FIG. 1), a counter electrode 3 for applying voltage is disposed. The specific resistance of the voltage application unit in the voltage applied, for example, the above temporarily suspended the application of the voltage for reducing the resistance, separately, so that the electric field intensity is approximately 100 V / mm between the electrodes a DC voltage is applied to the current flowing is measured and determined by calculating the specific resistance from Ohm's law.

図1に示されているように配設された電圧印加用電極2,3間に、最終的に得られる複合抵抗体の使用電圧以上の電圧を印加しながら、前記電圧の印加部の比抵抗値を測定しつつ、前記複合焼結体の低抵抗領域における比抵抗値が得られたときに前記電圧の印加を中止すると、比抵抗値の分布が複合抵抗体中でほぼ均一化され、略一定の抵抗値分布を有する複合抵抗体が得られる。   While applying a voltage higher than the working voltage of the finally obtained composite resistor between the voltage application electrodes 2 and 3 arranged as shown in FIG. 1, the specific resistance of the voltage application section is applied. While measuring the value, when the application of the voltage is stopped when the specific resistance value in the low resistance region of the composite sintered body is obtained, the distribution of the specific resistance value is almost uniform in the composite resistor, A composite resistor having a certain resistance value distribution is obtained.

高比抵抗値領域と低比抵抗値領域が所望のパターンで分布している複合抵抗体
例えば、図2(a),(b)に示されるパターン形状の電圧印加用電極12a,12bを、前記の酸化アルミニウム(Al23)−炭化珪素(SiC)複合焼結体10の表面10a上(図2においては上面)に配設し、更に、前記複合焼結体10の裏面10b上(図2においては下面)に、対極の平板状電圧印加用電極13を配設する。なお、電圧印加中の電圧印加部の比抵抗値は、例えば、前記の低抵抗化のための電圧の印加を一時的に中断し、別途、電極間に100V/mm程度の直流電圧を印加し、流れる電流値を測定し、オームの法則から比抵抗値を算出することにより測定する。
A composite resistor in which a high specific resistance value region and a low specific resistance value region are distributed in a desired pattern . For example, the voltage application electrodes 12a and 12b having the pattern shapes shown in FIGS. The aluminum oxide (Al 2 O 3 ) -silicon carbide (SiC) composite sintered body 10 is disposed on the surface 10a (upper surface in FIG. 2), and further on the back surface 10b of the composite sintered body 10 (FIG. In FIG. 2, a counter electrode 13 for applying a flat plate voltage is disposed on the lower surface. The specific resistance value of the voltage application unit during voltage application is, for example, temporarily interrupting the application of the voltage for reducing the resistance and separately applying a DC voltage of about 100 V / mm between the electrodes. Measure the value of the flowing current and calculate the specific resistance value from Ohm's law.

このように配設された電圧印加用電極12a及び12bと電圧印加用電極13との間に、最終的に得られる複合抵抗体の使用電圧以上の電圧を印加しながら、前記電圧の印加部の比抵抗値を測定しつつ、所望の比抵抗値が得られたときに前記電圧の印加を中止すると、低比抵抗値領域のパターン形状が前記電圧印加用電極の配置パターン形状に対応する、高比抵抗値領域と低比抵抗値領域が所望パターンで分布している複合抵抗体が得られる。   While applying a voltage higher than the working voltage of the finally obtained composite resistor between the voltage application electrodes 12a and 12b and the voltage application electrode 13 thus arranged, the voltage application unit When the application of the voltage is stopped when a desired specific resistance value is obtained while measuring the specific resistance value, the pattern shape of the low specific resistance value region corresponds to the arrangement pattern shape of the voltage application electrode. A composite resistor in which the specific resistance value region and the low specific resistance value region are distributed in a desired pattern is obtained.

実施例を掲げ、本発明を更に説明する。
実施例1
平均粒子径0.05μmの導電性炭化珪素(SiC)超微細粒子を、プラズマCVD法により気相合成した。この炭化珪素(SiC)超微細粒子10体積%と、平均粒子径0.5μmの市販の酸化アルミニウム(Al23)粒子90体積%とを、超音波分散機を用いて5時間混合し、この混合粉末を、乾燥、成形し、アルゴン雰囲気、温度1700℃の条件下で3時間焼結することにより、半径200mm、厚さ2mmの円板状の複合焼結体を作製した。
そして、この複合焼結体中の炭化珪素(SiC)粒子の粒度分布をSEM観察法により測定した。その結果を表1に示す。
また、この複合焼結体の、室温(25℃)での比抵抗値の分布を測定した。その結果を図4に示す。
The examples are given to further illustrate the present invention.
Example 1
Conductive silicon carbide (SiC) ultrafine particles having an average particle size of 0.05 μm were vapor-phase synthesized by a plasma CVD method. The silicon carbide (SiC) ultrafine particles 10% by volume and the commercially available aluminum oxide (Al 2 O 3 ) particles 90% by volume having an average particle diameter of 0.5 μm were mixed for 5 hours using an ultrasonic disperser. The mixed powder was dried, molded, and sintered for 3 hours under the conditions of an argon atmosphere and a temperature of 1700 ° C. to produce a disc-shaped composite sintered body having a radius of 200 mm and a thickness of 2 mm.
And the particle size distribution of the silicon carbide (SiC) particle | grains in this composite sintered compact was measured by the SEM observation method. The results are shown in Table 1.
Moreover, the distribution of the specific resistance value of this composite sintered body at room temperature (25 ° C.) was measured. The result is shown in FIG .

Figure 0004405356
Figure 0004405356

図4から明らかなようにこの複合焼結体の電圧印加前の比抵抗値分布は、中心部において低く、その外周部において高いものであった。
そこで、図3に示されるように、前記複合焼結体30の比抵抗値が高い外周部領域30a,30bの表面上に、リング状の電圧印加用電極31を配設し、更に、前記複合焼結体の前記外周領域の裏面上に対極の平板状の電圧印加用電極32を配設し、このように配設された電圧印加用電極31,32間(2mm)に、最終的に得られる抵抗体の使用電圧以上の電圧として直流電圧9kV、即ち電界強度が4.5kV/mmになる電圧を10分間印加し、このように電圧印加処理された前記複合焼結体の室温(25℃)における比抵抗値の分布を同様にして測定したところ、図4に示されているように、比抵抗値の高い領域の比抵抗値の比抵抗値の低い領域の比抵抗値に対する比は、電圧印加前において100倍以上であったものが、電圧印加後には5倍以下に低下していた。
As is clear from FIG. 4, the specific resistance value distribution of the composite sintered body before voltage application was low in the central portion and high in the outer peripheral portion.
Therefore, as shown in FIG. 3, ring-shaped voltage application electrodes 31 are disposed on the surfaces of the outer peripheral regions 30a and 30b having a high specific resistance value of the composite sintered body 30, and further, the composite On the back surface of the outer peripheral area of the sintered body, a counter electrode plate-like voltage application electrode 32 is arranged, and finally obtained between the voltage application electrodes 31 and 32 (2 mm) thus arranged. A voltage of 9 kV, that is , a voltage at which the electric field strength is 4.5 kV / mm is applied for 10 minutes as a voltage higher than the working voltage of the resistor to be used, and the room temperature (25 ° C.) of the composite sintered body thus subjected to voltage application is applied. ) Was measured in the same manner, as shown in FIG. 4, the ratio of the specific resistance value in the high specific resistance region to the specific resistance value in the low specific resistance region was, as shown in FIG. What was more than 100 times before voltage application is 5 times after voltage application It had dropped to below.

実施例2
実施例1と同様にして長さ、幅:300mm、厚さ2mmの正方形板状の複合焼結体を作製した。ただし、炭化珪素(SiC)超微細粒子の使用量を9体積%に変更し、また酸化アルミニウム(Al23)粒子の使用量を91体積%に変更し、焼結温度を1800℃に変更した。
Example 2
A square plate-shaped composite sintered body having a length, width: 300 mm, and thickness 2 mm was produced in the same manner as in Example 1. However, the amount of silicon carbide (SiC) ultrafine particles was changed to 9% by volume, the amount of aluminum oxide (Al 2 O 3 ) particles was changed to 91% by volume, and the sintering temperature was changed to 1800 ° C. did.

この複合焼結体中の炭化珪素(SiC)粒子の粒度分布をSEM観察法により測定した。その結果を表2に示す。   The particle size distribution of silicon carbide (SiC) particles in this composite sintered body was measured by SEM observation. The results are shown in Table 2.

Figure 0004405356
Figure 0004405356

図2(a),(b)に示すように、前記複合焼結体10の表面10a上に、図2(a)に示されたパターン形状の電圧印加用電極12a,12bを配設し、更に、前記複合焼結体10の裏面12b上に対極の電圧印加用電極13を配設した。このように配設された電圧印加用電極間12a及び12bと、電圧印加用電極13との間(2mm)に、最終的に得られる抵抗体の使用電圧以上の電圧として直流電圧24kV、即ち電界強度が12kV/mmになる電圧を10分間印加した。
このようにして得られた抵抗体は、前記電圧を印加した領域の比抵抗値は1×1011Ωcm〜1×1012Ωcmであり、前記電圧を印加しなかった領域の比抵抗値は1014Ωcm以上であった。
2 (a) and 2 (b), voltage application electrodes 12a and 12b having the pattern shape shown in FIG. 2 (a) are disposed on the surface 10a of the composite sintered body 10, Further, a counter electrode voltage application electrode 13 was disposed on the back surface 12 b of the composite sintered body 10. Between the voltage application electrodes 12a and 12b arranged in this way and the voltage application electrode 13 (2 mm) , a DC voltage of 24 kV, that is, an electric field as a voltage higher than the working voltage of the finally obtained resistor is obtained. A voltage with an intensity of 12 kV / mm was applied for 10 minutes.
In the resistor thus obtained, the specific resistance value in the region to which the voltage was applied was 1 × 10 11 Ωcm to 1 × 10 12 Ωcm, and the specific resistance value in the region to which the voltage was not applied was 10 14 Ωcm or more.

本発明方法は、絶縁性セラミックスと導電性材料とを含む複合焼結体の比抵抗値分布を、簡便な方法により、効率よく制御することができ、また、所望の比抵抗値分布を有する複合抵抗体(均一な分布を有するもの、又は高比抵抗値領域と低比抵抗値領域とが、所望のパターンで分布しているものなど)を効率よく、簡便な操作で製造することができ、その実用的効果は、極めて高いものである。   The method of the present invention can efficiently control the specific resistance value distribution of a composite sintered body containing an insulating ceramic and a conductive material by a simple method, and has a desired specific resistance value distribution. Resistors (such as those having a uniform distribution, or those in which a high specific resistance value region and a low specific resistance value region are distributed in a desired pattern) can be manufactured efficiently and with a simple operation, Its practical effect is extremely high.

本発明の複合焼結体の比抵抗値分布の制御方法の一態様の説明図。Explanatory drawing of the one aspect | mode of the control method of the specific resistance value distribution of the composite sintered compact of this invention. 図2(a)は、本発明の複合抵抗体の製造方法に用いられる装置の一例の平面説明図、図2(b)は図2(a)の装置のY−Y線に沿う断面説明図。2A is an explanatory plan view of an example of an apparatus used in the method of manufacturing a composite resistor of the present invention, and FIG. 2B is an explanatory cross-sectional view taken along line YY of the apparatus of FIG. . 本発明の複合抵抗体の製造方法に用いられる装置の他の例の断面説明図。Sectional explanatory drawing of the other example of the apparatus used for the manufacturing method of the composite resistor of this invention. 図3に記載の装置により製造された複合抵抗体及びその原料複合焼結体における、高比抵抗値領域の比抵抗値の低比抵抗値領域の比抵抗値に対する比を示すグラフ。The graph which shows ratio with respect to the specific resistance value of the low specific resistance value area | region of the specific resistance value of a high specific resistance value area | region in the composite resistor manufactured by the apparatus of FIG. 3, and its raw material composite sintered compact.

符号の説明Explanation of symbols

1,10 複合焼結体
1a,10a 複合焼結体の表面
1b,10b 複合焼結体の裏面
2,3 電圧印加用電極
12a,12b 電圧印加用電極(表面側)
13 電圧印加用電極(裏面側)
30 円盤状複合焼結体
30a,30b 複合焼結体の外周部(比抵抗値の高い領域)
31 表面側リング状電圧印加用電極
32 裏面側電圧印加用電極
DESCRIPTION OF SYMBOLS 1,10 Composite sintered body 1a, 10a Front surface of composite sintered body 1b, 10b Back surface of composite sintered body 2,3 Voltage application electrode 12a, 12b Voltage application electrode (surface side)
13 Voltage application electrode (back side)
30 Disc-shaped composite sintered body 30a, 30b Peripheral part of composite sintered body (region with high specific resistance)
31 Front side ring-shaped voltage application electrode 32 Back side voltage application electrode

Claims (8)

酸化アルミニウム粒子からなる絶縁性セラミック粒子と、炭化珪素からなる導電性材料粒子との混合物を成型・焼結して得られ、かつ室温における比抵抗値が1×10 7 Ω・cm乃至1×10 18 Ω・cmである複合焼結体の、所望部分に、電界強度が1乃至20kV/mmになるような電圧を印加して、当該電圧印加部分の比抵抗値を低下させることを特徴とする絶縁性セラミックスと導電性材料との複合焼結体の比抵抗値分布の制御方法。It is obtained by molding and sintering a mixture of insulating ceramic particles made of aluminum oxide particles and conductive material particles made of silicon carbide, and has a resistivity value of 1 × 10 7 Ω · cm to 1 × 10 at room temperature. A voltage is applied to a desired portion of the composite sintered body of 18 Ω · cm so that the electric field strength is 1 to 20 kV / mm, and the specific resistance value of the voltage application portion is reduced. A method for controlling the specific resistance value distribution of a composite sintered body of an insulating ceramic and a conductive material. 前記複合焼結体中の、前記導電性材料粒子の含有量が、前記複合焼結体の全体積に対して、5体積%以上であり、また前記導電性材料粒子の10体積%以上が、0.2μm以下の粒径を有する、請求項1に記載の制御方法。   The content of the conductive material particles in the composite sintered body is 5% by volume or more with respect to the total volume of the composite sintered body, and 10% by volume or more of the conductive material particles The control method according to claim 1, which has a particle size of 0.2 μm or less. 前記複合焼結体中の、前記酸化アルミニウム粒子及び前記炭化珪素粒子の平均粒径がそれぞれ、2μm以下及び0.5μm以下である、請求項1に記載の制御方法。   2. The control method according to claim 1, wherein average particle sizes of the aluminum oxide particles and the silicon carbide particles in the composite sintered body are 2 μm or less and 0.5 μm or less, respectively. 前記複合焼結体の所望部分に印加する電圧が、当該複合焼結体の予定使用電圧以上である、請求項1に記載の制御方法。The control method according to claim 1, wherein a voltage applied to a desired portion of the composite sintered body is equal to or higher than a predetermined use voltage of the composite sintered body. 前記複合焼結体の電圧印加する部分の比抵抗値を測定し、その測定値に対応して、前記印加する電圧を調節する、請求項4に記載の制御方法。The control method according to claim 4, wherein a specific resistance value of a portion to which a voltage is applied of the composite sintered body is measured, and the applied voltage is adjusted in accordance with the measured value. 前記複合焼結体の、電圧印加する部分の比抵抗値の測定値が、その周囲の比抵抗値よりも高いとき、この高比抵抗値部分に、前記電圧印加を施して、その比抵抗値を、周囲の比抵抗値とほぼ等しくなるまで低下させる、請求項5に記載の制御方法。When the measured value of the specific resistance value of the portion to which voltage is applied of the composite sintered body is higher than the surrounding specific resistance value, the voltage is applied to the high specific resistance value portion, and the specific resistance value The control method according to claim 5, wherein the value is decreased until it becomes substantially equal to a specific resistance value of the surroundings. 前記電圧印加のために用いられる電圧印用電極の位置を調整することによって、得られる複合抵抗体の比抵抗値分布を制御する、請求項4に記載の制御方法。The control method according to claim 4, wherein a specific resistance value distribution of the obtained composite resistor is controlled by adjusting a position of a voltage marking electrode used for applying the voltage. 前記複合焼結体の所望のパターンを有する2以上の領域の、それぞれに対して電圧印加用電極を配置し、それぞれの電極による電圧印加を、当該領域が所望の比抵抗値に到達するまで施して、高比抵抗値領域と、低比抵抗値領域とを、所望のパターンに分布させる、請求項7に記載の制御方法。A voltage application electrode is arranged for each of two or more regions having the desired pattern of the composite sintered body, and voltage application by each electrode is performed until the region reaches a desired specific resistance value. The control method according to claim 7, wherein the high specific resistance region and the low specific resistance region are distributed in a desired pattern.
JP2004286480A 2004-09-30 2004-09-30 Control method of resistivity distribution of composite sintered body Expired - Fee Related JP4405356B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004286480A JP4405356B2 (en) 2004-09-30 2004-09-30 Control method of resistivity distribution of composite sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004286480A JP4405356B2 (en) 2004-09-30 2004-09-30 Control method of resistivity distribution of composite sintered body

Publications (2)

Publication Number Publication Date
JP2006096632A JP2006096632A (en) 2006-04-13
JP4405356B2 true JP4405356B2 (en) 2010-01-27

Family

ID=36236793

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004286480A Expired - Fee Related JP4405356B2 (en) 2004-09-30 2004-09-30 Control method of resistivity distribution of composite sintered body

Country Status (1)

Country Link
JP (1) JP4405356B2 (en)

Also Published As

Publication number Publication date
JP2006096632A (en) 2006-04-13

Similar Documents

Publication Publication Date Title
WO2014175424A1 (en) Ceramic heater
JP4808852B2 (en) Silicon nitride / tungsten carbide composite sintered body
CN111902383B (en) Composite sintered body, semiconductor manufacturing apparatus component, and method for manufacturing composite sintered body
JP2012526355A (en) Heating element
JP5342694B2 (en) Ceramic heater element, ceramic heater, and glow plug
JP6783528B2 (en) Ceramic structure, its manufacturing method and members for semiconductor manufacturing equipment
WO2012043749A1 (en) Silicon carbide ceramic and honeycomb structure
JP2001064080A (en) Silicon nitride sintered body and its production
JP4405356B2 (en) Control method of resistivity distribution of composite sintered body
JP4562029B2 (en) Ceramic heater, manufacturing method thereof, and glow plug
JP2012246172A (en) Joined body of metal material and ceramics-carbon composite material, and method for producing the same
JP4018998B2 (en) Ceramic heater and glow plug
JP4632205B2 (en) Molybdenum disilicide ceramic heating element
JP5883796B2 (en) Method for producing silicon carbide ceramics and method for producing honeycomb structure
JP4241571B2 (en) Manufacturing method of bipolar electrostatic chuck
JP5765277B2 (en) Low temperature thermistor material and manufacturing method thereof
CN101665352A (en) Aluminum oxide sintered product and method for producing the same
JP2534847B2 (en) Ceramic Heater
JP2004043197A (en) Process for producing ceramic slurry, ceramic green sheet and ceramic sintered compact
JP2537606B2 (en) Ceramic Heater
JP3588240B2 (en) Ceramic heater
JP3486108B2 (en) Power resistor, method of manufacturing the same, and power resistor
CN104396342A (en) Heater and glow plug equipped with same
JP2004026517A (en) Silicon carbide-based electroconductive sintered compact and method of manufacturing the same
JPH0460070B2 (en)

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090630

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090828

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091006

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091104

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121113

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121113

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131113

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees