JP4405006B2 - Method for producing low moisture lithium hexafluorophosphate - Google Patents

Method for producing low moisture lithium hexafluorophosphate Download PDF

Info

Publication number
JP4405006B2
JP4405006B2 JP30155099A JP30155099A JP4405006B2 JP 4405006 B2 JP4405006 B2 JP 4405006B2 JP 30155099 A JP30155099 A JP 30155099A JP 30155099 A JP30155099 A JP 30155099A JP 4405006 B2 JP4405006 B2 JP 4405006B2
Authority
JP
Japan
Prior art keywords
solution
lithium hexafluorophosphate
lithium
fluorination
fluoride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP30155099A
Other languages
Japanese (ja)
Other versions
JP2001122603A (en
Inventor
正樹 森岡
優 藤井
馨 成田
逸雄 折原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanto Denka Kyogyo Co.,Ltd.
Original Assignee
Kanto Denka Kyogyo Co.,Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanto Denka Kyogyo Co.,Ltd. filed Critical Kanto Denka Kyogyo Co.,Ltd.
Priority to JP30155099A priority Critical patent/JP4405006B2/en
Publication of JP2001122603A publication Critical patent/JP2001122603A/en
Application granted granted Critical
Publication of JP4405006B2 publication Critical patent/JP4405006B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Secondary Cells (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、リチウム二次電池用電解質をはじめ、有機合成反応用触媒として有用な低水分の六フッ化リン酸リチウムを効率的に製造する方法に関する。
【0002】
【従来の技術及び発明が解決しようとする課題】
六フッ化リン酸リチウムの製造方法については従来から種々の方法が提唱されている。
しかしながら、何れの製造方法にも共通する問題として挙げられるのが、濾液の循環使用による製品への水分の混入の問題である。即ち、何れの製造方法においても、六フッ化リン酸リチウムを濾過分離した後の濾液に新たに反応原料のフッ化リチウムを溶解してバッチ反応を繰り返し継続するが、この際、反応原料である五塩化リンやフッ化リチウムの含有水分、操作による外気からの混入水分等により、濾液中の水分が次第に上昇する結果、製品である六フッ化リン酸リチウム中の水分も徐々に増加していくという問題がある。
六フッ化リン酸リチウムをリチウム電池の電解質として使用する場合、その含有水分により電解質自体の加水分解が起き、生成するフッ化水素やオキシフッ化リン酸化合物により電池性能の劣化を来たすため、六フッ化リン酸リチウムの含有水分はできるだけ低減しなければならない。
【0003】
従来から六フッ化リン酸リチウムの水分低減法として提案されている方法としては、六フッ化リン酸リチウム結晶を沸点が100℃以上の含酸素有機溶媒に溶解させ、この溶液中の含酸素有機溶媒を蒸留により全て留出させることにより水分を除去する方法(特開昭61−254216号公報)がある。
しかし、この方法では、その都度多量の溶媒を留出除去しなければならず、また、溶媒中の不純物濃縮による汚染が懸念される。
その他の方法としては、六フッ化リン酸リチウム結晶を不活性ガス中でフッ素処理する方法(特公平4−16406号公報)や、六フッ化リン酸リチウム結晶をフッ素に不活性な溶剤に再溶解した後、フッ素処理する方法(特公平4−16407号公報)等がある。
しかし、これらの処理法では、一度単離した六フッ化リン酸リチウム結晶を改めて別装置でフッ素処理する必要があり、操作上繁雑で時間を要し、工業上実用的な方法とは言い難い。
【0004】
従って、本発明の目的は、上記従来法の欠点を排除した低水分六フッ化リン酸リチウムの製造方法、即ち特別な後処理等を必要とすることなく効率良く低水分の六フッ化リン酸リチウムを製造できる方法を提供することにある。
【0005】
【課題を解決するための手段】
本発明者等は、上記目的を達成するため、鋭意検討した結果、フッ化リチウムの無水フッ化水素溶液と五フッ化リンとを用いて六フッ化リン酸リチウムを製造するに際し、反応初回のフッ化リチウムの無水フッ化水素溶液および循環使用する結晶濾液にフッ化リチウムを溶解させた溶液をフッ素化することにより、容易に且つ極めて効率的に水分の少ない六フッ化リン酸リチウムが製造できることを知見した。
本発明は、上記知見に基づきなされたもので、フッ化リチウムの無水フッ化水素溶液、またはフッ化リチウムを六フッ化リン酸リチウムの製造工程において循環使用する濾液に溶解させた溶液を、フッ素化した後、上記溶液に五フッ化リンを添加し、上記溶液中のフッ化リチウムと五フッ化リンとを反応させることを特徴とする低水分六フッ化リン酸リチウムの製造方法(以下、第1発明という)を提供するものである。
また、本発明は、フッ化リチウムの無水フッ化水素溶液、またはフッ化リチウムを六フッ化リン酸リチウムの製造工程において循環使用する濾液に溶解させた溶液に、五フッ化リンを添加し、上記溶液中のフッ化リチウムと五フッ化リンとを反応させた後、反応液をフッ素化することを特徴とする低水分六フッ化リン酸リチウムの製造方法(以下、第2発明という)を提供するものである。
【0006】
【発明の実施の形態】
以下、本発明の低水分六フッ化リン酸リチウムの製造方法について詳述する。
先ず、第1発明について説明する。
【0007】
上記のフッ化リチウムの無水フッ化水素溶液またはフッ化リチウムを濾液に溶解させた溶液のフッ素化は、フッ素ガスを用いて行われる。該フッ素化は、六フッ化リン酸リチウム製造用の反応器中に直接フッ素ガスを導入して実施しても良く、また該反応器とは別の容器内で実施したり、あるいは気液を効率的に接触させるための装置を別に設けて実施した後、処理後の溶液を上記反応器に戻しても良い。上記フッ素化に使用するフッ素ガスは、コストおよび環境への配慮上、循環使用することが好ましい。
【0008】
上記フッ素化は、常圧下、加圧下、減圧下の何れでも行うことができる。上記フッ素化の反応温度は、水分とフッ素との反応を考慮すれば、加圧下でできるだけ高くすることが望ましいが、上限温度は、装置の耐圧性を考慮して50℃以下、好ましくは30℃以下である。下限温度は、フッ化リチウムや六フッ化リン酸リチウム等の溶質が析出しない温度迄低くできるが、フッ素化の効率を考慮すれば、−20℃以上とすることが望ましい。即ち、上記フッ素化の反応温度は、−20〜+30℃の範囲とすることが好ましい。
また、上記フッ素化を加圧下で行う場合は、反応器内圧を10〜20kPa(G)の範囲とすることが好ましく、また上記フッ素化を減圧下で行う場合は、反応器内圧を−80〜−30kPa(G)の範囲とすることが好ましい。
【0009】
また、上記フッ素化に使用するフッ素ガスの濃度は任意で良い。即ち、100容積%フッ素を用いても、あるいは希釈用として不活性ガス類(窒素、ヘリウム、アルゴン、ネオン等)や四フッ化炭素、六フッ化エタン、三フッ化窒素、六フッ化硫黄等のフッ素系ガスにより任意に希釈して使用しても良いが、効率を考えれば10容積%以上の濃度のフッ素ガスを使用することが望ましい。
また、上記フッ素化に要するフッ素化時間は、使用するフッ素ガスの濃度にもよるが、通常は数秒〜数時間である。フッ素化の効率を考えれば、1分間〜1時間でフッ素化が終了するようにフッ素ガスの濃度を調整することが望ましい。
【0010】
また、上記フッ素化後の溶液中のフッ化リチウムと、五フッ化リンとの反応は、従来法と同様に行うことができ、好ましくは上記溶液に対し−30〜0℃の温度で五フッ化リンを添加、反応させると良い。
また、上記溶液は、無水フッ化水素/フッ化リチウムのモル比が10〜35であるものが好ましく、また、五フッ化リンの添加量は、上記溶液中のフッ化リチウム1モルに対し1.0〜1.1モルが好ましい。
【0011】
反応液からの六フッ化リン酸リチウムの取得は、反応液を冷却して六フッ化リン酸リチウムの結晶を析出させ、該結晶を不活性ガス中で加熱乾燥することにより行うことができる。
本発明の方法により得られる六フッ化リン酸リチウムは、水分10ppm未満の低水分のものである。
【0012】
次に、第2発明について説明する。
第2発明は、フッ素化を、フッ化リチウムと五フッ化リンとの反応後に行う以外は、第1発明と同様に実施される。
即ち、第2発明におけるフッ素化前の溶液中のフッ化リチウムと、五フッ化リンとの反応は、第1発明におけるフッ素化後の溶液中のフッ化リチウムと、五フッ化リンとの反応と同様に行えば良く、また、第2発明における反応液のフッ素化は、第1発明における溶液のフッ素化と同様に行えば良い。
【0013】
【実施例】
以下、本発明の実施例を比較例とともに挙げるが、本発明はこれらの実施例に制限されるものではない。尚、実施例4は参考例である。
【0014】
〔実施例1〕
3リットル容量の撹拌機および冷却ジャケット付ハステロイC製反応器に無水フッ化水素(以下、HFと略記する)1600gを仕込み、−35℃に冷却後、これにフッ化リチウム75gを撹拌しながら溶解して、フッ化リチウムの無水フッ化水素溶液を調製した。該溶液の液温は−19℃であった。次に、反応器中に、窒素で希釈した濃度50容積%のフッ素ガスを800ml/minの速度で撹拌しながら1時間導入し、上記溶液の脱水(フッ素化)を行った。続いて、五フッ化リン500gを撹拌しながら反応器内に導入し、反応させた後、反応液を−50℃に冷却して結晶を析出させた。結晶を濾別後、50℃の窒素気流中で乾燥し、直径1〜2mmの粒径の揃った六フッ化リン酸リチウムの結晶220gを得た。この結晶中の水分は3ppmであった(該水分の測定はカールフィッシャー法により行った。以下の実施例および比較例でも同じ。)。
【0015】
〔実施例2〕
実施例1の「結晶を濾別後の濾液」に新たにHFを加えて1800gとし、これにフッ化リチウム37gを溶解した。この溶液を用いて、実施例1と同じ条件で、フッ素化による脱水後、五フッ化リン230gを導入して反応を行い、六フッ化リン酸リチウムの結晶239gを得た。この結晶中の水分は4ppmであった。
【0016】
〔実施例3〕
実施例2と同様の操作を40回繰り返した。40回目に生成した六フッ化リン酸リチウムの結晶中の水分は6ppmであった。
【0017】
〔実施例4〕
3リットル容量の撹拌機および冷却ジャケット付ハステロイC製反応器にHF1600gを仕込み、これにフッ化リチウム80gを溶解して、フッ化リチウムの無水フッ化水素溶液を調製した。該溶液の液温を−10℃にした後、別のハステロイC製反応器で五塩化リンとHFとの反応で合成した五フッ化リンを撹拌しながら500g導入し、反応させた。反応終了後の温度は13℃であった。この反応液を0℃に冷却した後、濃度100容積%のフッ素ガスを300ml/minの速度で撹拌しながら40分間導入し、上記反応液の脱水(フッ素化)を行った。次に、反応液を−50℃に冷却して結晶を析出させた。結晶を濾別後、50℃の窒素気流中で乾燥し、六フッ化リン酸リチウムの結晶188gを得た。この結晶中の水分は4ppmであった。
【0018】
〔比較例1〕
脱水(フッ素化)操作を省略した以外は、実施例1と同様にして実施し、六フッ化リン酸リチウムの結晶251gを得た。この六フッ化リン酸リチウムの結晶は、粒径の揃ったものであったが、結晶中の水分は11ppmであった。
【0019】
〔比較例2〕
脱水(フッ素化)操作を行うことなく、比較例1の「結晶を濾別後の濾液」を繰り返し使用して40回反応を行った。40回目に生成した六フッ化リン酸リチウムの結晶中の水分は26ppmであった。
【0020】
〔比較例3〕
脱水(フッ素化)操作を省略した以外は、実施例4と同様にして実施し、六フッ化リン酸リチウムの結晶184gを得た。この結晶中の水分は26ppmであった。
【0021】
【発明の効果】
本発明の六フッ化リン酸リチウムの製造方法によれば、特別な後処理等を必要とすることなく効率良く低水分の六フッ化リン酸リチウムを製造できる。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for efficiently producing low-moisture lithium hexafluorophosphate useful as an organic synthesis reaction catalyst, including an electrolyte for a lithium secondary battery.
[0002]
[Prior art and problems to be solved by the invention]
Various methods for producing lithium hexafluorophosphate have been proposed.
However, a problem common to all the production methods is a problem of water mixing into the product due to the circulating use of the filtrate. That is, in any of the manufacturing methods, the reaction raw material lithium fluoride is newly dissolved in the filtrate after the lithium hexafluorophosphate is filtered and separated, and the batch reaction is continued repeatedly. The moisture in the filtrate gradually increases due to the moisture content of phosphorus pentachloride and lithium fluoride, the moisture mixed from the outside air during operation, etc. As a result, the moisture in the product lithium hexafluorophosphate gradually increases. There is a problem.
When lithium hexafluorophosphate is used as an electrolyte for a lithium battery, the electrolyte itself is hydrolyzed by the moisture contained therein, and the resulting hydrogen fluoride or oxyfluorophosphate compound degrades the battery performance. The water content of the lithium phosphate must be reduced as much as possible.
[0003]
Conventionally, as a method for reducing the water content of lithium hexafluorophosphate, lithium hexafluorophosphate crystals are dissolved in an oxygen-containing organic solvent having a boiling point of 100 ° C. or higher, and the oxygen-containing organic in this solution is dissolved. There is a method (Japanese Patent Laid-Open No. 61-254216) for removing water by distilling off all the solvent by distillation.
However, in this method, a large amount of solvent must be distilled and removed each time, and contamination due to impurity concentration in the solvent is a concern.
Other methods include fluorine treatment of lithium hexafluorophosphate crystals in an inert gas (Japanese Patent Publication No. 4-16406), or recrystallization of lithium hexafluorophosphate crystals into a solvent inert to fluorine. After dissolution, there is a method of fluorine treatment (Japanese Patent Publication No. 4-16407).
However, in these treatment methods, it is necessary to treat once isolated lithium hexafluorophosphate crystals with a separate apparatus, which is complicated and time-consuming to operate, and is not an industrially practical method. .
[0004]
Accordingly, the object of the present invention is to produce a low moisture lithium hexafluorophosphate that eliminates the disadvantages of the conventional methods described above, that is, to efficiently produce a low moisture hexafluorophosphate without requiring a special post-treatment. The object is to provide a method capable of producing lithium.
[0005]
[Means for Solving the Problems]
As a result of intensive investigations to achieve the above object, the inventors of the present invention have prepared the first reaction when producing lithium hexafluorophosphate using an anhydrous hydrogen fluoride solution of lithium fluoride and phosphorus pentafluoride. Lithium hexafluorophosphate with low water content can be produced easily and extremely efficiently by fluorinating an anhydrous hydrogen fluoride solution of lithium fluoride and a solution obtained by dissolving lithium fluoride in a circulating crystal filtrate. I found out.
The present invention has been made on the basis of the above knowledge, and an anhydrous hydrogen fluoride solution of lithium fluoride or a solution obtained by dissolving lithium fluoride in a filtrate that is circulated and used in the production process of lithium hexafluorophosphate, Then, phosphorus pentafluoride is added to the solution, and the lithium fluoride in the solution is reacted with phosphorus pentafluoride. The first invention is provided).
Moreover, the present invention adds phosphorus pentafluoride to an anhydrous hydrogen fluoride solution of lithium fluoride, or a solution in which lithium fluoride is dissolved in a filtrate that is circulated and used in the production process of lithium hexafluorophosphate, A method for producing low-moisture lithium hexafluorophosphate (hereinafter referred to as second invention), characterized in that after reacting lithium fluoride and phosphorus pentafluoride in the solution, the reaction solution is fluorinated. It is to provide.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the manufacturing method of the low moisture lithium hexafluorophosphate of this invention is explained in full detail.
First, the first invention will be described.
[0007]
Fluorination of the above-mentioned anhydrous hydrogen fluoride solution of lithium fluoride or a solution obtained by dissolving lithium fluoride in a filtrate is performed using fluorine gas. The fluorination may be carried out by directly introducing fluorine gas into a reactor for producing lithium hexafluorophosphate, or may be carried out in a separate container from the reactor, After carrying out by separately providing a device for efficient contact, the treated solution may be returned to the reactor. The fluorine gas used for the fluorination is preferably recycled for cost and environmental considerations.
[0008]
The fluorination can be performed under normal pressure, under pressure, or under reduced pressure. The reaction temperature of the fluorination is desirably as high as possible under pressure in consideration of the reaction between moisture and fluorine. However, the upper limit temperature is 50 ° C. or less, preferably 30 ° C. in consideration of the pressure resistance of the apparatus. It is as follows. The lower limit temperature can be lowered to a temperature at which a solute such as lithium fluoride or lithium hexafluorophosphate does not precipitate, but it is desirable to set it to −20 ° C. or higher in view of the efficiency of fluorination. That is, the fluorination reaction temperature is preferably in the range of -20 to + 30 ° C.
Moreover, when performing the said fluorination under pressure, it is preferable to make the reactor internal pressure into the range of 10-20 kPa (G), and when performing the said fluorination under reduced pressure, the reactor internal pressure is -80- A range of −30 kPa (G) is preferable.
[0009]
The concentration of the fluorine gas used for the fluorination may be arbitrary. That is, even when 100% by volume of fluorine is used, or for dilution, inert gases (nitrogen, helium, argon, neon, etc.), carbon tetrafluoride, hexafluoroethane, nitrogen trifluoride, sulfur hexafluoride, etc. However, it is desirable to use a fluorine gas having a concentration of 10% by volume or more in view of efficiency.
The fluorination time required for the fluorination is usually several seconds to several hours although it depends on the concentration of the fluorine gas used. Considering the efficiency of fluorination, it is desirable to adjust the concentration of the fluorine gas so that the fluorination is completed in 1 minute to 1 hour.
[0010]
The reaction between lithium fluoride and phosphorus pentafluoride in the solution after fluorination can be carried out in the same manner as in the conventional method. Preferably, the solution is fluorinated at a temperature of −30 to 0 ° C. It is recommended to add phosphorus phosphide and react.
The solution preferably has an anhydrous hydrogen fluoride / lithium fluoride molar ratio of 10 to 35, and the amount of phosphorus pentafluoride added is 1 with respect to 1 mol of lithium fluoride in the solution. 0.0 to 1.1 mol is preferred.
[0011]
Acquisition of lithium hexafluorophosphate from the reaction solution can be performed by cooling the reaction solution to precipitate crystals of lithium hexafluorophosphate and heating and drying the crystals in an inert gas.
The lithium hexafluorophosphate obtained by the method of the present invention has a low moisture content of less than 10 ppm.
[0012]
Next, the second invention will be described.
The second invention is carried out in the same manner as the first invention except that the fluorination is performed after the reaction between lithium fluoride and phosphorus pentafluoride.
That is, the reaction between lithium fluoride in the solution before fluorination and phosphorus pentafluoride in the second invention is the same as the reaction between lithium fluoride in the solution after fluorination and phosphorus pentafluoride in the first invention. The reaction solution in the second invention may be fluorinated in the same manner as the solution fluorination in the first invention.
[0013]
【Example】
Examples of the present invention will be described below together with comparative examples, but the present invention is not limited to these examples. Example 4 is a reference example.
[0014]
[Example 1]
Charge 1600 g of anhydrous hydrogen fluoride (hereinafter abbreviated as HF) into a 3 liter stirrer and Hastelloy C reactor with cooling jacket, cool to −35 ° C., and dissolve 75 g of lithium fluoride in this while stirring. Then, an anhydrous hydrogen fluoride solution of lithium fluoride was prepared. The solution temperature was −19 ° C. Next, fluorine gas having a concentration of 50% by volume diluted with nitrogen was introduced into the reactor for 1 hour while stirring at a rate of 800 ml / min to dehydrate (fluorinate) the solution. Subsequently, 500 g of phosphorus pentafluoride was introduced into the reactor while stirring and reacted, and then the reaction solution was cooled to −50 ° C. to precipitate crystals. The crystals were filtered off and dried in a nitrogen stream at 50 ° C. to obtain 220 g of lithium hexafluorophosphate crystals having a diameter of 1 to 2 mm. The water content in the crystals was 3 ppm (the water content was measured by the Karl Fischer method. The same applies to the following examples and comparative examples).
[0015]
[Example 2]
HF was newly added to the “filtrate after filtering the crystals” in Example 1 to 1800 g, and 37 g of lithium fluoride was dissolved therein. Using this solution, under the same conditions as in Example 1, after dehydration by fluorination, 230 g of phosphorus pentafluoride was introduced to carry out the reaction, thereby obtaining 239 g of lithium hexafluorophosphate crystals. The moisture in the crystal was 4 ppm.
[0016]
Example 3
The same operation as in Example 2 was repeated 40 times. The moisture in the crystal of lithium hexafluorophosphate produced for the 40th time was 6 ppm.
[0017]
Example 4
1300 g of HF was charged into a 3 liter capacity stirrer and Hastelloy C reactor equipped with a cooling jacket, and 80 g of lithium fluoride was dissolved therein to prepare an anhydrous hydrogen fluoride solution of lithium fluoride. After the temperature of the solution was adjusted to −10 ° C., 500 g of phosphorus pentafluoride synthesized by the reaction of phosphorus pentachloride and HF was introduced and reacted in another Hastelloy C reactor. The temperature after completion of the reaction was 13 ° C. After cooling the reaction solution to 0 ° C., fluorine gas having a concentration of 100% by volume was introduced for 40 minutes while stirring at a rate of 300 ml / min to dehydrate (fluorinate) the reaction solution. Next, the reaction solution was cooled to −50 ° C. to precipitate crystals. The crystals were separated by filtration and dried in a nitrogen stream at 50 ° C. to obtain 188 g of lithium hexafluorophosphate crystals. The moisture in the crystal was 4 ppm.
[0018]
[Comparative Example 1]
Except that the dehydration (fluorination) operation was omitted, the same procedure as in Example 1 was performed to obtain 251 g of lithium hexafluorophosphate crystals. The lithium hexafluorophosphate crystal had a uniform particle size, but the water content in the crystal was 11 ppm.
[0019]
[Comparative Example 2]
Without performing dehydration (fluorination) operation, the reaction was performed 40 times by repeatedly using the “filtrate after filtering the crystals” of Comparative Example 1. The water content in the crystal of lithium hexafluorophosphate produced for the 40th time was 26 ppm.
[0020]
[Comparative Example 3]
Except that the dehydration (fluorination) operation was omitted, the same procedure as in Example 4 was performed to obtain 184 g of lithium hexafluorophosphate crystals. The water content in the crystals was 26 ppm.
[0021]
【The invention's effect】
According to the method for producing lithium hexafluorophosphate of the present invention, lithium hexafluorophosphate having a low water content can be efficiently produced without requiring a special post-treatment or the like.

Claims (3)

フッ化リチウムの無水フッ化水素溶液、またはフッ化リチウムを六フッ化リン酸リチウムの製造工程において循環使用する濾液に溶解させた溶液を、フッ素化した後、上記溶液に五フッ化リンを添加し、上記溶液中のフッ化リチウムと五フッ化リンとを反応させることを特徴とする低水分六フッ化リン酸リチウムの製造方法。  Fluorinate a solution of lithium fluoride in anhydrous hydrogen fluoride or a solution in which lithium fluoride is circulated and used in the lithium hexafluorophosphate manufacturing process, and then add phosphorus pentafluoride to the above solution And a method for producing low-moisture lithium hexafluorophosphate, wherein lithium fluoride and phosphorus pentafluoride in the solution are reacted. フッ素化を、濃度10〜100容積%の範囲のフッ素ガスを用いて行う請求項1記載の低水分六フッ化リン酸リチウムの製造方法。Fluorinated method of low moisture lithium hexafluorophosphate of claim 1 Symbol placement carried out using a concentration of 10 to 100 volume% of the fluorine gas. フッ素化温度が−20〜+30℃の範囲であり、フッ素化時間が1分間〜1時間の範囲である請求項1または2記載の低水分六フッ化リン酸リチウムの製造方法。The method for producing low-moisture lithium hexafluorophosphate according to claim 1 or 2 , wherein the fluorination temperature is in the range of -20 to + 30 ° C, and the fluorination time is in the range of 1 minute to 1 hour.
JP30155099A 1999-10-22 1999-10-22 Method for producing low moisture lithium hexafluorophosphate Expired - Lifetime JP4405006B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30155099A JP4405006B2 (en) 1999-10-22 1999-10-22 Method for producing low moisture lithium hexafluorophosphate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30155099A JP4405006B2 (en) 1999-10-22 1999-10-22 Method for producing low moisture lithium hexafluorophosphate

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2009216718A Division JP5178672B2 (en) 2009-09-18 2009-09-18 Method for producing low moisture lithium hexafluorophosphate

Publications (2)

Publication Number Publication Date
JP2001122603A JP2001122603A (en) 2001-05-08
JP4405006B2 true JP4405006B2 (en) 2010-01-27

Family

ID=17898298

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30155099A Expired - Lifetime JP4405006B2 (en) 1999-10-22 1999-10-22 Method for producing low moisture lithium hexafluorophosphate

Country Status (1)

Country Link
JP (1) JP4405006B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5148125B2 (en) * 2007-02-08 2013-02-20 ステラケミファ株式会社 Method for producing hexafluorophosphate
JP5307409B2 (en) * 2007-08-16 2013-10-02 ステラケミファ株式会社 Method for producing phosphorus pentafluoride and hexafluorophosphate
JP5165364B2 (en) * 2007-12-25 2013-03-21 ステラケミファ株式会社 Method for producing hexafluorophosphate
JP5351463B2 (en) * 2008-08-08 2013-11-27 ステラケミファ株式会社 Method for producing hexafluorophosphate
JP2010042937A (en) 2008-08-08 2010-02-25 Stella Chemifa Corp Method for producing phosphorus pentafluoride and hexafluorophosphates
JP5824013B2 (en) * 2013-08-21 2015-11-25 ステラケミファ株式会社 Method for producing phosphorus pentafluoride and hexafluorophosphate
CN114288845B (en) * 2022-01-19 2023-02-24 福建省龙德新能源有限公司 Hydrogen chloride purification method and device

Also Published As

Publication number Publication date
JP2001122603A (en) 2001-05-08

Similar Documents

Publication Publication Date Title
JP2000505042A (en) Method for removing acid from lithium salt solution
KR102285464B1 (en) Method for producing bis (fluorosulfonyl) imide lithium salt (LiFSI) with reduced fluorine anion content
JP3204415B2 (en) Method for producing hexafluorophosphate
JP5178672B2 (en) Method for producing low moisture lithium hexafluorophosphate
JP4405006B2 (en) Method for producing low moisture lithium hexafluorophosphate
CA2193119A1 (en) Electrolytic Solution for Lithium Cell and Method for Producing Same
KR101982602B1 (en) Method for producing bis (fluorosulfonyl) imide lithium salt (LiFSI) with reduced fluorine anion content (1)
JP2001247307A (en) Method for producing lithium tetrafluoroborate
CN114314611A (en) Method for recycling salt generated after fluorination reaction of fluoroethylene carbonate
CN113929711A (en) Preparation method of lithium difluoroborate
CN112591727B (en) Preparation method of lithium difluorophosphate
KR102231049B1 (en) Manufacturing method for high-purity crystallization of lithium difluorophosphate with excellent solubility and Non-aqueous electrolyte for secondary battery
JP4405007B2 (en) Method for producing high purity lithium hexafluorophosphate
CN113353910A (en) Preparation method of lithium difluorophosphate
JP3973329B2 (en) Method for producing lithium hexafluorophosphate
KR102259985B1 (en) Method for producing bis (fluorosulfonyl) imide lithium salt (LiFSI) with reduced fluorine anion content
KR20220135283A (en) Method for manufacturing sodium bis(fluorosulfonyl)imide
JP3375049B2 (en) Method for producing lithium tetrafluoroborate
JP5151121B2 (en) Method for producing electrolytic solution for lithium ion battery and lithium ion battery using the same
JP2882723B2 (en) Purification method of lithium hexafluorophosphate
JP3071393B2 (en) Method for producing electrolyte for lithium battery
KR102259984B1 (en) Method for producing bis (fluorosulfonyl) imide lithium salt (LiFSI) with reduced fluorine anion content
CN114477122A (en) Preparation method of lithium difluorophosphate and lithium ion battery electrolyte
JPH06298506A (en) Purification of lithium hexafluorophosphate
KR102596526B1 (en) Manufactuiring method for crystallization of lithium difluorophosphate and Crystallization of lithium difluorophosphate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060906

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090728

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090918

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091020

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091104

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121113

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4405006

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121113

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131113

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term